上海市格致中学2019-2020学年高一数学上学期期末考试试题(含解析)
2019-2020学年上海市中学高一上学期期末数学试题及答案解析
2019-2020学年上海市中学高一上学期期末数学试题及答案解析一、单选题1.已知复数113z i =+,23z i =+(i 为虚数单位),在复平面内,12z z -对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】利用复数的减法求出复数12z z -,即可得出复数12z z -对应的点所在的象限.【详解】复数113z i =+,23z i =+,()()1213322z z i i i ∴-=+-+=-+, 因此,复数12z z -在复平面内对应的点在第二象限. 故选B. 【点睛】本题考查复数的几何意义,同时也考查了复数的减法运算,利用复数的四则运算法则将复数表示为一般形式是解题的关键,考查计算能力,属于基础题.2.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-的最小值为( ) A .B .4C .D .以上都不对【解析】根据向量的运算,化简得1212222MF MF MN MO MN NO+-=-=,结合双曲线的性质,即可求解. 【详解】由题意,设O 为12,F F 的中点, 根据向量的运算,可得122222MF MFMN MO MN NO+-=-=,又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥,所以122224MF MFMN NO a +-=≥=,即122MF MFMN+-的最小值为4.故选:B. 【点睛】本题主要考查了向量的运算,以及双曲线的标准方程及简单的几何性质的应用,其中解答中利用向量的运算,合理化简,结合双曲线的几何性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 3.已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y +=【答案】B【解析】由已知可设2F B n =,则212,3AF n BF AB n ===,得12AF n =,在1AF B △中求得11cos 3F AB ∠=,再在12AF F △中,由余弦定理得n =,从而可求解.法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22aBF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得32n =. 2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得3n =.2222423,3,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑二、填空题4.椭圆22154x y +=的焦距等于________【答案】2【解析】根据椭圆方程,求出,a b ,即可求解. 【详解】设椭圆的焦距为2c ,椭圆方程为22154x y +=, 225,4,1a b c ∴==∴=.故答案为:2. 【点睛】本题考查椭圆标准方程及参数的几何意义,属于基础题.5.双曲线221169x y -=的两条渐近线的方程为________.【答案】34yx 【解析】令220169x y -=解得结果【详解】令220169x y -=解得两条渐近线的方程为34yx 【点睛】本题考查双曲线渐近线的方程,考查基本分析求解能力,属基础题.6.若线性方程组的增广矩阵是123c ⎛⎫⎪,其解为1x =⎧⎨,则12c c +=________【答案】6【解析】本题可先根据增广矩阵还原出相应的线性方程组,然后将解11x y =⎧⎨=⎩代入线性方程组即可得到1c 、2c 的值,最终可得出结果. 【详解】解:由题意,可知:此增广矩阵对应的线性方程组为:1223x y c y c +=⎧⎨=⎩, 将解11x y =⎧⎨=⎩代入上面方程组,可得:1251c c =⎧⎨=⎩. 126c c ∴+=.故答案为:6. 【点睛】本题主要考查线性方程组与增广矩阵的对应关系,以及根据线性方程组的解求参数.本题属基础题. 7.已知复数22iz i+=,则z 的虚部为________.【答案】-1【解析】先根据复数的除法中的分母实数化计算出z 的结果,然后根据z 的结果直接确定虚部. 【详解】 因为()22242122242i i i i z i i i i +⋅+-====-⋅-,所以z 虚部为1-.【点睛】(1)复数的除法运算,采用分母实数化的方法,根据“平方差公式”的形式完成分母实数化;(2)复数z a bi =+,则z 的实部为a ,虚部为b ,注意实、虚部都是数值.8.圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于________。
上海高一数学第一学期期末考试试卷含答案
上海市高一年级第一学期期末考试数学试卷一、填空题(本大题共12小题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.已知集合{1,2,3,4}A =,集合{3,4,5}B =,则A B = .2.函数y =的定义域是 .3.不等式302x x -<-的解是 . 4.若指数函数(1)xy m =+在R 上是增函数,则实数m 的取值范围是 . 5.函数2()f x x x =-的零点是 .6.设函数()f x =1()f x -,则1(3)f -= .7.已知函数21y x ax =-++在区间[1,2]上是增函数,则实数a 的取值范围是 . 8.若幂函数2()(1)mf x m m x =--在区间(0,)+∞上单调递增,则实数m = .9.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()f x x x =--,则(2)f = . 10.若log (2)1a b =-,则4a b +的最小值是 .11.已知函数()(22)xxf x x -=⋅-,存在1[,1]2x ∈,使不等式(1)(2)f ax f x +≤-成立,则实数a 的取值范围是 .12.已知函数()()(3)f x m x m x m =-++和()22xg x =-同时满足以下两个条件: (1)对于任意实数x ,都有()0f x <或()0g x <; (2)总存在0(,3)x ∈-∞-,使00()()0f x g x ⋅<成立. 则实数m 的取值范围是 .二、选择题(本大题共有4小题,满分12分)每题有且只有一个正确答案,考生应在答题纸的相应编号上将代表答案的小方格涂黑,选对得3分,否则一律得零分.13.设P 和Q 是两个集合,定义集合{}Q x P x x Q P ∉∈=-且,如果{}1log 2<=xx P ,{}12<-=x x Q ,那么=-Q P ( )(A))1,0( (B) ]1,0( (C))2,1[ (D))3,2[ 14.已知关于x 的不等式21<++ax x 的解集为P ,若P ∉1,则实数a 的取值范围为 ( ) (A)),0[]1,(+∞--∞ (B)]0,1(- (C)]0,1[- (D)),0()1,(+∞--∞15.已知函数)(x f y =的定义域为[]b a ,,(){}(){}0|,),(|,=≤≤=x y x b x a x f y y x 只有一个子集,则 ( )(A) 0>ab (B)0≥ab (C)0<ab (D)0≤ab16.已知()f x 是单调减函数,若将方程()f x x =与1()()f x f x -=的解分别称为函数()f x 的不动点与稳定点。
2019-2020学年上海市格致中学高一上学期期末数学试题(解析版)
2019-2020学年上海市格致中学高一上学期期末数学试题一、单选题1.下列函数中是偶函数的是( ) A . 12y x = B .2y x =﹣ C .2x y = D .2log y x =【答案】B【解析】根据偶函数的定义,逐项判断即可. 【详解】对于选项A ,函数12y x =的定义域为[)0+∞,,此函数既不是奇函数也不是偶函数,故A 不满足题意;对于选项B ,函数()2y f x x -==的定义域为()(),00,-∞⋃+∞,且()()()22f x x x f x ---=-==-,所以B 满足题意;对于选项C ,由指数函数的性质,可知2xy =不具有奇偶性,故C 不满足题意;对于选项D ,函数2log y x =的定义域为()0,∞+,此函数既不是奇函数也不是偶函数,故D 不满足题意; 故选:B. 【点睛】本题考查了偶函数的定义,属于基础题.2.“函数()y f x =在区间I 上单调”是“函数()y f x =在I 上有反函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件【答案】A【解析】“函数()y f x =在区间I 上单调”⇒“函数()y f x =在I 上有反函数”,反之不成立.即可判断出结论 【详解】“函数()y f x =在区间I 上单调”⇒“函数()y f x =在I 上有反函数”,下面给出证明: 若“函数()y f x =在区间I 上单调”,设函数()y f x =在区间I 上的值域为C ,任取0y C ∈,如果在I 中存在两个或多于两个的x 值与之对应,设其中的某两个为12,x x ,且12x x ≠,即()()012y f x f x ==,但12x x ≠. 因为12x x ≠,所以12x x < (或12x x >).由函数()y f x =在区间I 上单调知:()12()f x f x < ,(或()12()f x f x >),这与()()12f x f x =矛盾.因此在I 中有唯一的x 值与之对应.由反函数的定义知:函数()y f x =在区间I 上存在反函数.反之“函数()y f x =在I 上有反函数”则不一定有“函数()y f x =在区间I 上单调”,例如:函数()221,(01),(10)x x f x x x ⎧-≤≤=⎨-≤<⎩,就存在反函数:()11,(10),(01)x x f x x x -⎧+-≤≤⎪=⎨-<≤⎪⎩ 原函数和反函数图象分别如下图(1)(2)所示:由图象可知:函数()y f x =在区间[]1,1-上并不单调.综上,“函数()y f x =在区间I 上单调”是“函数()y f x =在I 上有反函数”的充分不必要条件. 故选:A . 【点睛】本题考查了反函数的定义、充分、必要条件的判定方法,考查了推理能力,属于中等题. 3.已知函数2(log )y x a b =++的图象不经过第四象限,则实数a b 、满足( ) A .1,0a b ≥≥ B .0,1a b >≥ C . 2log 0b a +≥ D .20b a +≥【答案】C【解析】因为函数2(log )y x a b =++的图象不经过第四象限,所以当0x =时,0y ≥,所以log 20a b +≥.【详解】因为函数2(log )y x a b =++的图象不经过第四象限, 所以当0x =时,0y ≥,log 20a b ∴+≥.故选:C . 【点睛】本题主要考查了指数函数的图象和性质,是基础题. 4.已知函数f (x )()12123x x x f x x x x ++=+++++,给出下列判断:(1)函数()f x 的值域为R ;(2)()f x 在定义域内有三个零点;(3)()f x 图象是中心对称图象.其中正确的判断个数为( ) A .0个 B .1个C .2个D .3个【答案】D【解析】利用函数的性质,可判断(1)的是否正确;利用函数的零点判定理,可判断(2)是否正确;利用函数的对称中心的定义,可判断(3)是否正确. 【详解】 由题意可知,函数()12111111123 1 23x x x f x x x x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝++=++=-+-+-⎭⎝⎭⎝+++++⎭+ 1113123x x x =-+⎛⎫ ⎪⎝+++⎭+,其定义域为{}|1,2,3x x x x ≠-≠-≠-;对于(1),当0,1x x +<→-时,()f x →-∞;1x -→-时,()f x →+∞,所以函数的值域是R ;所以(1)正确; 对于(2),因为()12111111123 1 23x x x f x x x x x x x ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝++=++=-+-+-⎭⎝⎭⎝+++++⎭+ 1113,123x x x =-++⎛⎫ ⎝++⎪⎭+所以函数()f x 在(1,)x ∈-+∞是单调递增函数, 又3373041115f -=-⎛⎫⎭++ ⎝<⎪ ,()120023f =+>,所以函数()f x 在3,04⎛⎫- ⎪⎝⎭上,有且只有一个零点;当()2,1x ∈--时,7441434043535f ⎛⎫⎛⎫ ⎪ ⎪⎝-=--++=-⎝⎭<⎭,51440437f -=--⎫⎪⎝⎭>⎛,所以函数在()2,1--有一个零点; 当()3,2x ∈--时,145515351059449f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭-=---+=-++< ,522023f ⎛⎫⎪⎝⎭-=+> ,所以函数在()3,1--有一个零点;当 3x <-时,(),0f x >;所以()f x 在定义域内有三个零点,所以(2)正确; 对于(3), 因为()1113123f x x x x =-+++++⎛⎫⎪⎝⎭, 所以()11143123f x x x x --=++++++⎛⎫⎪⎝⎭()11163 6123f x x x x ⎡⎤⎛⎫ ⎪⎢=--++=⎥⎝⎭⎣+⎦-++所以()()46f x f x --=+.所以函数的图象关于点()2,3-中心对称,所以(3)正确; 故选:D . 【点睛】本题考查函数与方程的应用,涉及函数的对称性,函数的零点个数,函数的值域,命题的真假的判断,是难题.二、填空题5.已知集合1,3,4,5,7,2,3,{{}78}5,,A B ==,则A B =I _____. 【答案】{3,5,7}【解析】进行交集的运算即可. 【详解】1,3,4,5,7,2,3,5,7{,{}8}A B ==Q , ∴{3,5,7}A B =I .故答案为:{3,5,7}. 【点睛】本题考查集合交集的运算,考查了计算能力,属于基础题. 6.不等式|21|3x -<的解集为________. 【答案】{|12}x x -<<【解析】根据绝对值定义化简求解,即得结果. 【详解】 ∵|21|3x -<3213x ⇔-<-< 12x ⇔-<<,∴不等式|21|3x -<的解集为{|12}x x -<<. 故答案为:{|12}x x -<<. 【点睛】本题考查解含绝对值不等式,考查基本分析求解能力,属基础题.7.函数 ()()lg 1f x x =-的定义域为_____.【答案】{}|01x x ≤<【解析】根据题意可知,010x x ≥⎧⎨->⎩,即可求出结果.【详解】由题意可知,010x x ≥⎧⎨->⎩,解得01x ≤<,所以()f x 的定义域为{}|01x x ≤<.故答案为:{}|01x x ≤<. 【点睛】本题考查函数的定义域,充分理解函数()lg 1y x =-和y =关键.8.若“3x >”是“x a >“的充分不必要条件,则实数a 的取值范围是_____. 【答案】3a <【解析】根据充分不必要条件的含义,即可求出结果. 【详解】因为“3x >”是“x a >”的充分不必要条件, ∴3a <. 故答案为:3a <. 【点睛】本题考查了不等式的意义、充分、必要条件的判定方法,考查了推理能力与计算能力,属于基础题. 9.若函数()21x af x -=+在[)1,+∞上是增函数,则实数a 的取值范围是_____.【答案】(],1-∞【解析】利用复合函数的单调性,结合函数的对称性,即可求出结果. 【详解】因为函数()21x a f x -=+的对称轴为x a =, 所以函数()21x af x -=+在[),a +∞上是增函数;又函数()21x af x -=+在[)1,+∞上是增函数,所以1a ≤.故答案为:(],1-∞. 【点睛】本题考查复合函数的单调性的判断与应用,属于基础题.10.正实数,x y 满足:21x y +=,则21x y+的最小值为_____.【答案】9【解析】根据题意,可得()21212225y x x y x y x y x y⎛⎫ ⎪⎝⎭+=++=++,然后再利用基本不等式,即可求解. 【详解】()21212225559y x x y x y x y x y +=++=++⎛⎫≥++ ⎝⎭=⎪,当且仅当13x y == 时取等号.故答案为:9. 【点睛】本题主要考查利用基本不等式求最值,属于基础题. 11.方程()22lg lg 3x x =﹣的解为_____.【答案】1000或110【解析】将原方程化简为()()lg 3lg 10x -+=,即可求出结果. 【详解】原方程可化为()2lg 2lg 30x x --=,即()()lg 3lg 10x -+=,即有lg 3x =或lg 1x =-,解得1000x =或110. 故答案为:1000或110. 【点睛】本题考查了对数的运算法则的应用,属于基础题.12.函数()22(1)221x xx f x x -++-=+,在区间[]2019,2019-上的最大值为M ,最小值为m .则M m +=_____. 【答案】2【解析】可将原函数化为()2222+11x x x f x x -+-=+,可设()22221x xx g x x -+-=+,可判断()g x 为奇函数,再根据奇函数与最值性质进行求解即可. 【详解】因为()222(1)22222=+111x x x xx x f x x x --++-+-=++ 设()[]()22222019,20191x xx g x x x -+-=∈-+,, 所以()()()()2222222211x xx x x x g x g x x x ---+-+--==-=-+-+ ;则()g x 是奇函数,所以()f x 在区间[]2019,2019-上的最大值为M ,即()1max M g x =+,()f x 在区间[]2019,2019-上的最小值为m ,即()min 1m g x =+,∵()g x 是奇函数,∴()()max min 0g x g x +=, 则()()22max min M m g x g x +=++= . 