光学玻璃 应力双折射测量技术 光弹技术

光学玻璃 应力双折射测量技术 光弹技术
光学玻璃 应力双折射测量技术 光弹技术

光弹性法简介光弹性法是应用光学原理研究弹性力学问题的一种试验应力

光弹性法简介 光弹性法是应用光学原理研究弹性力学问题的一种实验应力分析方法。利用光弹性法,可以研究几何形状和载荷条件都比较复杂的工程构件的应力分布状态。利用光弹性法,可以研究几何形状和载荷条件都比较复杂的工程构件的应力分布状态,特别是应力集中的区域和三维内部应力问题。对于断裂力学、岩石力学、生物力学、粘弹性理论、复合材料力学等,也可用光弹性法验证其所提出的新理论、新假设的合理性和有效性,为发展新理论提供科学依据。 光弹性法测试的原理主要为光弹性效应,即塑料、玻璃、环氧树脂等非晶体在通常情况下是各向同性而不产生双折射现象的,但当它们受到应力时,就会变成各向异性显示出双折射性质,这种现象称为光弹性效应。 当将受载模型置于正交圆偏振光场中时,获取的是图1a,b,c所示的等差线(又名等色线)的条纹图形。等差线代表模型内主应力差相等点的轨迹。 当受载模型置于正交平面偏振光场中时,则得到既有等差线又包含一条黑色粗条纹的图形,如图2所示。在两个偏振镜光轴保持正交(互相垂直)而又相对于固定不动的模型旋转时,那种随着转角改变位置而移动的黑色条纹称为等倾线,它是模型内各点主应力方向相同点的

轨迹。正交偏振镜光轴相对于模型转动的角度α,即表示主应力所指方向。当正交偏振镜光轴连续转动时,将依次出现对应于不同的α角的等倾线。一般用即时描图法或通过光电扫描,由计算机采集并绘制0°~90°范围内的,包含足够数量的等倾线综合图形(图3c)。 等差线与等倾线图合称应力光图。按等差线判断出各条纹的级次,用预先标定的条纹值,结合等倾线图,利用边界上某个已知条件,采用剪应力差法可得出该模型的全场应力。得出应力场后,由相似理论可换算出原型的应力分布图形,以此作为改进结构设计的依据。 光弹性法是研究接触应力最有效的模拟实验手段之一,优点是可测出接触表面任意点处的应力值,且精度极高(误差3 %~4 %)。当进行金属塑性加工工具工作状态下的应力分布情况的研究时,用光学敏感材料作变形元件(工模具)模型,而塑性介质(被加工金属)则由易熔材料,如铅或铅加碲及锑的合金,以及由环氧树脂与增塑剂等进行精心调配的聚合物等制作。为了使铅质模型材料性能高度均匀,铅必须预先承受锻造加工,以改变铸态组织为加工组织。上述一些变形介质与变形元件,可用来研究平面变形问题和轴对称变形问题。图3a,b为采用光弹性法研究在108 mm直径轧辊中,在无润滑状态下轧制时所得等差线图,c为等倾线图,d为经过计算所得出的剪应力和法线应力沿接触弧分布的图形。 以上所述为平面光弹性法。研究三维问题则需采用冻结应力法,即将制作的模型(包括

青岛理工大学材料力学实验报告记录

青岛理工大学材料力学实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

材料力学实验报告 系别 班级 姓名 学号 青岛理工大学力学实验室

目录 实验一、拉伸实验报告 实验二、压缩实验报告 实验三、材料弹性模量E和泊松比μ的测定报告 实验四、扭转实验报告 实验五、剪切弹性模量实验报告 实验六、纯弯曲梁的正应力实验报告 实验七、等强度梁实验报告 实验八、薄壁圆筒在弯扭组合变形下主应力测定报告 实验九、压杆稳定实验报告 实验十、偏心拉伸实验报告 实验十一、静定桁架结构设计与应力分析实验报告 实验十二、超静定桁架结构设计与应力分析实验报告 实验十三、静定刚架与压杆组合结构设计与应力分析实验报告实验十四、双悬臂梁组合结构设计与应力分析实验 实验十五、岩土工程材料的多轴应力特性实验报告

实验一 拉伸实验报告 一、实验目的与要求: 二、实验仪器设备和工具: 三、实验记录: 1、试件尺寸 实验前: 实验后: 2、实验数据记录: 屈服极限载荷:P S = kN 强度极限载荷:P b = kN 材 料 标 距 L 0 (mm) 直径(mm ) 截面 面积 A 0 (mm 2) 截面(1) 截面(2) 截面(3) (1) (2) 平均 (1) (2) 平均 (1) (2) 平均 材 料 标 距 L (mm) 断裂处直径(mm ) 断裂处 截面面积 A(mm 2) (1) (2) 平均

四、计算 屈服极限: ==0 A P s s σ MPa 强度极限: == A P b b σ MPa 延伸率: =?-= %10000 L L L δ 断面收缩率: =?-= %1000 0A A A ψ 五、绘制P -ΔL 示意图:

