完整版保险精算第二版习题及答案.doc
保险精算习题及答案
第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算第二版习题及问题详解
保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算试题与答案
保险精算试题与答案[注意:本文按照试题格式进行回答]试题一:保险精算的定义和作用是什么?保险精算是指运用数学、统计学和金融学等方法,对保险业务进行量化分析和评估的过程。
其作用主要体现在以下几个方面:1. 风险评估:通过对历史数据和概率模型的分析,保险精算师可以评估保险产品的风险水平,确定保费率和赔付准备金水平,为保险公司提供决策依据。
2. 产品开发与定价:保险精算师可以根据市场需求和风险情况,设计和开发新的保险产品,并确定合理的保费定价策略,以提高保险公司的竞争力和盈利能力。
3. 保险风险管理:保险精算师可以利用精算模型和方法,对保险风险进行全面的管理和控制,降低保险公司的不确定性和风险敞口。
4. 偿付能力评估:通过运用精算方法,保险精算师可以对保险公司的偿付能力进行评估和监测,保证公司能够按时履行合同中对被保险人的赔偿责任。
5. 盈余分配决策:精算师根据保险公司的盈利能力和风险状况,制定合理的盈余分配策略,确保公司的可持续经营和股东利益最大化。
试题二:简述保险精算的核心内容和方法保险精算的核心内容主要包括风险评估、损失模型、资本管理和盈余分配等方面。
1. 风险评估:通过风险测度和量化方法,评估保险产品的风险水平,并制定相应的风险管理策略,保证公司的偿付能力。
2. 损失模型:利用数理统计的方法,分析历史数据和风险模型,构建损失模型,预测未来潜在的赔偿风险,并根据模型结果进行资本分配和准备金计提。
3. 资本管理:通过资本分配和配置,保险精算师可以根据公司的风险状况和盈利能力,确定合理的资本水平和使用策略,提高公司的偿付能力和综合运营效益。
4. 盈余分配:保险精算师基于公司的盈利水平、资本状况和风险状况,制定合理的盈余分配政策,确保公司能够平衡盈利和风险、实现可持续发展。
保险精算的核心方法包括:1. 预测模型:利用历史数据和概率理论,建立预测模型,对未来保险损失进行预测和量化评估。
2. 风险度量方法:通过运用不同的风险测度方法,比如价值-at-Risk、条件VaR等,对保险风险进行度量和分析。
保险精算教学大纲丶习题及答案
保险精算教学大纲本课程总课时:课程教学周,每周课时第一章:利息理论基础本章课时:学习的目的和要求要求了解利息的各种度量掌握常见利息问题的求解原理二、主要内容第一节:实际利率与实际贴现率利息的定义实际利率单利和复利实际贴现率第二节:名义利率和名义贴现率第三节:利息强度第二章年金本章课时:一、学习的目的和要求要求了解年金的定义、类别掌握年金问题求解的基本原理和常用技巧二、主要内容第一节:期末付年金第二节:期初付年金第三节:任意时刻的年金值一、在首期付款前某时刻的年金值二、在最后一期付款后某时刻的年金积累值三、付款期间某时刻的年金当前值第四节:永续年金第五节:连续年金第三章生命表基础本章课时:一、学习的目的与要求理解常用生命表函数的概率意义及彼此之间的函数关系了解生存函数与生命表的关系并掌握寿险生命表的特点与构造原理掌握各种分数年龄假定下,分数年龄的生命表函数的估计方法主要内容第一节生命函数一、分布函数二、生存函数三、剩余寿命四、取整余命五、死亡效力六、生存函数的解析表达式第二节生命表一、生命表的含义二、生命表的内容第四章人寿保险的精算现值本章课时:一、教学目的与要求掌握寿险趸缴纯保费的厘定原理理解寿险精算现值的意义,掌握寿险精算现值的表达方式及计算技巧认识常见的寿险产品并掌握各种产品趸缴纯保费的厘定及寿险精算现值方差的计算理解趸缴纯保费的现实意义主要内容第一节死亡即付的人寿保险一、精算现值的概念二、n年定期保险的精算现值(趸缴纯保费)三、终身寿险的趸缴纯保费四、延期寿险的趸缴纯保费五、生存保险与两全保险的趸缴纯保费死亡年末给付的人寿保险一、定期寿险的趸缴纯保费二、终身寿险的趸缴纯保费三、两全保险的趸缴纯保费四、延期寿险的趸缴纯保费死亡即刻赔付保险与死亡年末赔付保险的精算现值的关系递增型人寿保险与递减型人寿保险一、递增型寿险二、递减型寿险三、两类精算现值的换算第五章年金的精算现值本章课时:一、学习目的与要求理解生存年金的概念掌握各种场合计算生存年金现时值的原理和技巧。
保险精算习题及答案
第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
精算模型第二版课后习题答案(上)
(
.0)6$%
.!000
槡0)6
超出%"!000 槡0)6的部分为%
" !! !!/-"189:0)60!"".