故答案为:2.【点睛】本题主要考查奇函数的性质,利用奇函数最值性质进行转化是解决本题的关键.属于中档题.13.函数()f x =D ,值域为A ,点集(){}|,,x y x D y A ∈∈构成的图象面积等于2,则实数a =_____. 【答案】1-或3【解析】对a 进行分类,其中当1a =时不符合题意;当1a >和1a <时,利用二次函数的性质,分别求出定义域为D ,值域为A ,然后再根据点集(){}|,,x y x D y A ∈∈构成的图象面积等于2,列出方程,求解即可. 【详解】当1a =时不符合题意,舍去.当1a >时,由()()10a x x --≥,解得1x a ≤≤,可得定义域为:[]1,D a =.()()()22111 24a a x x x a -⎛⎫--=--++ ⎪⎝⎭,可得值域10,2a A ⎡⎤⎢⎥⎣=⎦-. ∵点集(){}|,,x y x D y A ∈∈构成的图象面积等于2,()1122a a -∴-⋅= ,解得3a =. 当1a <时,由()()10a x x --≥,解得1a x ≤≤,可得定义域为:[],1D a =.()()()2211124a a a x x x ⎛⎫ -+--=--+⎪⎝⎭,可得值域102a A ⎡-=⎤⎢⎥⎣⎦,. ∵点集(){}|,,x y x D y A ∈∈构成的图象面积等于2,()1122aa -∴-⋅=,解得1a =-. 综上:1a =-或3. 故答案为:1-或3. 【点睛】本题考查了二次函数性质的应用,同时考查了分类思想,推理能力与计算能力,属于中档题.14.设函数()f x 的定义域是R ,满足(1)2()f x f x +=,且当(]0,1x ∈时,()()1f x x x =-,若对于任意的(],x m ∈-∞,都有()169f x ≥-成立,则实数m 的取值范围为_____.【答案】103m ≤【解析】因为(1)2()f x f x +=,可得()2(1)f x f x =-,根据定义域分段求解析式,结合函数的值域可得. 【详解】因为()()()221()1f x f x f x f x +=∴-=,, 当(]0,1x ∈时,()(11,0)4f x x x ⎡⎤=-∈⎢⎥⎣⎦,当(]1,2x ∈时,即(]10,1,x -∈ 所以()2(1)2(1)(2)f x f x x x =-=--由二次函数的性质可知,当(]1,2x ∈时,1(),02f x ⎡⎤∈-⎢⎥⎣⎦; 当(]2,3x ∈时,即(]112x -∈,, 所以()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-, 由二次函数的性质可知,当(]2,3x ∈时,()[1,0]f x ∈-; 当(]3,4x ∈ 时,8()()()34f x x x =--.由二次函数的性质可知,当(]3,4x ∈时,()[2,0]f x ∈-; 又因为,当(]3,4x ∈时,由()(168)439x x --=-解得103x =或113x =(舍去), 若对任意(],x m ∈-∞,都有6(1)9f x ≥-,则103m ≤. 【点睛】本题考查了函数与方程的综合运用,属中档题.三、解答题15.设集合21{|2},|12x A xx a B x x -⎧⎫=-<=<⎨⎬+⎩⎭‖(1)求集合A 、B(2)若A B ⊆,求实数a 的取值范围 【答案】(1)(2,2),(2,3)A a a B =-+=-;(2)[0,1]【解析】(1)直接解不等式得到集合,A B .(2)根据A B ⊆得到不等式2322a a +≤⎧⎨-≥-⎩计算得到答案.【详解】(1){}{}222A x x a x a x a =-<=-<<+,{}213102322x x B x B x B x x x x ⎧⎫⎧⎫--=<==<==-<<⎨⎬⎨⎬++⎩⎭⎩⎭(2)A B ⊆,则满足2322a a +≤⎧⎨-≥-⎩解得01a ≤≤ 【点睛】本题考查了求集合,根据集合关系求参数,意在考查学生的计算能力.16.已知某种气垫船的最大航速是48海里小时,船每小时使用的燃料费用和船速的平方成正比.若船速为30海里小时,则船每小时的燃料费用为600元,其余费用(不论船速为多少)都是每小时864元。
2019-2020学年上海市高一(上)期末数学试卷 (2)
2019-2020 学年上海市高一(上)期末数学试卷题号 得分一 二 三 总分第 I 卷(选择题)一、选择题(本大题共 4 小题,共 20.0 分) 1. 下列选项中,表示的是同一函数的是( )A. B. D. ( ) = , ( ) = − 1)2( ) = 2, ( ) = ( 2 √2≥ 0C. = {, = | |( ) = √, ( ) = √ ( ) < 0√2. 设非零实数 ,则“ ≥ 2”是“ ≥ 3”成立的( )2A. C.B. D. 充分不必要条件 充要条件必要不充分条件 既不充分也不必要条件3. 函数的图象可能是( )B.D.C. 4. 若函数 的定义域是[−1,4],则 = − 1)的定义域是( )B. C. D.[−3,7]A. 5]2[−1,4] [−5,5][0, 第 II 卷(非选择题)二、填空题(本大题共 12 小题,共 36.0 分) 5. 函数= √的定义域是________.6. 集合 = {1,2,3}, = ∈ ,则用列举法表示 为________. 2B 7. 若 , ∈,且= 0,则的最小值为___________.x −8. 已知函数 =__________. = 2lg(的图象经过点(2,2 2),则 = + > 0且 ≠ 1)的图象恒过定点 2),则 +9. 若+),则log的值为__________√210. 若幂函数=________________.√11. 已知集合 = |围是__________. 1 = 0, ∈ ,若集合 是有限集,则实数 的取值范2A a 12. 函数=,< 2) 的反函数是______ .2 13. 若奇函数______ . 在(∞, 0)内是减函数,且= 0,则不等式 ⋅> 0的解集为√ √ ≥ 0< 014. 设函数 = {,若 = 2,则实数 =______. ++ > 0,若函数 = ≤ 0 15. 已知函数= { + 有且只有一个零点,则实2 2 +数 的取值范围是________. a 16. 若曲线 = |21|与直线 = 有两个公共点,则 的取值范围是____.b 三、解答题(本大题共 5 小题,共 38.0 分) 17. 已知集合 =1 ⩽ 2⩽ 32},集合 = < 2 或 > 2}.2(1)求 ∩ ; (2)若 = { | ≤1},且 ⊆ ,求实数 的取值范围.a 1+ 1, ≤ 0;(2)若 > 0,解关于 的不等式18. 已知 =+ 2(1)当 = 2时,解不等式≥ 0.x19.某厂生产某种产品的年固定成本为250万元,每生产万件,需另投入的成本为x单位:万元),当年产量小于80万件时,=1+;当年产量不小于231000−1450.假设每万件该产品的售价为50万元,且该厂80万件时,=+当年生产的该产品能全部销售完.(1)写出年利润万元)关于年产量万件)的函数关系式;(2)年产量为多少万件时,该厂在该产品的生产中所获利润最大?最大利润是多少?20.已知函数=是定义在上的奇函数,当>0时,=2−,其中∈R(1)求函数=(2)若函数=(3)当=0时,若的解析式;在区间(0,+∞)不单调,求出实数的取值范围;a∈(−1,1),不等式−+−2>0成立,求实2数的取值范围.k21.若函数=log−有零点,求实数a的取值范围.32答案和解析1.【答案】D【解析】【分析】本题主要考查同一函数的判断,结合条件分别判断两个函数的定义域和对应法则是否相同是解决本题的关键,属于基础题.分别判断两个函数的定义域和对应法则是否相同即可.【解答】解:的定义域是R,的定义域为[0,+∞),两个函数的定义域不相同,不是同一函数;B.两个函数的对应法则不相同,不是同一函数;+1≥0−1>0≥−1 >1C.由{,得{,即>1,由⩾0得>1或≤−1,两个函数的定义域不相同,不是同一函数;D.由已知有故选D.=,两个函数的定义域和对应法则相同,是同一函数.2.【答案】B【解析】只有当同号时,“2+2≥”才是“+≥3”成立的充要条件.而由+≥3可知同号,故+≥2.23.【答案】C【解析】【分析】本题考查函数的性质与函数图象的识别,属于中档题.根据函数值的符号即可选择出正确选项.【解答】解:当>0时,+1>1,+1|>0,故>0,即可排除A,B两项;当−2<<−1时,>0,即可排除D选项.4.【答案】A【解析】∵函数的定义域是[−1,4],∴函数=−1)的定义域满足−1≤−1≤4,∴0≤≤5,2∴=−1)的定义域是[0,5].25.【答案】(−∞,1)∪(1,4]【解析】【分析】本题主要考查定义域问题,分母和偶次下的取值问题.【解答】4−≥0解:由题意得{,−1≠0解得≤4且≠1.故答案为(−∞,1)∪(1,4].6.【答案】{3,6,11}【解析】【分析】本题考查了集合内的元素的特征,要满足:确定性,无序性,互异性,属于基础题.集合内的元素要满足:确定性,无序性,互异性.【解答】解:={1,2,3},=2+∈.∴={3,6,11}故答案为{3,6,11}.7.【答案】18【解析】【分析】本题考查利用基本不等式求最值,注意等号成立的条件,属于中档题.由题意,可得2+8=1,利用基本不等式即可求出+的最小值.∵ , ∈ ,且 = 0,− ∴ =,8= 1, = (∴ 2 ∴) · (28) =10 ≥ 2√ · 10 = 18,= 当且仅当 所以,即 = = 12时等号成立,的最小值为 18,故答案为 18. 8.【答案】3【解析】 【分析】本题考查指数函数的性质,关键是掌握该种题型的求解方法,是基础题. 由题知 恒过定点(2,1),∴= 2, = 1,= 3.【解答】解:由指数函数 = 的图象过定点(0,1),所以,函数 即 = 2,1= > 0且 ≠ 1)的图象恒过定点(2,1 = 3.,= 2,故故答案为:3. 9.【答案】4【解析】 【分析】 由= 2lg( −),先求出 的值,然后再求的值.本题考查对数的运算性质,解题时要认真审题,仔细解答,注意公式的灵活运用. 【解答】 解:∵ = 2lg( − ),∴ = ( − )2, > 0, > 0, − > 0,∴ ( ) − 5( ) 4 = 0, 解得 = 1(舍去)或 = 4,∴ l og= log 4 = 4 ∴−= 0,2 2 2 .√2√2故答案为4.10.【答案】27【解析】【分析】本题考查了求函数的解析式与计算函数值的应用问题,是基础题目.用待定系数法求出幂函数=的解析式,再计算的值.【解答】解:设幂函数==,∈,且图象过点(2,22),√∴2=2√2,3解得=,23 2;∴∴=3.=9=272故答案为27.11.【答案】≥−1【解析】当=0时,=−1,满足;当≠0时,由=4+得,≥−1.综上,实数的取值范围是≥−1.12.【答案】=−√>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数=2,<−2),则>4.可得=−,√所以函数的反函数为:=−√>4).故答案为:=−√>4).13.【答案】(−2,0) ∪ (0,2)【解析】解:奇函数 在(−∞, 0)内是减函数,则 且在(0, +∞)内是减函数. == 0,> 0> 0 =< 0< 0 =不等式 ⋅ > 0 > 0等价为 或 ,< 0,即有或 < 2 > −2 即有0 < < 2或−2 < < 0. 则解集为(−2,0) ∪ (0,2). 故答案为:(−2,0) ∪ (0,2) 奇函数 在(−∞, 0)内是减函数,则在(0, +∞)内是减函数.且 == 0,> 0< 0不等式 ⋅> 0等价为 或 ,运用单调性去掉 ,f> 0 =< 0 =解出它们,再求并集即可.本题考查函数的奇偶性和单调性的运用:解不等式,注意讨论 的范围,属于中档题.x 14.【答案】±1【解析】解:由分段函数可知 ∴由= 2得= 2 − 1 = 1.若 < 0,则√ = 1,解得 = −1.= 1,+若 ≥ 0,则√ = 1,解得 = 1, ∴ = ±1, 故答案为:±1.根据分段函数的表达式,解方程即可. 本题主要考查分段函数的应用,注意 自变量的取值范围.【解析】【分析】本题考查了函数的性质,图象的运用,利用函数的交点问题解决函数零点问题,属于中档题.化简构造得出= +>0与=≤02有且只有一个交点,利用函数的图象的交点求解即可.2+【解答】解+>0,若=≤0:∵函数=2+有且只有一个零点,2++>0与=≤0∴=2有且只有一个交点,2+根据图形得出:>1,∴<−1故答案为<−1.16.【答案】(0,1)【解析】【分析】画出图像可得解.【解答】解:曲线=−1|与直线=如图所示.由图像可得,的取值范围是(0,1).b故答案为(0,1).17.【答案】解:(1)∵=∴∩=(2,5];−1≤≤5},=<−2或>2},(2)∵⊆,且=≤−1},∴−1≥5,解得≥6,∴实数的取值范围为[6,+∞).a【解析】本题考查了描述法的定义,交集的定义及运算,子集的定义,考查了计算能力,属于基础题.(1)可以求出=−1≤≤5},然后进行交集的运算即可;(2)根据⊆即可得出−1≥5,解出的范围即可.a18.【答案】解:12= 2时,不等式化为− − 2) ≤ 0,∴ 1 ≤ ≤ 2,21 2≤≤ 2};∴不等式的解集为 (2)由题意得 =−− ),1 11};当0 << 1时, < ,不等式解集为≤ 或 ≥ 1 当 = 1时, = ,不等式解集为 ; R 1 1 }.≥ 或 ≤当 > 1时, > ,不等式解集为【解析】本题考查不等式的解法,考查分类讨论的数学思想,属于中档题.= 2时,不等式化为− 1− 2) ≤ 0,即可解不等式≤ 0,2(2)若 > 0,分类讨论解关于 的不等式≥ 0.x 19.【答案】【解答】解:(1)①当0 < < 80时,根据年利润=销售收入−成本, ∴=− 1−− 250 = − 1+2− 250;2 33 ②当 ≥ 80时,根据年利润=销售收入−成本, ∴=−− 10000 + 1450 − 250 = 1200 −+ 10000).− 1 + − 250(0 < < 80)2 综合①②可得,= { 3 ; 1200 − + 10000≥ 80) − 250(0 < < 80) − 1 + 2 (2)由(1)可知,= { 3 , 1200 − + 10000≥ 80)①当0 < < 80时,= − 2 +1− 250 = − 13− 60)2 + 950,3∴当 = 60时, ②当 ≥ 80时,取得最大值 = 950万元; = 1200 −+ 10000) ≤ 1200 −⋅ 10000 = 1200 − 200 = 1000, = 1000万元.当且仅当 = 10000,即 = 100时, 综合①②,由于950 < 1000,取得最大值∴当产量为 100 万件时,该厂在这一商品中所获利润最大,最大利润为1000 万元.【解析】【试题解析】本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.本题主要考查函数模型的选择与应用,属于一般题目. (1)分两种情况进行研究,当0 < < 80时,投入成本为= 13+万元),根据 2 年利润=销售收入−成本,列出函数关系式,当 ≥ 80时,投入成本为 =+10000 −1450,根据年利润=销售收入−成本,列出函数关系式,最后写成分段函数的形式,从而得到答案;(2)根据年利润的解析式,分段研究函数的最值,当0 << 80时,利用二次函数求最值,当 ≥ 80时,利用基本不等式求最值,最后比较两个最值,即可得到答案.20.【答案】解:(1)由 是定义在 上的奇函数,所以R= 0,又 > 0时, =2 −,所以 < 0时, > 0, 所以==2 − ,− ≥ 02 所以函数的解析式为 = ; −< 02 (2)当 > 0时,=−,2 ①若 ≤ 0,由 = ⩽ 0知,在(0, +∞)上递增,不合题意;2> 0, = ∈ (0, +∞),2所以 在(0, +∞)上先减再增,符合函数在(0, +∞)上不单调,综上,实数 的取值范围为 > 0; a 2,≥ 0(3)当 = 0时, =,2, < 0可得函数 是定义域 上的单调递增,R又 是定义域 上的奇函数,R由 ∈ (−1,1), ∈ (−1,1),∈ (−1,1),2 − 2− + 2 − −> 0成立, 2)成立,可得 ∴> −>−2 2⇒ < −=− 3) − 92,2 8 16 ∵ ∈ (−1,1),∴ (−) ∈ [− 9 , 7),2 16【解析】本题主要考查了函数的解析式、不等式存在性问题,涉及函数的奇偶性、单调 性,属于中档题. (1)由函数的奇偶性先求导求得 < 0的解析式,总结可得(2)结合二次函数的单调性,分类讨论即可求得 的取值范围;= 0,在由 < 0转化为> 0,根据奇函数=在 上的解析式;R a = 0时,结合函数的单调性、奇偶性得到 不等式存在性问题即可求解. 21.【答案】解:因为 ∈ (−1,1), < − ,进而根据2 2 −有零点,= log 3所以log 3 2 −= 0有解,所以2 −= 1有解.当 = 0时, = −1; 当 ≠ 0时,若2 −− 1 = 0有解,1 则 = 1 +≥ 0,解得 ≥ − 且 ≠ 0.41 综上,实数 的取值范围是[ − ,+∞).a 4【解析】函数 = log 32 − 有零点,即 2 −= 1有解,讨论 = 0和 ≠ 0两种情况求解即可.。
上海市东格致中学高一数学文上学期期末试卷含解析
