遗传学所有重点内容总结

合集下载

遗传学所有重点内容总结

遗传学所有重点内容总结

第一章绪论1什么是遗传,变异?遗传、变异与环境的关系?(1).遗传(heredity):生物亲子代间相似的现象。

(2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。

遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。

生物与环境的统一,这是生物科学中公认的基本原则。

因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。

2.生物进化和新品种选育的三大因素是遗传,变异和选择四、近交与杂交在育种上的应用1、近亲繁殖在育种上的应用固定优良性状保持个别优秀个体的血统发现并淘汰隐性有害(不良)基因2、杂交在育种和生产上的应用在育种上,利用杂交组合不同品种、或品系、或类群间的优良特性,培育具有多种特点的优良品种在生产上,主要利用杂交产生的杂种优势杂种优势理论:显性假说:认为双亲对很多座位上的不同等位基因的纯合体形成杂种后,由于显性有利基因的积聚,遮盖了隐性有害基因,从而表现出超显性假说:认为双亲基因型异质结合所引起基因间互作杂种优势等位基因间无显隐性关系,但杂合基因间的互作> 纯合基因明显杂种优势特点:杂交(h y b r i d i z a t i o n):指通过不同个体之间的交配而产生后代的过程近交(i n b r e e d i n g):亲缘关系相近个体间杂交,亦称近亲交配近亲系数(F):是指个体的某个基因座上两个等位基因来源于共同祖先某个基因(即得到一对纯合的,而且遗传上等同的基因)的概率。

近交与杂交的遗传效应:近交增加纯合子频率,杂交增加杂合子频率。

近交降低群体均值,杂交提高群体均值。

近交使群体分化,杂交使群体一致。

近交加选择能加大群体间基因频率的差异,从而提高杂种优势。

近交产生近交衰退,杂交产生杂种优势数量性状遗传的多基因假说多基因假说要点:1.决定数量性状的基因数目很多;2.各基因的效应相等;3.各个等位基因的表现为不完全显性或无显性或有增效和减效作用;4.各基因的作用是累加性的。

遗传部分知识点总结

遗传部分知识点总结

遗传部分知识点总结遗传学是生物学的一个重要分支,研究从一代到下一代生物个体之间遗传特征的传递规律。

遗传学知识对于我们理解生物的进化、开展基因工程、研究遗传疾病等方面都有重要意义。

下面对遗传学的一些重要知识点进行总结。

1. 遗传物质遗传物质是决定生物遗传特征的物质基础。

在细胞核内,遗传物质主要由DNA组成。

DNA分子由脱氧核苷酸组成,包括脱氧核糖、磷酸基团和四种碱基(腺嘌呤、鸟嘌呤、胞嘧啶和鸟嘌呤)。

2. 基因与表现型基因是决定遗传特征的基本单位,它是影响一种特征性状的DNA序列。

基因存在于染色体上,每个基因都有特定的位置。

表现型是由基因决定的,包括外在形态、生理功能、行为特征等。

3. 遗传规律孟德尔是遗传学的奠基人,他通过豌豆杂交实验,提出了孟德尔遗传规律。

孟德尔遗传规律包括显性与隐性、分离定律、自由结合定律等,为后来遗传学的发展奠定了基础。

4. 遗传的变异遗传变异是指普通群体中基因型和表现型的差异。

遗传变异可以通过随机变异和遗传突变等方式产生,是生物进化的原动力。

5. 遗传的继承遗传的继承包括体细胞和生殖细胞的遗传。

体细胞遗传是指从父母细胞传给子代细胞的遗传,而生殖细胞遗传是指从父母传给后代的遗传。

6. 遗传的突变突变是指基因产生变异,导致个体表现型或基因型发生不同于常态的变化。

突变是遗传物质变异的原因之一,是生物进化的重要驱动力。

7. 杂交与杂种优势遗传的杂交是指两个不同种属的生物进行交配和繁殖。

杂种优势是指杂交后代比亲本更为适应环境和耐逆性更强的现象。

8. 遗传疾病遗传疾病是由基因突变引起的疾病。

常见的遗传疾病包括红细胞性贫血、地中海贫血、囊性纤维化、唐氏综合征等。

9. 基因工程与克隆基因工程是指利用人工手段改变生物体遗传物质的过程,包括基因的克隆、转移、修复等技术。

克隆是指利用细胞核移植等技术获得与母体一样的基因型个体。

10. 应用遗传学的知识在医学、农业、养殖业、环境保护等领域都有广泛的应用。

医学遗传学总结报告范文(3篇)

医学遗传学总结报告范文(3篇)

第1篇一、引言医学遗传学是一门研究遗传病的发生、发展、诊断、治疗和预防的学科。

随着分子生物学和遗传学的快速发展,医学遗传学在临床医学、预防医学和基础医学等领域发挥着越来越重要的作用。

本文将对医学遗传学的基本概念、研究方法、常见遗传病及其诊断与治疗等方面进行总结。

二、医学遗传学基本概念1. 遗传病:指由遗传因素引起的疾病,包括单基因遗传病、多基因遗传病和染色体异常遗传病。

2. 基因:生物体内具有遗传效应的DNA片段,是生物遗传信息的载体。

3. 基因组:一个生物体内所有基因的总和。

4. 基因表达:基因通过转录和翻译产生蛋白质的过程。

5. 遗传模式:指遗传病在家族中的传递规律。

三、医学遗传学研究方法1. 基因组学:研究生物体全部基因的结构、功能及其相互作用。

2. 分子遗传学:研究基因的结构、功能及其表达调控。

3. 细胞遗传学:研究染色体结构、数目和异常。

4. 遗传流行病学:研究遗传病在人群中的分布规律、遗传因素与环境因素的作用。

四、常见遗传病及其诊断与治疗1. 单基因遗传病(1)囊性纤维化:是一种常见的单基因遗传病,主要表现为肺部疾病、消化系统疾病和汗腺功能障碍。

诊断方法包括基因检测、临床表现等。

治疗主要包括药物治疗、手术治疗和基因治疗。

(2)唐氏综合征:是一种常见的染色体异常遗传病,主要表现为智力障碍、生长发育迟缓和特殊面容。

诊断方法包括染色体核型分析、基因检测等。

治疗主要包括康复训练、药物治疗等。

2. 多基因遗传病(1)高血压:是一种常见的多基因遗传病,主要表现为血压持续升高。

诊断方法包括血压测量、临床表现等。

治疗主要包括药物治疗、生活方式干预等。

(2)糖尿病:是一种常见的多基因遗传病,主要表现为血糖升高。

诊断方法包括血糖检测、临床表现等。

治疗主要包括药物治疗、饮食控制、运动等。

3. 染色体异常遗传病(1)地中海贫血:是一种常见的染色体异常遗传病,主要表现为贫血、黄疸等症状。

诊断方法包括血常规、基因检测等。

遗传学的知识点

遗传学的知识点

遗传学的知识点遗传学是生物学的一个重要分支,研究生物个体间遗传信息的传递和变化规律。

它涉及到基因、DNA、染色体等多个方面的知识点。

本文将以这些知识点为基础,介绍遗传学的相关内容。

一、基因的概念和结构基因是生物体内控制遗传信息传递和表达的基本单位。

它由DNA分子组成,位于染色体上。

基因的结构包括启动子、编码区和终止子等部分。

启动子是基因的起始位置,编码区是基因的主要部分,包含了编码蛋白质所需的信息,而终止子则是基因的结束位置。

二、DNA的结构和功能DNA是遗传物质的载体,它是由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶和鳞状嘧啶)组成的双螺旋结构。

