高考数学活题的巧解方法
高考数学各题型答题技巧
高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
高考数学解题答题技巧
高考数学解题答题技巧高考数学解题答题技巧有哪些在高考考场上,人的状态非常重要,要懂得调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定)。
下面是小编为大家整理的高考数学解题答题技巧,希望对您有所帮助!高中数学解题技巧1.调整好状态,控制好自我(1)保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或1个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。
但发卷时间应在开考前5-10分钟内,建议同学们提前15-20分钟到达考场。
2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。
答题时,见到简单题,要细心,莫忘乎所以。
面对偏难的题,要耐心,不能急。
3.提高解选择题的速度、填空题的准确度数学选择题要求知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
4.审题要慢,做题要快,下手要准题目本身就是解答这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
5.保质保量拿下,中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。
谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
高考数学答题技巧选择题运算要快,力戒小题大做。
高考数学破题36大招
目录目录 (1)第1关:极值点偏移问题--对数不等式法 (2)第2关:参数范围问题—常见解题6法 (6)第3关:数列求和问题—解题策略8法 (9)第4关:绝对值不等式解法问题—7大类型 (13)第5关:三角函数最值问题—解题9法 (19)第6关:求轨迹方程问题—6大常用方法 (24)第7关:参数方程与极坐标问题—“考点”面面看 (37)第8关:均值不等式问题—拼凑8法 (43)第9关:不等式恒成立问题—8种解法探析 (49)第10关:圆锥曲线最值问题—5大方面 (55)第11关:排列组合应用问题—解题21法 (59)第12关:几何概型问题—5类重要题型 (66)第13关:直线中的对称问题—4类对称题型 (69)第14关:利用导数证明不等式问题—4大解题技巧 (71)第15关:函数中易混问题—11对 (76)第16关:三项展开式问题—破解“四法” (82)第17关:由递推关系求数列通项问题—“不动点”法 (83)第18关:类比推理问题—高考命题新亮点 (87)第19关:函数定义域问题—知识大盘点 (93)第20关:求函数值域问题—7类题型16种方法 (100)第21关:求函数解析式问题—7种求法 (121)第22关:解答立体几何问题—5大数学思想方法 (124)第23关:数列通项公式—常见9种求法 (129)第24关:导数应用问题—9种错解剖析 (141)第25关:三角函数与平面向量综合问题—6种类型 (144)第26关:概率题错解分类剖析—7大类型 (150)第27关:抽象函数问题—分类解析 (153)第28关:三次函数专题—全解全析 (157)第29关:二次函数在闭区间上的最值问题—大盘点 (169)第30关:解析几何与向量综合问题—知识点大扫描 (178)第31关:平面向量与三角形四心知识的交汇 (179)第32关:数学解题的“灵魂变奏曲”—转化思想 (183)第33关:函数零点问题—求解策略 (194)第34关:求离心率取值范围—常见6法 (199)第35关:高考数学选择题—解题策略 (202)第36关:高考数学填空题—解题策略 (211)第1关:极值点偏移问题--对数不等式法我们熟知平均值不等式:即“调和平均数”小于等于“几何平均数”小于等于“算术平均值”小于等于“平方平均值”等号成立的条件是.我们还可以引入另一个平均值:对数平均值:那么上述平均值不等式可变为:对数平均值不等式,以下简单给出证明:不妨设,设,则原不等式变为:以下只要证明上述函数不等式即可.以下我们来看看对数不等式的作用.题目1:(2015长春四模题)已知函数有两个零点,则下列说法错误的是A. B. C. D.有极小值点,且【答案】C【解析】函数导函数:有极值点,而极值,,A正确.有两个零点:,,即:①②①-②得:根据对数平均值不等式:,而,B正确,C错误而①+②得:,即D成立.题目2:(2011辽宁理)已知函数.若函数的图像与轴交于两点,线段中点的横坐标为,证明:【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,,,则,①②①-②得:,化简得:③而根据对数平均值不等式:③等式代换到上述不等式④根据:(由③得出)∴④式变为:∵,∴,∴在函数单减区间中,即:题目3:(2010天津理)已知函数.如果,且.证明:.【解析】原题目有3问,其中第二问为第三问的解答提供帮助,现在我们利用不等式直接去证明第三问:设,则,,两边取对数①②①-②得:根据对数平均值不等式题目4:(2014江苏南通市二模)设函数,其图象与轴交于两点,且.证明:(为函数的导函数).【解析】根据题意:,移项取对数得:①②①-②得:,即:根据对数平均值不等式:,①+②得:根据均值不等式:∵函数在单调递减∴题目5:已知函数与直线交于两点. 求证:【解析】由,,可得:①,②①-②得:③①+②得:④根据对数平均值不等式利用③④式可得:由题于与交于不同两点,易得出则∴上式简化为:∴第2关:参数范围问题—常见解题6法求解参数的取值范围是一类常见题型.近年来在各地的模拟试题以及高考试题中更是屡屡出现.学生遇到这类问题,较难找到解题的切入点和突破口,下面介绍几种解决这类问题的策略和方法.一、确定“主元”思想常量与变量是相对的,一般地,可把已知范围的那个看作自变量,另一个看作常量.例1.对于满足0的一切实数,不等式x2+px>4x+p-3恒成立,求x的取值范围.分析:习惯上把x当作自变量,记函数y= x2+(p-4)x+3-p,于是问题转化为当p时y>0恒成立,求x的范围.解决这个问题需要应用二次函数以及二次方程实根分布原理,这是相当复杂的.若把x与p两个量互换一下角色,即p视为变量,x为常量,则上述问题可转化为在[0,4]内关于p的一次函数大于0恒成立的问题.解:设f(p)=(x-1)p+x2-4x+3,当x=1时显然不满足题意.由题设知当0时f(p)>0恒成立,∴f(0)>0,f(4)>0即x2-4x+3>0且x2-1>0,解得x>3或x<-1.∴x的取值范围为x>3或x<-1.二、分离变量对于一些含参数的不等式问题,如果能够将不等式进行同解变形,将不等式中的变量和参数进行分离,即使变量和参数分别位于不等式的左、右两边,然后通过求函数的值域的方法将问题化归为解关于参数的不等式的问题。
利用不动点法巧解数列高考题
是公差为
2c ad
的等差数列。
证:(ⅰ)由题设知
ax1 b cx1 d
x1
b dx1 a cx1
x1
dx1
b
(a cx1)x1 ;
同理 dx2 b (a cx2 )x2.
∴ an1 x1
aan can
b d
x1
(a cx1)an b dx1
a cx1 an x1
,
an1 x2
3 ;⑵求证:
xn1 xn ;⑶求数列{xn} 的通项公式.
证:⑶依题
xn1
xn2 3 2xn 4
,记
f
(x)
x2 3 2x 4
,令
f
(x)
x ,求出不动点
x1
1,
x2
3;
由定理
3
知:
xn1
1
xn2 3 2xn 4
1
(xn 1)2 2xn 4
,
xn1
3
xn2 3 2xn 4
3
2x 3
2x 3
1 2an 3 5 2(an 1) 1 2 an1 1 5an 5 5(an 1) an 1 5
1 1 2 (n 1) an 1 a1 1 5
例 3 (2010 年全国卷Ⅰ22 题)已知数列
an
中,
a1
1,
an1
c
1 an
.
(Ⅰ)设 c
5 2 , bn
an
例 1 (2010 上海文数 21 题)已知数列an 的前 n 项和为 Sn ,且 Sn n 5a n 85 , n N*
(1)证明:an 1是等比数列;(2)求数列Sn 的通项公式,并求出使得 Sn1 Sn 成立的最小正整数 n .