上海市东格致中学高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 有60瓶矿泉水,编号为1至60,若从中抽取6瓶检验,则用系统抽样确定所抽的编号为()A.3,13,23,33,43,53B.2,14,26,38,42,56C.5,8,31,36,48,54 D.5,10,15,20,25,30参考答案:A略2. 已知是等差数列,,,则此数列的通项公式是A. B. C. D.参考答案:C略3. 已知向量,若与垂直,则A B CD 4参考答案:C4. 已知平面上不重合的四点P,A,B,C满足++=且++m=,那么实数m的值为()A.2 B.﹣3 C.4 D.5参考答案:B【考点】平面向量的基本定理及其意义.【分析】利用向量基本定理结合向量的减法有: =﹣, =﹣,代入化简即得【解答】解:由题意得,向量的减法有: =﹣, =﹣.∵++m=,即+=﹣m,∴+﹣=﹣m=m,∴ +=(m+2).∵++=,∴ +(m+2)=0,∴m=﹣3,故选:B.【点评】本小题主要考查平面向量的基本定理及其意义、向量数乘的运算及其几何意义等基础知识.本题的计算中,只需将向量都化成以P为起点就可以比较得出解答了,解答的关键是向量基本定理的理解与应用,属于中档题.5. (5分)若sin(+θ)=,则cos(π﹣θ)等于()A.﹣B.C.﹣D.参考答案:A考点:运用诱导公式化简求值.专题:计算题;三角函数的求值.分析:由已知及诱导公式可求得cosθ的值,从而化简可求后代入即可求值.解答:解:sin(+θ)=cosθ=,则cos(π﹣θ)=﹣cosθ=﹣,故选:A.点评:本题主要考察了诱导公式的应用,属于基础题.6. 在中,点是延长线上一点,若,则()A. B. C. D.参考答案:C7. 在中,,,则k的值为()A.5 B.C.D.参考答案:D∵,∴,得,∴选“D”.8. (5分)①正相关,②负相关,③不相关,则下列散点图分别反映的变量是()A.①②③B.②③①C.②①③D.①③②参考答案:D考点:散点图.专题:计算题;概率与统计.分析:由图分析得到正负相关即可.解答:第一个图大体趋势从左向右上升,故正相关,第二个图不相关,第三个图大体趋势从左向右下降,故负相关,故选D.点评:本题考查了变量相关关系的判断,属于基础题.9. 不等式的解集为()A、B、C、D、参考答案:D10. 在△ABC中, =, =,且?>0,则△ABC是()A.锐角三角形B.直角三角形C.等腰直角三角形D.钝角三角形参考答案:D【考点】GZ:三角形的形状判断.【分析】根据已知推断出?<0,进而根据向量的数量积的运算推断出B>90°.【解答】解:∵?>0∴?<0∴B>90°,即三角形为钝角三角形,故选:D.二、填空题:本大题共7小题,每小题4分,共28分11. 设函数,则____________.参考答案:912. 用一张圆弧长等于 分米,半径是10分米的扇形胶片制作一个圆锥体模型,这个圆锥体的体积等于_ __立方分米. 参考答案: 96π 略13. 函数的单调递增区间是 .参考答案:[-1,1)略14. 关于的不等式()的解集为 .参考答案:略15. 已知函数f (x )=log 2(4x+1)+mx ,当m >0时,关于x 的不等式f (log 3x )<1的解集为 .参考答案:(0,1) 函数 ,当时,可知f(x)单调递增函数,当 时,可得,那么不等式 的解集,即,解得,故答案为.16. 在△ABC 中,,,,则△ABC 的面积S 是___________.参考答案:.【分析】 根据三角形的面积公式即可求解.【详解】由三角形的面积公式可知故答案为:.【点睛】本题主要考查三角形中面积公式的应用,属于简单题.17. 已知,则的值为________________.参考答案:略三、 解答题:本大题共5小题,共72分。
1.4 充分、必要条件(精炼)(解析版)
1.4 充分、必要条件(精炼)【题组一 命题及其判断】1.(2020·黑龙江道里。
哈尔滨三中高二期末(文))下列说法正确的是( ) A .命题“若x 2=1,则x =1”为真命题 B .命题“若x 2=1,则x =1”的逆命题为假命题C .命题“若x 2=1,则x =1”的逆否命题为“若x ≠1,则x 2≠1”D .命题“若x 2=1,则x =1”的否命题为“若x 2=1,则x ≠1” 【答案】C【解析】若x 2=1,则1x =±,故A 选项不正确;“若x 2=1,则x =1”的逆命题为“若x =1,则x 2=1”且该命题是真命题,故B 选项不正确; 命题“若x 2=1,则x =1”的逆否命题为“若x ≠1,则x 2≠1”,故C 选项正确; 命题“若x 2=1,则x =1”的否命题为“若21x ≠,则x ≠1”,故D 选项不正确, 故选:C.2.(2019·黑龙江大庆实验中学高二期末)已知原命题:已知0ab >,若a b >,则11a b<,则其逆命题、否命题、逆否命题和原命题这四个命题中真命题的个数为( ) A .0 B .2C .3D .4【答案】D【解析】由题原命题:已知0ab >,若a b >,则11a b<,为真命题,所以逆否命题也是真命题;逆命题为:已知0ab >,若11a b<,则a b >,为真命题,所以否命题也是真命题。
故选D.3.(2019·阿城区第二中学高二期中(文))命题“若3x <,则29x ≤”的逆否命题是( ) A .若29x >,则3x ≥ B .若29x ≤,则3x < C .若3x ≥,则29x > D .若29x ≥,则3x >【答案】A【解析】由逆否命题的定义可得命题“若3x <,则29x ≤”的逆否命题是“若29x >,则3x ≥”故答案选A 4.对任意的实数,,a b c ,在下列命题中的真命题是( ) A .“ac bc >”是“a b >”的必要不充分条件B .“ac bc =”是“a b =”的必要不充分条件C .“ac bc >”是“a b >”的充分不必要条件D .“ac bc =”是“a b =”的充分不必要条件 【答案】B【解析】因为实数c 不确定,“ac bc >”与“a b >”既不充分也不必要,又“ac bc a b =⇐=” 得“ac bc =”是“a b =”的必要不充分条件,所以正确选项为B.【题组二 充分、必要条件】1.下列哪一项是“1a >”的必要条件( ) A . 2a < B . 2a >C . 0a <D .0a >【答案】D【解析】由题意,“选项”是“1a >”的必要条件,表示“1a >”推出“选项”,所以正确选项为D.2.(北师大版新教材2.1必要条件与充分条件)如果命题“p q ⇒”是真命题,那么①p 是q 的充分条件 ② p 是q 的必要条件 ③ q 是p 的充分条件 ④ q 是p 的必要条件 ,其中一定正确的是( )A .①③B .①④C .②③D .②④【答案】B【解析】根据必要条件和充分条件的含义,p q ⇒为真,则p 是q 的充分条件,q 是p 的必要条件,所以①④正确,所以正确选项为B.3.已知:p A φ=,:q A B φ⋂=,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】由已知A A B φφ=⇒⋂=,反之不成立,得p 是q 的充分不必要条件,所以正确选项为A. 4.若p 是q 的充分不必要条件,则下列判断正确的是( ) A .p ⌝是q 的必要不充分条件 B .q ⌝是p 的必要不充分条件 C .p ⌝是q ⌝的必要不充分条件 D .q ⌝是p ⌝的必要不充分条件 【答案】C【解析】由p 是q 的充分不必要条件可知,p q q p ⇒⇒.由互为逆否命题的等价性,可知,q p p q ⌝⌝⌝⌝⇒⇒/.所以p ⌝是q ⌝的必要不充分条件.故选:C.5.(湖南省怀化市2020届高三下学期第二次模拟考试数学(文)试题)除夕夜,万家团圆之时,中国人民解放军陆、海、空三军医疗队驰援武汉.“在疫情面前,我们中国人民解放军誓死不退!不获胜利决不收兵!”这里“获取胜利”是“收兵”的( ). A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意可得,“获取胜利”是“收兵”的必要条件故选:B6.(2020届广东省广州普通高中毕业班综合测试(一)数学(理)试题)已知1223p x q x +><<:,:,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由题意:1212p x x +>⇔+>或121x x +<-⇔>或3x <-, 由“1x >或3x <-”不能推出“23x <<”; 由“23x <<”可推出“1x >或3x <-”; 故p 是q 的必要不充分条件.故选:B.【题组三 求参数】1.(上海市格致中学2019-2020学年高一上学期期末数学试题) 若“3x >”是“x a >“的充分不必要条件,则实数a 的取值范围是_____. 【答案】3a <【解析】因为“3x >”是“x a >”的充分不必要条件, ∴3a <. 故答案为:3a <.2.已知“()(),20,x ∈-∞-⋃+∞”是“[],1x k k ∈+”的必要不充分条件,则k 的取值范围是___________. 【答案】3k <-或0k >【解析】由已知“()(),20,x ∈-∞-⋃+∞”是“[],1x k k ∈+”的必要不充分条件,则,[]()(),1,20,k k +-∞-⋃+∞,所以12k +<-或0k >,得3k <-或0k >,所以答案为3k <-或0k >.3.已知{|12}A x x =≤≤,{|}B x x a =<,如果B 的充分条件是A ,则实数a 的取值范围是_________.【答案】2a >【解析】“B 的充分条件是A ”,即A 是B 的充分条件,得A B ⇒,即A B ⊆,得2a >,所以答案为“2a >”. 4.已知集合A ={x |a +1≤x ≤2a +3},B ={x |x 2﹣3x ﹣4≤0}.若x ∈A 是x ∈B 的充分条件,则实数a 的取值范围是_______ 【答案】1,2⎛⎤-∞ ⎥⎦⎝【解析】B ={x |x 2﹣3x ﹣4≤0}={x |﹣1≤x ≤4}, ∵若x ∈A 是x ∈B 的充分条件, ∴A ⊆B ,若A =∅,则2a +3<a +1,即a <﹣2时,满足题意;若A ≠∅,则满足223411a a a ≥-⎧⎪+≤⎨⎪+≥-⎩,即2122a a a ≥-⎧⎪⎪≤⎨⎪≥-⎪⎩,此时﹣2≤a ≤12.综上a ≤12. 故答案为1,2⎛⎤-∞ ⎥⎦⎝5..(河南省2019-2020学年高三核心模拟卷)已知:12p x -≤,()22:2100q x x a a -+-≥>,若p 是q⌝的必要不充分条件,则实数a 的取值范围是__________. 【答案】(0,2]【解析】∵12x -≤,∴13x -≤≤,即:13p x -≤≤; ∵222100x x a a -+-≥>(),∴1x a ≤-或1x a ≥+, ∴:11q a x a ⌝-<<+, ∵p 是q ⌝的必要不充分条件,∴01113a a a >⎧⎪-≥-⎨⎪+≤⎩,解得02a <≤, ∴所求实数a 的取值范围是(0,2]. 故答案为:(0,2]6.(2019版导学教程一轮复习数学(人教版))已知命题p :a ≤x ≤a +1,命题q :x 2-4x <0,若p 是q 的充分不必要条件,则a 的取值范围是________. 【答案】()0,3【解析】令M ={x |a ≤x ≤a +1},N ={x |x 2-4x <0}={x |0<x <4}.∵p 是q 的充分不必要条件,∴M ⫋N ,∴014a a >⎧⎨+<⎩,解得0<a <3.故填()0,37.(山东省青岛市第二中学2019-2020学年高一上学期期末数学试)已知{}22|320,0A x x ax a a =-+>>,{}2|60B x x x =--≥,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围 .【答案】302a <<【解析】解出{}|23B x x x =≤-≥或,{}|20A x x a x a a =<>>或, 因为x A ∈是x B ∈的必要不充分条件,所以B 是A 的真子集.所以2323020a a a a >-⎧⎪<⇒<<⎨⎪>⎩故答案为:302a <<8.命题2:03x P x ->-;命题2:2210q x ax a b +++-> (1)若4b =时,22210x ax a b +++->在x R ∈上恒成立,求实数a 的取值范围; (2)若p 是q 的充分必要条件,求出实数a ,b 的值 【答案】(1)(1,3)-;(2)52a =-,12b =。
2020-2021学年上海市格致中学高一上学期期末数学试题及答案
2020-2021学年上海市格致中学高一上学期期末数学试题一、单选题1.已知陈述句α是β的必要非充分条件,集合M={x|x 满足α},集合N={x|x 满足β},则M 与N 之间的关系为( ) A .M N B .M NC .M=ND .M N ⋂=∅答案:B根据必要不充分条件可直接判断. 解:α是β的必要非充分条件,N ∴ M .故选:B.2.若33log log m n <且log 3log 3m n <,则实数m 、n 满足的关系式为( ) A .0<m<n<1 B .0<n<m<1C .0<m<1<nD .1<m<n答案:C由33log log m n <得0m n <<,由log 3log 3m n <得01n m <<<或01m n <<<,结合可得答案.解:由33log log m n <得0m n <<, 由log 3log 3m n <得lg 3lg 3lg lg m n<,即,lg lg 0lg lg n mm n -<, lg0lg lg nm m n <,因为0m n <<,所以1n m >,lg 0nm>,所以lg lg 0m n <,得lg 0lg 0m n >⎧⎨<⎩或lg 0lg 0m n <⎧⎨>⎩,即01n m <<<或01m n <<<,而0m n <<, 所以01m n <<<. 故选:C.点评:本题考查了由对数运算的性质比较大小,关键点是由log 3log 3m n <得01n m <<<或01m n <<<,考查了对数的基本运算,属于基础题.3.设121212,,,,,a a b b c c 都是非零实数,不等式21110a x b x c ++>的解集为A ,不等式22220a x b x c ++>的解集为B ,则"A B ="是“1112220a b c a b c ==>”的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件答案:B若A B ==∅,分析可得,不能推出1112220a b c a b c ==>成立,若1112220a b ca b c ==>,设1112220a b c a b c t ==>=,代入方程,化简整理,可得两不等式相等,则解集A B =,根据充分、必要条件的定义,即可得答案.解:若A B ==∅,只需满足221111222240,40b a c b a c ∆=-<∆=-<,不能得到1112220a b c a b c ==>, 若1112220a b c a b c ==>,设1112220a b c a b c t ==>=,即121212,,a ta b tb c tc ===,所以不等式21110a xb xc ++>可化为()2222222200ta x tb x tc t t a x b x c ++=>++>,因为0t >,所以22220a x b x c ++>,所以两不等式相等,则解集A B =.所以"A B ="是“1112220a b c a b c ==>”的必要非充分条件. 故选:B4.定义在R 上的函数y=f(x)的表达式为2(),x x Qf x xx Q⎧∈=⎨∈⎩给出下列3个判断: (1)函数y=f(x)是非奇非偶函数; (2)当a<0且a∈Q 时,方程f(x)=a 无解; (3)当a>0时,方程f(x)=a 至少有一解; 其中正确的判断有( ) A .0个 B .1个C .2个D .3个答案:C根据函数的的奇偶性的定义,可判定(1)正确;根据0a <且a Q ∈,结合()f x a =,可判定(2)正确;根据方程()2f x =,无解,可判定(3)不正确.解:由题意,函数2()x x Qf x xx Q⎧∈=⎨∈⎩的定义域为R ,关于原点是对称的, 当x Q ∈,则x Q -∈,可得()()22()f x x x f x -=-==,此时函数()f x 为偶函数; 当x Q ∈,则x Q -∈,可得()()f x x f x -=-=-,此时函数()f x 为奇函数, 综上可得,函数()f x 为非奇非偶函数,所以(1)正确;由函数2()x x Q f x xx Q⎧∈=⎨∈⎩,可得x Q ∈时,()20f x x =≥,x Q ∈时,()f x x = 当0a <且a Q ∈,方程()f x a =, 若x Q ∈时,此时方程2x a =无解;若x Q ∈时,由()f x a =,可得x a =,因为x Q ∈,a Q ∈,所以方程x a =无解, 综上可得当0a <且a Q ∈,方程()f x a =无解,所以(2)正确; 例如:当2a =时,当x Q ∈时,由()2f x =,可得22x =,解答x = 当x Q ∈时,由()2f x =,可得2x =,不符合题意,综上可得,当2a =时,方程()2f x =无解,所以(3)不正确. 所以正确为(1)(2). 故选:C 二、填空题5.已知集合{}3,2,1,0,1,2,3A =---,{}11B x x =-≤,则A B =_____.答案:{}0,1,2求出集合B ,利用交集的定义可求得集合A B .解:由11x -≤,可得111x -≤-≤,解得02x ≤≤,则{}{}1102B x x x x =-≤=≤≤,又因为{}3,2,1,0,1,2,3A =---,因此,{}0,1,2AB =.故答案为:{}0,1,2. 6.函数2log (1)()2x f x x -=-的定义域为_____.答案:()()1,22,⋃+∞由解析式得出1020x x ->⎧⎨-≠⎩,解出即可.解:2log (1)()2x f x x -=-,1020x x ->⎧∴⎨-≠⎩,解得1x >且2x ≠,()f x ∴的定义域为()()1,22,⋃+∞.故答案为:()()1,22,⋃+∞.7.若指数函数()y f x =的图象经过点1,22⎛⎫ ⎪⎝⎭,则函数()12x y f x +=-的零点为_____. 答案:1x =设()xf x a =(0a >且1a ≠),由122f ⎛⎫=⎪⎝⎭可求得a 的值,然后解方程()120x f x +-=即可得解.解:设()xf x a =(0a >且1a ≠),则12122f a ⎛⎫=== ⎪⎝⎭,解得4a =,()242x x f x ∴==,解方程()120x f x +-=,即21220x x +-=,可得21x x =+,解得1x =.因此,函数()12x y f x +=-的零点为1x =.故答案为:1x =. 8.不等式1||x x <的解集为_____. 答案:()1,+∞首先将不等式1||x x <等价于1x x >,再分类讨论解不等式即可.解:不等式1||x x <,因为0x ≠,所以11x x x x <⇔>. 当0x >时,21x >,解得1x >. 当0x <时,21x ->,无解.所以不等式1||x x <的解集为()1,+∞. 故答案为:()1,+∞9.已知6log 2a =,用a 表示4log 12=_____. 答案:12aa+ 由换底公式可得出21log 6a=,进而利用换底公式可将4log 12用a 加以表示. 