!000 (2(<2 % !000(
.6;).*,;
除以!’-"0)!!我们得到6;.)*,;$ 同样的结果可以通过方程解出%
" # !!&!%""
% !000
(
"-$%"!000槡-
整合可得
+++
"(#C9D9#=>?@A?B分布与对数正态分布’"+#逆指数分布与指数分布$ 解%4=>#=>?@A?B分布只有正数阶矩!而伽玛分布都有!所以 4=>#=>?@A?B分布比伽玛分 布有更厚的尾部$
C9D9#=>?@A?B分布只有正数阶矩!而对数正态分布都有!所以 C9D9#=>?@A?B分布比对数 正态分布有更厚的尾部$
所以!# 的分布是一个参数#"!&!的指数分布$ (!已知%"!#" 服从均值为(的指数分布’"(##""!)*$计算’(#()$ 解%使用#(""+ 的代换来计算指数分布的三阶矩更为简单$
!!’!#(""’!"+""+##+",-(+"./
+!" 服从一个参数为!"()*!#"!0的伽玛分布$#"!&"!计算()*"##$ 解%我们来计算’"##和’"#(#!或者’""’!#和’""’(#!注意到 12345 中用于 伽玛分布整数阶矩计算的公式’""+#"#+"!%+’!#*!$这个公式值提供了当+ 是一个正 整数的情况!所以不能够用来计算’!和’(阶矩$由此!我们必须使用 12345 中更为 一般化的公式
保险精算(第二版)主编 李秀芳 傅安平 王静龙第6章习题讲评
第六章:期缴纯保费与营业保费练 习 题1. 设()0x t t μμ+=>,利息强度为常数δ,求 ()x P A 与Var(L)。
()00002220022212()()()2t t t x t x t t t x t x x t t t t x t x x t x x x x x x a v p dt e e dt A v p dt e e dt A v p dt e e dt A P A a A A Var L a δμδμδμμδμμμμδμμμμδμμδμδ+∞+∞--+∞+∞--++∞+∞--+===+===+===+∴==-==+⎰⎰⎰⎰⎰⎰ 3. 已知 140:20604040:200.029,0.005,0.034,6%,P P P i a ====求 。
40:2040:2040:2040:2040:2040:201 1140:2040:2040:20204040:2040:2040:2040:2040:20204060606060600.0566110.02911.68220.0240.2803710.i d i A da P a a a A A A E P P a a a E A da P a a ==+-===⇒=--====⇒=-===604020406040:2003411.037514.77679a a a E a ⇒==+=8. 已知 202020:4020:4010007,16.72,15.72,P a a P ===求1000 。
20:4020:4020:4020:4020:4020:4020202020202011000715.720.056616.721100010001000 3.2A da P a a a d a A da P a a -⎧===⎪⎨⎪=⎩⇒==-∴===11. 已知x 岁的人购买保额1000元的完全离散型终身寿险的年保费为50元,20.06,0.4,0.2x x d A A ===,L 是在保单签发时保险人的亏损随机变量。
保险精算习题及答案
第一章:利息的基本概念练习题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+=∵2.(1)假设A(t)=100+10t,试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A −−−======(2)假设()()100 1.1nA n =×,试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A −−−======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为110%i =,第2年的利率为28%i =,第3年的利率为36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎞⎜⎟=+=⎜⎟⎜⎟⎝⎠6.设m >1,按从大到小的次序排列()()m m d d i i δ<<<<。
保险精算课后习题答案
保险精算课后习题答案保险精算学是一门应用数学和统计学原理来评估风险和确定保险费率的学科。
它通常包括概率论、统计学、金融数学和经济学的相关知识。
以下是一些保险精算课后习题的答案示例:1. 问题:某保险公司提供一种寿险产品,保险期限为20年。