(山东专版)高考数学二轮专题复习与策略 第2部分 必考补充专题 技法篇 6招巧解客观题,省时、省力得
必考补充专题技法篇 6招巧解客观题,省时、省力得高分教师用书理必考补充专题中的4个突破点在高考考查中较为简单,题型为选择、填空题,属送分题型,通过一轮复习,大多数考生已能熟练掌握,为节省宝贵的二轮复习时间,迎合教师与考生的需求,本部分只简单提炼核心知识,构建知识体系,讲解客观题解法,其余以练为主.建知识网络明内在联系[高考点拨] 必考补充专题涉及的知识点比较集中,多为新增内容,在高考中常以“四小”的形式呈现.本专题的考查也是高考中当仁不让的高频考点,考查考生应用新知识解决问题的能力和转化与化归能力等.综合近年高考命题规律,本专题主要从“集合与常用逻辑用语”“不等式与线性规划”“算法初步、复数、推理与证明”“排列组合、二项式定理”四大角度进行精练,引领考生明确考情,高效备考.技法篇:6招巧解客观题,省时、省力得高分[技法概述] 选择题、填空题是高考必考的题型,共占有75分,因此,探讨选择题、填空题的特点及解法是非常重要和必要的.选择题的特点是灵活多变、覆盖面广,突出的特点是答案就在给出的选项中.而填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,不设中间分,所以要求所填的是最简最完整的结果.解答选择题、填空题时,对正确性的要求比解答题更高、更严格.它们自身的特点决定选择题及填空题会有一些独到的解法.解法1 直接法直接法是直接从题设出发,抓住命题的特征,利用定义、性质、定理、公式等,经过变形、推理、计算、判断得出结果.直接法是求解填空题的常用方法.在用直接法求解选择题时,可利用选项的暗示性作出判断,同时应注意:在计算和论证时尽量简化步骤,合理跳步,还要尽可能地利用一些常用的性质、典型的结论,以提高解题速度.(1)(2016·高考)将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin 2x 的图象上,则( )A .t =12,s 的最小值为π6B .t =32,s 的最小值为π6C .t =12,s 的最小值为π3D .t =32,s 的最小值为π3(2)(2015·某某高考)已知向量a =(2,1),b =(1,-2),若m a +n b =(9,-8)(m ,n ∈R),则m -n 的值为______.[解题指导] (1)先求点P 坐标,再求点P ′的坐标,最后将点P ′的坐标代入y =sin 2x 求s 的最小值.(2)可以利用向量的坐标运算,通过坐标相等,直接得出参量m ,n 的值. (1)A (2)-3 [(1)因为点P ⎝⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,所以t =sin ⎝ ⎛⎭⎪⎫2×π4-π3=sin π6=12.所以P ⎝ ⎛⎭⎪⎫π4,12.将点P 向左平移s (s >0)个单位长度得P ′⎝ ⎛⎭⎪⎫π4-s ,12.因为P ′在函数y =sin 2x 的图象上,所以sin 2⎝ ⎛⎭⎪⎫π4-s =12,即cos 2s =12,所以2s=2k π+π3或2s =2k π+53π,即s =k π+π6或s =k π+5π6(k ∈Z),所以s 的最小值为π6.(2)∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =-3.][变式训练1] (2015·某某高考)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x (万元) 8.2 8.6 10.0 11.3 11.9 支出y (万元)6.27.58.08.59.8根据上表可得回归直线方程y ^=b ^x +a ^,其中b ^=0.76,a ^=y -b ^x .据此估计,该社区一户年收入为15万元家庭的年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元B [由题意知,x =8.2+8.6+10.0+11.3+11.95=10,y =6.2+7.5+8.0+8.5+9.85=8,∴a ^=8-0.76×10=0.4,∴当x =15时,y ^=0.76×15+0.4=11.8(万元).] 解法2 等价转化法所谓等价转化法,就是通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果.(1)(2016·某某模拟)设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4,若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →=( )A .20B .15C .9D .6(2)(2015·某某高考)若直线3x -4y +5=0与圆x 2+y 2=r 2(r >0)相交于A ,B 两点,且∠AOB =120°(O 为坐标原点),则r =__________.[解题指导] (1)把向量AM →,NM →用AB →,BC →表示,再求数量积.(2)利用∠AOB =120°,得到圆心到直线的距离,最后用点到直线的距离公式求解.(1)C (2)2 [(1)依题意有AM →=AB →+BM →=AB →+34BC →,NM →=NC →+CM →=13DC →-14BC →=13AB →-14BC →,所以AM →·NM →=⎝⎛⎭⎪⎫AB →+34BC →·⎝ ⎛⎭⎪⎫13AB →-14BC →=13AB →2-316BC →2=9.故选C.(2)如图,过点O 作OD ⊥AB 于点D ,则|OD |=532+-42=1.∵∠AOB =120°,OA =OB , ∴∠OBD =30°,∴|OB |=2|OD |=2,即r =2.][变式训练2] (1)在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点,若AC →·BE →=1,则AB 的长为( ) 【导学号:67722071】A .2B.32 C .1D.12(2)若直线y =kx +1(k ∈R)与圆x 2+y 2-2ax +a 2-2a -4=0恒有交点,则实数a 的取值X 围是________.(1)D (2)[-1,3] [(1)因为AC →=AD →+DC →,BE →=BC →+CE →=AD →-12DC →,所以AC →·BE →=(AD →+DC →)·⎝ ⎛⎭⎪⎫AD →-12DC →=AD →2+12AD →·DC →-12DC 2,所以1+12|DC →|·cos 60°-12|DC →|2=1,|DC →|=12,故AB 的长为12.(2)直线y =kx +1恒过定点(0,1),则直线与圆恒有交点等价于点(0,1)在圆内或圆上,即02+12-2a ×0+a 2-2a -4≤0,即a 2-2a -3≤0,解得-1≤a ≤3.]解法3 特殊值法在解决选择题和填空题时,可以取一个或一些特殊数值或特殊位置、特殊函数、特殊点、特殊方程、特殊数列、特殊图形等来确定其结果,这种方法称为特值法.特值法由于只需对特殊数值、特殊情形进行检验,省去了推理论证、繁琐演算的过程,提高了解题的速度.特值法是考试中解答选择题和填空题时经常用到的一种方法,应用得当可以起到“四两拨千斤”的功效.(1)(2015·某某高考)设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r=12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .q =r >pC .p =r <qD .p =r >q(2)(2015·某某高考)“对任意x ∈⎝⎛⎭⎪⎫0,π2,k sin x cos x <x ”是“k <1”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件[解题指导] (1)从条件看这应是涉及利用基本不等式比较函数值大小的问题,若不等式在常规条件下成立,则在特殊情况下更能成立,所以不妨对a ,b 取特殊值处理,如a =1,b =e.(2)正常来说分析不等式k sin x cos x <x 成立的条件很复杂,也没必要,所以可以尝试在满足条件的情况下对x 取特殊值进行分析,这样既快又准确.(1)C (2)B [(1)根据条件,不妨取a =1,b =e ,则p =f (e)=ln e =12,q =f ⎝ ⎛⎭⎪⎫1+e 2>f (e)=12,r =12(f (1)+f (e))=12,在这种特例情况下满足p =r <q ,所以选C.(2)若对任意x ∈⎝⎛⎭⎪⎫0,π2,k sin x cos x <x 成立,不妨取x =π4,代入可得k <π2,不能推出k <1,所以是非充分条件;因为x ∈⎝⎛⎭⎪⎫0,π2,恒有sin x <x ,若k <1,则k cos x <1,一定有k sin x cos x <x ,所以选B.][变式训练3] (1)如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,那么( ) A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8>a 4+a 5D .a 1a 8=a 4a 5(2)(2016·某某模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c成等差数列,则cos A +cos C1+cos A cos C=________.(1)B (2)45 [(1)取特殊数列1,2,3,4,5,6,7,8,显然只有1×8<4×5成立.(2)令a =b =c ,则A =C =60°,cos A =cos C =12.从而cos A +cos C 1+cos A cos C =45.]解法4 数形结合法数形结合法是指在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来思考,促使抽象思维和形象思维有机结合,通过对规X 图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决的方法.(1)(2016·某某模拟)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y -4≤0,y ≥1,则z =-2x+y 的最大值是( )【导学号:67722072】A .-1B .-2C .-5D .1(2)(2015·某某高考)函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为______.[解题指导] (1)要确定目标函数的最大值,需知道相应的x ,y 的值,从约束条件中不可能解出对应的x ,y 的值,所以只有通过图解法作出约束条件的可行域,据可行域数形结合得出目标函数的最大值.(2)函数的零点即对应方程的根,但求对应方程的根也比较困难,所以进一步转化为求两函数的图象的交点,所以作出两函数的图象确定交点个数即可.(1)A (2)2 [(1)二元一次不等式组表示的平面区域为如图所示的△ABC 内部及其边界,当直线y =2x +z 过A 点时z 最大,又A (1,1),因此z 的最大值为-1.(2)f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)| =2(1+cos x )sin x -2sin x -|ln(x +1)| =2sin x cos x -|ln(x +1)|=sin 2x -|ln(x +1)|. 由f (x )=0,得sin 2x =|ln(x +1)|.设y 1=sin 2x ,y 2=|ln(x +1)|,在同一平面直角坐标系中画出二者的图象,如图所示.由图象知,两个函数图象有两个交点,故函数f (x )有两个零点.] [变式训练4] (1)(2016·某某模拟)方程x lg(x +2)=1的实数根的个数为( )A .1B .2C .0D .不确定(2)已知偶函数y =f (x )(x ∈R)在区间[0,2]上单调递增,在区间(2,+∞)上单调递减,且满足f (-3)=f (1)=0,则不等式x 3f (x )<0的解集为________.(1)B (2)(-3,-1)∪(0,1)∪(3,+∞) [(1)方程x lg(x +2)=1⇔lg(x +2)=1x,在同一坐标系中画出函数y =lg(x +2)与y =1x的图象,可得两函数图象有两个交点,故所求方程有两个不同的实数根.(2)由题意可画出y =f (x )的草图,如图.①x >0,f (x )<0时,x ∈(0,1)∪(3,+∞); ②x <0,f (x )>0时,x ∈(-3,-1).故不等式x 3f (x )<0的解集为(-3,-1)∪(0,1)∪(3,+∞).] 解法5 构造法用构造法解客观题的关键是利用已知条件和结论的特殊性构造出新的数学模型,从而简化推理与计算过程,使较复杂的数学问题得到解决,它需要对基础知识和基本方法进行积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到的类似问题中寻找灵感,构造出相应的具体的数学模型,使问题简化.