玻璃折射率的测量方法

课程论文 题目:对玻璃折射率测定方法的探究 班级:2010级物理学本科班 姓名: 学号: 指导老师: 对玻璃折射率测定方法的探究

摘要:通过不同的方法测定玻璃的折射率,在对实验现象观察的同时,比较不同的方法之间的区别,并将实验结果与真实值比较。 关键词:玻璃,分光计,顶角,偏向角,折射率。 引言:运用钠灯灯光或激光照射玻璃,通过观察折射或反射光的性质来确定玻璃的折射率。 实验方法: (一) 最小偏向角法: 1. 实验仪器与用具:分光计,玻璃三棱镜,钠灯。 2. 实验原理: (1)将待测的光学玻璃制成三棱镜,可用最小偏向角法测其折射率n .测量原理见图1,光线α代表一束单色平行光,以入射角i 1投射到棱镜的AB 面上,经棱镜两次折射后以i 4角从另一面AC 射出来,成为光线t .经棱镜两次折射,光线传播方向总的变化可用入射光线α和出射光线t 延长线的夹角δ来表示,δ称为偏向角.由图1可知δ=(i 1-i 2)+(i 4-i 3)=i 1+i 4-A .此式表明,对于给定棱镜,其顶角 A 和折射率n 已定,则偏向角δ随入射角i 1而变,δ是i 1的函数. (2)用微商计算可以证明,当i 1=i 4或i 2=i 3时,即入射光线a 和出射光线t 对称地“站在”棱镜两旁时,偏向角有最小值,称为最小偏向角,用δm 表 示.此时,有i 2=A /2, i 1=(A +δm )/2,故2 2m A A n sin sin δ+=。用分光计测出棱 镜的顶角A 和最小偏向角δm ,由上式可求得棱镜的折射率n . 3.实验内容: 3.1棱镜角的测定 图1

置光源于准直管的狭缝前,将待测棱镜的折射棱对准准直管,由准直管射出的平行光束被棱镜的两个折射面分成两部分。在棱镜的另外两侧分别找到狭缝像与竖直叉丝重合,分别记录此时分光计的读数''1212,,,V V V V ,望远镜的两位置所对应的游标读数之差为棱镜角A 的两倍。 3.2最小偏向角的测定 (1)将待测棱镜放置在棱镜台上,转动望远镜使能清楚地看见钠光经棱镜折射后形成的黄色谱线。 (2)刻度内盘固定。缓慢转动载物台,改变入射角,使谱线往偏向角减小的方向移动,用望远镜跟踪谱线观察。 (3)当载物台转到某一位置,该谱线不再移动,如继续按原方向转动载物台,可看到谱线反而往相反的方向移动,即偏向角变大。该谱线偏向角减小的极限位置即为最小偏向角位置。 (4)反复实验,找出谱线反向移动的确切位置。固定载物台,微动望远镜,使叉丝中间竖线对准谱线中心,记录此时分光计的读数12,V V 。 (5)转动载物台,使光线从待测棱镜的另一光学面入射,转动望远镜至对称位置,使光线向另一侧偏转,同上找出对应谱线的极限位置,相应的游标读数为 ' ' 12V V 和。同一游标左右两次数值之差是最小偏向角的2 倍,即 '' 1122()/4m V V V V δ=-+- 4.实验数据记录 表2:最小偏向角

车架应力应变实验报告

车架应力应变实验 一、 实验目的: (1) 熟悉应变片的粘贴方法 (2) 学会策略电路的连接 (3) 了解数据采集仪的操作 二、 工作原理: 用以金属材料为敏感元件的应变片,测量试件应变的原理是基于金属丝的应变效应,即金属丝的电阻随其变形而改变的一种物理特性。将应变片固定在被测构件上,当构件变形时,电阻应变片的电阻值发生相应的变化。通过电阻应变测量装置(简称应变仪)可将电阻应变片中的电阻值的变化测定出来,换算成应变或输出与应变呈正比的模拟电信号(电压或电流),用记录仪记录下来,也可用计算机按预定的要求进行数据处理,得到所需要的应力或应变值。 应变片的结构:它由敏感元件、引出线、基底、覆盖层组成,用粘贴剂粘贴在一起,如图所示。 A l R ρ =

ρ=导线电阻率 L=导线长度 A=导线横截面积 电桥:将电阻、电感、电容等参量的变化转换为电压或电流输出的一种测量电路。 当输出电压i U =0时,表示电桥处于平衡,可得R 1R 3=R 2 R 4,直流电桥平衡,若在四个电阻处均接应变片,并使R 1R 3=R 2 R 4 若无应变,则输出电压i U =0 若产生应变, 43214 231i ) )((U R R R R R R R R U ?++-= ερ ρ )21(u d R dR ++=A dA l dl d R dR -+=ρρ??? ????-?+?-??+=?])(4433221 1221210i R R R R R R R R R R R R U U

三、实验流程图 本小组进行实验位置为第9测点,位置如图所示: 四、实验仪器 1.应变片 2.502胶水 3.万用表 4.电烙铁、焊锡、松香 5.绝缘胶带纸、脱脂棉、丙酮、0#砂纸、导线 6.接线盒 7.Synergy16通道采集仪 五、实验操作步骤 1.应变片的准备 贴片前,将待用的应变片进行外观检查,检查是否有锈斑等缺陷,基底和覆盖层有无损坏,引线是否完好。然后用万用表进行阻值测量。 目的在于检查敏感栅是否有断路、短路,阻值相差不得超过。同一次测 量的变计,灵敏系数必须相同。经测得阻值为120±0.5Ω。 2.车架表面处理准备 对于钢铁等金属构件,首先是清除表面油漆、氧化层和污垢;然后磨平或锉