假设年利率为4%,保险公司需要为每位投保人准备的总金额为100,000元。
请计算每年需要缴纳的保费。
答案:使用等额年金的公式,我们可以计算出每年需要缴纳的保费。
首先计算现值因子PVIFA,公式为:\[ PVIFA = \frac{1 - (1 + r)^{-n}}{r} \]其中,\( r \) 是年利率,\( n \) 是保险期限。
将给定的数值代入:\[ PVIFA = \frac{1 - (1 + 0.04)^{-20}}{0.04} \]计算得到PVIFA后,用总金额除以PVIFA得到每年需要缴纳的保费:\[ \text{年保费} = \frac{100,000}{PVIFA} \]2. 问题:某保险公司希望评估一个30岁男性的寿险风险。
假设该男性的死亡率为0.0015,保险公司希望在10年内每年支付1,000元的保险金。
请计算保险公司需要收取的保费。
答案:首先,我们需要计算10年内该男性死亡的期望值。
这可以通过以下公式计算:\[ \text{期望死亡次数} = 1 \times (1 - (1 - 0.0015)^{10}) \]然后,将期望死亡次数乘以每次死亡的保险金,得到保险公司需要准备的总金额:\[ \text{总保险金} = 1,000 \times \text{期望死亡次数} \]最后,将总保险金除以生存概率的现值因子,得到每年需要收取的保费:\[ \text{年保费} = \frac{\text{总保险金}}{PVIF} \]3. 问题:考虑一个保险公司提供的年金产品,客户在退休后每年领取10,000元,直到去世。
如果客户现在50岁,预期寿命为85岁,年利率为5%,计算客户需要一次性缴纳的保费。
保险精算习题及答案
第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算习题及答案
第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算习题答案
滤讽⑹®"鑰i 保吝9徐射滋羅從躺验盘里上知陰- 為饵玄创昨看魂脩㈱加良毎妙育¥专1h 岛*》去;・/ $耐 滋陵丄譚一妙童強/凶制多为弘我 _____________________________________ -•血妇匚血僚撐钠 翻 播去 ____________________________・2际M - P 湎二伽严―护 N 伽祐)屮"孑 丄业血二90弧出仇A 虫)即2K 心fg 押 核辑祁AH 51二机0可4 弘 」込碑” • 4 ------ -------必咅, -------------- ---------------------------医占嘗*彳鸟0勺年 h m S 僦 ___________________ ___汕三甌仆山幻主月乙汨十仏力加一 ----------_______ —二总产屁歸一扌讥& ------------ _ 二匸U&i%轴M = S 呦&主创吕5«伽第六章沧二------- --- ■上 LSE^ ------------------------ TT^$、己知纬加止眠融保蜒壮L母僅加山此瞇如过遇;'■'■ 肖4主偲学醫牴fit辅保建人盒授砌材戶遍 2 g _____________________ 孕二顶比畸血⑴____________ _______________ ____________ 打曾二忽r= %解停严心5轴.A R闕十於运(1前和_______ 9二Q、6羽爭_______________二 &____________ I d^jp亍____________ : ____________________ 一,<己fao咄轴耶goT也庖牍:弘匸罄口""3)孙1韦为益芒⑼购乂柚(1肚砲元期«1如朗k即於會*沖我/和也條里菱号耐衲偲轉炷提函柚娅』w r 5円3朮谢戏例建竣均慚掬*札仗逸俺血亂F伦g)_"(炫拓力册——” 嚅人理5如叫型』^冶亦“少"伽严畀淪刃“朋"「加学此河3仲仃㈤汀咧H _忸如阿’ 眄 -一一/卯晶心三伽0 i 翌弩=7 .._/, d ~g 田7 _________bi 阻二 few二东2。
保险精算第二版复习
(
1
Ax:n
)2
➢ n年定期两全保险
定义
被保险人投保后如果在n年期内发生保险责任范围内的死亡,保 险人即刻给付保险金;如果被保险人生存至n年期满,保险人在 第n年末支付保险金的保险。它等价于n年生存保险加上n年定期 寿险的组合。
假定(x)岁的人,保额1元,n年定期两全保险
基本函数关系
vt
v v
每 1 个度量期的实贴现率为 d m 。
m
m
d m
m
1 d 1 m
1.3 利息强度
投资一笔资金,设在时刻 t 的资金金额由总来能够函数 A(t)给出,这笔资金完全由于利息而变化,即本金不变。定义:
的式一中种,度t 为量该。投t 资为额t 在时每t 时一刻单的位利资息金强的度变,化即率。t 为利息在时刻 t