(1)(2016·某某一模)已知f (x )为定义在(0,+∞)上的可导函数,且f (x )>xf ′(x )恒成立,则不等式x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0的解集为( )A .(0,1)B .(1,2)C .(1,+∞)D .(2,+∞)(2)如图1,已知球O 的面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.图1[解题指导] (1)构造函数g (x )=f xx,可证明函数g (x )在(0,+∞)上是减函数,再利用 x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x )求解. (2)以DA ,AB ,BC 为棱长构造正方体,则球O 是此正方体的外接球,从而球O 的直径是正方体的体对角线长.(1)C (2)6π [(1)设g (x )=f x x ,则g ′(x )=xf ′x -f xx 2,又因为f (x )>xf ′(x ),所以g ′(x )=xf ′x -f xx 2<0在(0,+∞)上恒成立,所以函数g (x )=f x x 为(0,+∞)上的减函数,又因为x 2f ⎝ ⎛⎭⎪⎫1x -f (x )>0⇔f ⎝ ⎛⎭⎪⎫1x 1x>f x x ⇔g ⎝ ⎛⎭⎪⎫1x >g (x ),则有1x<x ,解得x >1,故选C.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以CD =22+22+22=2R ,所以R =62,故球O 的体积V =4πR33=6π.][变式训练5] (1)(2016·某某高三诊断)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)(2)已知a ,b 为不垂直的异面直线,α是一个平面,则a ,b 在α上的射影有可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面的结论中,正确结论的序号是________(写出所有正确结论的序号). (1)B (2)①②④ [(1)因为f (x +2)为偶函数, 所以f (x +2)的图象关于x =0对称, 所以f (x )的图象关于x =2对称, 所以f (4)=f (0)=1, 设g (x )=f xex(x ∈R),则g ′(x )=f ′x e x -f x e xex2=f ′x -f xex,又因为f ′(x )<f (x ), 所以g ′(x )<0(x ∈R),所以函数g (x )在定义域上单调递减, 因为f (x )<e x⇔g (x )=f xex<1,而g (0)=f 0e=1,所以f (x )<e x⇔g (x )<g (0),所以x >0,故选B.(2)用正方体ABCD A 1B 1C 1D 1实例说明A 1D 与BC 1在平面ABCD 上的射影互相平行,AB 1与BC 1在平面ABCD 上的射影互相垂直,BC 1与DD 1在平面ABCD 上的射影是一条直线及其外一点.故正确的结论为①②④.]解法6 排除法排除法就是充分运用选择题中单选题的特征,即有且只有一个正确选项这一信息,从选项入手,根据题设条件与各选项的关系,通过分析、推理、计算、判断,对选项进行筛选,将其中与题设相矛盾的干扰项逐一排除,从而获得正确结论的方法.使用该法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.排除法适用于定性型或不宜直接求解的选择题,当题目中的条件多于一个时,先根据某些条件,在选项中找到明显与之矛盾的予以否定,再根据另一些条件,在剩余的选项内找出矛盾,这样逐步筛选,直至得出正确的答案.(1)(2016·北师大附中模拟)函数y =cos 6x2x -2-x 的图象大致为( )【导学号:67722073】A BC D(2)(2015·某某高考)设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,则( )A .|x |=x |sgn x |B .|x |=x sgn|x |C .|x |=|x |sgn xD .|x |=x sgn x [解题指导] (1)根据函数的奇偶性和x →+∞时函数值的正负,以及x →0且x >0时函数值的正负,排除可得答案.(2)可验证当x <0时,等式成立的情况.(1)D (2)D [(1)函数y =cos 6x 为偶函数,函数y =2x -2-x为奇函数,故原函数为奇函数,排除A.又函数y =2x -2-x 为增函数,当x →+∞时,2x -2-x →+∞且|cos 6x |≤1,∴y =cos 6x 2x -2-x →0(x →+∞),排除C.∵y =cos 6x 2x -2-x =2x ·cos 6x 4x -1为奇函数,不妨考虑x >0时函数值的情况,当x →0时,4x →1,4x -1→0,2x →1,cos 6x →1,∴y →+∞,故排除B ,综上知选D.(2)当x <0时,|x |=-x ,x |sgn x |=x ,x sgn|x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C ,故选D.] [变式训练6] (1)(2015·某某高考)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )(2)(2015·高考)设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0(1)D (2)C [(1)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)为奇函数,排除选项A ,B ;当x =π时,f (x )=⎝⎛⎭⎪⎫π-1πcos π=1π-π<0,排除选项C ,故选D. (2)设等差数列{a n }的公差为d ,若a 1+a 2>0,a 2+a 3=a 1+d +a 2+d =(a 1+a 2)+2d ,由于d 正负不确定,因而a 2+a 3符号不确定,故选项A 错;若a 1+a 3<0,a 1+a 2=a 1+a 3-d =(a 1+a 3)-d ,由于d 正负不确定,因而a 1+a 2符号不确定,故选项B 错;若0<a 1<a 2,可知a 1>0,d >0,a 2>0,a 3>0,∴a 22-a 1a 3=(a 1+d )2-a 1(a 1+2d )=d 2>0,∴a 2>a 1a 3,故选项C 正确;若a 1<0,则(a 2-a 1)(a 2-a 3)=d ·(-d )=-d 2≤0,故选项D 错.]客观题常用的6种解法已初步掌握,在突破点19~22的训练中一展身手吧!。
高考数学必考题型及答题技巧
高考数学必考题型及答题技巧高考数学答题技巧进入考试先审题考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。
数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。
你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。
所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。
会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。
充分利用考前5分钟很多学生或家长不知道,按照大型的考试的要求,考前五分钟是发数学卷时间,考生填写准考证。
这五分钟是不准做题的,但是可以看题。
发现很多考生拿到试卷之后就从第一个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。
之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。
节约时间的关键是一次做对有些学生,好不容易遇到一个简单的题目,就一味地求快,争取时间去做不会做的题目,这是严重的误区。
希望学生在考试的时候,一定要培养一次就做对的习惯,不要指望通过最后的检查力挽狂澜。
越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在里面出不来,抬起头来的时候已经开始收卷了。
高考数学答题注意事项越是容易的题要越小心,因为这样的题很可能有陷阱。
出现怪异的答案的题要小心,因为很有可能计算错误。
任何带有数字的题要多问一下自己,有没有遗漏答案,如出现2的答案,就要考虑-2有没有可能也是答案。
最后一道填空题很有可能是难题,如果不能马上解出,应迅速放在一边进行下面答题,毕竟这道题再难也分数也有限,不应恋战。
数学选择题答题技巧数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
高考数学知识点巧解活用之不一样的弦长公式
高考数学知识点巧解活用之不一样的弦长公式直线与圆锥曲线的位置关系是平面解析几何的重要内容之一,而弦长公式的应用是其中的一个重要知识点.
案例展示
先从例题来看一看,公式是如何使用的:
解答过程如下:
知识小结
尽管很多同学了解解题的方法,但是在实际运算时,总是被复杂的计算绊倒,甚至是拿到题目“望而却步”直接放弃。
能不能想想办法给计算过程“减负”呢?
我们重新来看弦长公式:
所以我们得到另一种形式的弦长公式:
使用这个公式的时候,可以借助上一步确定根的个数求出的表达式,直接带入简化计算。
一起来看看,在具体使用时,这个公式的方便之处。
情景再现
解答过程如下:
显然本题使用第二个弦长公式,计算更为简便。
高考数学小题解题技巧
高考数学小题解题技巧高考数学小题解题技巧(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。
作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。
思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。
这个特色在高中数学中已经得到充分的显露。
因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。
因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,一题多解的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。
常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查,学习方法。
解题策略:(1)注意审题。
把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
数学高考考试答题技巧.ppt
②跳步答题
❖ 解题过程卡在某一过渡环节上是常见的。这时,我们可以先 承认中间结论,往后推,看能否得到结论。如果不能,说明 这个途径不对,立即改变方向;如果能得出预期结论,就回 过头来,集中力量攻克这一“卡壳处”。
❖ 由于考试时间的限制,“卡壳处”的攻克来不及了,那么可 以把前面的写下来,再写出“证实某步之后,继续有……” 一直做到底,这就是跳步解答。
❖ 也许,后来中间步骤又想出来,这时不要乱七八糟插上去, 可补在后面,“事实上,某步可证明或演算如下”,以保持 卷面的工整。若题目有两问,第一问想不出来,可把第一问 作“已知”,“先做第二问”,这也是跳步解答。
③退步解答
❖ “以退求进”是一个重要的解题策略。如果你 不能解决所提出的问题,那么,你可以从一 般退到特殊,从抽象退到具体,从复杂退到 简单,从整体退到部分,从较强的结论退到 较弱的结论。总之,退到一个你能够解决的 问题。为了不产生“以偏概全”的误解,应 开门见山写上“本题分几种情况”。这样, 还会为寻找正确的、一般性的解法提供有意 义的启发。
❖ 5.注意上厕所。
三、浏览试卷,确定考试策略
❖ 一般提前5分钟发卷,涂卡、填密封线内 部分和座号后浏览试卷:试卷发下后,先利 用2—3分钟时间迅速把试卷浏览一遍,检查 试卷有无遗漏或差错,了解考题的难易程度、 分值等概况以及试题的数目、类型、结构、 占份比例、哪些是难题,同时根据考试时间 分配做题时间,做到心中有数,把握全局, 做题时心绪平定,得心应手。
掌握,随时巧变,不要墨守常规。
建议时间
基础较好的同学注意处理好速度和准确度的关系:
选择题30分钟,填空题15分钟,前两个解答题每题8分钟, 中间两个解答题每题10分钟,后两个解答题每题12分钟, 15分钟检查时间。
如何巧妙化解数学高考的难点——以2010年江苏省高考数学试卷为例
21 年 1 0 1 1日 1月
如何巧妙化解数学高考的难点
以 21 0 0年江苏省高考数学试卷为例
◎江苏省金坛 市研训 中心 刘春林
高考始终是社会关注的焦点 , 也是课程改革 的焦点 !l 盖地 , 特别是各校根据所掌握的信息 , 命制了本校的 5月
高考对教师教学具有重要的导向作用 ,高考也是学生学 l 三模” 份“ 试题, 做好最后的冲刺工作, 想让学生胸有成竹 习的“ 指挥棒”笔者在 日 。 常的调研工作中, 听到教师抱怨 l 地走进考场, 但事与愿违。
导 向具有重要意义 。
一
3高考题难度与能力训练 .