光学石英玻璃的折射率

表7 光学石英玻璃的折射率(之一)波长(毫微米)水晶熔制石英玻璃合成石英玻璃185.41 1.57464 - 193.53 1.56071 - 202.54 1.54729 1.54717 206.20 1.54269 1.54266 213.85 - 1.53434 214.45 1.53385 - 226.50 1.52318 1.52299 23 2.94 1.51834 - 237.83 - 1.51473 248.20 - 1.50841 250.20 1.50762 - 257.62 1.50397 1.50351 265.36 - 1.49994 274.87 1.49634 - 280.35 - 1.49403 289.36 - 1.49098 298.06 1.48859 1.48837 307.59 - 1.48575 313.17 - 1.48433 328.36 1.48183 - 334.15 - 1.47976 340.36 1.47877 1.47860 346.69 1.47766 1.47748 361.17 1.47513 1.47503 365.48 - 1.47448 398.84 1.47028 - 404.65 - 1.46961 435.83 1.46679 1.46669 486.13 1.46324 1.46314 546.07 1.46021 1.46007 587.56 1.45857 1.45847 656.27 1.45646 1.45637 注:测量误差:±3×10-5 表7 光学石英玻璃的折射率(之二)波长λ(微米) 折射率波长λ(微米) 折射率0.67 1.456066 1.30 1.446980 0.68 1.455818 1.40 1.445845 0.69 1.455579 1.50 1.444687 0.70 1.455347 1.60 1.443492 0.80 1.453371 1.70 1.442250 0.90 1.451808 1.80 1.440954 1.00 1.450473 1.90 1.439957 1.10 1.440261 2.00 1.438174 1.20 1.448110 2.10 1.436680 2.20 1.435111 2.90 1.421684 2.30 1.433462 3.00 1.41937 2.40 1.431730 3.10 1.41694

焊接残余应力

焊接残余应力 残余应力是什么? 残余应力是指在没有外力或外力矩作用的条件下,构件或材料内部存在并且自身保持平衡的宏观应力。 一、残余应力是哪种内应力? 1内应力的分类 根据作用范围大小可分为三类: 第一类内应力(又称“宏观应力”)贯穿于整个物体内部; 第二类内应力存在于单个晶粒的内部,当这种平衡遭到破坏时,晶粒尺寸会发生变化; 2残余应力所属类别 残余应力是第一类内应力的工程名称。 残余应力形成的根本原因是微观上不同原子或者同种原子不同排列方式造成材料成分或者结构上的不均匀性导致的原子间相互作用力的变化在宏观上的体现。 二、哪些加工成型过程会导致残余应力? 铸造、锻压、焊接、喷涂以及各类机械加工成型过程中都会导致材料出现残余应力。 本文关注的对象是焊接残余应力。焊接残余应力是焊件产生变形、开裂等工艺缺陷的主要原因,焊接变形在制造过程中危及形状与尺寸公差、接头安装偏差和增加坡口间隙,使制造过程更加困难;焊接残余应力可使焊缝特别是定位焊缝部分或完全断开;机械加工过程中释放的残余应力也会导致工件产生不允许的变形。同时,焊接残余力可能引起结构的脆性断裂,拉伸残余应力会降低疲劳强度和腐蚀抗力,压缩残余应力会减小稳定性极限。因此,焊接残余应力一直是焊接界关注的重点问题之一。

三、焊接残余应力的控制方法 在制造过程中的工艺措施和方法 采用线能量小的工艺参数和焊接方法及强制冷却措施 采用合理的焊接顺序和方向,调整残余应力分布 1)先焊收缩量大的焊缝和应力较大的焊缝; 2)焊缝交叉时,先焊短焊缝,后焊直通长焊缝; 采取降低焊缝拘束度的工艺措施,补偿焊缝收缩量; 锤击多层焊缝中间各层,使之延展,降低应力和拘束度; 预拉伸补偿焊缝收缩(机械拉伸或热拉伸) 局部加热,在构件的相应部分形成可补偿焊缝收缩的变形; 低应力无变形焊接法 四、焊接残余应力的消除方法 1)利用机械力或冲击能分为焊缝滚压法、机械拉伸法、锤击法、振动法、爆炸法。 2)热处理整体高温退火、局部高温退火、温差拉伸法(低温消除应力法)、拟焊接加热法。

光弹性实验报告

光弹性实验报告 一、 实验目的 1. 了解光弹性仪各部分的名称和作用,掌握光弹性仪的使用方 法。 2. 观察光弹性模型受力后在偏振光场中的光学效应。 3. 掌握平面偏正光场和圆偏振光场的形成原理, 和调整镜片(起 偏镜、 检偏镜、1/4波片)的方法。 4. 通过圆盘对径受压测量材料条纹级数 f ,并通过实验求出两 端受压方片中心截面上的应力。 5. 用理论公式计算出方片中心截面上的应力,并与实验得出的 数据相 比对,判断实验数据的准确性。 二、 实验原理和方法 首先引入偏振光的概念,如光波在垂直于传播方向的平面内只在 某一个 方向上振动,且光波沿传播方向上所有点的振动均在同一个平 面内,则此种光波称为平面偏振光。 双折射:当光波入射到各向异性的晶体如方解石、云母等时,一 般会分 解为两束折射光线,这种现象称为双折射。 从一块双折射晶体上,平行于其光轴方向切出一片薄片,将一束 平面偏 振光垂直入射到这薄片上,光波即被分解为两束振动方向互相 垂直的平面偏振光,其中一束比另一束较快地通过晶体。于是,射出 薄片时,两束光波产生了一个相位差。这两束振动方向互相垂直的平 面偏振光,其传播方向一致,频率相等,而振幅可以改变。设这两束 平面偏振光为: u 1 a 〔sin ( t ) ( 1) u 2 a 2sin ( t ) (2) 式中 a i a 2 —振幅 —两束光波的相位差 将上述两方程(1)(2)合并,消去时间t ,即得到光路上一点的 合成光矢量末端的运动轨迹方程式,此方程式在一般的情况下是一个 椭圆方程,如果31 a 2 a , -,则方程式成为圆的方程: 2 U 2 u f a 2 (3) 光路上任一点合成光矢量末端轨迹符合此方程的偏振光称为圆 偏振光,