续存活的时间,称为剩余寿命,记作T(x)。
分布函数 t qx :
t qx Pr(T (X ) t) pr(x X x t X x) s(x) s(x t) s(x)
剩余寿命的生存函数 t px :
t px Pr(T (x) t) Pr(X x t X t) s(x t) s(x)
vn , t n
1 , t n bt 0 , t n
zt btvt 0 , t n
符号:
1
A x:n
趸缴纯保费厘定:
1
Ax:n
E(zt ) vn n px
e n n px
现值随机变量的方差:
Var(zt ) v2n n px (vn n px )2
21
Ax:n
1.1.3实际贴现率
一个度量期的实际贴现率为该度量期内取得的利息金额与
期末投资可回收金额之比,通常用字母 d 表示。
保险精算第二版习题及答案
(1)法一:1000 A1 35:5
4
vk 1 k
k 0
pxqxk
1 l35
( d35 1.06
d36 1.062
d37 1.063
d38 1.064
d39 1.065
)
查生命表 l35 979738, d35 1170, d36 1248, d37 1336, d38 1437, d39 1549 代入计算:
试计算:
5. (x)购买了一份 2 年定期寿险保险单,据保单规定,若(x)在保险期限内发生保险责任范围内的死亡,
则在死亡年末可得保险金 1 元, qx 0.5, i 0,Var z 0.1771 ,试求 qx1 。
6.已知, A76 0.8, D76 400, D77 360, i 0.03, 求A77 。
M 30 M 50 D30
d30
A1
30:20
vk 1 l30k
k0
1 (1.06)2
d31
l30
d30k l30k
1 (1.06)3
1 l30
d32
k0
查(2000-2003)男性或者女性非养老金业务生命表中数据 l30 , d30 , d31, d32 d49 带入计算即可,或者 i=0.06
35:5
D35
127469.03
1000 p35
1000A1 35:1
1000
C35 D35
1000A 143.58 127469.03
1.126
1000 p36
1000A1 36:1
寿险精算考试真题和答案
寿险精算考试真题和答案一、单项选择题(每题2分,共20分)1. 寿险精算中,以下哪项不是影响死亡率的主要因素?A. 性别B. 年龄C. 职业D. 教育水平答案:D2. 在寿险定价中,以下哪项是用于计算保费的基本原则?A. 平衡保费B. 公平保费C. 预期保费D. 风险保费答案:A3. 寿险精算中,以下哪项是用于衡量保单持有人未来死亡风险的指标?A. 死亡概率B. 存活概率C. 死亡率D. 存活率答案:A4. 在寿险精算中,以下哪项是用于计算保单现值的贴现率?A. 预定利率B. 投资回报率C. 死亡率D. 风险溢价答案:A5. 寿险精算中,以下哪项是用于描述保单持有人在特定时间存活的概率?A. 生存概率B. 死亡概率C. 死亡率D. 风险概率答案:A6. 在寿险精算中,以下哪项是用于计算保单持有人未来死亡风险的统计表?A. 年金表B. 死亡率表C. 利率表D. 投资回报表答案:B7. 寿险精算中,以下哪项是用于计算保单未来现金流的现值?A. 未来价值B. 现值C. 预期价值D. 风险价值答案:B8. 在寿险精算中,以下哪项是用于描述保单持有人未来死亡风险的统计指标?A. 死亡概率B. 存活概率C. 死亡率D. 风险概率答案:A9. 寿险精算中,以下哪项是用于计算保单持有人未来死亡风险的统计表?A. 年金表B. 死亡率表C. 利率表D. 投资回报表答案:B10. 在寿险精算中,以下哪项是用于衡量保单持有人未来死亡风险的指标?A. 死亡概率B. 存活概率C. 死亡率D. 存活率答案:A二、多项选择题(每题3分,共15分)11. 寿险精算中,以下哪些因素会影响死亡率?A. 性别B. 年龄C. 职业D. 教育水平答案:A, B, C12. 在寿险定价中,以下哪些是用于计算保费的基本原则?A. 平衡保费B. 公平保费C. 预期保费D. 风险保费答案:A, B险的指标?A. 死亡概率B. 存活概率C. 死亡率D. 存活率答案:A, C14. 在寿险精算中,以下哪些是用于计算保单现值的贴现率?A. 预定利率B. 投资回报率C. 死亡率D. 风险溢价答案:A, D险的统计表?A. 年金表B. 死亡率表C. 利率表D. 投资回报表答案:B三、判断题(每题2分,共20分)16. 寿险精算中,死亡率表是用于描述保单持有人未来死亡风险的统计表。
保险精算习题及答案
第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
保险精算第二版习题及答案(word文档良心出品)