DNA的功能主要包括遗传信息的传递和复制。

在细胞分裂过程中,DNA会复制自身,并将遗传信息传递给下一代细胞。

三、染色体的结构和遗传规律染色体是细胞内DNA的组织形式,它包含了许多基因。

人类细胞中有23对染色体,其中一对是性染色体。

染色体的结构分为染色质和着丝粒两部分。

遗传学的研究发现,染色体遵循着孟德尔的遗传规律,即显性和隐性基因的遗传。

四、遗传变异和突变遗传变异是指在基因或染色体水平上的遗传信息的改变。

它包括基因突变、染色体结构变异和染色体数目变异等。

基因突变是指基因序列发生改变,包括点突变、插入突变和缺失突变等。

染色体结构变异是指染色体的部分区域发生改变,如倒位、易位等。

染色体数目变异是指染色体数目发生改变,如三体综合征等。

五、遗传性疾病的研究遗传学的一个重要应用领域是研究遗传性疾病。

遗传性疾病是由基因突变引起的疾病,如先天性心脏病、遗传性癌症等。

通过遗传学的研究,可以了解疾病的遗传方式、致病基因和相关的遗传机制,为疾病的预防和治疗提供依据。

六、遗传工程和转基因技术遗传工程是利用遗传学的原理和方法对生物体进行基因改造的技术。

其中,转基因技术是一种常用的遗传工程方法,它将外源基因导入到目标生物体中,使其具有特定的性状或功能。

转基因技术在农业、医学和工业等领域有着广泛的应用。

遗传常考知识点总结

遗传常考知识点总结

遗传常考知识点总结遗传是生物学的一个重要分支,其研究的对象是生物种群的基因遗传规律以及基因在传代中的作用。

遗传学作为一门分支学科,一直受到广大生物学学科的关注和研究。

遗传学的基本概念包括基因的组成与结构、遗传变异的形成、遗传物质的传递与改变、遗传蛋白质、遗传规律、遗传分析、遗传调控、以及遗传工程等等。

以下是遗传常考知识点总结。

1. 细胞核遗传物质DNADNA是生物细胞核中的一种有机物质,是遗传信息的携带者,由许多碱基对连接而成。

DNA的结构包括双螺旋结构和氢键结合,具有一定的稳定性和复制能力。

DNA的主要功能包括遗传信息的传递、蛋白质的合成、细胞的分裂繁殖等。

DNA的组成包括脱氧核糖、磷酸基团和碱基对,其中碱基对的配对是遗传信息的基础。

2. 染色体结构和功能染色体是细胞核内具有颜色染料的有丝分裂期可见的形态。

染色体的结构包括染色体主体、着丝粒、着丝粒鞘和染色体臂、着丝粒纤维等。

染色体在有丝分裂期和减数分裂期分别具有不同的结构和功能。

染色体的功能主要包括遗传信息的传递与稳定、生物体的性状表现、遗传变异的形成等。

3. 细胞的有丝分裂和减数分裂有丝分裂是细胞生长和增殖的一种重要方式。

其过程包括染色体的复制、有丝分裂前期、有丝分裂中期、有丝分裂后期和细胞质裂变。

减数分裂是生殖细胞生殖遗传的一种方式,其过程包括减数分裂一和减数分裂二,其中包括叉互换的发生、染色体的随机分布等。

4. 遗传规律和分子生物学基础遗传规律主要包括孟德尔遗传规律、连锁不连锁基因的遗传规律、隐性和显性基因的遗传规律、分离和自由组合基因的遗传规律、基因重组、等位基因的遗传规律等。

分子生物学基础主要包括DNA结构与功能、RNA结构和功能、蛋白质结构和功能、基因表达与调控等。

5. 遗传物质的变异性遗传物质的变异性是生物种群的一种重要特征。

变异性的来源包括生物体个体的变异、染色体结构的变异、染色体数量的变异、染色体形态的变异等。

变异性的类型包括单基因和多基因的变异、基因突变、等位基因的变异、随机结构变异等。

医学遗传学重点知识总结

医学遗传学重点知识总结

医学遗传学重点知识总结
1. 基本概念
- 遗传学:研究基因传承和基因变异的科学
- 基因:携带遗传信息的DNA序列
- 染色体:细胞核中包含基因的结构
- 基因型:个体的遗传信息
- 表型:个体的可观察特征
- 突变:基因发生的改变
- 遗传变异:基因型和表型在群体中的差异
2. 遗传物质
- DNA:携带遗传信息的分子
- RNA:参与基因表达的分子
- 蛋白质:由基因表达产生的功能分子
3. 遗传模式
- 常染色体显性遗传:由位于常染色体上的显性基因引起的遗传疾病
- 常染色体隐性遗传:由位于常染色体上的隐性基因引起的遗传疾病
- X连锁遗传:由位于X染色体上的基因引起的遗传疾病,男性更容易患病
- Y连锁遗传:由位于Y染色体上的基因引起的遗传疾病,男性特有
4. 遗传疾病
- 单基因遗传疾病:由单个基因突变引起的疾病,如先天性心脏病、血友病等
- 多基因遗传疾病:由多个基因突变和环境因素共同作用引起的疾病,如糖尿病、高血压等
- 染色体异常疾病:由染色体结构或数量异常引起的疾病,如唐氏综合征、爱德华氏综合征等
5. 基因组学
- 基因组:一个个体的全部基因
- 基因组测序:对个体基因组的全部DNA序列进行测定和分析- 基因组变异:个体基因组中的DNA序列差异
6. 人类遗传学
- 人类基因组计划:对人类基因组进行测序和研究的国际合作项目
- 单核苷酸多态性:个体基因组中单个碱基的变异,如SNP
- 遗传咨询:通过遗传学知识为个体提供遗传疾病的评估和咨询
以上是医学遗传学的一些重点知识总结,仅供参考。