折射率测量

实验十一 折射率测量 折射率是物质的重要特性参数之一,使人们了解光学玻璃、光纤、光学晶体、液晶、薄膜等材料的光学性能。折射率也是矿物鉴定的重要依据,也是光纤通信、工程塑料新物质和新介质判断依据。测量折射率的方法很多,这里介绍几种主要的实验方法。 练习一 用最小偏向角法测棱镜玻璃折射率 【实验目的】 1.进一步熟悉分光计调节方法; 2.掌握三棱镜顶角,最小偏向角的测量方法。 【实验仪器】 JJY 型分光计、低压钠灯、平面反射镜、等边三棱镜。 【实验原理】 一束平行的单色光,从三棱镜的一个光学面(AB 面)入射,经折射后由另一光学面(AC 面)射出,如图5.11.1所示。入射光和AB 面法线的夹角i 称为入射角,出射光和AC 面法线的夹角i '称为出射角,入射光和出射光的夹角δ称为偏向角。可以证明,当入射角i 等于出射角i '时,入射光和反射光之间的夹角δ最小,称为最小偏向角m in δ。 由图5.11.1可知)''()(r i r i -+-=δ,当 'i i =时,由折射定律有'r r =,得 )(2min r i -=δ (5.11.1) 又因 A A G r r r =-π-π=-π==+)(2' 所以 = r 2 A (5.11.2) 由式(5.11.1)和式(5.11.2)得 2 min δ+= A i 由折射定律有 ① ② 图5.11.1

2 sin 2sin sin sin min A A r i n δ+== (5.11.3) 由式(5.11.3)可知,只要测出最小偏向角min δ(顶角已知),就可以计算出棱镜玻璃对该波长的折射率。 【实验内容与步骤】 1.正确调整分光计,使其满足实验要求(参阅§3.9) 2.测定玻璃三棱镜对钠光黄光的最小偏向角 如图 5.11.2所示,旋载物台,使一光学面AC 与平行光管入射方向基本上垂直。当一束钠黄单色光从平行光管发出平行光射向三棱镜AB 光学面,经过三棱镜AC 光学面折射出来,望远镜从毛面BC 底边出发,沿着逆时针旋转,会看到清晰的狭缝像,说明找到折射光路。此时转动小平台连同棱镜,观察狭缝像运动 状态,如果向右移动,偏向角δ变小。再转小平台狭缝像会走到一定位置转折,使δ偏大,此转折点即为该光谱线的最小偏向角位置,把望远镜对准这个转折点,记录下来,为m in T 、min 'T 。然后使望远镜对准入射光(平行光管位置),读取方位为0T 与0'T ,则最小偏向角 ]''[2 1 0min 0min min T T T T -+-=δ 3.计算棱镜折射率 光的颜色_______ 波长_______nm ]''[2 1 0min 0min min T T T T -+-=δ 图5.11.2 测最小偏向角示意图

纯弯梁的弯曲应力测定实验报告

纯弯梁的弯曲应力测定 一.实验目的 1.掌握电测法的测试原理,学习运用电阻应变仪测量应变的方法 2.测定梁弯曲时的正应力分布,并与理论计算结果镜像比较,验证弯梁正应力公式。二.实验设备 1.钢卷尺 2.游标卡尺 3.静态电阻应变仪 4.纯弯梁实验装置 三.实验原理 本实验采用的是用低碳钢制成的矩形截面试件,实验装置如图所示。 计算各点的实测应力增量公式:i i E 实实εσ?=?计算各点的理论应力增量公式:z i i I My ?= ?σ式中?M=12?P×a ,Iz=bh312 四.试验方法 1.测定弯梁试件尺寸:h,b,L,a 2.电阻应变仪大调整与桥路连接 3.接通力传感器显示屏电源,当试件未受力时,调节电阻应变仪零点。 4.缓慢转动手轮,每增加1KN 载荷,测相应测点的应变值,直到载荷为4.5KN 为止。 5.卸去载荷,应变仪,力传感器显示屏复位。应变测量结束。 五.实验数据测定 试件材料的弹性模量E =210GPa

2.试件尺寸及贴片位置 试件尺寸/m贴片位置/m b0.02y6-0.020 3.应变读数记录 读 次 载荷 P/kN 载荷 增量 Δ P/k N 电阻应变仪读数(με) 测点1测点2测点3测点4测点5测点6测点7 S1Δ S 1 S2Δ S2 S3Δ S3 S4Δ S4 S5Δ S5 S6Δ S6 S7Δ S7 10.51010-290340-460480-61062 2 1.51-2934-4648-6162 1.51-1-3631-4848-6764 3 2.50-6565-9496-12 812 6 16-2333-4256-6369 4 3.56-8898-13 615 2 -19 1 19 5 12-3139-4648-5964 5 4.58-11137-1820-2525