解:6log 2a =,21log 6a∴=,所以,()2224211log 26log 121log 61log 12log 42222a a a+⨯++=====. 故答案为:12aa+. 10.函数()2log xy a =是减函数,则a 的取值范围是__________. 答案:()1,2由题意得出20log 1a <<,解出该不等式即可得出实数a 的取值范围. 解:由于指数函数()2log xy a =是减函数,则20log 1a <<,解得12a <<. 因此,实数a 的取值范围是()1,2. 故答案为()1,2.点评:本题考查利用指数函数的单调性求参数,同时也考查了对数不等式的求解,解题时要了解底数的取值范围与指数函数单调性之间的关系,考查运算求解能力,属于中等题.11.定义区间[a ,b](a<b)的长度为b-a ,若关于x 的不等式.240x x m -+≤的解集区间长度为2,则实数m 的值为_____. 答案:3设12,x x 是方程240x x m -+=的两个根,由()212121242x x x x x x -=+-=可求.解:设12,x x 是方程240x x m -+=的两个根, 则12124,x x x x m +==,()212121241642x x x x x x m ∴-=+-=-=,解得3m =.故答案为:3.12.设,(1,),x y ∈+∞22log ,log x y 的算术平均值为1,则22x y ,的几何平均值的最小值为________________. 答案:4由22log ,log x y 的算术平均值为1得4xy =为定值,再由基本不等式得22x y ,的几何平均值的最小值.解:因为,(1,),x y ∈+∞所以22log 0,log 0x y >>,又22log ,log x y 的算术平均值为1,则22log log 2x y +=,所以2log 2xy =,即4xy =;因为22x y ,的几何平均值是22x y ,由基本不等式得24222224xyx y x y +=≥==,当x=y=2时取等号,所以22x y ,的几何平均值的最小值为4, 故答案为:413.已知函数y=f(x)是R 上的奇函数,且是(-∞,0)上的严格减函数,若f(1)=0,则满足不等式(x-1)f(x)≥0的x 的取值范围为_______. 答案:[]{}1,01-⋃由数形结合分类讨论1x <和1≥x 即可求解. 解:如图所示:因为函数y=f(x)是R 上的奇函数,故()00f =,由于()()10x f x -≥故 当1x <时,()0f x ≤,所以10x -≤≤ ;当1≥x 时,()0f x ≥,所以1x =;综上所述x 的取值范围[]{}1,01-⋃ 故答案为:[]{}1,01-⋃ 14.已知124{2,1,,,,2},333a ∈--当x∈(-1,0)∪(0,1)时,不等式||a x x >恒成立,则满足条件的a 形成的集合为_____. 答案:22,3⎧⎫-⎨⎬⎩⎭直接利用幂函数的性质和分类讨论的应用求得结果.解:令()af x x =,由()>f x x 可知,幂函数()f x 的图象在y x =的图像上方,如果函数()f x 为奇函数,则第三象限有图象,所以()f x 不是奇函数,故11,3a =-不符合;由于()0,1x ∈,所以()af x x x =>整理得11a x -> ,所以10a ->得1a <,故4,23a = 不符合;所以2,23a =-即22,3⎧⎫-⎨⎬⎩⎭ ,故答案为:22,3⎧⎫-⎨⎬⎩⎭15.函数y=f(x)(x<0)的反函数为1(),y f x -=且函数2()0()log (1)0f x x g x x x <⎧=⎨+≥⎩是奇函数,则不等式1()2fx -≥-的解集为_____.答案:[)2log 3,0-由函数的奇偶性结合反函数的性质得出1()12x f x --=-,0x <,再解指数不等式得出解集.解:当0x <时,则0x ->,2()log (1)()g x x g x -=-=- 即2()()log (1)y f x g x x ===--,0x <由2log (1),0x y y =--<,解得12x y -=-,由120x --<,解得0x < 即1()12x fx --=-,0x <不等式1()2fx -≥-可化为122x --≥-,解得2log 30x -≤<故答案为:[)2log 3,0-点评:关键点睛:本题关键是运用函数的奇偶性结合反函数的性质得出()f x 的反函数解析式,最后解不等式得出解集.16.已知函数()|21|,xf x =-若函数21()()()4g x f x mf x =++有4个零点,则实数m 的取值范围为_____.答案:5,14⎛⎫-- ⎪⎝⎭令()t f x =,画出()|21|xf x =-的函数图象,可得01t <<,得出2104t mt ++=在()0,1t ∈有2个解,即可求出.解:令()t f x =,要使()g x 有4个零点,则()f x t =有2个解, 画出()|21|xf x =-的函数图象,则观察图形可知,01t <<, 则()g x 有4个零点等价于2104t mt ++=在()0,1t ∈有2个解, 则2221404100041104012m m m ⎧∆=-⨯>⎪⎪⎪++>⎪⎨⎪++>⎪⎪⎪<-<⎩,解得514m -<<-,所以m 的取值范围为5,14⎛⎫-- ⎪⎝⎭. 点评:本题考查函数与方程的应用,解题的关键是利用()f x 的函数图象得出2104t mt ++=在()0,1t ∈有2个解. 三、解答题17.已知集合{}2A x x a =-≤,不等式2112x x -≥+的解集为B . (1)用区间表示B ; (2)若全集U =R ,且A B A =,求实数a 的取值范围.答案:(1)()[),23,B =-∞-+∞;(2)[)0,1. (1)解分式不等式2112x x -≥+,得其解集,进而可将集合B 用区间加以表示; (2)求出集合A 、B ,由AB A =可得出A B ⊆,可得出关于实数a 的不等式组,进而可解得实数a 的取值范围. 解:(1)解不等式2112x x -≥+,即2131022x x x x ---=≥++,解得2x <-或3x ≥, 因此,()[),23,B =-∞-+∞;(2)解不等式2x a -≤,可得22x a -≤-≤,解得22a x a -≤≤+,[]2,2A a a ∴=-+,由于U =R ,()[),23,B =-∞-+∞,则[)2,3B =-,因为AB A =,可得A B ⊆,所以,2223a a -≥-⎧⎨+<⎩,解得01a ≤<.因此,实数a 的取值范围是[)0,1. 18.已知a 、b 都是正实数,且.bb a a=- (1)求证:a>1; (2)求b 的最小值.答案:(1)答案见解析;(2)2a =时,b 的最小值为4. (1)把b 用a 表示,根据a 、b 都是正实数可证明a>1;(2)由b b a a =-可得21a b a =-,利用基本不等式可出b 的最小值解:(1)1(1)bb a b a aa =-∴-=又a 、b 都是正实数, ∴11>0a-11>01a a a∴>∴>.即证.(2)11(1)()ba b a b ab a a aa-=-∴-=∴= 1a >21a b a ∴=- 令1(0)t a t =->,则22(1)12241a t b t t a t t t+∴===++≥+=-当且仅当11t a =-=,即2a =时取最小值. 所以2a =时,b 的最小值为4.点评:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 19.设函数y=f(x)的表达式为2()||,f x x x a =+-其中a 为实常数. (1)判断函数y=f(x)的奇偶性,并说明理由; (2)设a>0,函数()()f x g x x=在区间(0,a]上为严格减函数,求实数a 的最大值. 答案:(1)当0a =时,()y f x =为偶函数,当0a ≠时,()y f x =为非奇非偶函数;(2)1.(1)利用奇偶性的定义,讨论0a =和0a ≠即可;(2)利用单调性的定义得出120x x a -<,进而得出20a a a ⎧≥⎨>⎩即可求出.解:(1)可得()f x 的定义域为R ,关于原点对称,()22()||||f x x x a x x a -=-+--=++,当0a =时,()()f x f x -=,则()f x 为偶函数,当0a ≠时,()()f x f x -≠且()()f x f x -≠-,则()f x 为非奇非偶函数;(2)当(]0,x a ∈,2()()1x x a f x ag x x x x x+-===+-,任取120x x a <<≤,则()()()()121212121212x x x x a a a g x g x x x x x x x ---=+--=, 120x x a <<≤,120x x ∴-<且2120x x a <<,()g x 在区间(0,a]上为严格减函数,120x x a ∴-<,即12a x x >恒成立,20a a a ⎧≥∴⎨>⎩,解得01a <≤, ∴a 的最大值为1.点评:思路点睛:利用定义判断函数单调性的步骤:(1)在定义域内任取12x x <;(2)计算()()12f x f x -并化简整理;(3)判断()()12f x f x -的正负;(4)得出结论,若()()120f x f x -<,则()f x 单调递增;若()()120f x f x ->,则()f x 单调递减.20.已知非空集合S 的元素都是整数,且满足:对于任意给定的x ,y∈S (x、y 可以相同),有x+y∈S 且x-y∈S.(1)集合S 能否为有限集,若能,求出所有有限集,若不能,请说明理由;(2)证明:若3∈S 且5∈S,则S=Z.答案:(1){}0;(2)证明见解析.(1)若a S ∈,分析0a ≠和0a =可得答案;(2)集合S 的元素都是整数,利用已知得到非空集合S 是所有整数构成的集合.然后再由5S ∈,3S ∈, 532S -=∈得到{}|2,x x k k Z =∈ S ,且{}|21,x x k k Z =+∈ S 可得答案.解:(1)能,理由如下:若a S ∈,且0a ≠,由题意知a 的所有整数倍的数都是S 中的元素,所以S 是无限集;若a S ∈,且0a =,则{}0S =,,x y S x y S +∈-∈符合题意,且{}0S =是有限集,所以集合S 能为有限集,即{}0S =.(2)证明:因为非空集合S 的元素都是整数,且()(),x y Z x y Z +∈-∈,由5S ∈,3S ∈,所以532S -=∈,所以321S -=∈,所以112S +=∈,123S +=∈,134S +=∈,,110S -=∈,011S -=-∈,112S --=-∈,213S--=-∈, 所以非空集合S 是所有整数构成的集合.由5S ∈,3S ∈,所以532S -=∈,因为,x y S x y S +∈-∈,所以224,220S S+=∈-=∈,246,242S S +=∈-=-∈,268,264S S +=∈-=-∈,, 所以2的所有整数倍的数都是S 中的元素,即{}|2,x x k k Z =∈ S ,且321S -=∈,所以21,x k k Z =+∈也是集合S 中的元素,即{}|21,x x k k Z =+∈ S ,{}|2,x x k k Z =∈{}|21,x x k k Z Z =+∈=,综上所述,S Z =.点评:本题考查对集合性质的理解,关键点是理解,x y S x y S +∈-∈,考查了学生分析问题、解决问题的能力,以及推理能力.。
2019-2020学年上海中学高一(上)期末数学试卷
2019-2020学年上海中学高一(上)期末数学试卷一、填空题1. 函数f(x)=√2−x +ln (x −1)的定义域为________.2. 设函数f(x)=(x+1)(x−a)x 为奇函数,则实数a 的值为________.3. 已知y =log a x +2(a >0且a ≠1)的图象过定点P ,点P 在指数函数y =f(x)的图象上,则f(x)=________.4. 方程92x+1=(13)x 的解为________.5. 对任意正实数x ,y ,f(xy)=f(x)+f(y),f(9)=4,则f(√3)=________.6. 已知幂函数f(x)=(m 2−5m +7)x m 是R 上的增函数,则m 的值为________.7. 已知函数f(x)={2x (x ≤0)log 2x(0<x ≤1)的反函数是f −1(x),则f −1(12)=________.8. 函数y =log 34|x 2−6x +5|的单调递增区间为________.9. 若函数f(x)=log a (x 2−ax +2)(a >0且a ≠1)满足:对任意x 1,x 2,当x 1<x 2≤a 2时,f(x 1)−f(x 2)>0,则a 的取值范围为________√2) .10. 已知x >0,定义f(x)表示不小于x 的最小整数,若f (3x +f(x))=f(6.5),则正数x 的取值范围为________.11. 已知函数f(x)=log a (mx +2)−log a (2m +1+2x )(a >0且a ≠1)只有一个零点,则实数m 的取值范围为________.12. 已知函数f(x)={log 12(1−x),−1≤x ≤n 22−|x−1|−3,n <x ≤m ,(n <m)的值域是[−1, 1],有下列结论:(1)n =0时,m ∈(0, 2];(2)n =12时,m ∈(12,2];(3)n =[0,12)时,m ∈(n, 2],其中正确的结论的序号为________.二、选择题下列函数中,是奇函数且在区间(1, +∞)上是增函数的是( )A.f(x)=3|x|B.f(x)=1x −xC.f(x)=−x 3D.f(x)=−log 2x+1x−1已知f(x)是定义在R 上的偶函数,且在区间(−∞, 0)上单调递增,若实数m 满足f(|m −1|)>f(−1),则m 的取值范围是( )A.(−∞, 0)∪(2, +∞)B.(−∞, 0)C.(0, 2)D.(2, +∞)如果函数f(x)在其定义域内存在实数x 0,使得f(x 0+1)=f(x 0)+f(1)成立,则称函数f(x)为“可拆分函数”,若f(x)=lg a 2x +1为“可拆分函数”,则a 的取值范围是( )A.(32,3)B.(12,32)C.(32,3]D.(3, +∞]定义在(−1, 1)上的函数f(x)满足f(x)=1f(x−1)+1,当x ∈(−1, 0]时,f(x)=1x+1−1,若函数g(x)=|f(x)−12|−mx −m 在(−1, 1)内恰有3个零点,则实数m 的取值范围是( )A.[14,916)B.(14,916)C.[14,12)D.(14,12) 三.解谷题已知函数f(x)=2x −1的反函数是y =f −1(x),g(x)=log 4(3x +1).(1)画出f(x)=2x −1的图象;(2)解方程f −1(x)=g(x).已知定义在R 上的奇函数f(x)=ka x −a −x ((a >0且a ≠1),k ∈R).(1)求k 的值,并用定义证明当a >1时,函数f(x)是R 上的增函数;(2)已知f(1)=32,求函数g(x)=a 2x +a −2x 在区间[0, 1]上的取值范围.松江有轨电车项目正在如火如荼的进行中,通车后将给市民出行带来便利,已知某条线路通车后,电车的发车时间间隔t (单位:分钟)满足2≤t ≤20,经市场调研测算,电车载客量与发车时间间隔t 相关,当10≤t ≤20时电车为满载状态,载客量为400人,当2≤t <10时,载客量会减少,减少的人数与(10−t)的平方成正比,且发车时间间隔为2分钟时的载客量为272人,记电车载客量为p(t).(1)求p(t)的表达式,并求当发车时间间隔为6分钟时,电车的载客量;(2)若该线路每分钟的净收益为Q =6p(t)−1500t −60(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?对于定义域为D 的函数y =f(x),若存在区间[a, b]⊂D ,使得f(x)同时满足,①f(x)在[a, b]上是单调函数,②当f(x)的定义域为[a, b]时,f(x)的值域也为[a, b],则称区间[a, b]为该函数的一个“和谐区间”.(1)求出函数f(x)=x 3的所有“和谐区间”[a, b];(2)函数f(x)=|4x −3|是否存在“和谐区间”[a, b]?若存在,求出实数a ,b 的值;若不存在,请说明理由;(3)已知定义在(2, k)上的函数f(x)=2m −4x−1有“和谐区间”,求正整数k 取最小值时实数m 的取值范围.定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2.(1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1, 1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.参考答案与试题解析2019-2020学年上海中学高一(上)期末数学试卷一、填空题1.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【解析】此题暂无解析此题暂无解答7.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答11.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答12.【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答三.解谷题【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【解析】此题暂无解答【答案】此题暂无答案【解析】此题暂无解析【解答】此题暂无解答。
上海中学2019-2020学年高一上学期期末数学试卷 (有解析)