如有任何疑问,建议咨询专业遗传学医生或相关专家。

大一遗传学知识点汇总

大一遗传学知识点汇总

大一遗传学知识点汇总遗传学是研究遗传规律和遗传现象的科学,它在生物学领域中占据重要地位。

下面将对大一遗传学的一些重要知识点进行汇总。

一、基本概念1. 遗传学的定义:研究性状在遗传上的规律传递和遗传变异的科学。

2. 基因:遗传物质的基本单位,携带着遗传信息。

3. 染色体:细胞中储存基因的结构,人体细胞中有46条染色体。

4. 纯合和杂合:个体基因型中是否存在相同的等位基因决定了其纯合或杂合状态。

二、遗传规律1. 孟德尔遗传定律:包括单因素遗传定律、二因素遗传定律和多因素遗传定律。

2. 基因型和表型:基因型决定了个体的表型,表型结果受到基因型和环境的共同影响。

3. 显性和隐性:显性基因表现在个体的表型上,而隐性基因只有在纯合状态下才会表现出来。

三、遗传变异1. 突变:某个或某些基因发生突然而明显的变化,引起遗传物质的改变。

2. 染色体畸变:由于染色体异常引起的遗传变异,如染色体缺失、重复、倒位等。

3. 基因重组:染色体上的互换和基因间的重组,使得基因搭配产生新的组合。

四、遗传疾病1. 单基因遗传病:由单一基因突变引起的遗传疾病,如先天性遗传性失明、脊髓性肌萎缩症等。

2. 多因素遗传病:由多个基因和环境因素共同作用引起的遗传疾病,如糖尿病、高血压等。

3. 染色体异常病:由于染色体畸变引起的遗传疾病,如唐氏综合征、克氏综合征等。

五、遗传工程和基因编辑1. PCR技术:聚合酶链式反应,用于扩增DNA片段。

2. 基因工程:通过改变生物体的遗传物质来实现特定的目的,如基因克隆、重组DNA技术等。

3. 基因编辑:通过CRISPR-Cas9技术等手段对生物体的基因进行精确编辑。

六、人类遗传学1. 人类遗传特点:人类遗传物质与其他生物有许多共同之处,但也具有自己的特点。

2. 人类基因组计划:旨在解析出人类基因组的组成和功能,对人类遗传学的研究有重要影响。

3. 遗传咨询:通过遗传咨询师向个体提供有关遗传疾病风险和生育选择等方面的专业建议。

医学遗传学 重点总结

医学遗传学  重点总结

医学遗传学第一章绪论本章节重点:遗传病的概念、遗传病的类型一、医学遗传学的定义1、医学遗传学(medical genetics):是遗传学与医学相结合的一门学科,研究对象是与人类遗传有关的疾病,即遗传病(genetic disease)。

2、研究内容:遗传病的发生机理(Etiology)、传递方式(Passage)、诊断(Diagnosis)、治疗(Therapy)、预后(Prognosis)、再发风险(Recurrence)、预防方法(Preventive medicine),从而控制遗传病在一个家庭中的再发,降低在人群中的危害,增进人类的健康水平。

3、什么是遗传?Genetics is the study of genes, heredity, and variation in living organisms.二、遗传病的定义1、关于遗传病的一些误解:家族性疾病(familial disease)就是遗传病、先天性疾病(congenital disease)就是遗传病2、遗传病(genetic disease):遗传物质改变所导致的疾病。

包括单基因病、多基因病、染色体病、体细胞遗传病。

三、遗传病的类型1、单基因病(single gene disorder):如果一种遗传病的发病仅仅涉及一对基因,这个基因称为主基因(major gene),其导致的疾病称为单基因病。

常染色体显性(AD)遗传病、常染色体隐性(AR)遗传病、X 连锁显性(XD)遗传病、X连锁隐性(XR)遗传病、Y连锁遗传病、线粒体病2、多基因病(polygenic disease):一些常见的疾病或畸形有复杂的病因,既涉及遗传基础,又需要环境因素的作用才发病,也称为多因子病(multifactorial disease,MF)。

遗传基础不是一对基因,而是涉及到许多对基因,这些基因称为微效基因(minor gene)。

3、染色体病(chromosome disease):由于染色体数目或结构的改变而导致的疾病称为染色体病。

遗传学知识点总结

遗传学知识点总结

遗传学知识点总结一、遗传物质的结构与功能1. DNA的结构DNA是生物体内的遗传物质,是由脱氧核糖核酸(Deoxyribonucleic Acid)组成的长链分子。

DNA的结构包括磷酸基团、脱氧核糖糖分子和碱基,其中碱基包括腺嘌呤(Adenine)、鸟嘌呤(Guanine)、胸腺嘧啶(Thymine)和鸟嘧啶(Cytosine)。

2. DNA的功能DNA携带了生物体的遗传信息,其功能包括遗传信息的存储、复制、传递和表达。

DNA通过蛋白质合成过程中的转录和翻译来表达遗传信息,从而控制生物体的内部结构和功能。

3. RNA的结构与功能RNA是核糖核酸(Ribonucleic Acid)的缩写,其结构与DNA类似,但在碱基配对中胸腺嘧啶被尿嘧啶(Uracil)代替。

RNA主要包括mRNA、tRNA和rRNA等,具有遗传信息传递和调控蛋白质合成的功能。

二、遗传信息的传递与表达1. 遗传信息的传递遗传信息的传递是指生物体将DNA携带的遗传信息传递给下一代的过程,其中包括有丝分裂和减数分裂两种方式。

有丝分裂是体细胞的有丝分裂,其目的是细胞增殖;减数分裂是生殖细胞的有丝分裂,其目的是产生生殖细胞。

2. 遗传信息的表达遗传信息的表达是指DNA携带的遗传信息通过转录和翻译的过程表达为蛋白质的过程。

蛋白质是生物体内大部分功能酶和结构蛋白的主要组成部分,控制着生物体的内部结构和功能。

三、遗传变异与突变1. 遗传变异遗传变异是指生物体在遗传信息传递和表达过程中发生的基因型、表现型及遗传频率的变化。

遗传变异是生物种群适应环境变化及进化的基础。

2. 突变突变是指生物体的DNA分子发生的永久性的基因突变,其结果是导致个体遗传信息的改变,从而影响表型的性状。

突变是造成遗传变异的重要原因之一。

四、遗传疾病1. 遗传疾病的分类遗传疾病是由单基因或多基因遗传缺陷引起的一类疾病,包括单基因遗传病、多基因遗传病、细胞遗传病和染色体遗传病等。

遗传遗传知识点总结

遗传遗传知识点总结

遗传遗传知识点总结一、基本遗传知识1. 遗传物质:DNA是生物体内的遗传物质,携带着生物体的遗传信息。

DNA是由核糖核酸(RNA)和蛋白质组成的,它决定了生物的遗传性状。

2. 基因:基因是DNA分子上特定的DNA序列,负责携带和表达一个或多个特定的遗传特征。

3. 遗传变异:遗传变异是指在遗传过程中,由于基因重组、突变等原因,导致新的遗传信息出现的现象。

4. 遗传物质的传递:遗传物质的传递是指遗传信息从父母传递给子代的过程。

在有性生殖中,DNA通过卵子和精子传递给下一代。

5. 遗传学定律:孟德尔定律是遗传学的基本定律,包括显性隐性定律、分离定律和自由组合定律。

这些定律总结了基因的遗传规律,对后世的遗传学研究产生了重要影响。

二、遗传物质DNA的结构和功能1. DNA的结构:DNA的结构为双螺旋结构,由磷酸、脱氧核糖和四种不同的碱基(腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶)组成。