从广 东到江苏等省 的“ 考试 说 明” 中可看 出, 高考 的
:
、
认识高考数学题 难点 的几个误 区
考核 目标 ” 提高了对能力的要 求。 在进入二轮复习后 , 一
高考作为一种选拔性的考试, 必定要有“ 必要的区分 I 些教师反复进行数学思维能力的强化训练,学生疲于应 度”这样才能具备调节高校录取控制线的功能。 , 然而, J 在 付各种各样的模拟考试,最终反而把基础的主干知识给
一
许多教师认为, 商考要学生在短暂的 10 2 分钟内, l 做 往不是基础知识的简单再现 ,而是从学科整体意义的高 完十 四道填空题 和六 道解答题是有难度 的 ,理科学生还 } 度进 行设 计 , 注重知识之间 的交叉 、 透和综合 , “ 渗 在 知识
有4 0分的附加题 ,不进行规范的解题训练是不行 的, 。 因 网络交汇点 ” 出题 , 而提高 了试题的难度 。 进
造 像 示 长 体 B —B D 使 几 体 这1 第1 :量 视 的 度本 主 查 三 图 所 的 方 A D , 该 何 的 7 测 电 塔 亳 ,题 解 C A c 题 条 恰 为 方 对 线 C则 条 在 视 、视J的 识两 差 正 及 等 的 用结 生 环 棱 好 长 体 角 A,这 棱 正 图侧 知 、角 的 切 不 式 应 。合 活 境
高考数学好题巧解50道
案例 5、函数单调性
当x 0, 2 时,且sin 3 x-cos3x>cosx-sinx ,求x 的取值范围。
解:注意题设条件结构,想到构造函数法,不妨将条件先做这样的变
形 sin3 x-cos3x>cosx-sinx cos3x+cosx sin3 x+sinx 。发现左右两边结构一致
性,故令 f x=x3+x 。现在我们来求此函数的单调性,因此我们对函 数进行求导分析 f x =x3+x f x =3x2+1>0 。显然 x 在 R 内严格单调递
扫码添加老师微信,获取更多上海高考大三门、小三门全科复习资料,四校八大各类考试真题卷,综评资 料,选科&专业指导,学科讲座等等。
显然 A 坐标为 A(-1,-1)。设 A 坐标为 A(m,n),则线段 AA
中点坐标为
m-1,n+5 22
在直线
x-y+2=0
上,则
m-n=2
(1)。另外因为线
段
AA
x
x
(0,e)
e
e,+
x
-
0
+
x
min x = 0=0
从而当 x=n N *,n 2,n eln n ,都是成立的,这样我们就得到了 n 2
时有 ln n
n2
1 ln n e n-1
,n1 12
+
ln 2 22
ln 3 32
+...+
ln n n2
ln n e
b ac b ac
解。到此,这两个解是真是假我们还不知道呢,不妨就让我揭开庐山
真面目吧。因为 x2-2bx+b2 =0 x-b 2 =0 x=b ,结合 a+c=2b 和 b2 =ac 解得
高考数学答题套路与答题策略分析
高考数学答题套路与答题策略分析虽说高考数学题型灵活多变,历年考纲也会有所变动,但是,依然能够从中发现一些规律,下面就为大家带来高考数学答题套路与答题策略分析,这些好的套路和策略能够帮助大家在同等条件下考出更好的成绩,准备高考的考生赶紧看一下吧。
高考数学答题策略一、会做与得分的关系要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现"会而不对""对而不全"的情况,考生自己的估分与实际得分差之甚远。
如立体几何论证中的"跳步",使很多人丢失1/3以上得分,代数论证中"以图代证",尽管解题思路正确甚至很巧妙,但是由于不善于把"图形语言"准确地转译为"文字语言",得分少得可怜。
只有重视解题过程的语言表述,会做的题才会得分。
二、审题与解题的关系有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。
其实只要耐心仔细地审题,准确地把握题目中的关键词与量,从中获取尽可能多的信息,才能迅速找准解题的方向。
三、难题与容易题的关系拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。
这几年,数学试题已从"一题把关"转为"多题把关",因此解答题都设置了层次分明的"台阶",入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有"咬手"的关卡,看似难做的题也有可得分之处。
所以考试中看到容易的题目不可掉以轻心,看到新面孔的难题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。
四、快与准的关系在目前题量大、时间紧的情况下,准字则尤为重要。
只有准才能得分,只有准你才可以不必考虑再花时间检查,而快是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。
高考数学技法——巧解客观题的10大妙招
技法——巧解客观题的10大妙招(一)选择题的解法选择题是高考试题的三大题型之一,浙江卷10个选择题.该题型的基本特点:绝大部分选择题属于低中档题目,且一般按由易到难的顺序排列,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识解决数学问题的能力.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧,总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做.方法一直接法直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则,通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后对照题目所给出的选项“对号入座”作出相应的选择,从而确定正确选项的方法.涉及概念、性质的辨析或运算较简单的题目常用直接法.【例1】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sin x B.y=ln xC.y=e x D.y=x3解析对函数y=sin x求导,得y′=cos x,当x=0时,该点处切线l1的斜率k1=1,当x=π时,该点处切线l2的斜率k2=-1,∴k1·k2=-1,∴l1⊥l2;对函数y=ln x求导,得y′=1x(x>0)恒大于0,斜率之积不可能为-1;对函数y=ex求导,得y ′=e x 恒大于0,斜率之积不可能为-1;对函数y =x 3,得y ′=3x 2恒大于等于0,斜率之积不可能为-1.故选A.答案 A探究提高 直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.【训练1】 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB→+PC →|的最大值为( ) A .6 B .7 C .8 D .9解析 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆直径,故P A →+PC→=2PO →=(-4,0).设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),所以P A →+PB →+PC →=(x -6,y ).故|P A →+PB→+PC →|=-12x +37,∴x =-1时有最大值49=7,故选B.答案 B方法二 特例法从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊数列等.适用于题目中含有字母或具有一般性结论的选择题.【例2】 (1)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P ,Q 满足A 1P =BQ ,过P ,Q ,C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1 D.3∶1(2)已知定义在实数集R 上的函数y =f (x )恒不为零,同时满足f (x +y )=f (x )·f (y ),且当x >0时,f (x )>1,那么当x <0时,一定有( )A .f (x )<-1B .-1<f (x )<0C .f (x )>1D .0<f (x )<1解析 (1)将P ,Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有V C -AA 1B =VA 1-ABC =V ABC -A 1B 1C 13. (2)取特殊函数.设f (x )=2x ,显然满足f (x +y )=f (x )·f (y )(即2x +y =2x ·2y ),且满足x >0时,f (x )>1,根据指数函数的性质,当x <0时,0<2x <1,即0<f (x )<1.答案 (1)B (2)D探究提高 特例法解选择题时,要注意以下两点:第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.【训练2】 等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )A .130B .170C .210D .260 解析 取m =1,依题意a 1=30,a 1+a 2=100,则a 2=70,又{a n }是等差数列,进而a 3=110,故S 3=210.答案 C方法三 排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论.【例3】 (1)(2016·浙江卷)已知函数f (x )满足:f (x )≥|x |且f (x )≥2x ,x ∈R ( )A .若f (a )≤|b |,则a ≤bB .若f (a )≤2b ,则a ≤bC .若f (a )≥|b |,则a ≥bD .若f (a )≥2b ,则a ≥b(2)设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是( ) A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)解析 (1)∵|x |=⎩⎨⎧x ,x ≥0,-x ,x <0,∴根据题意可取f (x )=⎩⎨⎧max{x ,2x }=2x ,x ≥0,max{-x ,2x },x <0.下面利用特值法验证选项.当a =1,b =-3时可排除选项A ,当a =-5,b =2时可排除选项C ,D.故选B.(2)当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B选项;当a =23时,f (a )=f ⎝ ⎛⎭⎪⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a =23满足题意,排除D 选项,故答案为C.答案 (1)B (2)C探究提高 (1)对于干扰项易于淘汰的选择题,可采用筛选法,能剔除几个就先剔除几个.(2)允许使用题干中的部分条件淘汰选项.(3)如果选项中存在等效命题,那么根据规定——答案唯一,等效命题应该同时排除.(4)如果选项中存在两个相反的或互不相容的判断,那么其中至少有一个是假的.(5)如果选项之间存在包含关系,要根据题意才能判断.【训练3】 (1)方程ax 2+2x +1=0至少有一个负根的充要条件是( )A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0(2)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,则f ′(x )的图象是( )解析 (1)当a =0时,x =-12,故排除A 、D.当a =1时,x =-1,排除B.(2)f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,故f ′(x )=⎝ ⎛⎭⎪⎫14x 2+cos x ′=12x -sin x ,记g (x )=f ′(x ),其定义域为R ,且g (-x )=12(-x )-sin(-x )=-⎝ ⎛⎭⎪⎫12x -sin x =-g (x ),所以g (x )为奇函数,所以排除B ,D 两项.g ′(x )=12-cos x ,显然当x ∈⎝ ⎛⎭⎪⎫0,π3时,g ′(x )<0,g (x )在⎝ ⎛⎭⎪⎫0,π3上单调递减,故排除C.选A. 答案 (1)C (2)A方法四 数形结合法根据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断,这种方法叫数形结合法.有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,得出结论,图形化策略是以数形结合的数学思想为指导的一种解题策略.【例4】 函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( )A .0B .1C .2D .3解析 由题意可知f (x )的定义域为(0,+∞).在同一直角坐标系中画出函数y 1=|x -2|(x >0),y 2=ln x (x >0)的图象,如图所示:由图可知函数f (x )在定义域内的零点个数为2.答案 C探究提高 图形化策略是依靠图形的直观性进行研究的,用这种策略解题比直接计算求解更能简捷地得到结果.运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则,错误的图象反而会导致错误的选择.【训练4】 (2018·全国Ⅱ卷)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( )A .9B .8C .5D .4解析 法一由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 13C 13=9,故选A.法二 根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.答案 A方法五 估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.【例5】 已知sin θ=m -3m +5,cos θ=4-2m m +5⎝⎛⎭⎪⎫π2<θ<π,则tan θ2等于( ) A.m -39-m B.m -3|9-m | C .-15 D .5解析 由于受条件sin 2θ+cos 2θ=1的制约,m 一定为确定的值进而推知tan θ2也是一确定的值,又π2<θ<π,所以π4<θ2<π2,故tan θ2>1.所以D 正确.答案 D探究提高 估算法的应用技巧:估算法是根据变量变化的趋势或极值的取值情况进行求解的方法.当题目从正面解析比较麻烦,特值法又无法确定正确的选项时(如难度稍大的函数的最值或取值范围、函数图象的变化等问题)常用此种方法确定选项.【训练5】 已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能等于( )A .1 B. 2 C.2-12 D.2+12解析 由俯视图知正方体的底面水平放置,其正视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.答案 C1.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法,但大部分选择题的解法是直接法.在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.。