上海中学2019-2020学年高一上学期期末数学试卷一、选择题(本大题共4小题,共12.0分)1. 下列函数中,既是奇函数又在(0,+∞)上单调递增的是( )A. f(x)=−1xB. f(x)=3xC. f(x)=x 2+1D. f(x)=sinx2. 已知f(x)是偶函数,且在(−∞,0]上是增函数.若f(lnx)<f(1),则x 的取值范围是( )A. (e,+∞)B. (1e ,e)C. (e,+∞)∪(0,1e )D. (1e ,e)∪(e,+∞) 3. 若定义在R 上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x +λ)+λf(x)=0对任意的实数x 都成立,则称f(x)是一个“λ−特征函数”.下列结论中正确的个数为( ) ①f(x)=0是常数函数中唯一的“λ−特征函数”; ②f(x)=2x +1不是“λ−特征函数”; ③“13−特征函数”至少有一个零点; ④f(x)=e x 是一个“λ−特征函数”. A. 1 B. 2 C. 3 D. 44. 已知函数f(x)=x|x|−mx +1有三个零点,则实数m 的取值范围是( )A. (0,2)B. (2,+∞)C. (−∞,−2)D. [2,+∞)二、填空题(本大题共12小题,共36.0分)5. 函数y =√3x −1+lg (1−x )的定义域是__________.6. 若函数f(x)=x 2+(a+1)x+a x 为奇函数,则实数a =______.7. 函数f(x)=log a (2x −3)+1(a >0且a ≠1)的图像过定点________________8. 已知3a =4,3b =5则3a+b 的值为__________.9. 已知定义在R 上的函数f(x)满足:对于任意的实数x ,y ,都有f(x −y)=f(x)+y(y −2x +1),且f(−1)=3,则函数f(x)的解析式为________.10. 若幂函数f (x )=(m 2−4m +4)·x m 2−6m+8在(0,+∞)上为增函数,则m 的值为________.11. 已知函数f(x)={−x 2,x ≥02−x −1,x <0,则f −1[f −1(−9)]=______12. 已知函数f(x)=log 12(x 2−6x +5)在(a,+∞)上是减函数,则函数a 的取值范围是________ .13. 已知函数f(x)=log 2(−x 2+ax +3)在(2,4)上是单调递减的,则a 的取值范围是_____________.14. 已知函数f (x )={−x,x ≤0,x 2−2x,x >0,则满足f(x)<1的x 的取值范围是________ 15. 已知函数f(x)=log 12(x +1)+log 2(x −1),对任意x ∈[3,5],f(x)≥m −2x 恒成立,则实数m 取值范围是__________.16. 已知函数,有如下结论:①,有;②,有;③,有;④,有.其中正确结论的序号是__________.(写出所有正确结论的序号)三、解答题(本大题共5小题,共60.0分) 17. 求下列函数的反函数:(1)y =1+log 2(x −1)(2)y =x 2−1(−1≤x ≤0)18. 已知函数f(x)=a x −1a x +1(a >1).(1)根据定义证明:函数f(x)在(−∞,+∞)上是增函数;(2)根据定义证明:函数f(x)是奇函数.19.为了在夏季降温和冬季供暖时减少能源消耗,可在建筑物的外墙加装不超过10厘米厚的隔热层.某幢建筑物要加装可使用20年的隔热层,每厘米厚的隔热层的加装成本为6万元,该建筑(0≤物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:厘米)满足关系:C(x)=k3x+5 x≤10).若不加装隔热层,每年能源消耗费用为8万元,设f(x)为隔热层加装费用与20年的能源消耗费用之和.(Ⅰ)求k的值及f(x)的表达式;(Ⅱ)隔热层加装厚度为多少厘米时,总费用f(x)最小?并求出最小总费用.20.已知函数f(x)=√x2−1+p.(1)求函数f(x)的定义域;(2)若存在区间,当x∈[m,n]时以f(x)的值域为[m2,n2],求实数p的取值范围.21. 已知函数f(x)={2x −1,x ≥0ax 2+bx,x <0,且f(−1)=f(1)、f(−2)=f(0), (1)求函数f(x)的解析式;(2)若函数g(x)=f(x)−m 有3个零点,求m 的取值范围.-------- 答案与解析 --------1.答案:A解析:本题考查函数的奇偶性和单调性判断,属于基础题.逐项判断即可.是奇函数,且在(0,+∞)上单调递增,∴该选项正确;解:A.f(x)=−1xB.f(x)=3x是非奇非偶函数,∴该选项错误;C.f(x)=x2+1是偶函数,不是奇函数,∴该选项错误;D.f(x)=sinx在(0,+∞)上没有单调性,∴该选项错误.故选:A.2.答案:C解析:解:∵f(x)是偶函数,且在(−∞,0]上是增函数,∴f(lnx)<f(1),等价为f(|lnx|)<f(1),即|lnx|>1,得lnx>1或lnx<−1,解得x>e或0<x<1,e故选C根据函数奇偶性和单调性之间的关系,即可得到结论.本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系将不等式进行等价转化是解决本题的关键.3.答案:C解析:本题考查函数的概念及构成要素,考查函数的零点,正确理解λ−特征函数的概念是关键,属于中档题.利用新定义“λ−特征函数”,对A、B、C、D四个选项逐个判断即可得到答案.解:对于①设f(x)=C是一个“λ−特征函数”,则(1+λ)C=0,当时,可以取实数集,因此f(x)=0不是唯一一个常数“λ−特征函数”,故①错误;对于②,∵f(x)=2x+1,∴f(x+λ)+λf(x)=2(x+λ)+1+λ(2x+1)=0,即,∴当时,;λ≠−1时,f(x+λ)+λf(x)=0有唯一解,∴不存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,∴f(x)=2x+1不是“λ−特征函数”,故②正确;对于③,令x=0得f(13)+13f(0)=0,所以,若f(0)=0,显然f(x)=0有实数根;若f(x)≠0,.又∵f(x)的函数图象是连续不断的,∴f(x)在(0,13)上必有实数根,因此任意的“λ−特征函数”必有根,即任意“13−特征函数”至少有一个零点,故③正确;对于④,假设f(x)=e x是一个“λ−特征函数”,则e x+λ+λe x=0对任意实数x成立,则有e x+λ= 0,而此式有解,所以f(x)=e x是“λ−特征函数”,故④正确.综上所述,结论正确的是②③④,共3个.故选C.4.答案:B解析:本题主要考查函数与方程的应用,考查利用参数分离法以及数形结合思想,属于中档题.f(x)=x|x|−mx+1得x|x|+1=mx,利用参数分离法得m=|x|+1x ,构造函数g(x)=|x|+1x,转化为两个函数的交点个数问题进行求解即可.解:由f(x)=x|x|−mx+1得x|x|+1=mx,当x =0时,方程不成立,即x ≠0,则方程等价为m =|x|+1x ,设g(x)=|x|+1x ,当x <0时,g(x)=−x +1x 为减函数,当x >0时,g(x)=x +1x ,则g(x)在(0,1)上为减函数,则(1,+∞)上为增函数,即当x =1时,函数取得最小值g(1)=1+1=2,作出函数g(x)的图象如图:要使f(x)=x|x|−mx +1有三个零点,则等价为m =|x|+1x 有三个不同的根,即y =m 与g(x)有三个不同的交点,则由图象知m >2,故实数m 的取值范围是(2,+∞),故选:B . 5.答案:[13,1)解析:本题考查函数的定义域,根据题意可得{3x −1≥01−x >0,解不等式组即可求得结果. 解:根据题意可得{3x −1≥01−x >0, 解得13≤x <1,因此函数的定义域为[13,1).故答案为[13,1). 6.答案:−1解析:利用奇函数的性质即可得出.本题考查了函数的奇偶性,属于基础题.解:∵函数f(x)=x2+(a+1)x+ax为奇函数,∴f(−x)+f(x)=x2−(a+1)x+a−x +x2+(a+1)x+ax=0,化为(a+1)x=0,∴a+1=0,解得a=−1.故答案为:−1.7.答案:(2,1)解析:本题考查对数函数恒过定点问题,属于基础题.熟练掌握是解决此类问题的关键.解:∵当2x−3=1即x=2时,此时y=1,∴函数f(x)=log a(2x−3)+1(a>0且a≠1)的图象恒过定点(2,1).故答案为(2,1).8.答案:20解析:本题考查指数的运算.由同底数幂的运算法则进行计算即可.解:∵3a=4,3b=5,∴3a+b=3a×3b=20.故答案为20.9.答案:f(x)=x2−x+1解析:本题考查抽象函数解析式的求解,属于中档题目.解:令x=0,y=−x,得f(x)=f(0)+x2−x.把x=−1代入上式,得f(0)=f(−1)−2=1,从而有f(x)=x 2−x +1.故答案为f(x)=x 2−x +1.10.答案:1解析:本题考查了幂函数的定义与性质,由函数f(x)为幂函数可知m 2−4m +4=1,解出m 的值,再根据函数在(0,+∞)上为增函数判断出满足条件的m 值.解:函数f(x)为幂函数,所以m 2−4m +4=1,解得m =1或m =3,又因为f (x )=(m 2−4m +4)·x m 2−6m+8在(0,+∞)上为增函数,所以m 2−6m +8>0,解得m >4或m <2,综上可知m =1,故答案为1.11.答案:−2解析:解:∵函数f(x)={−x 2,x ≥02−x −1,x <0, ∴x ≥0时,y =−x 2,x =√−y ,x ,y 互换,得f −1(x)=√−x ,x ≤0,x <0时,y =2−x −1,x =−log 2(y +1),x ,y 互换得f −1(x)=−log 2(x +1),x >0,∴f −1(x)={√−x,x ≤0−log 2(x +1),x >0, ∴f −1(−9)=3,f −1[f −1(−9)]=f −1(3)=−2.故答案为:−2.推导出f −1(x)={√−x,x ≤0−log 2(x +1),x >0,从而f −1(−9)=3,进而f −1[f −1(−9)]=f −1(3),由此能求出结果.本题考查函数值的求法,考查函数性质、反函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.答案:[5,+∞)解析:本昰考查对数函数的单调区间的求法,解题时要认真审题,仔细解答,注意对数函数性质的灵活运用.设t=x2−6x+5,由x2−6x+5>0,解得x<1或x>5.在(5,+∞)t=x2−6x+5是递增的,y=log12x也是递减的,所以f(x)=log 12(x2−6x+5)在(5,+∞)上是单调递减的,由此求得a≥5.解:设t=x2−6x+5x2−6x+5>0,解得x<1或x>5.在(−∞,1)上t=x2−6x+5是递减的,y=log 12x也是递减的,所以f(x)=log 12(x2−6x+5)在(−∞,1)上是单调递增的,在(5,+∞)t=x2−6x+5是递增的,y=log 12x也是递减的,所以f(x)=log12(x2−6x+5)在(5,+∞)上是单调递减的,所以a≥5.故答案为[5,+∞).13.答案:[134,4]解析:本题考查了复合函数的单调性及对数函数的性质,是基础题.由复合函数的单调性可知内函数在(2,4)上为减函数,则需要其对称轴小于等于2且当函数在x=4时的函数值大于等于0,由此联立不等式组得答案.解:令t=−x2+ax+3,则原函数化为y=log2t,为增函数,∴t=−x2+ax+3在(2,4)是单调递减,对称轴为x=a2,∴a2⩽2且−42+4a+3⩾0,解得:134⩽a⩽4,∴a的范围是[134,4].故答案为[134,4].14.答案:解析:本题考查了一元二次不等式的解法,考查了分类讨论的数学思想方法,属中档题.解:因为函数f (x )={−x,x ≤0,x 2−2x,x >0,则f(x)<1等价于{x ≤0−x <1①或{x >0x 2−2x <1②. 解得①得−1<x ≤0,解②得0<x <1+√2√2.所以f(x)<1的x 的取值范围是(−1,1+√2).故答案为.15.答案:(−∞,7]解析:函数f(x)的定义域是(1,+∞),f(x)=log 12(x +1)+log 2(x −1)=log 2x−1x+1=log 2(1−2x+1),因为y =1−2x+1在(1,+∞)上递增,所以函数f(x)在(1,+∞)上递增,f(x)≥m −2x ,即m ≤f(x)+2x ,知y =f(x)+2x 在[3,5]上递增,所以m ≤7. 16.答案:②③④解析:因为:,所以,所以①不正确,②正确;因为y =ln(1+x)在(−1,1)递增,y =ln(1−x)在(−1,1)递减,所以函数在 上为增函数,所以③正确;又因为,所以在是增函数且函数图象上升的越来越快,呈下凸状态,所以,有,所以④正确.所以答案应填:②③④. 17.答案:解:(1)由y =1+log 2(x −1),化为:x −1=2y−1,即x =1+2y−1,把x 与y 互换可得反函数:y =1+2x−1,(y >1).(2)y =x 2−1,−1≤x ≤0,可得y ∈[−1,0],解得x =−√y +1.把x 与y 互换可得反函数为:y =−√x +1,x ∈[−1,0],解析:(1)(2)利用方程的解法,用y 表示x ,求出其范围,再把x 与y 互换即可得出.本题考查了反函数的求法、函数的单调性,考查了推理能力与计算能力,属于中档题.18.答案:证明:(1)f(x)=1−2a x+1,令m<n,则f(m)−f(n)=1−2a m+1−1+2a n+1=2(a m−a n)(a n+1)(a m+1),∵a>1,m<n,则a m<a n,(a n+1)(a m+1)>0,故2(a m−a n)(a n+1)(a m+1)<0,故f(m)−f(n)<0,故f(x)在R递增;(2)由题意函数的定义域是R,关于原点对称,又f(−x)=a −x−1a−x+1=−a x−1a x+1=−f(x),故f(x)是奇函数.解析:(1)根据函数的单调性的定义证明函数的单调性即可;(2)根据函数的奇偶性的定义证明函数的奇偶性即可.本题考查了函数的单调性和函数的奇偶性问题,考查定义的应用,是一道基础题.19.答案:解:(Ⅰ)由已知,当x=0时,C(x)=8,即k5=8,∴k=40.则C(x)=403x+5,又加装隔热层的费用为:D(x)=6x,∴f(x)=20C(x)+D(x)=20×403x+5+6x=8003x+5+6x,x∈[0,10];(Ⅱ)∵0≤x≤10,∴3x+5>0,f(x)=8003x+5+6x=8003x+5+(6x+10)−10≥2√8003x+5⋅(6x+10)−10=80−10=70.当且仅当8003x+5=6x+10,即x=5取等号.∴当隔热层加装厚度为5厘米时,总费用f(x)最小,最小总费用为70万元.解析:(Ⅰ)由C(0)=8求得k ,得到C(x)=403x+5,又加装隔热层的费用为:D(x)=6x ,可得f(x)的解析式;(Ⅱ)直接利用基本不等式求最值得答案.本题考查简单的数学建模思想方法,训练了利用基本不等式求最值,是中档题. 20.答案:解:(1)依题意,x 2−1≥0,解得x ≤−1或x ≥1,故函数f(x)的定义域为(−∞,−1]∪[1,+∞).(2)任取x 1,x 2∈[1,+∞)且x 1<x 2,则f (x 1)−f (x 2)=√x 12−1−√x 22−1=1212√x 1−1+√x 2−1<0,即f (x 1)<f (x 2), ∴f(x)在[1,+∞)上单调递增.若存在区间[m,n]⊆[1,+∞),当x ∈[m,n ]时,f(x)的值域为[m 2,n 2],可转化为f (m )=m 2,f (n )=n 2,∴g (x )=x 2,即√x 2−1+p =x 2在[1,+∞)上至少有两个不相等的实数根.令√x 2−1=u ,u ≥0,方程可化为u 2+1=u +p ,即u 2−u +1−p =0在[0,+∞)上至少有两个不相等的实数根.记ℎ(u )=u 2−u +1−p ,ℎ(u )的对称轴为直线u =12,∴{Δ=1−4(1−p )>0ℎ(0)≥0,解得34<p ≤1, 即P 的范围为(34,1].解析:本题主要考查定义域和值域,属于中档题.(1)根据被开方数非负可得x 2−1≥0,进而得出定义域即可;(2)根据题意可得f (m )=m 2,f (n )=n 2,即√x 2−1+p =x 2在[1,+∞)上至少有两个不相等的实数根,令√x 2−1=u ,u ≥0,方程可化为u 2+1=u +p ,进而得出u 2−u +1−p =0在[0,+∞)上至少有两个不相等的实数根,进而得出不等式组{Δ=1−4(1−p )>0ℎ(0)≥0,解出a 即可.21.答案:解:(1)由题意,{f(−1)=a −b =f(1)=1f(−2)=4a −2b =f(0)=0, 解得,a =−1,b =−2;故f(x)={2x −1,x ≥0−x 2−2x,x <0; (2)函数g(x)=f(x)−m 有3个零点可化为y =f(x)与y =m 有3个不同的交点,作f(x)的图象如下,则由图象可知,0<m <1.解析:本题考查了函数解析式的求法及函数图象的作法及应用,属于中档题.(1)由题意,{f(−1)=a −b =f(1)=1f(−2)=4a −2b =f(0)=0,从而解出a ,b ; (2)函数g(x)=f(x)−m 有3个零点可化为y =f(x)与y =m 有3个不同的交点,作出f(x)的图象,从而由图象可得.。
2020-2021上海格致初级中学高中必修一数学上期末试题含答案
2020-2021上海格致初级中学高中必修一数学上期末试题含答案一、选择题1.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-2.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .43.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +B .(1)f x -C .()1f x +D .()1f x -4.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃5.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}6.已知全集为R ,函数()()ln 62y x x =--的定义域为集合{},|44A B x a x a =-≤≤+,且R A B ⊆ð,则a 的取值范围是( )A .210a -≤≤B .210a -<<C .2a ≤-或10a ≥D .2a <-或10a > 7.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<8.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5B .()3,5C .[]4,6D .()4,69.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。