2. DNA的功能:DNA的主要功能是存储遗传信息,并通过转录和翻译过程,指导蛋白质的合成。

这种转录和翻译过程被称为中心法则。

三、遗传变异与突变1. 遗传变异的原因:遗传变异可以由自然选择、基因重组、突变等多种原因引起。

2. 突变:突变是指遗传物质的变化,包括点突变、插入突变和缺失突变等。

突变可能导致基因功能的改变,从而影响生物的表型特征。

3. 遗传多样性:遗传多样性是指生物个体之间遗传差异的存在。

这种多样性是基因重组和突变等遗传变异的结果。

四、遗传测定与遗传连锁1. 遗传测定:遗传测定是指通过基因型(allele组合)来推测个体表型的方法。

常用的遗传测定方法有孟德尔方格、3:1比例检验、卡方检验等。

2. 遗传连锁:遗传连锁是指两个或多个基因由于位于同一染色体上而具有一定联系,它们的分离程度远小于因出现在不同染色体上而易于分离的基因。

遗传连锁吻合性的大小取决于两个或多个基因间的距离,可以通过连锁图谱来描述。

五、基因组学和人类遗传学1. 基因组学:基因组学是对整个基因组结构和功能的研究,包括基因组测序、基因组比较、功能基因组学等。

完整版遗传学知识点归纳整理

完整版遗传学知识点归纳整理

完整版遗传学知识点归纳整理遗传学是生物学中的一个重要分支,主要研究生物体内遗传信息的传递、变异和表达。

常见的遗传学知识点包括:孟德尔遗传定律、基因结构和功能、染色体遗传、基因表达和调控等。

一、孟德尔遗传定律孟德尔遗传定律是现代遗传学的基础,包括三个基本定律。

1.显性和隐性遗传定律显性和隐性是指两个基因型之间的关系,孟德尔发现,如果一个个体有两个相同的基因表现型,它就是显性的;如果两个基因不同,则表现为隐性特征,不表达。

2.分离定律分离定律是指在杂合子生殖过程中,两个基因的亚型在生殖细胞中是随机分离的,每个细胞只包含一个亚型,这样每个后代都有一半携带一个亚型,一半携带另一个亚型。

3.自由组合定律自由组合定律是指在配子形成过程中,两个基因的不同亚型是随机组合的,这样可以得到更多的基因型组合。

二、基因结构和功能基因是指控制生物性状的遗传物质,主要分为DNA和RNA 两种。

基因包括以下几种结构和功能:1.基因的结构基因通常由DNA序列编码,基因组成的DNA序列是由四个核苷酸(A、T、C、G)组成的,其中序列的排列方式决定了基因编码的蛋白质序列。

2.基因的功能基因具有不同的功能,包括编码蛋白质、调控基因表达、储存信息等。

3.基因的表达基因表达是指基因转录为RNA,然后翻译为蛋白质的过程。

基因表达可以在转录、剪切、转运、翻译以及后期修饰等环节中进行调控。

三、染色体遗传染色体是负责遗传信息的传递和复制的结构,染色体遗传主要研究染色体的结构和功能,以及染色体异常引起的遗传变异。

1.染色体结构染色体结构主要包括染色体的形态、染色体数目、染色体的组成等。

2.遗传变异在染色体遗传中,遗传变异是指基因或染色体的序列、结构或数目的改变。

最常见的遗传变异包括核型异常、染色体结构异常和单基因突变等。

四、基因表达和调控生物内部的基因表达和调控对于遗传学来说至关重要,它们包括:1.基因表达基因表达是指基因转录为RNA,然后翻译为蛋白质的过程。

医学遗传学背诵重点分章复习重点知识总结

医学遗传学背诵重点分章复习重点知识总结

《医学遗传学》背诵重点第一章绪论【名词解释】1、遗传性疾病(genetic disease):简称遗传病,是指遗传物质改变(基因突变或染色体畸变)所引起的疾病。

2、先天性疾病:是指个体出生后即表现出来的疾病。

大多数是遗传病与遗传因素有关的疾病和畸形。

3、家族性疾病:是指某些表现出家族性聚集现象的疾病,即在一个家族中有多人同患一种疾病。

【简答题】遗传病的特征及分类(1)特征:①垂直遗传②基因突变或染色体畸变是遗传病发生的根本原因,也是遗传病不同于其他疾病的主要特征。

③生殖细胞或受精卵发生的遗传物质改变才能遗传,而体细胞中遗传物质的改变,并不能向后代传递。

④遗传病常有家族性聚集现象。

(2)分类:(一)单基因病:由染色体上某一等位基因发生突变所导致的疾病。

①常染色体显性遗传病②常染色体隐性遗传病③X连锁隐性遗传病④X连锁显性遗传病⑤Y连锁遗传病⑥线粒体遗传病(二)多基因病:由两对以上的等位基因和环境因素共同作用所致的疾病。

(三)染色体病:染色体数目或结构改变所致的疾病。

(四)体细胞遗传病:体细胞中遗传物质改变所致的疾病。

第二章基因【名词解释】1、基因(gene):是合成一种有功能的多肽链或者RNA分子所必需的一段完整的DNA序列。

2、断裂基因(split gene):真核生物结构基因包括编码序列和非编码序列两部分,编码顺序在DNA分子中是不连续的,被非编码顺序分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因。

3、基因突变(gene mutation):是DNA分子中核苷酸序列发生改变,导致遗传密码编码信息改变,造成基因的表达产物蛋白质的氨基酸变化,从而引起表型的改变。

4、外显子(exon):编码顺序称为外显子5、内含子(intron):非编码顺序称为内含子6、多基因家族(mumlti gene family):指某一共同祖先基因经过重复和变异所产生的一组基因。

来源相同、结构相似、功能相关。

7、假基因(pseudo gene):基因序列与具有编码功能的类α和类β珠蛋白基因序列类似,因为不能编码蛋白质,所以称为假基因。

遗传学基础理论知识点总结

遗传学基础理论知识点总结

遗传学基础理论知识点总结遗传学是研究遗传现象和遗传规律的学科,它揭示了生物遗传信息传递的机制。

本文将从基础理论角度,总结遗传学的重要知识点。

1.遗传物质的发现:早在1869年,苏黎世大学的孟德尔通过豌豆杂交实验,发现了遗传物质的存在。

他提出了两个基本的遗传原则:显性和隐性,以及等位基因和基因分离的定律。

2.DNA的结构:DNA是生物体内负责遗传信息传递的分子,它的结构由Watson和Crick于1953年提出。

DNA分子由两条互补的链组成,这两条链通过碱基配对相互结合,形成双螺旋结构。

碱基配对规则是腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,胞嘧啶(C)与鸟嘌呤(G)之间形成三个氢键。