高考数学巧用答题策略多得分-教育文档
高考数学巧用答题策略多得分缺步解答。
对一个疑难问题,确实啃不动时,一个明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。
跳步解答。
解题过程卡在一个中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。
若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后面各步骤,一直做到底;另外,若题目有两问,第一问做不出,可以假设第一问为“已知”,完成第二问,这都叫跳步解答。
最后一个月时间里,龚日辉建议复习注意6大细节:做7到9套模拟题,不要太多,太多则产生腻烦心理;每年的高考热点基本稳定,对于薄弱的环节,还来得及进行专项训练冲刺;做错的题目一定要分析错误,不要重复同样的错误;平时做错的题目最好重做一遍,以前的复习资料要反复翻阅;平时最好下午做数学,与高考时间相符,考试时易于较快进入状态;书写要规范,涂答题卡时不要“出格”。
16字诀助考生调节心态“高考考考生四个方面,思想品德、身体、文化素质、心理。
”中国科学院心理研究所研究员、著名高考研究专家王极盛简约的开场白,一下子吸引住了场下长沙市明德中学的高三学生和他们的家长。
高考思想品德基本学校做主,身体有高考体检把关,剩下就是对科学文化素质和心态的大检阅。
心态如何调节?在明德中学举行的专门讲座上,王极盛抛出了“强化信心、优化情绪、进入状态、充分发挥”16字秘诀。
强化信心最后几次模拟考试成绩只有四五百分想冲刺北大清华,基本上是不可能的,所以考生首先要有一个明确的高考目标定位,不要超过自己的实力,设定自己达不到的目标,心理就会受到挫折。
第二点不要攀比,个人情况不一样,只要考出平时的水平就是成功。
第三点不要迷信。
王极盛举例说,一位考生曾经在高考前打电话给他,说:“王老师,不好了,今年高考我肯定失败。
高考数学复习点拨 用几何法巧解双曲线问题
用几何法巧解双曲线问题双曲线的定义有明显的几何意义,在处理双曲线问题时,如涉及一些线段的长度、比值时,巧用平面几何知识,常可使问题变得简单易解.现举例如下:1.巧用中位线性质例1 已知Q点是双曲线12222=-b y a x a (>0,b >0)上异于二顶点的一动点.1F 、2F 是双曲线的左、右焦点,从点2F 向21QF F ∠的平分线作垂线2F P ,垂足为P 点,求P 点的轨迹方程.解:如图1,设2F P的延长线交1F Q于A点,则由平几知识知:Q F AQ 2=,连结OP ,由三角形中位线性质知:A F OP 121=∴)(21)(21211QF QF QA QF OP -=-=若点Q在双曲线的左支上时,应为)(2112QF QF OP -=,即a a OP =⨯=221.故点P的轨迹方程为)0(222≠=+y a y x .评注:本题运用双曲线的定义,结合三角函数的中位线定理,巧妙证题. 2.巧用圆的有关性质例2 若M为双曲线12222=-by a x a (>0,b >0)上异于顶点的右支上任一点,双曲线焦点为)0,(),0,(21c F c F -,设βα=∠=∠1221,F MF F MF .求2cot2tanβα∙的值.解:如图2,作21F MF ∆的内切圆O ',N为圆 O '与x 轴的切点. 则2cot2tanβα∙=1221NF NF N O NF NF N O ='∙' ∵c NF NF 221=+又由切线长定理知a NF NF 221=-∴a c NF c a NF -=+=21, ∴2cot2tanβα∙=ac ac +-. 评注:本题运用双曲线的定义,结合切线长定理,优化了解题过程. 3.巧用平行四边形性质例3 求证:等轴双曲线上一点到中心的距离是它到两个焦点的距离的等比中项. 证明:设等轴双曲线方程为)0(222>=-a a y x ,则222a c =,),(00y x P 是双曲线上任一点.1F ,2F 是它的两个焦点,(如图3) 由平几知识得:)(2)2(22212212PF PF F F PO +=+由双曲线定义得:a PF PF 221=- 即212222124PF PF a PF PF ∙+=+而22222184)2(a c c F F ===.∴21222488)2(PF PF a a PO ∙+=+. ∴212PF PF PO ∙=. 故结论成立.评注:本题运用双曲线的定义,结合平行四边形的性质,使问题获得解决,过程简单明了.。
高考数学100个热点题型秒解技巧之三点共线定理及其推论的妙用
1化 难 为 易 化 繁 为 简四大特色助快速解题◎ 100个秒解技巧 ◎ 80个精妙二级结论 ◎ 10年高考真题为例◎ 700个例题深入剖析2019年4月版秒解高考数学100招—— 选择、填空篇 ——◆ 例(2016山东理7)函数)cos sin 3()(x x x f +=)sin cos 3(x x -的最小正周期是( )A.2πB.πC.23π D.π2 【秒解】根据口诀:和差不变,积商减半,易知x x cos sin 3+以及x x sin cos 3-的周期均为π2,则)sin cos 3)(cos sin 3()(x x x x x f -+=的周期为π,选B .目录 CONTENTS1、集合⇒利用特值逆代法速解集合运算题 (2)2、集合⇒利用对条件具体化巧解集合运算题……………………………………3、集合⇒运用补集运算公式简化集合计算………………………………………4、简易逻辑⇒利用韦恩图巧解集合与数量关系题………………………………5、简易逻辑⇒借助数轴法巧解充要条件问题……………………………………6、复数⇒利用逆代法、特值法速解含参型复数题………………………………7、复数⇒利用公式速解有关复数的模的问题……………………………………8、复数⇒利用结论快速判断复数的商为实数或虚数……………………………9、复数⇒利用公式快速解决一类复数问题………………………………………10、三视图⇒柱体和锥体的三视图快速还原技巧………………………………11、三视图⇒利用“三线交点”法巧妙还原直线型三视图……………………12、不等式⇒利用逆代法巧解求不等式解集问题………………………………13、不等式⇒利用特值法速解比较大小问题……………………………………14、不等式⇒利用数轴标根法速解高次不等式…………………………………15、不等式⇒用代入法速解f型不等式选择题…………………………………16、不等式⇒利用几何意义与三角不等式速解含有绝对值的不等式…………17、不等式⇒利用结论速解含双绝对值函数的最值问题………………………18、不等式⇒利用“1的代换”巧解不等式中的最值问题……………………19、不等式⇒利用“对称思想”速解不等式最值问题…………………………20、不等式⇒利用柯西不等式速解最值问题……………………………………21、线性规划⇒利用特殊法巧解线性规划问题…………………………………22、线性规划⇒高考中常见的线性规划题型完整汇总…………………………23、程序框图⇒程序框图高效格式化解题模式…………………………………24、排列组合⇒排列组合21种常见题型解题技巧汇总………………………25、排列组合⇒利用公式法速解相间涂色问题…………………………………26、排列组合⇒速解排列组合之最短路径技巧…………………………………27、二项式定理⇒二项式定理常见题型大汇总…………………………………28、二项式定理⇒利用公式速解三项型二项式指定项问题……………………29、平面向量⇒特殊化法速解平面向量问题……………………………………30、平面向量⇒利用三个法则作图法速求平面向量问题………………………31、平面向量⇒三点共线定理及其推论的妙用…………………………………32、平面向量⇒平面向量等和线定理的妙用……………………………………33、平面向量⇒向量中的“奔驰定理”的妙用…………………………………34、平面向量⇒三角形四心的向量表示及妙用…………………………………35、平面向量⇒利用极化恒等式速解向量内积范围问题………………………36、空间几何⇒利用折叠角公式速求线线角……………………………………37、空间几何⇒求体积的万能公式:拟柱体公式………………………………38、空间几何⇒空间坐标系中的平面的方程与点到平面的距离公式的妙用…39、空间几何⇒利用空间余弦定理速求异面直线所成角………………………40、空间几何⇒利用公式速解空间几何体的外接球半径………………………41、函数⇒用特值法速解分段函数求范围问题…………………………………42、函数⇒数形结合法速解函数的零点与交点问题……………………………43、函数⇒数型结合法巧解带f的函数型不等式………………………………44、函数⇒函数的周期性的重要结论的运用……………………………………45、函数⇒利用特值法巧解函数图像与性质问题………………………………46、函数⇒通过解析式判断图像常用解题技巧…………………………………47、函数⇒利用结论速解“奇函数+C”模型问题……………………………48、函数⇒利用特值法速解与指数、对数有关的大小比较问题………………49、函数⇒巧用耐克函数求解函数与不等式问题………………………………50、函数⇒利用对数函数绝对值性质速解范围问题……………………………51、函数⇒巧用原型函数解决抽象函数问题……………………………………52、函数⇒构造特殊函数巧解函数问题…………………………………………53、导数⇒特殊化与构造方法巧解导数型抽象函数问题………………………54、导数⇒极端估算法速解与导数有关选择题…………………………………55、导数⇒用母函数代入法巧解函数、导数中求范围问题……………………56、导数⇒隐函数求导在函数与圆锥曲线切线问题中的妙用…………………57、三角函数⇒利用口诀巧记诱导公式及其运用………………………………58、三角函数⇒利用结论速求三角函数周期问题………………………………59、三角函数⇒巧用特值法、估算法解三角函数图像问题……………………60、三角函数⇒海伦公式及其推论在求面积中的妙用…………………………61、三角函数⇒借助直角三角形巧妙转换弦与切………………………………62、三角函数⇒特殊技巧在三角变换与解三角形问题中的运用………………63、三角函数⇒齐次式中弦切互化技巧…………………………………………64、三角函数⇒利用射影定理秒解解三角形问题………………………………65、三角函数⇒三角形角平分线定理的妙用……………………………………66、三角函数⇒三角形角平分线长公式的妙用…………………………………67、三角函数⇒三角形中线定理及其推论的妙用………………………………68、三角函数⇒利用测量法估算法速解三角形选择题…………………………69、三角函数⇒利用公式法速解三角函数平移问题……………………………70、数列⇒利用公式法速解等差数列n a与nS……………………………………71、数列⇒利用列举法速解数列最值型压轴题…………………………………72、数列⇒用特殊化法巧解单条件等差数列问题………………………………73、数列⇒等差数列性质及其推论的妙用………………………………………74、数列⇒观察法速解一类数列求和选择题……………………………………75、数列⇒巧用不完全归纳法与猜想法求通项公式……………………………76、数列⇒代入法速解数列选项含n型选择题…………………………………77、数列⇒一些数列选择填空题的解题技巧……………………………………78、统计与概率⇒估算法速解几何概型选择题…………………………………79、直线与圆⇒利用相交弦定理巧解有关圆的问题……………………………80、直线与圆⇒利用精准作图估算法速解直线与圆选择题……………………81、直线与圆⇒利用两圆方程作差的几何意义速解有问题……………………82、圆锥曲线⇒利用“阿波罗尼圆”速解一类距离比问题……………………83、圆锥曲线⇒用点差法速解有关中点弦问题…………………………………84、圆锥曲线⇒用垂径定理速解中点弦问题……………………………………85、圆锥曲线⇒用中心弦公式定理速解中心弦问题……………………………86、圆锥曲线⇒焦点弦垂直平分线结论的妙用…………………………………87、圆锥曲线⇒利用二次曲线的极点与极线结论速求切线和中点弦方程……88、圆锥曲线⇒用公式速解过定点弦中点轨迹问题……………………………89、圆锥曲线⇒巧用通径公式速解离心率等问题………………………………90、圆锥曲线⇒巧用三角形关系速求离心率……………………………………91、圆锥曲线⇒构造相似三角形速解离心率……………………………………92、圆锥曲线⇒用平面几何原理巧解圆锥曲线问题……………………………93、圆锥曲线⇒利用焦点弦公式速解焦点弦比例问题…………………………94、圆锥曲线⇒利用焦点弦公式速解焦半径与弦长问题………………………95、圆锥曲线⇒椭圆焦点三角形面积公式的妙用………………………………96、圆锥曲线⇒双曲线焦点三角形面积公式的妙用……………………………23⇒⇒97、圆锥曲线 ⇒ 离心率与焦点三角形底角公式的妙用………………………… 98、圆锥曲线 ⇒ 用离心率与焦点三角形顶角公式速求离心率范围……………99、圆锥曲线 ⇒ 用特值法巧解圆锥曲线选填题………………………………… 100、圆锥曲线 ⇒ 用对称思想速解圆锥曲线问题………………………………31、平面向量 ⇒ 三点共线定理及其推论的妙用 【结论】(1)向量三点共线定理:在平面中C B A 、、三点共线的充要条件是:(为平面内任意一点),其中.(证明略)特别地,当2=x )2OC +时,点A 为BC 的中点. (2)向量三点共线定理拓展:如果为平面内直线BC 外任意一点,则 ①当时A 与点在直线BC 同侧,②当时, A 与点在直线BC 的异侧.◆ 例1 (2014全国I 理15)已知C B A 、、是圆上的三点,若,则与的夹角为 .【秒解】为中点,为圆的直径与的夹角为.◆ 例2 (2006江西理7) 已知等差数列{}n a 的前n 项和为n S ,若OC a OA a OB 2001+=且C B A 、、三点共线(该直线不过原点),则=200S ( ) A.100 B.101 C.200 D.201【秒解】由平面三点共线的向量式定理可知:12001=+a a ∴,选A.◆ 例3 已知P 是的边BC 上的任一点,且满足 则的最小值是 . 【秒解】由平面三点共线的向量式定理, ∴, 当时取“=”,又, ∴符合题意.