《光学原理与应用》之双折射原理及应用

双折射原理及应用 双折射(birefringence )是光束入射到各向异性的晶体,分解为两束光而沿不同方向折射的现象。它们为振动方向互相垂直的线偏振光。当光射入各向异性晶体(如方解石晶体)后,可以观察到有两束折射光,这种现象称为光的双折射现象。两束折射线中的一束始终遵守折射定律这一束折射光称为寻常光,通常用o表示,简称o光;另一束折射光不遵守普通的折射定律这束光通常称为非常光,用e表示,简称e光。晶体内存在着一个特殊方向,光沿这个方向传播时不产生双折射,即o光和e光重合,在该方向o光和e光的折射率相等,光的传播速度相等。这个特殊的方向称为晶体的光轴。光轴”不是指一条直线,而是强调其“方向”。晶体中某条光线与晶体的光轴所组成的平面称为该光线的主平面。o光的主平面,e光的光振动在e光的主平面内。 如何解释双折射呢?惠更斯有这样的解释。1寻常光(o光) 和非常光(e光)一束光线进入方解石晶体(碳酸钙的天然晶体)后,分裂成两束光能,它们沿不同方向折射,这现象称为双折射,这是由晶体的各向异性造成的。除立方系晶体(例如岩盐)外,光线进入一般晶体时,都将产生双折射现象。显然,晶体愈厚,射出的光束分得愈开。当改变入射角i时,o光恒遵守通常的折射定律,e光不符合折射定律。2.光轴及主平面。改变入射光的方向时,我们将发现,在方解石这类晶体内部有一确定的方向,光沿这个方向传播时,寻常光和非常光不再分开,不产生双折现象,这一方向称为晶体的光轴。 天然的方解石晶体,是六面棱体,有八个顶点,其中有两个特殊的顶点A和D,相交于A D两点的棱边之间的夹角,各为102°的钝角.它的光轴方向可以这样来

弯曲正应力实验报告

一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、TS3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。 三、实验原理和方法 弯曲梁的材料为钢,其弹性模量E=210GPa ,泊松比μ=0.29。用手转动实验装置上面的加力手轮,使四点弯上压头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为: x M y I σ= 式中:M 为弯矩;x I 为横截面对中性轴的惯性矩;y 为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力P ?时,梁的四个受力点处分别增加作用力/2P ?,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的虎克定律公式E σε=,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实 =E ε实 式中E 是梁所用材料的弹性模量。

图3-16 为确定梁在载荷ΔP 的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷ΔP 测定各点相应的应变增量一次,取应变增量的平均值Δε实来依次求出各点应力。 把Δσ实与理论公式算出的应力Z I MY =σ比较,从而验证公式的正确性,上述理论公式中的M 应按下式计算: Pa ?= M 2 1 (3.16) 四、实验步骤 1、检查矩形截面梁的宽度b 和高度h 、载荷作用点到梁支点距离a ,及各应变片到中性层的距离i y 。 2、检查压力传感器的引出线和电子秤的连接是否良好,接通电子秤的电源线。检查应变仪的工作状态是否良好。分别采用1/4桥,1/2桥,全桥的接线方法进行测量,其中1/4桥需要接温度补偿片,1/2桥通过交换接线方式分别进行两次试验来比较试验结果。 3、根据梁的材料、尺寸和受力形式,估计实验时的初始载荷0P (一般按00.1s P σ=确定)、最大载荷max P (一般按max 0.7s P σ≤确定)和分级载荷P ? (一般按加载4~6级考虑)。 本实验中分四次加载。实验时逐级加载,并记录各应变片在各级载荷作用下的读数应变。 4、实验完毕后将载荷卸掉,关上电阻应变仪电源开关,并请教师检查实验数据后,方可离开实验室。 五、数据处理

焊接温度场及残余应力测量方法总结

焊接温度场及残余应力测量方法总结 一、焊接温度场测量方法 多年来,基于物体的某些物理化学性质(例如,物体的几何尺寸、颜色、电导率、热电势和辐射强度等)与温度的关系,开发了形式多样的温度测量方法和装置,综合温度测量的现状,按测量方式可分为接触式和非接触式两大类。 1、接触式测温方法 接触式测温方法的感温原件直接置于被测温度场或介质中,不受到黑度、热物理性参数等性质的影响,具有测温精度高、使用方便等优点。但是对于瞬态脉动特性的对象,接触式测温方法难以作为真正的温度场测量手段。主要是由于接触法得到的是某个局部位置的信号,如果要得到整个温度场的信号,必须在温度空间内进行合理的布点,才可以根据相应的方法(如插值法等)获得对温度场的近似。 常用的接触式测温方法有,电偶测温法。热电偶是用两种不同的导体(或者半导体)组成的闭合回路,两端接点分别处于不同温度环境中,与当地达成热平衡时会产生热电势,标定后可用来测量温度。理想的热电偶测温方法,是将参比端 E,再查分度表反置于0℃的恒温槽中,通过测量2个不同导体A和B的热电动势ab 求出被测温度t。由于让参比端保持0℃有时比较困难,实际应用中常常需要参比端恒温处理或温度补偿。热电偶测温法有几个优点:精度比较高,因为热电偶直接与被测对象接触,不受中间介质的影响;测量范围大,通常可在-50~1600℃范围内连续测量;结构简单,使用方便。但是,热电偶测温法也有一定的缺点:每次测量的点数有限(最多几个点),难以反映整个焊接温度场的情况;此外,金属的电阻和熔池中液体的流动会阻碍热传导,从而给热电偶的测量带来一定的误差。 2、非接触式测温法 非接触测温法分为两大类:一类是通过测量介质的热力学性质参数,求解温度场(如声学法);另一类是通过高温介质的辐射特性,通过光学法来测量温度场。非接触式测温方法由于测温元件不与被测介质接触,不会破坏被测介质的温度场和流场;同时,感温元件传热惯性很小,因此可用于测量不稳定热力过程的温度。其测量上限不受材料性质的影响,可在焊接等高温场合应用。目前常用的测试方法主要有以下几种: 2.1、红外热像法 随着红外技术和计算技术的发展,红外热象法测定焊接温度场成为近代一种新技术。红外热成像测温技术为非接触式测温,响应快,不破坏被测物体的温度场,可以检测某些不能接触或禁止接触的目标,红外热像技术显示出其在测试物体温度场方面的优势。在实际的测量过程中,一般先采用热电偶标定被测物体的发射率,然后再用红外热像仪测定物体的温度场。