3.基因和染色体:基因是DNA分子上的一个特定区域,它携带着遗传信息。

染色体是细胞核中DNA的组织形式,人类细胞中有46条染色体,其中包含了大约2万个基因。

4.遗传信息的传递:遗传信息的传递是通过基因的表达来实现的。

基因的表达包括转录和翻译两个过程。

转录是指DNA的信息被转录成RNA分子,而翻译则是RNA分子通过核糖体的作用,转化为特定的蛋白质。

5.遗传变异:遗传变异是指在基因水平上的遗传信息的改变。

常见的遗传变异包括突变和重组。

突变是指DNA序列的改变,可以导致新的基因型和表型。

重组是指染色体上的基因片段在有丝分裂或减数分裂过程中发生重新组合,产生新的基因型。

6.遗传学定律:遗传学定律是描述遗传规律的基本原则。

孟德尔定律包括了两个原则:随机分离定律和自由组合定律。

随机分离定律指的是在杂交中,各个基因分离是相互独立的;自由组合定律指的是不同的基因对在杂交过程中可以自由组合。

7.基因型与表型:基因型是指个体的基因组成,而表型是指基因组成所表现出来的特征。

基因型和表型之间存在着复杂的关系,包括显性遗传、隐性遗传、共显性遗传等。

8.遗传病和遗传咨询:遗传病是由于个体的基因突变导致的疾病。

遗传咨询是指通过对个体的遗传信息进行分析和评估,为个体和家族提供遗传风险评估以及生殖选择方面的建议。

(完整版)遗传学知识点归纳(整理)3篇

(完整版)遗传学知识点归纳(整理)3篇

(完整版)遗传学知识点归纳(整理)(一)基因、DNA和染色体1.基因:指遗传信息在染色体上的基本单位,是控制个体形态、结构、功能以及遗传特征的遗传物质。

2.DNA:脱氧核糖核酸,是一种大分子聚合物,包含四种碱基,分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)、胞嘧啶(C),这四种碱基的不同排列组合构成了不同的基因。

3.染色体:指遗传信息在细胞有丝分裂过程中可被观察和测定的可见的结构,是由DNA、蛋白质等构成的细胞核的主要组成部分,人类体细胞中通常有46条染色体(23对),其中一对性染色体决定个体的性别。

4.基因表达:指基因信息从DNA转录成RNA再翻译成蛋白质的过程,是生物体表现出各种形态、性状和生理功能的基础。

5.突变:指基因的突发性的基因变异,可导致个体的遗传特征发生变化,阳性突变可能会导致疾病的发生。

(二)遗传规律1.孟德尔遗传规律:指在同种基因型的个体之间产生的后代,表现出明显的分离和随机性。

2.随机吸配规律:指不论个体(除果蝇外),只要其一对染色体上的基因位点相互独立,其分离组合在后代的频率和概率不受影响而呈随机排列的规律。

3.连锁和基因重组:指一对染色体上的多个基因位点由于位置的接近而具有连锁性,但两个染色体在有丝分裂和减数分裂中的重组作用会破坏连锁基因,从而形成新的联合和分离组合。