2019-2020学年上海市高一(上)期末数学试卷
2019-2020学年上海市高一(上)期末数学试卷第I卷(选择题)一、选择题(本大题共4小题,共12.0分)1.“x2<1”是“x<1”的()条件.A. 充分不必要B. 必要不充分C. 充要D. 既不充分也不必要2.下列函数中,既是偶函数,又在(−∞,0)上单调递减的是()A. y=1xB. y=e−xC. y=1−x2D. y=x23.设函数f(x)=e x−e−x,g(x)=lg(mx2−x+14),若对任意x1∈(−∞,0],都存在x2∈R,使得f(x1)=g(x2),则实数m的最小值为()A. −13B. −1 C. −12D. 04.设f(x)=x2+bx+c(b,c∈R),且A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈R},如果A是只有一个元素的集合,则A与B的关系为()A. A=BB. A⫋BC. B⫋AD. A∩B=⌀第II卷(非选择题)二、填空题(本大题共12小题,共36.0分)5.函数y=ln(3−2x)的定义域是______ .6.函数f(x)=x2,(x<−2)的反函数是______ .7.设实数a满足log2a=4.则log a2=______ .8.幂函数f(x)=(m2−m−1)x m2+m−3在(0,+∞)上为减函数,则m=______ .9.函数y=log2[(x−2)2+1]的单调递增区间是________10.方程:log2(22x+1−6)=x+log2(2x+1)的解为______ .11.已知关于x的方程2kx2−2x−5k−2=0的两个实数根一个小于1,另一个大于1,则实数k的取值范围是______.12. 已知a >0且a ≠1,设函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1,则实数a 的取值范围为____________.13. 设f(x)的反函数为f −1(x),若函数f(x)的图象过点(1,2),且f −1(2x +1)=1,则x =__________.14. 已知函数f(x)=2|x |+x 2在区间[−2,m]上的值域是[1,8],则实数m 的取值范围是__________.15. 若关于x 的方程ln(x −2)+ln(5−x)=ln(m −x)有实根,实数m 的取值范围是______ .16. 函数f(x)=lnx −14x +34x −1.g(x)=−x 2+2bx −4,若对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立,则实数b 的取值范围是 .三、解答题(本大题共5小题,共60.0分)17. 设函数f (x )=4x 2+4x, (1)用定义证明:函数f (x )是R 上的增函数;(2)化简f (t )+f (1−t ),并求值:f (110)+f (210)+f (310)+⋯+f (910);(3)若关于x 的方程k ⋅f (x )=2x 在(−1,0]上有解,求k 的取值范围.18. 设集合A ={x|log 12(x 2−5x +6)=−1},B ={x|a x−2<(1a )2x−7,a >1},求A ∩B .19.某商场经调查得知,一种商品的月销售量Q(单位:吨)与销售价格(单位:万元/吨)的关系可用下图的一条折线表示.(1)写出月销售量Q关于销售价格的函数关系式;(2)如果该商品的进价为5万元/吨,除去进货成本外,商场销售该商品每月的固定成本为10万元,问该商品每吨定价多少万元时,销售该商品的月利润最大?并求月利润的最大值.20.求下列函数的定义域(1).f(x)=log3(x−5)(2)f(x)=√x+2+11−x21.已知函数g(x)=ax2−2ax+1+b,(a≠0,b>1)在区间[2,3]上的最大值为4,最.小值为1,设函数f(x)=g(x)x(1)求a,b的值及函数f(x)的解析式;(2)若不等式f(2x)−2x−k≥0在x∈[−1,1]时恒成立,求实数k的取值范围.答案和解析1.【答案】A【解析】【分析】本题主要考查充分条件与必要条件,基础题.根据充分必要条件的定义,分别证明充分性,必要性,从而得出答案.【解答】解:由x2<1解得−1<x<1⇒x<1,但x<1不能推出−1<x<1,所以“x2<1”是“x<1”成立的充分不必要条件.故选A.2.【答案】D是奇函数;y=e−x,不是偶函数;y=1−x2是偶函数,但是在(−∞,0)【解析】解:y=1x上单调递增,y=x2满足题意.故选:D.判断函数的奇偶性以及函数的单调性即可.本题考查二次函数的性质,函数的奇偶性以及函数的单调性,是基础题.3.【答案】A【解析】解:∵f(x)=e x−e−x在(−∞,0]为增函数,∴f(x)≤f(0)=0,∵∃x2∈R,使f(x1)=g(x2),∴g(x)=lg(mx2−x+1)的值域包含(−∞,0],4),显然成立;当m=0时,g(x)=lg(−x+14)的值域包含(−∞,0],当m≠0时,要使g(x)=lg(mx2−x+14的最大值大于等于1,则mx2−x+14∴{m<04m×14−(−1)24m≥1,解得−13≤m<0,综上,−13≤m≤0,∴实数m的最小值−13故选:A.由题意求出f(x)的值域,再把对任意x1∈R,都存在x2∈R,使f(x1)=g(x2)转化为函数g(x)的值域包含f(x)的值域,进一步转化为关于m的不等式组求解.本题考查函数的值域,体现了数学转化思想方法,正确理解题意是解答该题的关键,是中档题.4.【答案】A【解析】【分析】本题考查集合的相等,但关键难点是二次函数和复合函数的的解的问题,属中高档试题,难度较大,A只有一个元素,所以f(x)=x只有一个实数解,记作x0,则f(x)−x= (x−x0)2,f(x)=(x−x0)2+x,由此得出f[f(x)]=x,化简并提取公因式,可以证明此方程也有且只有一个零点x0,即可证明A=B.【解答】解:∵A只有一个元素,∴f(x)=x只有一个实数解,记作x0,则f(x)−x=x2+(b−1)x+c=(x−x0)2,∴f(x)=(x−x0)2+x,∴f[f(x)]=[(x−x0)2+x−x0]2+[(x−x0)2+x]=(x−x0)4+2(x−x0)3+2(x−x0)2+x,令f[f(x)]=x,即(x−x0)4+2(x−x0)3+2(x−x0)2+x=x(∗),则(x−x0)4+2(x−x0)3+2(x−x0)2=0,即[(x−x0)2+2(x−x0)+2](x−x0)2=0,∵(x−x0)2+2(x−x0)+2=0的判别式△=4−8=−4<0,∴无解,∴方程(∗)也只有一个实数解x0,综上所述A=B,故选A.5.【答案】(−∞,32)【解析】解:由3−2x>0,得x<32.∴原函数的定义域为(−∞,32).故答案为:(−∞,32).直接由对数式的真数大于0求解x的取值范围得答案.本题考查了函数的定义域及其求法,是基础题.6.【答案】y=−√x,(x>4)【解析】【分析】本题考查反函数的定义的应用,考查计算能力.直接利用反函数的定义求解即可.【解答】解:函数f(x)=x2,(x<−2),则y>4.可得x=−√y,所以函数的反函数为:y=−√x,(x>4).故答案为:y=−√x,(x>4).7.【答案】14【解析】解:∵实数a满足log2a=4,∴a=24=16,∴log a2=log162=lg2lg16=lg24lg2=14.故答案为:14.利用对数性质、运算法则、换底公式求解.本题考查对数式求值,是基础题,解题时要认真审题,注意对数性质、运算法则、换底公式的合理运用.8.【答案】−1【解析】解:知m2−m−1=1,则m=2或m=−1.当m=2时,f(x)=x3在(0,+∞)上为增函数,不合题意,舍去;当m=−1时,f(x)=x−3在(0,+∞)上为减函数,满足要求.故答案为−1根据幂函数的定义列出方程求出m的值;将m的值代入f(x)检验函数的单调性.本题考查幂函数的定义:形如y=xα的函数是幂函数;考查幂函数的单调性与α的正负有关.9.【答案】[2,+∞)【解析】【分析】本题主要考查复合函数的单调性.设t=(x−2)2+1,则y=log2t,分别找出函数t和y 的单调区间,利用同增异减即可求出结果.【解答】解:∵函数y=log2[(x−2)2+1],∴函数的定义域为R,设t=(x−2)2+1,则y=log2t,∵t在x∈(−∞,2)上单调递减,在[2,+∞)上单调递增,又∵y=log2t在定义域上单调递增,∴函数y=log2[(x−2)2+1]的单调增区间为[2,+∞).故答案为[2,+∞).10.【答案】{log23}【解析】解:由22x+1−6>0,得2×4x>6,即4x>3,则方程等价为log2(22x+1−6)=x+log2(2x+1)=log22x+log2(2x+1)=log22x(2x+1),即22x+1−6=2x (2x +1),即2(2x )2−6=(2x )2+2x ,即(2x )2−2x −6=0,则(2x +2)(2x −3)=0,则2x −3=0即2x =3,满足4x >3,则x =log 23,即方程的解为x =log 23,故答案为:{log 23}根据对数的运算法则进行化简,指数方程进行求解即可.本题主要考查对数方程的求解,根据对数的运算法则进行转化,结合指数方程,一元二次方程进行转化求解是解决本题的关键.11.【答案】(−∞,−43)∪(0,+∞)【解析】【分析】本题考查二次函数根的分布问题,属于中档题.利用二次函数的性质即可求解.【解答】解:令f(x)=2kx 2−2x −5k −2,因为关于x 的方程2kx 2−2x −5k −2=0的两个实数根一个小于1,另一个大于1, 则函数f(x)有两个不同的零点,且一个小于1,一个大于1.显然k ≠0,且{k <0f(1)=−3k −4>0或{k >0f(1)=−3k −4<0, 解出k <−43或k >0.故答案为(−∞,−43)∪(0,+∞). 12.【答案】[13,1)【解析】【分析】本题主要考查了分段函数,函数的最值,以及对数函数的性质,属于中档题.直接求解即可.【解答】解:∵函数f(x)={x −2,x ⩽32+log a x,x >3的最大值为1, ∴函数f(x)存在最大值,则由对数函数的性质可知0< a <1,且, 即,即a ≥13, 所以13≤a <1,故答案为[13,1). 13.【答案】12【解析】由题意函数f(x)的图象过点(1,2),则其反函数的性质一定过点(2,1),又f −1(2x +1)=1,故2x +1=2,解得x =12. 14.【答案】[0,2]【解析】【分析】本题考查根据函数值域求参数范围,属于基础题.判断f(x)的奇偶性,再根据单调性求解即可.【解答】解:函数f(x)=2|x |+x 2是R 上的偶函数,当−2≤x ≤0时,函数递减,所以f(−2)=8,f(0)=1,所以可得0≤m ≤2.故答案为[0,2].15.【答案】(2,6]【解析】解:由题意,{x −2>05−x >0, 解得,2<x <5;ln(x −2)+ln(5−x)=ln(m −x)可化为(x −2)(5−x)=m −x ;故m =−x 2+8x −10=−(x −4)2+6;∵2<x <5,∴2<−(x −4)2+6≤6;故答案为:(2,6].由题意得{x −2>05−x >0,从而解得2<x <5;从而化ln(x −2)+ln(5−x)=ln(m −x)为(x −2)(5−x)=m −x ;从而求解.本题考查了方程的根与函数图象的关系应用,属于基础题.16.【答案】(−∞,√142]【解析】 【分析】本题考查不等式恒成立问题,利用导数求函数的定值 【解答】由对任意的x 1∈(0,2),x 2∈[1,2]不等式f(x 1)≥g(x 2)恒成立, 可得f min (x 1)⩾g max (x 2),又f(x)=lnx −14x +34x −1,易得f ′(x )=−(x−1)(x−3)4x 2,当0<x <1时,f ′(x )<0,故f (x )在(0,1)上递减, 当1<x <2时,f ′(x )>0,故f (x )在(1,2)上递增, 故f min (x )=f (1)=−12.g(x)=−x 2+2bx −4=−(x −b )2+b 2−4,当b ≤1时,g (x )在[1,2]上递减,故g max (x )=g (1)=2b −5≤−12,得b ≤94,又b ≤1,故b ≤1;当1<b <2时,g max (x )=g (b )=b 2−4≤−12,得−√142<b ≤√142,又1<b <2,故1<b ≤√142; 当b ≥2时,g (x )在[1,2]上递增,故g max (x )=g (2)=4b −8≤−12,得b ≤158,又b ≥2,故无解;综上所述,b 的取值范围是 (−∞,√142].17.【答案】(1)证明:设任意x 1<x 2,则f(x 1)−f(x 2)=4x 12+4x 1−4x 22+4x 2=2(4x 1−4x 2)(2+4x 1)(2+4x 2), ∵x 1<x 2,∴4x 1<4x 2,∴4x 1−4x 2<0,又2+4x 1>0,2+4x 2>0.∴f(x 1)−f(x 2)<0, ∴f(x 1)<f(x 2), ∴f(x)在R 上是增函数; (2)对任意t ,f(t)+f(1−t)=4t 2+4t +41−t 2+41−t =4t 2+4t +42⋅4t +4=2+4t 2+4t =1,∴对于任意t ,f(1)+f(1−t)=1,(110)+f(910)=1,f(210)+f(810)=1,∴f(110)+f(210)+f(310)+⋯+f(910)=4+f(510)=92,(3)根据题意可得4x 2+4x·k =2x ,∴k =2+4x 2x,令t =2x ∈(12,1],则k =t +2t ,且在(12,1]单调递减, ∴ k ∈[3,92).【解析】本题考查函数的奇偶性、单调性的综合应用、方程根的分布问题,考查转化思想、函数思想,考查学生解决问题的能力. (1)根据函数单调性定义进行证明;(2)根据指数幂的运算法则进行化简可得f(1)+f(1−t)=1,即可求出f(110)+f(210)+f(310)+⋯+f(910)的值, 方程k ⋅f(x)=2x 可化为:4x 2+4x ·k =2x ,令t =2x ∈(12,1],则可分离出参数k ,进而转化为函数的值域问题,借助“对勾”函数的单调性可求得函数值域.18.【答案】解:A ={x|log 12(x 2−5x +6)=−1}={x|x 2−5x +6=2}={1,4}, B ={x|a x−2<(1a )2x−7,a >1}={x|a x−2<a 7−2x }={x|x −2<7−2x}={x|x <3},∴A ∩B ={1}.【解析】解对数方程求得A ,解指数不等式求得B ,再根据两个集合的交集的定义求得A ∩B .本题主要考查对数方程、指数不等式的解法,两个集合的交集的定义,属于中档题.19.【答案】解:(1)由函数图象可知:当5⩽x ⩽8时,Q =−52x +25;当8<x ⩽12时,Q =−x +13;所以得到分段函数Q ={−52x +25,5⩽x ⩽8−x +13,8<x ⩽12; 设月利润与商品每吨定价x 的函数为f (x ),则根据题意得f (x )=Q (x −5)−10, 即f (x )={(−52x +25)(x −5)−10,5⩽x ⩽8−(x −9)2+6,8<x ⩽12={−52(x −152)2+458,5⩽x ⩽8−(x −9)2+6,8<x ⩽12,所以当5⩽x ⩽8时,在x =125,f (x )的取值最大,f (125)=458;当8<x ⩽12时,在x =9,f (x )取值最大,f (9)=6. 所以,当x =9时,f (x )取最大值为6.综上:每吨定价为9万元时,销售该商品的月利润最大,最大利润为6万元.【解析】本题考查了分段函数模型的应用,函数的最值,二次函数的性质,属于中档题. (1)看函数图象知,函数是分段函数,所以分别求两段区间的函数.(2)根据题意得到利润函数式为f (x )=Q (x −5)−10,然后把函数Q (x )展开就又得到利润的分段函数,再分别求两个区间的最大值,然后作比较就可以得到整个函数的最大值,即最大利润.20.【答案】(1)解:根据题意得,x −5>0,解得x >5,即定义域为{x|x >5}(2)解:根据题意可得,{x +2≥01−x ≠0,解得x ≥−2且x ≠1,即定义域为{x|x ≥−2且x ≠1}.故答案为{x|x ≥−2且x ≠1}.【解析】(1)本题主要考查了函数的定义域,属于基础题.(2)本题主要考查了函数的定义域,属于基础题.21.【答案】解:(1)由于二次函数g(x)=ax 2−2ax +1+b 的对称轴为x =1,由题意得:当a >0,{g(2)=1+b =1g(3)=3a +b +1=4,解得{a =1b =0(舍去)当a <0,{g(2)=1+b =4g(3)=3a +b +1=1,解得{a =−1b =3>1∴a =−1,b =3 故g(x)=−x 2+2x +4,f(x)=−x +4x +2 (2)法一:不等式f(2x )−2x −k ≥0,即−2x +42x +2−2x ≥k ,∴k ≤−2⋅2x +42x +2设g(x)=−2⋅2x+42x+2,在相同定义域内减函数加减函数为减函数所以g(x)在[−1,1]内是减,故g(x)min=g(1)=0.∴k≤0,即实数k的取值范围为(−∞,0].法二:不等式f(2x)−2x−k≥0,即−2x+42x+2−2x−k≥0,∴−2x⋅(2x)2+(2−k)⋅2x+4≥0,令t=2x∈[12,2],∴化为g(t)=−2⋅t2+(2−k)⋅t+4≥0恒成立,因为g(t)图像开口向下.故只需{g(12)≥0 g(2)≥0。
上海市2019-2020年度高一上学期数学期末考试试卷C卷