弯曲正应力实验报告

弯曲正应力实验 一、实验目的:1、初步掌握电测方法和多点测量技术。; 2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。 二、设备及试样: 1. 电子万能试验机或简易加载设备; 2. 电阻应变仪及预调平衡箱; 3. 进行截面钢梁。 三、实验原理和方法: 1、载荷P 作用下,在梁的中部为纯弯曲,弯矩为1 M=2 Pa 。在左右两端长为a 的部分内为横力弯曲,弯矩为11 =()2 M P a c -。在梁的前后两个侧面上,沿梁的横截面高度,每隔 4 h 贴上平行于轴线上的应变片。温度补偿块要放置在横梁附近。对第一个待测应变片联同温度补偿片按半桥接线。测出载荷作用下各待测点的应变ε,由胡克定律知 E σε= 另一方面,由弯曲公式My I σ=,又可算出各点应力的理论值。于是可将实测值和理论值进 行比较。 2、加载时分五级加载,0F =1000N ,F ?=1000N ,max F =5000N ,缷载时进行检查,若应变差值基本相等,则可用于计算应力,否则检查原因进行复测(实验仪器中应变ε的单位是 610-)。 3、实测应力计算时,采用1000F N ?=时平均应变增量im ε?计算应力,即 i i m E σε?=?,同一高度的两个取平均。实测应力,理论应力精确到小数点后两位。 4、理论值计算中,公式中的3 1I=12 bh ,计算相对误差时 -100%e σσσσ= ?理测 理 ,在梁的中性层内,因σ理=0,故只需计算绝对误差。 四、数据处理 1、实验参数记录与计算: b=20mm, h=40mm, l=600mm, a=200mm, c=30mm, E=206GPa, P=1000N ?, max P 5000N =, k=2.19 3 -641I= =0.1061012 bh m ? 2、填写弯曲正应力实验报告表格

焊接残余应力的消除方法——【焊接工艺】

焊接残余应力的消除方法 焊接残余应力是焊接技术带来的一个几乎无法避免的缺陷,其危害众所周知。当焊接造成的残余应力会影响结构安全运行时,还需设法消除焊接残余应力,改善焊接接头的塑性和韧性,以提高焊件结构性能。 一、焊接的应力与应变: 在接过程中,由于焊接件产生温度梯度,接头组织和性能的不均匀,就会在焊件内产生应力和应变。焊后残留在焊件内的焊接应力就是焊接残余应力,它是没有外载荷作用时就存在的应力。 二、焊接残余应力的危害: 焊接残余应力与外载荷产生的应力叠加,局部区域应力过高,使结构承载能力下降,引起裂纹和变形,使焊件形状和尺寸发生变化,需要进行矫形。变形过大会因无法矫形而报废甚至导致结构失效。 三、减少焊接残余应力和变形的措施: ①设计 ②焊接工艺 如: ?尽量减少焊接接头数量 ?相邻焊缝间应保持足够的间距 1

?尽可能避免交叉,避免出现十字焊缝 ?焊缝不要布置在高应力区 ?焊前预热等等 四、焊后残余应力的消除方法 消除焊接残余应力的方法有:热处理、锤击、振动法和预载法等。 1、热处理消除法 焊后热处理是一种消除焊接残余应力常用的方法。工程上我们主要用退火处理,退火温度越高、保温时间越长,消除焊接残余应力的效果就越好。但是温度过高,使工件表面氧化比较严重,组织可能发生转变,影响工件的使用性能,存在弊端。蠕变应力松弛理论为热处理消除焊接残余应力提供了另一条思路,工件在较低温度时会发生蠕变,材料内部的残余应力会因应力松弛而得到释放,只要保温时间足够长,理论上残余应力可完全消除。在低温消除焊接残余应力时,材料的组织和性能变化甚微,几乎不影响材料的使用性能,而且低温处理材料表面的氧化和脱碳也比较小,这就可以在材料的力学性能和组织基本不变的情况下达到降低材料焊接残余应力的目的。 2、锤击消除法 2

焊接残余应力的测试

焊接残余应力的测试 一、实验目的 1.了解ASM1.0全自动应力、应变监测记录仪的结构和工作原理。 2.掌握应力释放法的测试原理及操作技术。 二、实验原理 焊接残余应力的测量方法,按其原理可分为应力释放法、物性变化法(X 射线法、磁性法)等,应力释放法又可分为小孔法(即盲孔法)、套孔法与梳状切条法(及全释法)。本实验采用小孔法进行测量。 对板钻小孔可以评价释放的径向应变。在应力场中去一直径为d 的圆环,并在圆环上粘贴应变片,在圆环的中心处钻一直接为d 0的小孔(图1),由于钻孔使应力的平衡受到破坏,测出孔周围的应力变化,就可以用弹性力学的理论来推算出小孔处的应力。设应变片中心与圆环中的连线与x 轴的夹角为α,其释放的径向应变r ε和钻孔释放的残余应力之间的关系,可按照带孔无线板的弹性理论,同时承受双轴薄膜应力x σ和y σ(理解为主应力)的条件求解。 ()()y x r B A B A σασαεcos cos +++= 2 021? ? ? ??+-=d d E A μ ??? ??? ????? ??-??? ??++-=4 02031421d d d d E B μμ 图1 小孔法所用的应变花示意图 为了完全确定未知的双轴残余应力状态(两个主应力σ1和σ2,以及主应力方向β),必须至少在圆环上的三个不同测量方向评价释放的径向应变r ε(如采用三个应变片组成的应变花)。常用的应变花布置是?=0α、?=45α和?=90α(对应00ε、45ε和90ε)。 ()()20090452009000 902,1--2-B 41 A 4εεεεεεε σ+±+=