4.多因素遗传规律:指人类遗传性状和疾病的发生、发展和表现受多个基因和环境因素相互作用的影响。

5.基因剪接:指在转录过程中RNA前体在剪接过程中剪下不必要的外显子以及与此同时,选择性的保留某些外显子与内含子并将其接合在一起,形成成熟RNA的过程。

(三)遗传学应用1.遗传学诊断:利用遗传学原理对个体遗传信息进行检测和分析,以确定某些遗传性状或疾病的遗传方式和危险程度。

2.基因治疗:指通过利用细胞和基因工程技术,将正常基因导入患者体内来代替缺少或异常的基因,以治疗某些遗传性疾病。

3.基因编辑:指使用CRISPR/Cas9等技术对人类基因进行修饰和编辑,可用于去除病原体基因、纠正遗传缺陷等。

高中生物遗传的知识点总结

高中生物遗传的知识点总结

高中生物遗传的知识点总结遗传学是高中生物课程中的一个重要组成部分,它涉及生物体性状的传递和变异规律。

以下是高中生物遗传的知识点总结:1. 遗传的物质基础- DNA是主要的遗传物质,它的结构为双螺旋。

- 基因是DNA分子上的一段特定序列,负责编码生物体的特定性状。

- 染色体是DNA和相关蛋白质的复合体,存在于细胞的核中。

2. 孟德尔遗传定律- 孟德尔通过豌豆植物的杂交实验,提出了遗传的两个基本定律:分离定律和自由组合定律。

- 分离定律:在有性生殖过程中,一个性状的两个等位基因在形成配子时分离,每个配子只含有一个等位基因。

- 自由组合定律:不同性状的基因在形成配子时,它们的分离和组合是相互独立的。

3. 遗传的模式- 显性和隐性:显性基因在杂合子中能够表现出来,而隐性基因则不能。

- 等位基因:控制同一性状的不同形式的基因。

- 纯合子和杂合子:纯合子指两个等位基因相同的个体,杂合子则是指两个等位基因不同的个体。

4. 性别遗传- 性染色体:决定性别的染色体,人类中女性为XX,男性为XY。

- 性别连锁遗传:某些基因位于性染色体上,因此其遗传与性别相关联。

5. 遗传变异- 基因突变:基因序列发生改变,可能导致新的性状出现。

- 基因重组:在有性生殖过程中,父母的基因重新组合,产生新的基因型。

6. 人类遗传病- 单基因遗传病:由单个基因突变引起的遗传病,如遗传性肌营养不良。

- 多基因遗传病:由多个基因及环境因素共同作用引起的遗传病,如高血压、糖尿病。

- 染色体异常遗传病:由染色体数目或结构异常引起的遗传病,如唐氏综合症。

7. 遗传学的应用- 基因治疗:通过改变或替换异常基因来治疗遗传病。

- 遗传工程:通过人工手段改变生物体的遗传特性,如转基因技术。

8. 遗传咨询- 遗传咨询旨在帮助个体和家庭了解遗传病的风险,并提供相关的预防和治疗建议。

9. 遗传学实验技术- PCR技术:用于快速复制特定DNA片段的技术。

- DNA测序:确定DNA分子中精确的核苷酸序列。

遗传的知识点总结

遗传的知识点总结

遗传的知识点总结1. 基因:基因是生物遗传信息的基本单位,具有遗传性质和功能性质。

基因分为等位基因和基因座位,等位基因是指在同一基因位点上的不同分子形式,基因座位是指染色体上遗传信息的位置。

基因是由DNA编码的,编码了生物体的遗传信息。

2. 染色体:染色体是细胞内的细胞器,其中包含了大部分的遗传信息,是遗传信息的主要载体。

人类的细胞中有23对染色体,其中一对是性染色体,其余22对是体染色体。

染色体中包含了基因和非基因序列,基因位于染色体的染色质上。

3. 遗传物质:遗传物质有DNA和RNA两种,DNA是携带生物体遗传信息的主要分子,RNA在遗传信息的传递和表达中也发挥着重要的作用。

DNA和RNA都包含了磷酸骨架和碱基对,碱基对的配对规则是腺嘌呤(A)与胸腺嘧啶(T),鸟嘌呤(G)与胞嘧啶(C)。

4. 遗传信息传递:遗传信息的传递是生物个体遗传特征的基础,它包括了DNA的复制、RNA的转录和翻译等过程。

DNA的复制是细胞分裂过程中发生的,在细胞分裂中,DNA能够准确复制并传递给下一代细胞。

RNA的转录是指DNA分子上的遗传信息被转录成RNA分子的过程,而RNA的翻译是指mRNA上的遗传信息被翻译成蛋白质分子的过程。

5. 遗传规律:遗传学包括了孟德尔遗传定律、连锁性、隐性性和显性性等遗传规律。

孟德尔遗传定律是指孟德尔通过豌豆实验发现的遗传规律,包括了显性性、隐性性、分离定律和自由组合定律等。

连锁性是指在同一染色体上的基因遗传连锁,隐性性和显性性是指基因表现的两种状态。

6. 遗传变异:遗传变异是指生物体中个体性状的差异,包括了基因型的差异和表现型的差异。

遗传变异是生物进化的基础,通过遗传变异,生物体可以经过自然选择和适应环境,从而逐渐形成适应环境的适应性特征。

7. 遗传疾病:遗传学研究了许多遗传疾病的遗传机制,包括了单基因遗传病、染色体异常病和多基因遗传病等。

单基因遗传病是由单个基因突变引起的疾病,如囊性纤维化、地中海贫血等;染色体异常病是由染色体的结构或数字异常引起的疾病,如唐氏综合征、克氏综合征等;多基因遗传病是由多个基因的遗传变异引起的疾病,如糖尿病、高血压等。

遗传学 知识点总结

遗传学 知识点总结

遗传学知识点总结1. 遗传学的基本概念遗传学是研究生物体遗传现象和遗传规律的一门生物学科学。

它是研究生物的遗传现象、遗传规律及其内在机理的学科。

遗传学研究的对象是生物体内的基因,而基因是操纵着生物体发育和遗传特性的物质基础。

遗传学所研究的基本问题包括:基因的特性、遗传的契约、遗传变异、遗传的规律、遗传的机理和遗传的应用。

2. 遗传变异在所有的生物体中,都存在着遗传变异现象。

遗传变异是指种群内个体之间的遗传性差异。

在多种多样的生物性命中,遗传变异是生物种群规模维系的前提条件。

遗传变异包括两种类型:一种是基因型的变异,即单个基因型的变异;另一种是表现型的变异,即个体的外部表现差异。

在生物体繁殖过程中,遗传变异是不可避免的,而且它提供了生物进化的基础。

遗传变异对群体遗传学和进化遗传学都是非常重要的。

3. 基因传递基因传递是指基因在生物体繁殖过程中传递给后代的过程。

在有世代繁殖的生物体中,基因在个体繁殖过程中,通过生殖细胞传递给后代,并在后代中表现出来。

基因传递遵循一定的遗传规律,其中最引人注目的是孟德尔的遗传规律。

孟德尔通过豌豆杂交实验,发现了基因的分离规律和再组合规律,从而揭示了基因的遗传规律。

基因传递不仅有助于解释基因在生物体中的传递方式,还有助于解释基因在群体中的遗传分布规律。

因此,基因传递是遗传学研究的基本内容。

4. 基因工程基因工程是一种通过技术手段对生物体进行基因改造的方法。

通过基因工程,可以将外源基因导入到宿主生物体中,并使之表达。

基因工程已经在农业、医学、环境保护等领域得到广泛的应用。

在农业上,基因工程可以通过转基因作物等手段,提高植物的抗病性、耐旱性和抗虫性,从而提高农产品的产量和质量。

在医学上,基因工程可以通过基因治疗等手段,治疗一些遗传性疾病。

在环境保护方面,基因工程可以通过生物技术净化污染环境。

基因工程是遗传学的一个重要领域,也是人类社会发展的一个重要方向。

5. 群体遗传学群体遗传学是研究种群内个体之间遗传关系的一门学科。

(完整版)遗传学知识点归纳(整理)

(完整版)遗传学知识点归纳(整理)

(完整版)遗传学知识点归纳(整理)遗传学是生物学的一个分支学科,主要研究遗传物质的不同表现形式和遗传变异规律。

下面将介绍一些遗传学的基本知识点。

1.基因和染色体基因是生物体中控制遗传性状的基本单位。

在细胞核中,基因位于染色体上。

染色体是一条由DNA组成的长链,携带着生物体所有的遗传信息。

人类细胞中有46条染色体,其中23条来自父亲,23条来自母亲。

每条染色体都有特定的基因数目和位点,基因位于染色体的特定区域,称为基因座。

2.基因型和表型一个生物体的基因型是指其染色体上的基因组合情况。

而表型则是指基因型所决定的外表现形式。

例如,人眼睛颜色的基因型可能是BB、Bb或bb,而表型则是指眼睛的实际颜色。

3.等位基因和显性隐性基因有不同的形式,称为等位基因。

一个基因座上可以存在两个相同或不同的等位基因。

如果两个等位基因对表型的影响相同,则称其遗传方式为显性。

否则,其遗传方式为隐性。

例如,人类中黑眼睛的等位基因为显性,而蓝眼睛的等位基因为隐性。

4.遗传规律遗传规律是遗传学的基本原理。

著名的遗传学家门德尔发现了自然选择和基因遗传的基本原则,创立了遗传学的基础。

其中,最为重要的遗传规律有三条,分别是基因分离定律、自由组合定律和显性与隐性规律。

5.遗传变异遗传变异是指个体间或群体内遗传组成差异的存在。

遗传变异并不一定表明遗传缺陷或疾病,有些变异可能使个体更适应环境,提高生存能力。

例如,一些人拥有对疾病的抗性等特殊遗传优势。

6.突变和突变模型突变是指DNA序列的改变,可导致基因表达发生异常,进而影响表型。

突变可以是自然发生的,也可以是受到化学物质、放射线等影响引起的。

突变模型则是一种定量描述突变率的数学模型,可以用于研究群体间遗传变异的规律。

7.遗传工程和生物技术遗传工程和生物技术是遗传学应用的主要领域。

遗传工程通常利用现代分子生物学技术进行基因组修饰,用于改良或创造新的品种,以满足人类需求。

而生物技术则是指利用生物体特殊的生理、代谢或分子机制进行研究或应用的技术,例如基因片段克隆、DNA测序、酶学和生物反应器工程等领域。

遗传所有知识点总结

遗传所有知识点总结

遗传所有知识点总结一、遗传物质的分子结构与功能在遗传学中,遗传物质是一个基础性概念,它是生物体内决定遗传特性的物质基础。

遗传物质的分子结构与功能是遗传学研究的核心内容。

我们知道,DNA是所有生物体内的遗传物质,它由四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)构成的双螺旋结构。