保险精算(第二版)第一章:利息的基本概念练习题1. 已知a U^at 2 b ,如果在o 时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
a(0)二 b =1 a(5) =25a b =1.8252. (1)假设 A(t)=100+10t,试确定 i 1.i3.i 5n⑵假设A(n )=100車1.1),试确定 HA3 .已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资 800元在5年后的积累值。
500a (3) =500(1 3iJ =620= h =0.08 .800a(5) =800(1 5iJ =1120500a(3) =500(1 i 2)3 =620= h =0.0743363 800a(5) =800(1 i s )5 =1144.974 •已知某笔投资在 3年后的积累值为1000元,第1年的利率为 h =10%,第2年的利率为i 2 =8% , 第3年的利率为i 3 =6%,求该笔投资的原始金额。
A(3)=1000 = A(0)(1 “(1 i 2)(1 i 3)二 A(0) =794.15 .确定10000元在第3年年末的积累值:(1) 名义利率为每季度计息一次的年名义利率6%。
(2) 名义贴现率为每4年计息一次的年名义贴现率6%。
300*100* 180a(5) =300300*100 180 a(8) =300*100180(64a b) = 508 A(1)-A(0) A(0)= 0.1,i 3A(3) - A(2) A(2)= 0.0833,5A(5) - A(4) A ⑷= 0.0714i 1A(1)-A(0) A(0)= 0.1,i 3A(3) - A(2) A(2)=0.1,i5A(5) - A(4) A ⑷-0.1•⑷i 12 10000a(3) =10000(1) =11956.1846•设m > 1,按从大到小的次序排列d ::: d (m) ::: —:i (m) ::: i 。
保险精算教学大纲丶习题及答案
保险精算教学大纲本课程总课时:课程教学周,每周课时第一章:利息理论基础本章课时:学习的目的和要求要求了解利息的各种度量掌握常见利息问题的求解原理二、主要内容第一节:实际利率与实际贴现率利息的定义实际利率单利和复利实际贴现率第二节:名义利率和名义贴现率第三节:利息强度第二章年金本章课时:一、学习的目的和要求要求了解年金的定义、类别掌握年金问题求解的基本原理和常用技巧二、主要内容第一节:期末付年金第二节:期初付年金第三节:任意时刻的年金值一、在首期付款前某时刻的年金值二、在最后一期付款后某时刻的年金积累值三、付款期间某时刻的年金当前值第四节:永续年金第五节:连续年金第三章生命表基础本章课时:一、学习的目的与要求理解常用生命表函数的概率意义及彼此之间的函数关系了解生存函数与生命表的关系并掌握寿险生命表的特点与构造原理掌握各种分数年龄假定下,分数年龄的生命表函数的估计方法主要内容第一节生命函数一、分布函数二、生存函数三、剩余寿命四、取整余命五、死亡效力六、生存函数的解析表达式第二节生命表一、生命表的含义二、生命表的内容第四章人寿保险的精算现值本章课时:一、教学目的与要求掌握寿险趸缴纯保费的厘定原理理解寿险精算现值的意义,掌握寿险精算现值的表达方式及计算技巧认识常见的寿险产品并掌握各种产品趸缴纯保费的厘定及寿险精算现值方差的计算理解趸缴纯保费的现实意义主要内容第一节死亡即付的人寿保险一、精算现值的概念二、n年定期保险的精算现值(趸缴纯保费)三、终身寿险的趸缴纯保费四、延期寿险的趸缴纯保费五、生存保险与两全保险的趸缴纯保费死亡年末给付的人寿保险一、定期寿险的趸缴纯保费二、终身寿险的趸缴纯保费三、两全保险的趸缴纯保费四、延期寿险的趸缴纯保费死亡即刻赔付保险与死亡年末赔付保险的精算现值的关系递增型人寿保险与递减型人寿保险一、递增型寿险二、递减型寿险三、两类精算现值的换算第五章年金的精算现值本章课时:一、学习目的与要求理解生存年金的概念掌握各种场合计算生存年金现时值的原理和技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
保险精算(第二版)第一章:利息的基本概念练 习 题1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。
(0)1(5)25 1.80.8,125300*100(5)300180300*100300*100(8)(64)508180180a b a a b a b a a a b ===+=⇒===⇒=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.0833,0.0714(0)(2)(4)A A A A A A i i i A A A ---======(2)假设()()100 1.1nA n =⨯,试确定 135,,i i i 。