三、实验设备及器材 1. ASM1.0全自动应力、应变检测仪一台 2. 残余应力打孔装置一台 3. 焊接铝板一块 4. 应变片、瞬干胶水若干 四、实验方法与步骤 1.将待测部位用砂纸磨至表面光亮,用酒精进行清洗,清除待测部位表面的杂志和氧化物,直到准备粘贴应变片的部位干净为止。 2.将502速干胶均匀涂于应变片背面,迅速把应变片粘在所测位置,轻压使其与工件表面紧密结合,应变片与金属之间无气泡无脱胶现象。 3.将应变片末端引线与应变仪连接的导线焊接。注意应使所有应变片的导线长度保持一致,以免产生电阻值的差异导致测量不准。将应变仪调零,用万用表检查应变片与工件绝缘程度和阻值变化情况。 4.设置残余应力相应参数,用直径为2.0mm的砖头在应变片中心处打出深2.0mm的盲孔,记录残余应力数据。 五、实验数据记录 六、实验结果整理及分析 1. 焊接残余应力测试过程中哪些因素容易引起测量误差?如何减小误差? 1、应变片的粘贴质量。应变片粘贴不好会引起数据漂移和精度下降。

ansys实验报告

有限元上机实验报告 姓名柏小娜 学号0901510401

实验一 一 已知条件 简支梁如图所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: )534()4 (6222 23-+-=h y h y q y x L h q x σ 二 实验目的和要求 (1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 (2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 (3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 三 实验过程概述 (1) 定义文件名 (2) 根据要求建立模型:建立长度为1m ,外径为0.2m ,平行四边行区域 (3) 设置单元类型、属性及厚度,选择材料属性: (4) 离散几何模型,进行网格划分 (5) 施加位移约束 (6) 施加载荷 (7) 提交计算求解及后处理 (8) 分析结果 四 实验内容分析 (1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。主要考察x σ和y σ,并分析有限元解与理论解的差异。 由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。由图2看出应力大小是由两侧向中间递增的,得到X 方向

上最大应力就在下部中点,为0.1868 MPa 。根据理论公式求的的最大应力值为0.1895MPa 。由结果可知,有限元解与理论值非常接近。由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。 图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图 图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图 (2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。列出各次计算 应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。 答:在下边中点位置最大应力理论值为: MPa h y h y q y x L h q x 1895.0)5 34()4(622223=-+-=σ

光学玻璃性能参数及解释和代号

序 成都光明光电股份有限公司始建于1956年,是中国最大的光学材料制造商,其光学玻璃的产量数年连续世界第一。公司开发力量雄厚,光学材料生产技术和设备先进,检验测试手段完善。公司持之以恒地进行产品研发、永无止境地追求质量最优,目前能提供200多个牌号的光学、光电子玻璃。 本目录中主要列出了无铅、砷、镉的环境友好玻璃、镧系玻璃以及低软化点玻璃(LSG)、高透过(Hi-Tran)玻璃牌号,同时也保留了部分含铅和砷的玻璃牌号。 与2012年版相比,本版次完善了部分牌号的性能指标,同时新增了公司最新研究开发的一些光学玻璃牌号供你参考选择。 成都光明光电股份有限公司 2013年2月修订

目录 1 光学玻璃牌号分类和命名 (4) 1.1 光学玻璃牌号分类 (4) 1.2 光学玻璃牌号命名 (4) 1.3 无铅、砷、镉玻璃牌号的命名 (4) 1.4 低软化点玻璃牌号命名 (4) 1.5 高透过玻璃牌号的命名 (4) 2 光学性能 (5) 2.1 折射率 (5) 2.2 色散和阿贝数 (5) 2.3 色散公式 (5) 2.4 相对部分色散 (6) 2.5 应力光学系数B (6) 2.6 内透射比τ (7) 2.7 着色度(λ80 /λ5) (7) 2.8 折射率温度系数(Δn/ΔT) (7) 3 化学性能 (7) 3.1 抗潮湿大气作用稳定性RC(S)(表面法) (7) 3.2 抗酸作用稳定性R A(S)(表面法) (8) 3.3 耐水作用稳定性D W(粉末法) (8) 3.4 耐酸作用稳定性D A(粉末法) (8) 4 热学性能 (8) 4.1 热膨胀系数α (9) 4.2 转变温度Tg (9) 4.3 弛垂温度Ts (9) 4.4 应变点T1014.5 (9) 4.5 退火点T1013 (9) 4.6 软化点T107.6 (9) 4.7 热传导系数λ (9) 5 机械性能 (10) 5.1 杨氏模量E、剪切模量G和泊松比μ (10) 5.2 Knoop硬度HK (10) 5.3 磨耗度FA (10) 5.4 密度ρ (11)