DNA 分子的功能主要包括储存遗传信息、复制遗传信息、传递遗传信息和表达遗传信息。

RNA 也是一种重要的遗传物质,其主要功能是协助DNA进行基因表达。

此外,蛋白质也是遗传物质的一部分,它是细胞功能和结构的主要组成部分。

二、遗传变异与基因突变遗传变异是不同个体间遗传特点的差异,是生物进化的原始材料,也是物种适应环境变化的基础。

基因突变是遗传物质发生变异的一种重要方式,是遗传学研究的重要内容之一。

基因突变可分为点突变、片段突变和染色体结构变异等多种类型。

基因突变的产生与维持是遗传变异的重要原因,它对生物体的适应性和进化起到了至关重要的作用。

三、基因的结构与功能基因是细胞内遗传信息的基本单位,是决定生物性状的基本单元。

基因的结构与功能是遗传学的一个重要研究方向。

在遗传学中,我们常常将基因分为等位基因、基因座和基因频率等多个概念来研究基因的结构和功能。

基因的功能主要包括遗传信息的储存、传递和表达三个方面。

同时,基因的表达调控也是基因功能的重要组成部分,它对生物体内部各种生命过程的进行起到了至关重要的作用。

四、遗传性状的表现规律在遗传学中,遗传性状是指由基因决定的生物体的某一特征。

遗传性状的表现规律是遗传学研究的一个主要内容。

遗传性状的表现规律主要包括孟德尔遗传规律、连锁不平衡和多基因遗传等多个方面。

孟德尔遗传规律是遗传学的重要基础理论,它包括单基因纯合子表现为分离等位基因、单基因杂合子表现为互补等位基因、两个或多个基因同时表现等多个重要观点,对于人们理解遗传规律起到了重要的作用。

五、遗传发育与遗传进化在生物体的生存过程中,遗传发育与遗传进化是两个重要的方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1什么是遗传,变异?遗传、变异与环境的关系?(1).遗传(heredity):生物亲子代间相似的现象。

(2).变异(variation):生物亲子代之间以及子代不同个体之间存在差异的现象。

遗传和变异的表现与环境不可分割,研究生物的遗传和变异,必须密切联系其所处的环境。

生物与环境的统一,这是生物科学中公认的基本原则。

因为任何生物都必须具有必要的环境,并从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。

2.生物进化和新品种选育的三大因素是遗传,变异和选择四、近交与杂交在育种上的应用1、近亲繁殖在育种上的应用固定优良性状保持个别优秀个体的血统发现并淘汰隐性有害(不良)基因2、杂交在育种和生产上的应用在育种上,利用杂交组合不同品种、或品系、或类群间的优良特性,培育具有多种特点的优良品种在生产上,主要利用杂交产生的杂种优势杂种优势理论:显性假说:认为双亲对很多座位上的不同等位基因的纯合体形成杂种后,由于显性有利基因的积聚,遮盖了隐性有害基因,从而表现出超显性假说:认为双亲基因型异质结合所引起基因间互作杂种优势等位基因间无显隐性关系,但杂合基因间的互作> 纯合基因明显杂种优势特点:杂交(h y b r i d i z a t i o n):指通过不同个体之间的交配而产生后代的过程近交(i n b r e e d i n g):亲缘关系相近个体间杂交,亦称近亲交配近亲系数(F):是指个体的某个基因座上两个等位基因来源于共同祖先某个基因(即得到一对纯合的,而且遗传上等同的基因)的概率。

近交与杂交的遗传效应:近交增加纯合子频率,杂交增加杂合子频率。

近交降低群体均值,杂交提高群体均值。

近交使群体分化,杂交使群体一致。

近交加选择能加大群体间基因频率的差异,从而提高杂种优势。

近交产生近交衰退,杂交产生杂种优势数量性状遗传的多基因假说多基因假说要点:1.决定数量性状的基因数目很多;2.各基因的效应相等;3.各个等位基因的表现为不完全显性或无显性或有增效和减效作用;4.各基因的作用是累加性的。

1. 细胞质遗传的特点①正、反遗传表现不同:性状通过母本才能传递给后代。

②连续回交,可置换母本全部核基因,但母本胞质基因及其控制的性状不消失。

③基因定位困难,有时表现出类于病毒的传导或感染。

④细胞质中由附加体或共生体决定的性状,其表现类似于病毒的传导或感染,即能传递给其它细胞。

2、母性影响母性影响所表现的遗传现象与胞质遗传相似,但其本质不同,因为母性影响不是细胞质遗传,而是F1受母本基因的影响,以后还要分离。

3、胞质遗传的表现①叶绿体遗传;②线粒体遗传;③质粒遗传;④共生体遗传孢子体不育:是指花粉的育性受孢子体(即植株)基因型所控制,而与花粉本身所含基因无关。

配子体不育:是指花粉育性直接受花本身的基因所决定。

细胞质遗传和细胞核遗传的异同1、共同点1均按半保留方式复制;2表达方式一样,核糖体DNA-------》mRNA--------》蛋白质3均能发生突变,且能稳定遗传,其诱变因素亦相同。

2.不同点细胞质DNA 核DNA突变频率大突变频率较小正反交不一样正反交一样基因定位困难杂交方式基因定位某些基因有感染性无感染性细菌和病毒在遗传研究中的优越性作为遗传研究材料具有独特优势世代周期短,繁殖世代所需时间短易于操作管理和进行化学分析(纯培养与代谢产物累积)便于研究基因的突变(表现与选择)便于研究基因的作用机理(突变型生长条件与基因作用)便于研究基因的重组(重组群体大、选择方法简便有效)遗传物质比较简单,可作为研究高等生物的简单模型在研究基因结构、功能与表达调控时更为简便转化:指某些细菌(或其它生物)能通过其细胞膜摄取周围介质中的DNA片段,并将此外源DNA片段整合到自己染色体组中的过程接合:是指遗传物质从供体(donor)──“雄性”转移到受体(receptor)──“雌性”的过程。