135(1)(0)(3)(2)(5)(4)0.1,0.1,0.1(0)(2)(4)A A A A A A i i i A A A ---======3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。
11132153500(3)500(13)6200.08800(5)800(15)1120500(3)500(1)6200.0743363800(5)800(1)1144.97a i i a i a i i a i =+=⇒=∴=+==+=⇒=∴=+=4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。
123(3)1000(0)(1)(1)(1)(0)794.1A A i i i A ==+++⇒=5.确定10000元在第3年年末的积累值:(1)名义利率为每季度计息一次的年名义利率6%。
(2)名义贴现率为每4年计息一次的年名义贴现率6%。
(4)12341()410000(3)10000(1)11956.18410000(3)10000111750.0814i a i a =+=⎛⎫ ⎪=+= ⎪ ⎪⎝⎭6.设m >1,按从大到小的次序排列()()m m d di i δ<<<<。
7.如果0.01t t δ=,求10 000元在第12年年末的积累值。
、1200.7210000(12)100001000020544.33t dt a e e δ⎰===8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。
(4)(2)414212(1)(1)(1)(1)(1)421.1*1.086956522*1.061363551*1.050625 1.3332658580.74556336i i i i d i -+=+-++==⇒= 9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6t tδ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。
()()2021211221212() 1.01()1.01, 1.432847643tt tt dtt ta t a t e ee t δ=⎰==⇒==10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。
()()()2210.010.1220.01*200.1*2020423()1()11 1.8221tt tt t dta t i a t e ei ee i δ++=+⎰==⇒+==+=11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。
A. 7.19B. 4.04C. 3.31D. 5.21(3)3*5153(1)3*1.02 4.03763i +==12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。
A.7 225B.7 213C.7 136D.6 987(2)2*24(1) 1.03 1.12552i +==第二章:年金练习题1.证明()n m m n v v i a a -=-。
()11()m nn m m n v v i a a i v v i i---=-=-2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。
年计息12次的年名义利率为8.7% 。
计算购房首期付款额A 。
12012011000100079962.96(8.7%/12)16000079962.9680037.04v a i i-===∴-= 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。
718711110.08299a a a i i ⎛⎫=+ ⎪+⎝⎭∴=4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。
年利率为10%,计算其每年生活费用。
10101015000112968.7123a x a i x ⎛⎫= ⎪+⎝⎭∴=5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。
年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知1012v=,计算K 。
10201010102010101110002000100011111800A a a a i iB Ka K a i A B K ⎛⎫⎛⎫=++ ⎪ ⎪++⎝⎭⎝⎭⎛⎫=+ ⎪+⎝⎭=∴=6. 化简()1020101a v v ++ ,并解释该式意义。