∴最小值为9..O A xOB yOC =+O 1x y +=O 1x y +<O 1x y +>O O 1()2AO AB AC =+AB AC 1()2AO AB AC =+⇒O BC BC ⇒AB AC 090O 10022002001200=+=)(a a S ABC ∆R y x AC y AB x AP ∈+=,,yx 41+1=+y x 954))(41(41≥++=++=+yx x y y x y x y x yx x y 4=1=+y x 32,31==y x y x 41+4AAA◆ 例4 (2007江西理15)如图,在中,点是的中点,过点的直线分别交直线,于不同的两点,若,,则的值为 .【秒解1】∵是BC 的中点,连接AO ,由向量加法的平行四边形法则可知∵ ∴, 又M,O,N 三点共线,∴, 【秒解2】由MN 的任意性可用特殊位置法:当MN 与BC 重合时知1,1==n m ,故◆ 例5(2006湖南文10) 如图:AB OM //,点P 由射线OM 、线段OB 及AB 的延长线围成的阴影区域内(不含边界).且,则实数对)(y x ,可以是( ) A. B. C. D.【秒解】根据向量三点共线定理拓展结论,点P 点与点O在直线AB 同侧,则 ,又根据平行四边形法则,要使即用 来表示,需反向延长OA,∴,选C.◆ 例6(2006湖南理15) 如图, ,点P 在由射线,线段及的延长线围成的阴影区域内(不含边界)运动,且,则的取值范围是 .当时,的取值范围是 .ABC △O BC O AB AC M N ,AB mAM =AC nAN =m n +O )(AC AB AO +=21AN n AC AM m AB ==,AN nAM m AN n AM m AO 22)(21+=+=122=+nm m n +2=m n +2=OB y OA x OP +=)43,41()32,32(-43,41(-57,51(-10<+<y x OB y OA x OP +=OB OA 、OP 0x <AB OM //OM OB AB OP xOA yOB =+x 12x =-y5【秒解】根据向量加法平行四边形法则及扩展定理,则有:,且当,有:,即,答案:,(,)◆ 练1(2007全国II 理5)在中,D 是AB 边上一点,=2,=,则λ=( ) A.B. C.- D.-【答案】A◆ 练2(2015全国I 理7)设为所在平面内一点,则( ) A. B.C. D.【答案】A◆ 练3(2008广东理8)在平行四边形ABCD 中,AC 与BD 交于O ,E 是OD 的中点,AE 的延长线与CD 交于点F ,若则( )A. B. C. D. 【答案】B0x <12x =-1O x y <+<1131222O y y <-+<⇒<<0x <1232ABC ∆AD DB CD CB CA λ+3132313132D ABC ∆3BC CD =1433AD AB AC =-+1433AD AB AC =-4133AD AB AC =+4133AD AB AC =-,,b BD a AC ===AF b a 2141+b a 3132+b a 4121+b a 3231+。
解几最值求有妙法,构造函数多方出击-高考数学一题多解
解几最值求有妙法,构造函数多方出击一、攻关方略与圆锥曲线有关的最值或范围问题大都是综合性问题,解法灵活,技巧性强,涉及代数函数、三角函数、平面几何等方面的知识,求最值常见的解法有几何法和代数法两种,若题目的条件和结论能明显体现几何特征及意义,如与圆锥曲线的定义相关或涉及过焦点的弦长、焦半径、焦点三角形等,则考虑利用图形性质来解决;若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,圆锥曲线中的最值问题的载体是直线与圆锥曲线的关系,特别是相交所引出的图形的最值问题,大致可分为两类:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.本讲重点放在用目标函数法求最值的策略.建立目标函数解与圆锥曲线有关的最值问题是一种常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,比如转化为二次函数或三角函数的最值问题,然后利用配方法、基本不等式、函数的单调性或三角函数的有界性等,尤其是对复杂函数解析式的再构造,其方法并非唯一,不同的构造必有多种不同的解法,或繁或简,通过解题经验的积累,尽可能找到最为巧妙的构造,得到最为简捷的解法,真可谓:解几最值求有妙法,构造函数多方出击.思维发散或繁或简,纵横联结枝繁叶茂.【典例】已知点()0,2A -,圆2222:1x y E a b +=(0a b >>F 是椭圆E的右焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与椭圆E 相交于P ,Q 两点,当OPQ △的面积最大时,求l 的方程.解题策略解析几何是用代数方法研究几何问题的一门数学学科,代数方法当然离不开比较复杂的计算,高考命题特别提出“多考想,少考算”,突出考查学生分析推理、转化的数学逻辑思维能力,如何在解析几何中避免繁杂、冗长的计算,即简化计算,也就成了处理这类问题的难点与关键,解析几何题目中常用的简化运算的技巧有:圆锥曲线的概念、条件等价转化、以形助数、设而不求以及通过构造以巧妙的方法减少运算量等,本例第(1)问,根据已知条件,利用基本量求椭圆方程;第(2)问,先建立OPQ △面积的函数表达式,再求最值,其中函数变量的选取尤为重要,不同的解析式有不同的求最值的方法.策略一由弦长公式求PQ ,由点到直线距离公式求d ,由12=⋅S PQ d 得解析式,换元法转化为用基本不等式求最值和l 的方程策略二由POQ AOQ AOP S S S =-△△△得函数解析式再进一步求解策略三利用坐标法求解析式再进一步求解(1)解:设(c,0)F ,由条件知,23c =,得c =又2c a =,∴2a =,2221b a c =-=,故E 的方程为2214x y +=.(2)解法一当l x ⊥轴时,不合题意,故设:2l y kx =-,()11,P x y 、()22,Q x y ,将2y kx =-代入椭圆方程,整理得()224116120k x kx +-+=.则()()222(16)48411643k k k ∆=-+=-当0∆>,即234k >时由弦长公式得12||PQ x =-==.又由点到直线的距离公式得点O 到直线l的距离d =∴OPQ △的面积221||24141S PQ k k d ===++⨯.t =,244144t S t t t ==++.则2243k t =+且0t >,当4t t =,即2t =时,OPQ △2=,解得2k =.故所求直线l的方程为2y =-或2y =-.解法二设直线:2l y kx =-交椭圆E 于()11,P x y ,()22,Q x y .且P 在线段AQ 上.由222,440y kx x y =-⎧⎨+-=⎩得()224116120k x kx +-+=,1221641k x x k +=+,1221241x x k =+.由0∆>得234k ≥.则21122POQ AOQ AOP S S S x x =-=⨯-==△△△同解法一得所求直线l 的方程为2y =-或2y =-.解法三设l 的方程为2y kx =-,与椭圆方程联立得222,44,y kx x y =-⎧⎨+=⎩消去y 整理得()224116120k x kx +-+=.则1221641k x x k +=+,1221241x x k =+,且由0∆>,得234k >.设点P 、Q 的坐标分别为()11,x y ,()22,x y .点O 的坐标为(0,0),用坐标法求OPQ △的面积S 可表示为11221112001x y S x y =.即()()1221122112112222S x y x y x kx x kx x x =-=---=-⎡⎤⎣⎦241k k ==+.同解法一得所求直线l 的方程为2y =-或2y =-.【点评】运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,【针对训练】1.已知椭圆的方程为22143x y +=,1F ,2F 分别为椭圆的左、右焦点,线段PQ 是椭圆上过点2F 的弦,则1PFQ △内切圆面积的最大值为______.2.已知抛物线2:4C y x =上一点()4,4M -,A ,B 是抛物线C 上的两动点,且0MA MB ⋅= ,则点M 到直线AB 距离的最大值是______.(2021全国乙卷理11)3.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦(2021全国新高考Ⅰ卷5)4.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.6.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.(2022·浙江)7.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(1)若116=p ,求抛物线2C 的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.(2022·浙江)8.如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.(2019年高考数学浙江卷第21题)9.如图所示,已知点()1,0F 为抛物线22y px =(0p >)的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧,记AFG 、CQG 的面积分别为1S ,2S.(1)求p 的值及抛物线的准线方程;(2)求的12S S 最小值及此时点G 的坐标.10.如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I)求直线AP斜率的取值范围;PA PQ的最大值(II)求·参考答案:1.9π16【分析】()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△,解法一:112PF Q S PQ d =⋅ ,点1F 到直线PQ 的距离为d .由弦长公式和点到直线距离公式,求最大值.解法二:1121212PF Q S F F y y =- ,由弦长公式和基本不等式求最大值.【详解】解法一如图所示,1PFQ △的()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△.当直线PQ 的斜率不存在时,易得||3PQ =,此时1121||32PF Q S F F PQ =⋅⋅=△,∴34r =;当直线PQ 的斜率为k 时,直线PQ 的方程为(1)y k x =-.将(1)y k x =-代入22143x y +=,并整理得:()22224384120k x k x k +-+-=.设()11,P x y 、()22,Q x y ,则2122843k x x k +=+,212241243k x x k -=+.||PQ ==()2212143k k +==+.∵点1F 到直线PQ 的距离d =.则12112|||243PF Qd k S PQ k ==⋅+△,则()()()()222222222211124331PFQ k k k k S k k k ++⎛⎫== ⎪⎡⎤⎝⎭+++⎣⎦△,设21u k =+,2v k =,则122112(3)96PF Q S uv u v u v v u⎛⎫== ⎪+⎝⎭⨯++△,且2211u k v k +=>,设(1)u t t v=>,设1()96f t t t =++,则21()9f t t '=-,当1t >时,()0f t '>,∴96(1)16u v f v u ⋅++>=,则1212116PF Q S ⎛⎫ ⎪⎝<⎭△,∴13PF Q S <△,∴34r <.综上,当直线PQ 垂直于x 轴时,1PFQ △的内切圆半径r 取得最大值34,∴1PFQ △的内切圆面积的最大值为9π16.解法二显然直线PQ 的斜率不为0,故可设其方程为1x my =+,将1x my =+代入22143x y+=,并整理得()2234690m y my ++-=,设()11,P x y ,()22,Q x y ,则122634m y y m +=-+,122934y y m =-+,∴1121221234PF Q S F F y y m =-===+△121,令1t ≥.设1()3f t t t =+,则21()3f t t'=-,则当1t >时,()0f t '>[]1,+∞,∴(1)4f =≥(当0m =时等号成立),∴1PF Q S △的最大值为3.此时1344PF Q S r ==△,即r 的最大值为34.∴1PFQ △的内切圆面积的最大值为9π16.故答案为:9π162.【分析】解法一:首先利用坐标表示直线MA ,MB 和直线AB 的斜率,并利用坐标表示1MA MB k k ⋅=-,代入直线AB 的方程,化简求直线所过定点,利用几何法表示点M 到直线AB距离的最大值;解法二:利用1MA MB k k ⋅=-得()()12124324y y y y y x +-++=,利用换元得直线AB 的方程为44320x ty t -+-=,列出点到直线距离公式d ==关系求函数最大值;解法三:首先设直线AB 的方程为x ky b =+,与抛物线方程联立,并利用韦达定理表示0MA MB ⋅=,得22123616164b b k k -+=-+,化简后表示,k b 的关系,可求得定点坐标,再利用两点距离表示点到直线距离的最大值.【详解】解法一:如图所示,设()11,A x y ,()22,B x y ,则直线MA 的斜率为()()()11111144444444MA y y k x y y y ++===-+--.同理可得直线MB 的斜率为244MB k y =-.直线AB 的斜率为12122212121244AB y y y y k y y x x y y --===--+.由1244144MA MB k y y k =⨯=---⋅,得()1212432y y y y -+=-.又直线AB 的方程为()11124y y x x y y -=-+,故()12124y y y y y x +-=.∴()()12124324y y y y y x +-++=.即()12(4)4(8)y y y x +-=-,∴直线AB 过定点()8,4P .点M 到直线AB距离的最大值为||MP ==解法二:同解法一得()()12124324y y y y y x +-++=.令12y y t +=,则直线AB 的方程为44320x ty t -+-=.点M 到直线AB的距离d ==令2t s -=,则有d =,当10s =-时等号成立,即点M 到直线AB距离的最大值为解法三:设直线AB 的方程为x ky b =+,211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭.由24x ky by x=+⎧⎨=⎩,得2440y ky b --=.∴()2160k b ∆=+>,124y y k +=,124y y b =-.∴0MA MB ⋅= ,即2212124,44,4044y y y y ⎛⎫⎛⎫-+⋅-+= ⎪ ⎪⎝⎭⎝⎭,∴()()22212121212122432016y y y y y y y y y y ⎡⎤-+-++++=⎣⎦.①把121244y y ky y b+=⎧⎨=-⎩代入(1)式整理得22123616164b b k k -+=-+.即22(6)(42)b k -=-,∴48b k =-+或44b k =+.当44b k =+时,直线AB 的方程为(4)4x k y =++,恒过点(4,4)-M ,不符合题意;当48b k =-+时,直线AB 的方程为(4)8x k y =-+,恒过点()8,4P ,符合题意.∴点M 到直线AB的距离的最大值是||MP =故答案为:3.C【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.4.C【分析】法一:根据椭圆定义得到1226MF MF a +==,结合基本不等式进行求解;法二:设出()00,M x y ,使用焦半径结合033x -≤≤进行求解.【详解】法一:由题意,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).法二:设()00,M x y ,033x -≤≤,由焦半径公式可得:1002003,3MF a ex MF a ex =+=+=-=-,故21200053399MF MF x x ⎛⎫⎛⎫⋅=+⋅=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为033x -≤≤,所以2009x ≤≤,当200x =,即00x =时,12MF MF ⋅取得最大值,最大值为9.故选:C .5.(1)24y x =(2)13【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,代入抛物线方程,进而可得20025910y x +=,可得点Q 的轨迹,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥=,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.6.(1)2p =(2)()max = PAB S 【分析】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y --=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .由121||2PAB S PQ x x =⋅- 求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==-.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b -,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值;【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y .所以()()22001453=-+-≤≤-x y y .从而有||=FN =因为053y -≤≤-,所以当03y =-时,min ||4==FN .又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2xy ',设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅=-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB的面积取最大值321202⨯=[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y.()32221200001111||242222⎛⎫=⋅-=-=- ⎪⎝⎭PABS PQ x x x y x y .P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=-+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=-=-+=-++⎣⎦ PABS x y .故当sin 1α=-时PAB 的面积最大,最大值为[方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b --=.判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==-.抛物线C 的方程为24x y =,即24x y =,有2x y '=.则()2111:42-=-PA x x l y x x ,整理得21124x x y x =⋅-,同理可得222:24=⋅-PB x x l y x .联立方程211222,24,24x x y x x xy x ⎧=⋅-⎪⎪⎨⎪=⋅-⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b -.将点P 的坐标代入圆M 的方程,得22(2)(4)1+-+=k b ,整理得221(4)4b k --=.由弦长公式得12||=-=AB x=点P 到直线AB的距离为d =所以21||222==+== PABS AB d k b=其中[5,3]=-∈--P y b ,即[3,5]∈b .当5b =时,()max = PAB S 7.(1)1(,0)32(2)max p 【分析】(1)根据抛物线的焦点坐标公式求解即可;(2)设直线:l x y m λ=+,与椭圆联立,结合韦达定理得到中点M 的坐标,代入抛物线,再将直线与抛物线联立,结合韦达定理用参数表示点A 坐标,再将椭圆与抛物线联立得到点A 坐标,结合均值不等式,分析即得解.【详解】(1)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(2)由题意,直线l 的斜率不为0,设()()()112200,,,,,,:A x y B x y M x y l x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒=-+222221822228162p p p m p p p λλλλλ+⇒-++⋅=++≥+,18p ≥,21160p ≤,p ≤所以,p,此时A .8.(1)24y x=(2)(,7[7(1,)-∞---++∞ .【分析】(1)根据2MF =,求p ,再求抛物线方程;(2)方法一:主要是用()()1122,,,A x y B x y 坐标表示直线,MA MB ,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围;方法二:利用焦点弦的性质求得直线,MA MB 的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法三:利用点,A B 在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点,A B 横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,所以直线:2yl x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故2R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦,整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭,()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+<或1n >.[方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-.因为2112231121114,44y y y k k y y y +==+=+,12121223111212110444y y y y y y k k k k y y y y ++∴+=++++=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-.同理3112Q m y k +=-.由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-.因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭.故22121314112k m m k ++⎛⎫= ⎪-⎝⎭⎛⎫- ⎪⎝⎭.令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭.所以210,1410,m m m -≠⎧⎨++≥⎩,解得7m ≤--71m -+≤<或1m>.故直线l 在x轴上的截距的范围为(,7[7)(1,)-∞---++∞ .[方法三]最优解设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-.所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--.设直线l 的方程为2(2)y x m m =+≠-,则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ).所以(,14[14)m ∈-∞-++∞ ,且2m ≠-,因此直线l 在x轴上的截距为(,7[7(1,)2m-∈-∞---++∞ .9.(1)2p =,=1x -(2)最小值为1(2,0).【分析】(1)根据焦点坐标求解p ,再根据准线方程公式求解即可;(2)直线AB 的方程为(1)y k x =-,与抛物线联立,得到关于y 的韦达定理,用坐标表示12S S ,求得取得最小值时t 的值,再由()()22212312311312G x x x x y y y =++=++,结合韦达定理,求解即可.【详解】(1)由题意得12p=,即2p =,∴抛物线的准线方程为=1x -.(2)设()11,A x y ,()22,B x y ,()33,,C x y 不妨设12y y >,又Q 在点F 的右侧,故1230y y y >>>,又直线AB 的方程为(1)y k x =-.联立2(1)4y k x y x =-⎧⎨=⎩,得2440y y k --=,∴124y y =-.1112AGB AGB AF y S S S AB y y ==-△△,3231AGC AGC CQ y S S S CA y y -==-+△△,由G 为ABC 的重心,有AGB AGC S S =△△,且1230y y y ++=.故2424211311121111122422421231212121121224242416S y y y y y y y y y y y S y y y y y y y y y y y y y -++---=⋅=⋅===---+---.令12S n S =,21y t =,则222416t t n t -=-,即2(2)4160n t t n --+=.①当2n =时,122S S =,此时8t =;②当2n ≠时,二次方程至少有一个正根,故0∆≥,解得22n ≥,若方程有两个非正根,此时12124021602x x n n x x n ⎧+=≤⎪⎪-⎨⎪=≥⎪-⎩,不等式组无解,故22n +≥,即12min1S S ⎛⎫=+ ⎪⎝⎭8t =+.()()()222222123123121211131212G x x x x y y y y y y y ⎡⎤=++=++=+++⎣⎦()22121216y y y y =++.而218y t ==+2221168y y ==-,故G 点坐标为(2,0).10.(I )(-1,1);(II )2716.【详解】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA12x +1)k +,|PQ|=2)Q x x -=-,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2'()(42)(1)f k k k =--+,所以f (k )在区间1(1,2-上单调递增,1(,1)2上单调递减,因此当k =12时,||||PA PQ ⋅取得最大值2716.【点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.。
巧用泰勒展开式解高考中函数不等式相关问题
巧用泰勒展开式解高考中函数不等式相关问题函数不等式,即一种经典的高考中的数学问题,在解决该问题的过程中,应用泰勒展开式大有裨益。
泰勒展开式是求解多元函数时常用的一种数学方法,可以用来求解函数不等式的正确答案。
这里将以一个求解不等式的例子,来介绍如何使用泰勒展开式来解决函数不等式问题。
首先,要解决函数不等式问题,需要了解原函数,并将其转化为可以使用泰勒展开式表达的形式,比如:函数不等式f(x)=2x^2+3x+5≥0,可以将其转化为f(x)=2(x-1)(x-2)+7≥0的形式。
然后,将原函数的参数代入泰勒展开式,根据泰勒展开式的定义,将函数不等式转化为多项式形式,从比较大小的原则出发,求解函数不等式的正确答案。
例如,f(x)=2(x-1)(x-2)+7≥0,带入泰勒展开式,得到:2(x²-3x+2)+7≥0,此时将函数不等式得到一个P(x)>=0的形式,其中P(x)=-3x²+6x-9,求解该不等式,根据不等式的性质,当P(x)<=0时,f(x)>=0,而当P(x)>=0时,f(x)<=0。
因此,这里的P(x)<=0的解为:x<=3 或 x>=2。
显然,整体的解为x<=3,因此最终解得函数不等式的解为:x<=3。
通过以上的分析,可以看出,泰勒展开式在求解高考中的函数不等式问题时,具有独特的作用,可以更加快捷的得到准确的答案。
虽然,泰勒展开式的使用只能用于一些比较简单的函数不等式问题,但在解决更复杂的问题时,仍然可以作为重要的辅助手段,使函数不等式问题得以有效解决。
此外,在解高考中的函数不等式问题时,应用泰勒展开式的过程还可以使用数学变换的方法,来更好地求解函数不等式。
例如:函数不等式f(x)=-5x+7≤0,可以将其变换为f(x)=2x-3≤0,之后结合泰勒展开式进行求解。
首先,用泰勒展开式将f(x)转化为P(x)=2x²-6x+9≤0,此时P(x)<=0的解为x<=3或 x>=2,所以最终的解为x<=3。
三角换元法,巧解高考题
生的应变能力$会使过程有趣!