性导:指接合时由F’因子所携带的外源DNA整合到细菌染色体的过程。

转导:是指以噬菌体为媒介进行细菌遗传物质重组的过程,是细菌遗传物质传递和交换方式之一。

F’因子:Hfr菌株在切除F因子时发生错误切除,分离出一个携带F因子和部分宿主染色体基因的遗传因子,这种带有宿主染色体基因的F因子称为F’因子。

决定细菌雄性的是染色体外的一个共价环状DNA分子,称为致育因子,又称为F因子供体菌(雄性菌):含有F因子的细菌,F因子游离于宿主染色体外,记为F+。

受体菌(雌性菌):不含有F因子的细菌,记为F-。

Hfr菌株(高频重组菌株)指F 因子整合到宿主染色体中去了的菌株,其重组频率比F+高1000多倍。

1基因突变是染色体上点突变、是基因内部化学性质的变化,可遗传。

2.基因突变频率很低,任何时期都可以发生。

3.基因突变的特点①重演性; ②可逆性; ③多方向性;④有害、有利; ⑤平行性。

高等生物基因突变时期与性状表现复等位基因:指位于同一基因位点上各个等位基因的总体转座遗传因子:又叫可移动因子,是指一段特定DNA 序列。

①原核生物转座因子:插入因子、转座子、Mu 噬菌体;②真核生物转座因子:玉米Ac-Ds 系统、Spm 控制因子、果蝇转座因子有Copia ,412与297等; ③转座因子的应用:作为基因的标记克隆目的基因DNA 作为主要遗传物质的直接证据㈠、细菌转化试验㈡、噬菌体侵染与繁殖试验㈢、烟草花叶病毒拆合实验D N A 的复制——半保留半不连续复制① 一端沿氢键逐渐断开② 以单链为模板,碱基互补③ 氢键结合,聚合酶等连接④ 形成新的互补链⑤ 形成了两个新D N A 分子真核生物与原核生物DNA 合成的区别R N A 和D N A 合成的区别中心法则:遗传信息从DNA转录到mRNA再翻译成蛋白质,以及遗传信息从DNA到DNA的复制过程,这就是分子生物学的中心法则。

这一法则提示了基因的两个基本属性:自我复制和控制蛋白质合成。

突变子:指性状突变时,产生突变的最小单位。

一个突变子可以小到只是一个核糖核酸对。

重组子:指在发生性状重组时,可交换的最小单位。

一个交换子只包含一个核糖核酸对。

顺反子:一个起作用的单位,即通常指的基因。

一个作用子所包括的一段DNA与一个多肽链的合成相对应。

结构基因:可编码RNA或蛋白质的一段DNA序列。

调控基因:其产物参与调控其他结构基因表达的基因外显子:参加蛋白质编码的DNA片段重叠基因:指同一段DNA的编码顺序,同时编码两个或两个以上多肽链的基因。

隔裂基因:指一个结构基因内部为一个或更多的不翻译的编码顺序。

跳跃基因:指细胞中能改变自身位置的一段DNA序列。

外显子:参加蛋白质编码的DNA片段内含子:不参加蛋白质编码的DNA片段基因文库:是指整套由基因组DNA片段插入克隆载体获得的分子克隆之总和。

应用DNA重组技术,可以将各种生物体全部基因组的遗传信息,贮存在可以长期保存的稳定重组体中,以备需要时应用。

好象将文献资料贮存于图书馆一样,cDNA文库:将细胞全部mRNA反转录成cDNA并被克隆的总和称为cDNA文库。

染色体组:遗传学上把二倍体生物一个正常配子中所含的全部染色体称为一个染色体组。

染色体基数:每个染色体组所包含的染色体数目称为染色体基数,用“x”表示。

同源多倍体:指增加的染色体组来自同一物种,一般是由二倍体的染色体直接加倍产生的。

异源多倍体:指增加的染色体组来自不同物种,一般是由不同种属间的杂交种染色体加倍形成的。

一倍体:是指体细胞内只含一个染色体组的生物个体,如雄蜜蜂、雄蚁等。

单倍体:是指体细胞内所含染色体数目与正常个体配子中染色体数目相同的个体单倍体形成的原因:1生物自发产生:生殖过程不正常,如孤雌生殖或孤雄生殖。

2人工创造单倍体:通过诱变、花药培养等可直接获得单倍体。

植物花药的培养是产生单倍体最成功的技术之一,即在小孢子有丝分裂时取出花药,在培养基上即可培养成植株。

单倍体的应用:培育完全纯合的品系,缩短育种进程。

用于研究基因的性质及其作用。

分析染色体组之间的同源性。

多倍体形成途径及应用1、形成途径自发形成——未减数配子结合人工诱发——体细胞染色体数加倍2、人工多倍体的应用1克服远缘杂交的不孕性:亲本之一染色体加倍可能克服其不孕性。

2克服远缘杂种的不实性:远缘杂种不实,其原因是配子不育。

解决办法有:杂种F1染色体加倍(双二倍体);亲本物种加倍后再杂交。

3创造种间杂交育种的中间亲本:实质是克服远缘杂交不育性。

4人工合成新物种、育成作物新类型人工合成同源多倍体——直接加倍人工合成异源多倍体——物种间杂交,杂种F1染色体数目加倍。

单体:体细胞中染色体数目为2n-1的生物个体叫单体缺体:是指在正常染色体数目2n的基础上缺少了一对同源染色体的生物个体(2n-2)。

缺体的形成及存在:缺体一般都通过单体自交产生;缺体仅存在于多倍体生物中,二倍体生物中的缺体一般不能存活三体:是指体细胞中的染色体数较正常生物个体(2n)多了一条染色体的个体(2n+1)四体:在正常染色体数目2n的基础上多了一对同源染色体的生物个体(2n+2)叫四体。

⑴单体测验①、隐性基因定位②、显性基因定位⑶三体分析①根据三体与二体显著不同的特点,可分析三体在哪个染色体上步骤:将待测基因与三体系列分别杂交将杂交后代F1分别自交和测交检查测交后代和F2代的分离比例缺失:染色体丢失了带有基因的某一区段。

㈠、缺失的类别:顶端缺失:指缺失的区段位于染色体某臂的外端。

中间缺失:指缺失的区段位于染色体某臂的中间㈡、缺失的细胞学鉴定:顶端缺失:有丝分裂出现因断裂——融合 双着丝粒染色体——后期染色体桥。

减数分裂联会时,有未配对的游离区段中间缺失:减数分裂染色体联会时形成缺失环。

1较小的缺失往往并不表现出明显的细胞学特征2缺失纯合体减数分裂过程也无明显的细胞学特征㈢、缺失的遗传学效应:1致死或出现异常(缺失片段较长)1缺失基因的数目和重要性2缺失个体是二倍体还是多倍体3缺失配子是雄配子还是雌配子含缺失染色体的配子一般败育;缺失染色体主要是通过雌配子传递。

4缺失个体是纯合体还是杂合体缺失纯合体很难存活;缺失杂合体的生活力很低。

2假显性(缺失片段较短)3人类染色体缺失假显性:如果缺失的部分包括某些显性基因,那么同源染色体上与这一缺失相对应位置上的隐性等位基因就得以表现,这一现象称为假显性重复:正常染色体增加了与自己相同的某一区段的结构变异叫重复。

㈠、重复的类别:顺接重复:指重复区段的基因序列与原染色体上基因的序列相同的重复。

反接重复:指重复区段内的基因顺序发生了180度颠倒,与自己序列相反的重复。

㈡、重复的细胞学鉴定:1、重复环2、染色体末端不配对而突出注意:区分重复环与缺失环;当重复区段很短时很难观察到重复环;重复纯合体也观察不到重复环。

相关文档
最新文档