()102010301a v v a ++=7. 某人计划在第5年年末从银行取出17 000元,这5年中他每半年末在银行存入一笔款项,前5次存款每次为1000元,后5次存款每次为2000元,计算每年计息2次的年名义利率。
51055111000200017000113.355%a a i i i ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭⇒=8. 某期初付年金每次付款额为1元,共付20次,第k 年的实际利率为18k+,计算V(2)。
112119111(2)11(1)(1)(1)(1)9991101128V i i i i i =+++++++++=+++9. 某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n 年每年末平分所领取的年金,n 年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么v=( )A. 113n⎛⎫⎪⎝⎭B. 13n C.13n⎛⎫ ⎪⎝⎭D.3n 1211213n n n n n a v a v v i i v ∞=-==11. 延期5年连续变化的年金共付款6年,在时刻t 时的年付款率为()21t +,t 时刻的利息强度为1/(1+t),该年金的现值为( )A.52B.54C.56D.5801125|651125|65()(1)111()()11(1)541t t dt a v t t dtv t a t t e a t dt t δ=+===+⎰⇒=+=+⎰⎰第三章:生命表基础练习题1.给出生存函数()22500x s x e-=,求:(1)人在50岁~60岁之间死亡的概率。
(2)50岁的人在60岁以前死亡的概率。
(3)人能活到70岁的概率。
(4)50岁的人能活到70岁的概率。
()()()10502050(5060)50(60)50(60)(50)(70)(70)70(50)P X s s s s q s P X s s p s <<=--=>==2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。
()()()5|605606565(66)650.1895,0.92094(60)(60)65(66)0.2058(65)s s s q p s s s s q s -====-∴==3. 已知800.07q =,803129d =,求81l 。
8080818080800.07d l l q l l -=== 4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。
求生存函数s(x)在20岁、21岁和22岁的值。
120121122(20)0.92,(21)0.915,(22)0.909d d d d d d s s s l l l ++++++======5. 如果221100x x xμ=++-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。
A.2073.92B.2081.61C.2356.74D.2107.560022211000100()1((1)(4))2081.61xxx dx dx x x x s x e e x l s s μ-+-+--⎛⎫⎰⎰=== ⎪+⎝⎭-=6. 已知20岁的生存人数为1 000人,21岁的生存人数为998人,22岁的生存人数为992人,则|201q 为( )。
A. 0.008B. 0.007C. 0.006D. 0.00522211|20200.006l l q l -== 第四章:人寿保险的精算现值练 习 题1. 设生存函数为()1100xs x =- (0≤x ≤100),年利率i =0.10,计算(保险金额为1元): (1)趸缴纯保费130:10Ā的值。
(2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。
1010130:101010211222230:1030:10()1()1100()100110.0921.17011()()0.0920.0920.0551.2170t x x t ttt x x t tt t x x t x s x t s x p s x xA v p dt dt Var Z A A v p dt dt μμμ+++'+=-⇒=-=-⎛⎫=== ⎪⎝⎭⎛⎫=-=-=-= ⎪⎝⎭⎰⎰⎰⎰2. 设年龄为35岁的人,购买一张保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。