解令 槡!&" %@槡"$$%2则@#$2#%"@+ (2+(!
# $ 可设@%#2TB(2%#B6@((- (#% 则-"%
@$2%#2TB($#B6@(%#槡#B6@($
% "
!
# $ # $ 由 ( -
(#%
得($
% "
-
%$% ""
而在我们的实际教学中我们是不是在完成数学
知识的教学过程中利用数学思想方法去指导数学教 学和数学解题在数学教学和解题的过程中去落实核 心素养的培养呢 于是就有了新的理解数学知识教 学是根本 是 载 体数 学 思 想 方 法 是 工 具数 学 核 心 素 养是目的!
参考文献 *!+张 文 贵!数 学 思 想 方 法 与 数 学 学 科 核 心 素 养 的 关
关键字换元,三角,参数范围,最值
! 引言
三角换元在代数和几何中都有广泛的应用!通过 换元可以减少未知元的个数和幂次!从而使复杂式子 简化达到解题的目的!
" 考题示例
例!%#(#!年全国理科数学乙 卷 第!!题&设 7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学活题的巧解方法一、代入法若动点),(y x P 依赖于另一动点),(00y x Q 而运动,而Q 点的轨迹方程已知(也可能易于求得)且可建立关系式)(0x f x =,)(0x g y =,于是将这个Q 点的坐标表达式代入已知(或求得)曲线的方程,化简后即得P 点的轨迹方程,这种方法称为代入法,又称转移法或相关点法。
【例1】(2009年高考广东卷)已知曲线C :2x y =与直线l :02=+-y x 交于两点),(A A y x A 和),(B B y x B ,且B A x x <,记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点),(t s P 是L 上的任一点,且点P 与点A 和点B 均不重合.若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;【巧解】联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221t y s x +=+=, 即252,212-=-=y t x s ,又点P 在曲线C 上,∴2)212(252-=-x y 化简可得8112+-=x x y ,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M 的轨迹方程为8112+-=x x y (4541<<-x ).【例2】(2008年,江西卷)设),(00y x P 在直线m x =)10,(<<±≠m m y 上,过点P 作双曲线122=-y x 的两条切线PA 、PB ,切点为A 、B ,定点M )0,(1m 。
过点A 作直线0=-y x 的垂线,垂足为N ,试求AMN ∆的重心G 所在的曲线方程。
【巧解】设1122(,),(,)A x y B x y ,由已知得到120y y ≠,且22111x y -=,22221x y -=,(1)垂线AN 的方程为:11y y x x -=-+,由110y y x x x y -=-+⎧⎨-=⎩得垂足1111(,)22x y x y N ++,设重心(,)G x y所以11111111()321(0)32x y x x m x y y y +⎧=++⎪⎪⎨+⎪=++⎪⎩ 解得1139341934x y m x y x m y ⎧--⎪=⎪⎪⎨⎪-+⎪=⎪⎩由22111x y -= 可得11(33)(33)2x y x y m m--+-=即2212()39x y m --=为重心G 所在曲线方程 巧练一:(2005年,江西卷)如图,设抛物线2:x y C =的焦点为F ,动点P 在直线02:=--y x l 上运动,过P 作抛物线C 的两条切线PA 、PB ,且与抛物线C 分别相切于A 、B 两点.,求△APB 的重心G 的轨迹方程.巧练二:(2006年,全国I 卷)在平面直角坐标系xOy 中,有一个以)3,0(1-F 和)3,0(2F 为焦点、离心率为23的椭圆,设椭圆在第一象限的部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x 、y 轴的交点分别为A 、B ,且向量+=,求点M 的轨迹方程二、直接法直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法叫直接法。
从近几年全国各地的高考数学试题来看,绝大大部分选择题的解答用的是此法。
但解题时也要“盯住选项特点”灵活做题,一边计算,一边对选项进行分析、验证,或在选项中取值带入题设计算,验证、筛选而迅速确定答案。
【例1】(2009年高考全国II 卷)已知双曲线)0,0(1:2222>>=-b a by a x C 的右焦点为F ,过F 且斜率为3的直线交C 于A 、B 两点。
若4=,则C 的离心率为( )(A )56(B )57 (C )58(D )59【巧解】设),(11y x A ,),(22y x B ,)0,(c F ,由4=,得),(4),(2211y c x y x c -=--∴214y y -=,设过F 点斜率为3的直线方程为c y x +=3,由⎪⎩⎪⎨⎧=--+=03222222b a y a x b c y x 消去x 得:032)3(42222=++-b y c b y a b , ∴⎪⎪⎩⎪⎪⎨⎧-=--=+224212222133)3(36a b b y y a b c b y y , 将 214y y -=代入得⎪⎪⎩⎪⎪⎨⎧-=---=-224222222334)3(363a b b y a b cb y 化简得⎪⎪⎩⎪⎪⎨⎧--=-=)3(43)3(32224222222a b b y a b c b y ,∴)3(43)3(3422422224a b b a b c b --=-, 化简得:)3(9)3(916222222a c a b a c +-=-=,∴223625a c =,25362=e ,即56=e 。
故本题选(A )【例2】(2008年,四川卷)设定义在R 上的函数)(x f 满足13)2()(=+⋅x f x f ,若2)1(=f ,则=)99(f ( )(A )13(B )2(C )213(D )132【巧解】∵)(13)2(x f x f =+,∴)()(1313)2(13)4(x f x f x f x f ==+=+ ∴函数)(x f 为周期函数,且4=T ,∴213)1(13)3()3244()99(===+⨯=f f f f 故选(C )巧练一:(2008年,湖北卷)若),1()2ln(21)(2+∞-++-=在x b x x f 上是减函数,则b 的取值范围是( )A .),1[+∞-B .),1(+∞-C .]1,(--∞D .)1,(--∞巧练二:(2008年,湖南卷)长方体ABCD —A 1B 1C 1D 1的8个顶点在同一个球面上,且AB=2,AD=,3AA 1=1,则顶点A 、B 间的球面距离是( )A .π22B .π2C .22πD .42π 三、定义法所谓定义法,就是直接用数学定义解题。
选择题的命题侧重于对圆锥曲线定义的考查,凡题目中涉及焦半径、通径、准线、离心率及离心率的取值范围等问题,用圆锥曲线的第一和第二定义解题,是一种重要的解题策略。
【例1】(2009年高考福建卷,理13)过抛物线)0(22>=p px y 的焦点F 作倾斜角为450的直线交抛物线于A 、B 两点,线段AB 的长为8,则=p .【巧解】依题意直线AB 的方程为2p x y -=,由⎪⎩⎪⎨⎧=-=pxy p x y 222消去y 得:04322=+-p px x ,设),(11y x A ,),(22y x B ,∴p x x 321=+,根据抛物线的定义。
2||2p x BF +=,2||1px AF +=,∴84||21==++=p p x x AB ,∴2=p , 故本题应填2。
【例2】(2008年,山东卷,理10)设椭圆C 1的离心率为135,焦点在x 轴上且长轴长为26. 若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )(A )1342222=-y x(B )15132222=-y x(C )1432222=-y x(D )112132222=-y x【巧解】由题意椭圆的半焦距为5=c ,双曲线2C 上的点P 满足|,|8||||||2121F F PF PF <=- ∴点P 的轨迹是双曲线,其中5=c ,4=a ,∴3=b ,故双曲线方程为1342222=-y x ,∴选(A )巧练一:(2008年,陕西卷)双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别是F 1,F 2,过F 1作倾斜角为30°的直线交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为( )A .6B .3C .2D .33巧练二:(2008年,辽宁卷)已知点P 是抛物线x y 22=上的一个动点,则点P到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) (A )217(B )3 (C )5 (D )29四、向量坐标法向量坐标法是一种重要的数学思想方法,通过坐标化,把长度之间的关系转化成坐标之间的关系,使问题易于解决,并从一定程度上揭示了问题的数学本质。
在解题实践中若能做到多用、巧用和活用,则可源源不断地开发出自己的解题智慧,必能收到事半功倍的效果。
【例1】(2008年,广东卷)在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F . 若=a ,=b ,则=( )A .41a +21b B .32a +31b C .21a +41b D .1a +2b【巧解】如图所示,选取边长为2的正方形ABCD则)0,2(B ,)2,2(C ,)2,0(D ,)1,1(O ,)23,21(E ,∴直线AE 的方程为x y 3=,联立⎩⎨⎧==23y x y 得)2,32(F∴)2,32(=,设BD y AC x AF +=,则)22,22()2,2()2,2(y x y x y x AF +-=-+=∴⎪⎩⎪⎨⎧=+=-2223222y x y x 解之得32=x ,31=y ,∴b a BD AC AF 31323132+=+=,故本题选B【例2】已知点O 为ABC ∆内一点,且=++OC OB OA 320,则AOB ∆、AOC ∆、BOC ∆的面积之比等于( ) A .9:4:1 B .1:4:9C .3:2:1D .1:2:3【巧解】不妨设ABC ∆为等腰三角形,090=∠B3==BC AB ,建立如图所示的直角坐标系,则点)0,0(B)3,0(A ,)0,3(C ,设),(y x O ,∵=++OC OB OA 320,即,0(),3(3),(2)3,(=--+--+--y x y x y x ∴⎩⎨⎧==3696y x 解之得23=x ,21=y ,即)21,23(O ,又直线AC 的方程为03=-+y x ,则点O 到直线AC 的距离2211|32123|22=+-+=h ,∵23||=AC ,因此49||||21=⋅=∆x AB S AOB ,43||||21=⋅=∆y BC S BOC ,23||21=⋅=∆h AC S AOC ,故选C巧练一:(2008年,湖南卷)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且,2,2==与则++=,2( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直巧练二:设O 是ABC ∆内部一点,且OB OC OA 2-=+,则AOB ∆与AOC ∆面积之比是 .五、查字典法查字典是大家比较熟悉的,我们用类似“查字典”的方法来解决数字排列问题中数字比较大小的问题,避免了用分类讨论法时容易犯的重复和遗漏的错误,给人以“神来之法”的味道。