上海市2019-2020年度高一上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、填空题 (共14题;共16分)1. (1分) (2016高一上·江阴期中) 设集合M={m|﹣3<m<2},N={n|﹣1<n≤3,n∈N},则M∩N=________.2. (2分)函数f(x)= 是以________为最小正周期的________(选填“奇”或“偶”)函数.3. (1分) (2018高三上·三明模拟) 已知,,若,则实数等于________.4. (1分) (2016高一上·胶州期中) 函数y=ax﹣3(a>0,a≠1)的图象必经过点________.5. (1分) sin420°=________6. (1分)(2016·上海模拟) 函数f(x)=ln(x2﹣x)的定义域为________.7. (1分) (2016高一下·湖北期中) 在直角三角形ABC中,∠ACB=90°,AC=BC=2,点P是斜边AB上的一个三等分点,则 =________.8. (1分) (2019高一上·平遥月考) 下列结论中:①对于定义在R上的奇函数,总有;②若则函数不是奇函数;③对应法则和值域相同的两个函数的定义域也相同;其中正确的是________(把你认为正确的序号全写上).9. (1分) (2016高一上·襄阳期中) 若函数f(x)= 的值域是[2,5],则实数a 的取值是________10. (2分) (2017高三下·绍兴开学考) 函数y=logax+1(a>0且a≠1)的图象恒过定点A,若点A在直线+ ﹣4=0(m>0,n>0)上,则 + =________;m+n的最小值为________.11. (1分)(2017·江西模拟) 设x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为2,当的最小值为m时,则y=sin(mx+ )的图象向右平移后的表达式为________.12. (1分) (2015高二下·忻州期中) 已知 =(,﹣cosx), =(sinx,),x∈[0, ],则函数f(x)= 的最大值为________13. (1分) (2019高二上·烟台期中) 设,若函数在区间上有三个零点,则实数的取值范围是________.14. (1分) (2016高一上·郑州期中) 若(a﹣2)(a﹣1)x2+2(a﹣2)x﹣4<0对一切x∈R恒成立,则实数a的取值范围是________.二、解答题 (共6题;共55分)15. (10分) (2016高一上·浦城期中) 已知集合A={x|2≤2x≤16},B={x|log3x>1}.(1)分别求A∩B,(∁RB)∪A;(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.16. (10分) (2016高三上·西安期中) 设函数f(x)=sin(ωx﹣)﹣2cos2 +1(ω>0),直线y= 与函数f(x)的图象相邻两交点的距离为π.(1)求ω的值;(2)在锐角△ABC中,内角A,B,C所对的边分别是a,b,c,若点(,0)是函数y=f(x)图象的一个对称中心,求sinA+sinC的取值范围.17. (10分) (2019高一上·田阳月考) 已知函数 .(1)当时,写出由的图象向右平移个单位长度后得到的图象所对应的函数解析式;(2)若图象过点,且在区间上是增函数,求的值.18. (10分) (2016高一下·南平期末) 已知向量 =(x,﹣1), =(x﹣2,3), =(1﹣2x,6).(1)若⊥(2 + ),求| |;(2)若• <0,求x的取值范围.19. (5分) (2019高一上·顺德月考) 某市“招手即停”公共汽车的票价按下列规则制定:⑴5公里以内(含5公里),票价2元;⑵5公里以上,每增加5公里,票价增加1元(不足5公里的按5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数关系式,并画出函数的图像.20. (10分)(2020·汨罗模拟) 已知函数 .(1)若函数的图象与x轴相切,求实数a的值;(2)讨论函数的零点个数.参考答案一、填空题 (共14题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、解答题 (共6题;共55分)15-1、15-2、16-1、16-2、17-1、17-2、18-1、18-2、19-1、20-1、20-2、。
2019-2020学年上海市上海中学高一上学期期末数学试题(解析版)
2019-2020学年上海市上海中学高一上学期期末数学试题一、单选题1.设()f x 是定义域为R 的偶函数,且在(,0)-∞递增,下列一定正确的是( )A .2332(0)22f f f --⎛⎫⎛⎫>>⎪ ⎪⎝⎭⎝⎭ B .()2332322log 4f f f --⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭C .()2332322log 4f f f --⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭D .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】C【解析】首先根据偶函数在(,0)-∞上递增,得到其在(0,)+∞上递减,将自变量放在同一个单调区间,借助于自变量的大小,得到函数值的大小,从而得到结果 【详解】因为函数()f x 是定义域为R 的偶函数,且在(,0)-∞上递增, 所以函数()f x 在(0,)+∞上递减,因为2332022--<<,所以2332(0)(2)(2)f f f -->>,所以A 项不正确;23323221log 4--<<<,所以23323(2)(2)(log 4)f f f -->>,又因为331log log 44=-,所以3331(log )(log 4)(log 4)4f f f =-=, 观察B 、C 、D 三项很明显C 项正确, 故选:C. 【点睛】该题考查的是有关根据偶函数在给定区间上的单调性,判断函数值的大小的问题,涉及到的知识点有偶函数图象的对称性,偶函数的定义,根据单调性比较函数值的大小,属于简单题目.2.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x + B .(1)f x -C .()1f x +D .()1f x -【答案】D【解析】首先设出()y g x =图象上任意一点的坐标为(,)x y ,求得其关于直线y x =的对称点为(,)y x ,根据图象变换,得到函数()f x 的图象上的点为(,1)x y +,之后应用点在函数图象上的条件,求得对应的函数解析式,得到结果. 【详解】设()y g x =图象上任意一点的坐标为(,)x y , 则其关于直线y x =的对称点为(,)y x ,再将点(,)y x 向左平移一个单位,得到(1,)y x +, 其关于直线y x =的对称点为(,1)x y +,该点在函数()f x 的图象上,所以有1()y f x +=, 所以有()1y f x =-,即()()1g x f x =-, 故选:D. 【点睛】该题考查的是有关函数解析式的求解问题,涉及到的知识点有点关于直线的对称点的求法,两个会反函数的函数图象关于直线y x =对称,属于简单题目. 3.设方程3|ln |x x -=的两个根1x 、2x ,则( ) A .120x x < B .121=x xC .121x x >D .121x x <【答案】D【解析】作出函数图象,根据图象和对数的运算性质即可求出答案. 【详解】作出函数图象如图所示:若方程3ln xx -=的两根为12,x x ,则1201x x <<<,12123ln ,3ln x x x x --==可得121212ln ln ln ln 330x x x x x x ---=--=->,所以12ln ln 0x x -->,即12ln 0x x <,所以1201x x <<, 故选:D. 【点睛】该题考查的是有关方程的根的大小的判断,涉及到的知识点有对数的运算法则,解决方程根的问题时,可以应用图象的交点来完成,属于简单题目.4.己知函数()y f x =定义域为R ,满足(2)2()f x f x +=,且当2(]0,x ∈时,()(2)f x x x =-,若对任意(,]x m ∈-∞,都32()9f x ≤恒成立,则m 的取值范围为( ) A .13,3⎛⎤-∞ ⎥⎝⎦B .14,3⎛⎤-∞ ⎥⎝⎦C .16,3⎛⎤-∞ ⎥⎝⎦D .17,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】根据题意,首先求出函数()y f x =在区间(0,2]上的值域为[0,1],再根据条件(2)2()f x f x +=,判断当6(4],x ∈时()[0,4]f x ∈,32[0,4]9∈,并求解6(4],x ∈时()f x 的解析式,和32()9f x =时对应的两根中较小根,即可得到m 的取值范围. 【详解】当2(]0,x ∈时,2()(2)(1)1f x x x x =-=--+,可求得()[0,1]f x ∈,且在(0,1]上单调增,在[1,2]上单调减, 根据(2)2()f x f x +=,可知当(2,4]x ∈,()[0,2]f x ∈,当6(4],x ∈,()[0,4]f x ∈,且()f x 在(4,5]上单调增,在[5,6]上单调减, 因为32[0,4]9∈,当6(4],x ∈时,()2(2)4(4)f x f x f x =-=-, (42],0x -∈,2()4(4)4[(5)1]f x f x x =-=--+,令2324[(5)1]9x --+=,解得143x =或163x =, 所以对任意(,]x m ∈-∞,都32()9f x ≤恒成立,m 的取值范围为14(,]3-∞,故选:B. 【点睛】该题以分段函数的形式考查了函数的值域,函数解析式的求解,以及利用恒成立求参数取值范围的问题,属于较难题目,解决该题的关键是利用条件可分析函数的图象,利用数形结合比较好分析.二、填空题5.方程lg(21)lg 1x x +-=的解为_________. 【答案】18x =. 【解析】在保证对数式的真数大于0的前提下由对数的差等于商的对数去掉对数符号,求解分式方程得答案. 【详解】因为lg(21)lg 1x x +-=,所以21lglg10x x+=, 所以02102110x x x x⎧⎪>⎪+>⎨⎪+⎪=⎩,解得18x =, 故答案为:18x =. 【点睛】该题考查的是有关对数方程的求解问题,在解题的过程中,注意对数式有意义的条件,对数式的运算法则,属于基础题目.6.函数y =________. 【答案】[0,)+∞【解析】根据指数函数的值域,结合根式有意义的条件,求得函数的值域,得到答案. 【详解】因为1()02x>,所以1()112x->-, 根据根式有意义,有1()102x-≥,所以y =[0,)+∞, 故答案为:[0,)+∞. 【点睛】该题考查的是有关函数的值域的求解问题,属于基础题目. 7.若幂函数图像过点(8,4),则此函数的解析式是y =________. 【答案】23x【解析】先用待定系数法设出函数的解析式,再代入点的坐标,计算出参数的值即可得出正确选项. 【详解】设幂函数的解析式为y x α=,由于函数图象过点(8,4),故有48α=,解得23α=, 所以该函数的解析式是23y x =, 故答案为:23x . 【点睛】该题考查的是有关应用待定系数法求幂函数的解析式的问题,属于基础题目. 8.若指数函数x y a =的定义域和值域都是[]2,4,则a =_________;【解析】讨论1a >和01a <<两种情况,根据函数的单调性计算值域得到答案. 【详解】当1a >时:函数()xy f x a ==单调递增,()2422,(4)4f a f a a ====∴=;当01a <<时:函数()xy f x a ==单调递减,()2424,(4)2f a f a ====,无解.综上所述:a =【点睛】本题考查了函数的定义域和值域,分类讨论是一种常用的方法,需要熟练掌握. 9.函数2()4(0)f x x x x =-≤的反函数为_________;【答案】20)x ≥【解析】利用函数表达式解得)20x y =≥,得到反函数.【详解】())22()424(0)20y f x x x x x x y ==-=--≤∴=≥故函数的反函数为1()20)f x x -=≥故答案为20)x ≥【点睛】本题考查了反函数的计算,忽略掉定义域是容易发生的错误.10.若233log 03a a+<+,则实数a 的取值范围是_______.【答案】(0,1)【解析】将0写成1的对数,之后根据函数的单调性整理出关于a 的不等式组,求得结果. 【详解】因为233log 03a a +<+,所以2333log log 13a a+<+,因为函数3log y x =是(0,)+∞上的单调增函数,所以有23013a a+<<+,解得01a <<,所以a 的取值范围是(0,1), 故答案为:(0,1). 【点睛】该题考查的是有关对数不等式的解法,在解题的过程中,注意结合函数有意义的条件,应用对数函数的单调性,属于简单题目.11.己知函数()f x 定义域为R ,且恒满足()(2)0f x f x +-=,1(1)()f x f x +=-,则函数()f x 的奇偶性为________. 【答案】奇函数 【解析】由1(1)()f x f x +=-,能导出()f x 是周期为2的周期函数,由此能够证明()f x 是奇函数,得到结果. 【详解】 由1(1)()f x f x +=-,得1(2)()(1)f x f x f x +=-=+, 所以()f x 是周期为2的周期函数,所以(2)()f x f x -=-,因为()(2)0f x f x +-=,所以()()0f x f x +-=, 所以()f x 是奇函数, 故答案为:奇函数. 【点睛】该题考查的是有关函数奇偶性的判断问题,在解题的过程中,注意借助于函数的周期性来完成,属于简单题目. 12.函数225xy x x =++单调递增区间为_______.【答案】[【解析】首先判断函数的定义域,得到其图象是不间断的,再讨论当0x ≠时,将函数解析式进行变形得到152y x x=++,再利用5u x x =+的单调区间,结合复合函数的单调性法则,确定出函数225xy x x =++本身的单调增区间,求得结果.【详解】 因为函数225xy x x =++的定义域为R , 当0x ≠时,152y x x=++, 因为5u x x=+在(,-∞和)+∞上单调递增,在[0)和上单调递减,根据复合函数单调性法则,可知152y x x=++应该在[0)和上单调递增, 而函数225xy x x =++本身在0x =处有意义,且函数图象不间断, 所以函数225xy x x =++的增区间是[,故答案为:[. 【点睛】该题考查的是有关函数单调区间的求解问题,涉及到的知识点有对勾函数的单调区间,复合函数单调性法则,属于简单题目.13.函数42()21x x xcf x ++=+在定义域上单调递增,则c 的取值范围__________. 【答案】(,1]-∞【解析】首先将函数解析式进行化简,之后令21(1,)xt +=∈+∞,将函数化为1cy t t=+-(1,)t ∈+∞,之后结合复合函数的单调性,求得参数的取值范围.【详解】422(21)()2(21)121212121x x x x x xx x x xc c c c f x ++++===+=++-++++, 令21(1,)xt +=∈+∞,且t 随x 的增大而增大,且当0c ≤时,cy t=在(1,)+∞上是增函数, 所以函数1cy t t=+-在(1,)+∞上是增函数, 所以函数42()21x x x cf x ++=+在定义域上是增函数,当0c >时,函数1cy t t=+-在)+∞上是增函数,1,即1c ≤, 所以c 的取值范围为(,1]-∞, 故答案为:(,1]-∞. 【点睛】该题考查的是有关根据函数的单调性确定参数的取值范围的问题,涉及到的知识点有指数型函数的单调性,对勾函数的单调区间,复合函数单调性法则,属于中档题目. 14.关于x 的方程2282x m x -=+有两个不同解,则m 的取值范围为_________.【答案】1,14⎛⎤⎥⎝⎦【解析】根据式子的意义,将式子转化为2228x m x +=-,将方程有两个不同的解转化为28t m t +=-只有一个正根,画出函数图象求得结果. 【详解】因为220x +>恒成立,所以原式可化为2282x m x -=+,可知280x -≠,所以2228x m x +=-,因为方程有两个不同的解,所以0x =不是方程的根, 令2(0,8)(8,)x t =∈+∞U , 则方程28t m t +=-只有一个正根, 画出函数28t m t +=-的图象如图所示:可知所求m 的取值范围是:1(,1]4,故答案为:1(,1]4.【点睛】该题考查的是有关根据方程根的情况求参数的取值范围的问题,在解题的过程中,注意将问题正确转化,注意应用函数图象解决问题,属于简单题目. 15.已知函数23()4f x ax =+,()ag x x x =+,对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,则a 的取值范围为__________. 【答案】5,42⎡⎤⎢⎥⎣⎦【解析】对任意的1[1,2]x ∈,存在2[1,2]x ∈,使得()()12f x g x ≥恒成立,等价于min max ()()f x g x ≥在区间[1,2]上恒成立,对a 的取值进行分类讨论,利用单调性求出min ()f x 和min ()g x ,列出关于a 的不等式组求得答案.【详解】当0a <时,23()4f x ax =+在区间[1,2]上单调递减,min 3()(2)44f x f a ==+,()ag x x x =+在区间[1,2]上单调递增,min ()1g x a =+, 所以3414a a +≥+,解得112a ≥,因为0a <,所以无解;当0a ≥时,可知min 3()(1)4f x f a ==+,当01a ≤≤时,()ag x x x =+在区间[1,2]上单调递增,其最小值为(1)1g a =+,所以有01314a a a ≤≤⎧⎪⎨+≥+⎪⎩,无解, 当14a <<时,()ag x x x=+在区间上单调减,在4]上单调增,其最小值为g =,所以有1434a a <≤⎧⎪⎨+≥⎪⎩542a ≤≤, 所以a 的取值范围是5[,4]2, 故答案为:5[,4]2. 【点睛】该题考查的是有关根据恒成立求参数的取值范围的问题,涉及到的知识点有根据题意将恒成立问题向最值转化,求含参的函数在给定区间上的最值,属于中档题目.16.已知函数()||1||3|1|f x x x =----,若()246(4)f a a f a +=,则实数a 的取值范围为_______.【答案】3313,4424⎡---+⎧⎫⎡⎫⋃⋃+∞⎨⎬⎢⎪⎢⎩⎭⎣⎭⎣⎦. 【解析】首先利用分类讨论将函数解析式进行化简,从而分析判断要使2(46)(4)f a a f a +=,会出现哪些情况,列出对应的式子求解即可.【详解】因为131,1()131131,13131,3x x x f x x x x x x x x x ⎧-+--<⎪=----=-+--≤<⎨⎪--+-≥⎩,即3,1()25,131,3x f x x x x ≤⎧⎪=-<<⎨⎪≥⎩,画出函数图象如图所示:可以看到(2)(3)1f f ==,要使2(46)(4)f a a f a +=,则有以下几种情况: ①246141a a a ⎧+≤⎨≤⎩313313x ---+≤≤; ②22146 2.514 2.5464a a a a a a ⎧<+≤⎪<≤⎨⎪+=⎩,无解;③222.54632.543464a a a a a a ⎧<+≤⎪<≤⎨⎪+=⎩,无解.④2214631434645a a a a a a ⎧<+≤⎪<≤⎨⎪++=⎩,无解;⑤246343a a a ⎧+≥⎨≥⎩,解得34a ≥, ⑥246243a a a ⎧+=⎨≥⎩,无解;⑦246342a a a ⎧+≥⎨=⎩,解得12a =; 所以a 的取值范围为31331313[,[,)4424--⎧⎫+∞⎨⎬⎩⎭U U , 故答案为:31331313[][,)24---+⎧⎫+∞⎨⎬⎩⎭U U .【点睛】该题考查的是有关根据函数值相等,求参数的取值范围的问题,涉及到的知识点有含有绝对值的式子的化简,函数值相等的条件,属于中档题目.三、解答题17.已知函数()f x 定义域为R ,当0x >时,2()lg 2f x x x x =--.(1)若()f x 是偶函数,求0x <时()f x 的解析式;(2)若()f x 是奇函数,求x ∈R 时()f x 的解析式.【答案】(1)2()lg(2)f x x x x =+--;(2)22lg(2),(0)()0,(0)lg(2),(0)x x x x f x x x x x x ⎧-->⎪==⎨⎪--+-<⎩【解析】(1)当0x <时,0x ->,代入函数解析式,根据偶函数的定义,求得相应区间上的()f x 的解析式;(2)当0x <时,0x ->,代入函数解析式,根据奇函数的定义,求得相应区间上的()f x 的解析式,再利用(0)0f =,进而求得()f x 在R 上的解析式.【详解】(1)因为()f x 为偶函数,当0x <时,0x ->,则22()()()lg 2()lg(2)()f x x x x x x x f x -=-----=+--=,所以当0x <时,2()lg(2)f x x x x =+--;(2)因为()f x 为奇函数,当0x <时,0x ->, 22()()()lg 2()lg(2)()f x x x x x x x f x -=-----=+--=-,所以2()lg(2)f x x x x =--+-,且(0)0f =, 所以22lg(2),(0)()0,(0)lg(2),(0)x x x x f x x x x x x ⎧-->⎪==⎨⎪--+-<⎩. 【点睛】该题考查的是有关根据函数在某一区间上的解析式,结合函数奇偶性的定义,求得函数的解析式,属于简单题目.18.设关于x 的方程1936(5)0x x k k k +-+-=.(1)若常数3k =,求此方程的解;(2)若该方程在[0,2]内有解,求k 的取值范围.【答案】(1)3log 4x =;(2)182k ≤≤. 【解析】(1)将3k =代入方程,得到3993120x x ⋅-⋅-=,将其整理得到(31)(34)0x x +-=,集合指数函数的值域,得到34x =,从而得到3log 4x =,求得结果;(2)将式子1936(5)0x x k k k +-+-=整理得出309336x x k =-⋅+,令3,[0,2]x t x =∈,则[1,9]t ∈,借助于二次函数在某个区间上的值域求得最后的结果.【详解】(1)当3k =时,方程1936(5)0x x k k k +-+-=即为3993120x x ⋅-⋅-=,化简得93340x x -⋅-=,即(31)(34)0x x +-=,解得31x =-(舍去)或34x =,所以3log 4x =,所以,此方程的解为3log 4x =,(2)由1936(5)0x x k k k +-+-=可得1(936)30x k k +-+=, 所以309336x x k =-⋅+, 令3,[0,2]x t x =∈,则[1,9]t ∈, 所以22315933636()24x x t t t -⋅+=-+=-+, 由[1,9]t ∈可得当32t =时,2315()24t -+最小值为154, 当9t =时,2315()24t -+的最大值为60, 所以130303015609364x x +≤≤-+,即182k ≤≤, 所以k 的取值范围是1[,8]2. 【点睛】该题考查的是有关求方程的解或者方程在某个区间上有解求参数的取值范围的问题,在解题的过程中,注意换元思想的应用,以及二次函数在某个区间上的值域的求解方法,属于中档题目.19.某环线地铁按内、外线同时运行,内、外环线的长均为30千米(忽略内、外环线长度差异),新调整的方案要求内环线列车平均速度为20千米/小时,外环线列车平均速度为30千米/小时,现内、外环线共有18列列车全部投入运行,其中内环投入x 列列车.(1)写出内、外环线乘客的最长候车时间(分钟)分别关于x 的函数解析式;(2)要使内、外环线乘客的最长候车时问之差距不超过1分钟,问内、外环线应各投入几列列车运行?(3)要使内、外环线乘客的最长候车时间之和最小,问内、外环线应各投入几列列车运行?【答案】(1)()*9060,117,18t t x x N x x==≤≤∈-外内;(2)内环线11列列车,外环线7列列车;(3)内环线10列列车,外环线8列列车..【解析】(1)根据题意,结合最长候车时间等于两列列车对应的时间差,列车式子得出结果,注意自变量的取值范围;(2)根据题意,列出对应的不等关系式,求解即可,在解的过程中,注意自变量的取值范围;(3)根据题意,列出式子,结合对勾函数的单调性,求得函数的变化趋势,最后求得取最值时x 的值.【详解】(1)根据题意可知,内环投入x 辆列车,则外环投入(18)x -辆列车, 从而可得内环线乘客的最长候车时间为30906020t x x =⨯=内分钟, 外环线乘客的最长候车时间为30606030(18)18t x x=⨯=--外分钟, 根据实际意义,可知117,x x N *≤≤∈, 所以90t x =内,6018t x=-外(117,)x x N *≤≤∈; (2)由题意可得9060=118t t x x --≤-内外, 整理得221321620016816200x x x x ⎧+-≤⎨-+≤⎩所以16813222x --+≤≤ 因为x N *∈,所以11x =,所以当内环线投入11列列车运行,外环线投入7列列车时,内外环线乘客的最长候车时间之差不超过1分钟;(3)令29060162030()+=1818x u x t t x x x x-=+=--内外 2230(54)30(54)18(54)90(54)3654x x x x x x --==--+-+⨯ 303036543654(54)9090[(54)]5454x x x x==⨯⨯-++--+--可以确定函数在[1,54-上单调递减,在[54-上单调递增, 结合x N *∈的条件,可知当10x =时取得最小值,所以内环线10列列车,外环线8列列车时,内、外环线乘客的最长候车时间之和最小.【点睛】该题考查的是有关函数的应用题,涉及到的知识点有建立函数模型,求解不等式,求函数的最小值,属于较难题目.20.已知集合M 是满足下列性质的函数()f x 的全体:在定义域内存在实数t ,使得(2)()(2)f t f t f +=+.(1)判断函数()f x kx =(k 为常数)是否属于集合M ;(2)若2()ln 1a f x x =+属于集合M ,求实数a 的取值范围; (3)若2()2x f x bx =+,求证:对任意实数b ,都有()f x 属于集合M .【答案】(1)属于;(2)[15a ∈-+;(3)证明见解析【解析】(1)利用()f x kx =时,方程(2)()(2)f t f t f +=+,此方程恒成立,说明函数()f x kx =(k 为常数)属于集合M ;(2)由2()ln1a f x x =+属于集合M ,推出22ln ln ln (2)115a a a x x =++++有实数解,即方程2(5)4550a x ax a -++-=有实数解,分5a =和5a ≠两种情况,得到结果;(3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+有解,令()3244x g x bx =⋅+-,则()g x 在R 上的图象是连续的,当0b ≥时,当0b <时,判定函数是否有零点,证明对任意实数b ,都有()f x 属于集合M .【详解】(1)当()f x kx =时,方程(2)()(2)f t f t f +=+(2)2k t kt k ⇔+=+, 此方程恒成立,所以函数()f x kx =(k 为常数)属于集合M ;(2)由2()ln 1a f x x =+属于集合M , 可得方程22ln ln ln (2)115a a a x x =++++有实数解, 即222455(1)a a x x x =+++,整理得方程2(5)4550a x ax a -++-=有实数解, 当5a =时,方程有实根14-, 当5a ≠时,有2164(5)(55)0a a a ∆=---≥,解得155a -≤<或515a <≤+综上,实数a 的取值范围为[15a ∈-+;(3)当2()2x f x bx =+时,方程(2)()(2)f x f x f +=+有解,等价于2222(2)244x x b x bx b +++=+++有解,整理得32440x bx ⋅+-=有解,令()3244xg x bx =⋅+-,则()g x 在R 上的图象是连续的, 当0b ≥时,(0)10,(1)420g g b =-<=+>,故()g x 在(0,1)上有一个零点,当0b <时,11(0)10,()320b g g b=-<=⋅>, 故()g x 在1(,0)b上至少有一个零点,故对任意的实数b ,()g x 在R 上都有零点,即方程(2)()(2)f x f x f +=+总有解,所以对任意实数b ,都有()f x 属于集合M .【点睛】该题考查的是有关函数的问题,涉及到的知识点有新定义,方程有解转化为函数有零点,分类讨论思想,属于难题.21.对于函数3()3||1f x x x c =--+.(1)当0,()c f x =向下和向左各平移一个单位,得到函数()g x ,求函数()g x 的零点;(2)对于常数c ,讨论函数()f x 的单调性;(3)当0c =,若对于函数()f x 满足()()f x a f x +>恒成立,求实数a 取值范围.【答案】(1)1x =或1x =-;(2)当1c ≥,单调递增;当11c -≤<,在(,]c -∞上递增,[,1]c 上递减,[1,)+∞上递增;当1c <-,在(,1]-∞-递增,[1,1]-递减,[1,)+∞递增;(3)a >【解析】(1)将0c =,求得3()3||1f x x x =-+,利用图象变换原则求得3()(1)31g x x x =+-+,分类讨论去掉绝对值符号,求得函数的零点;(2)将函数解析式中的绝对值符号去掉,得到分段函数,利用导数,分类讨论求得函数的单调性;(3)化简函数解析式,将不等式转化,找出不等式恒成立的关键条件,得到结果.【详解】(1)因为0c =,所以3()3||1f x x x =-+, 根据题意,可得3()(1)31g x x x =+-+,令()0g x =,即3(1)310x x +-+=,当10x +≥时,原式化为2(1)(22)0x x x ++-=,解得1x =-或1x =,当10x +<时,原式化为2(1)(24)0x x x +++=,无解,所以函数()g x 的零点为1x =-或1x =-; (2)333331,()31331,x x c x c f x x x c x x c x c⎧-++≥=--+=⎨+-+<⎩,当x c ≥时,3()331f x x x c =-++, 2'()333(1)(1)f x x x x =-=+-,当x c <时,3()331f x x x c =+-+, 2'()33f x x =+,所以当1c ≥时,'()0f x ≥恒成立,()f x 在(,)-∞+∞上单调递增,当11c -≤<时,令'()0f x ≥,解得x c ≤或1x ≥,所以()f x 在(,]c -∞和[1,)+∞上单调递增,令'()0f x <,解得1c x ≤≤,所以所以()f x 在[,1]c 上单调递减。
上海市2019-2020学年高一上学期数学期末考试试卷(II)卷
上海市2019-2020学年高一上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016高二下·永川期中) 已知集合A={﹣1,0,1,2,3},B={x|﹣1<x≤2},则A∩B=()A . {0,1}B . {﹣1,0,1}C . {0,1,2}D . {﹣1,0,1,2}2. (2分)若圆的圆心到直线x-y+a=0的距离为,则a的值为()A . -2或2B . 或C . 2或0D . -2或03. (2分)函数y=的定义域为()A . {x|x≠±5}B . {x|x≥4}C . {x|4<x<5}D . {x|4≤x<5或x>5}4. (2分) (2016高一下·九江期中) 若函数f(x)= ,则f(2010)=()A . 4B . 5C . 506D . 5075. (2分) (2019高二上·张家口期中) 函数的值域是()A .B .C .D .6. (2分)已知直线的方程为(),则直线的倾斜角为()A .B .C .D . 与b有关7. (2分)若圆C的方程为(x﹣3)2+(y﹣2)2=4,直线l的方程为x﹣y+1=0,则圆C关于直线l对称的圆的方程为()A .B . +=4C . +=4D . +=48. (2分)使““成立的一个充分不必要条件是()A .B .C .D .9. (2分)(2012·陕西理) 已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A . l与C相交B . l与C相切C . l与C相离D . 以上三个选项均有可能10. (2分)已知分别是双曲线()的左右焦点,P为双曲线右支上一点,且满足,若直线与圆相切,则双曲线的离心率的值为()A . 2B .C .D .二、填空题 (共5题;共5分)11. (1分) (2019高一上·菏泽期中) ________.12. (1分) (2020高三上·黄浦期末) 已知函数y=f(x)与y=g(x)的图象关于直线y=x对称,若f(x)=x+log2(2x+2),则满足f(x)>log23>g(x)的x的取值范围是________.13. (1分) (2017高一上·武邑月考) 若三条直线,,不能围成一个三角形,则实数的取值范围是________.14. (1分) (2018高二上·海口期中) 已知A(1,2,0),B(0,1,-1),P是x轴上的动点,当取最小值时,点P的坐标为________.15. (1分)定义在R上的函数f(x)满足f(x+2)=﹣f(x),当﹣1≤x≤1时,f(x)=1﹣x2 ,则f[f (5)]等于________三、解答题 (共4题;共30分)16. (10分) (2018高一上·佛山月考) 已知函数,记不等式的解集为 ,记函数的定义域为集合 .(Ⅰ)求集合和(Ⅱ)求和 .17. (5分)已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1 , l2之间的距离为,求直线l1的方程.18. (5分) (2020高一上·林芝期末) 已知圆C的圆心在坐标原点,且过点M().(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;19. (10分) (2020高三上·静安期末) 现定义:设是非零实常数,若对于任意的,都有,则称函数为“关于的偶型函数”(1)请以三角函数为例,写出一个“关于2的偶型函数”的解析式,并给予证明(2)设定义域为的“关于的偶型函数”在区间上单调递增,求证在区间上单调递减(3)设定义域为的“关于的偶型函数” 是奇函数,若,请猜测的值,并用数学归纳法证明你的结论参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共4题;共30分) 16-1、17-1、18-1、18-2、19-1、19-2、19-3、。
2019年上海市格致中学高一数学文期末试题
2019年上海市格致中学高一数学文期末试题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知扇形的半径为4,圆心角为45°,则该扇形的面积为()A. 2πB. πC.D.参考答案:A【分析】化圆心角为弧度值,再由扇形面积公式求解即可。
【详解】扇形的半径为,圆心角为,即,该扇形的面积为,故选.【点睛】本题主要考查扇形的面积公式的应用。
2. 如图,正方体ABCD-A1B1C1D1的棱线长为1,线段B1D1上有两个动点E、F,且,则下列结论中错误的是A.B.C. 三棱锥的体积为定值D.参考答案:D可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误。
选D。
3. 设,,若3是与的等比中项,则的最小值为()A. B. 3 C. D. 4参考答案:A【分析】由题得,再利用基本不等式求最值得解.【详解】因为是与的等比中项,所以.所以当且仅当时取等故选:A【点睛】本题主要考查基本不等式求最值,考查等比中项的应用,意在考查学生对这些知识的理解掌握水平.4. 对于平面、、和直线a、b、m、n,下列命题中真命题是( )A. 若,则B. 若,则C. 若则D. 若,则参考答案:C试题分析:对于平面、、和直线、,真命题是“若,,,则”.考点:考查直线与直线,直线与平面,平面与平面的位置关系.5. 已知(a≠0),且方程无实根。
现有四个命题①若,则不等式对一切成立;②若,则必存在实数使不等式成立;③方程一定没有实数根;④若,则不等式对一切成立。
其中真命题的个数是( )(A) 1个(B) 2个(C) 3个(D) 4个参考答案:C方程无实根,∴或。
∵,∴对一切成立,∴,用代入,∴,∴命题①正确;同理若,则有,∴命题②错误;命题③正确;∵,∴,∴必然归为,有,∴命题④正确。
综上,选(C)。