梁弯曲正应力测量实验报告

厦 门 海 洋 职 业 技 术 学 院 编号:XH03JW024-05/0 实训(验) 报告 班级: 姓名: 座号: 指导教师: 成绩: 课程名称: 实训(验): 梁弯曲正应力测量 年 月 日 一、 实训(验)目的: 1、掌握静态电阻应变仪的使用方法; 2、了解电测应力原理,掌握直流测量电桥的加减特性; 3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。 二、 实训(验)内容、记录和结果(含数据、图表、计算、结果分析等) 1、实验数据: (1) 梁的尺寸: 宽度b=9mm ;梁高h=30mm ;跨度l =600mm ;AC 、BD :弯矩a=200mm 。测点距轴z 距离: 21h y ==15mm ;42h y ==7.5mm ;3y =0cm ;-=-=44h y 7.5mm ;-=-=2 5h y 15mm ;E=210Gpa 。 抗弯曲截面模量W Z =bh 2/6 惯性矩J Z =bh 3 /12 (2) 应变)101(6-?ε记录: (3) 取各测点ε?值并计算各点应力:

1ε?=16×10-6 ;2ε?=7×10-6 ;3ε?= 0 ;4ε?=8×10-6 ;5ε?=15×10-6 ; 1σ?=E 1ε?=3.36MPa ;2σ?=E 2ε?=1.47MPa ;3σ?=0 ; 4σ?=E 4ε?=1.68MPa ;5σ?=E 5ε?=3.15MPa ; 根据ΔM W =ΔF ·a/2=5 N ·m 而得的理论值: 1σ?=ΔM W /W Z =3.70MPa ;2σ?=ΔM W h/4(J Z )=1.85MPa ;3σ?=0 ; 4σ?=ΔM W h/4(J Z )=1.85MPa ;5σ?=ΔM W /W Z =3.70MPa ; (4) 用两次实验中线形较好的一组数据,将平均值ε?换算成应力εσ?=E ,绘在坐标 方格纸上,同时绘出理论值的分布直线。 如有侵权请联系告知删除,感谢你们的配合!

双折射原理

各向同性介质 典型的透明介质如玻璃是各向同性的,它是指光不管以什么方向穿过介质都有相同的行为。介电质中的麦克斯韦方程给出了电位移D与电场强度E之间的关系: 这里ε0是指真空介电常数,P是电极化强度(电偶极矩在介质中形成的矢量场),物理上,电极化强度可以认为是介质对光电场的响应。 电极化率 在线性各向同性介质中,电极化强度P正比于电场E,并且方向相同: 这里χ是介质的电极化率。从而D与E的关系可以表示为: 这里 是介质的介电常数,√(1+χ)被称为介质的相对介电常数. 对非磁性介质,它与介质折射率n 有如下关系: 各向异性介质 在各向异性介质中,极化强度P不再与光电场E方向一致。这可以被看作是由电场引起的偶极矩具有特定的方向,这个方向与晶体结构有关。可以表示为: 这里χ不再是一个数而是一个二阶张量,称为极化率张量。按照3维分量的形式写成 或者用求和约定写成: 由于χ是张量,P不再与E同向. 根据热力学论据可以证明χij= χji,即χ张量是对称张量。根据spectral theorem,可以通过选择合适的坐标轴将张量对角化,使得所有除χxx,χyy和χ外的非对角分量变为0。这样可以给出以下关系式: zz 这样的x、y、z方向被称为介质的主轴。 由此可以断定,D和E的关系可以有一个张量给定:

这里ε被称做相对介电常数张量或介电张量。因此,介质的折射率也必为一个张量。考虑一列光波沿z主轴传播而光电场沿x方向的情况,这列波经历了极化率χxx和介电常数εxx,因而折射率为: 对于y方向的偏振光: 所以光波将有两个不同的折射率。这种现象被称为双折射,常发生在一般晶体如方解石和石英中。 梁铨廷. 1987. 物理光学. 机械工业出版社. M.玻恩和E.沃尔夫. 1978. 光学原理(上、下). 科学出版社. 简述: 在物理学中, 介质的折射率是一个张量. 任意方向的入射光进入非均质体后, 经过张量对角化处理, 必然分解为两个彼此垂直、大小不同的折射率, 即产生振动方向垂直、速度不等的两束光波.

折射率测量

实验十一 折射率测量 折射率是物质的重要特性参数之一,使人们了解光学玻璃、光纤、光学晶体、液晶、薄膜等材料的光学性能。折射率也是矿物鉴定的重要依据,也是光纤通信、工程塑料新物质和新介质判断依据。测量折射率的方法很多,这里介绍几种主要的实验方法。 练习一 用最小偏向角法测棱镜玻璃折射率 【实验目的】 1.进一步熟悉分光计调节方法; 2.掌握三棱镜顶角,最小偏向角的测量方法。 【实验仪器】 JJY 型分光计、低压钠灯、平面反射镜、等边三棱镜。 【实验原理】 一束平行的单色光,从三棱镜的一个光学面(AB 面)入射,经折射后由另一光学面(AC 面)射出,如图5.11.1所示。入射光和AB 面法线的夹角i 称为入射角,出射光和AC 面法线的夹角i '称为出射角,入射光和出射光的夹角δ称为偏向角。可以证明,当入射角i 等于出射角i '时,入射光和反射光之间的夹角δ最小,称为最小偏向角m in δ。 由图5.11.1可知)''()(r i r i -+-=δ,当 'i i =时,由折射定律有'r r =,得 )(2min r i -=δ (5.11.1) 又因 A A G r r r =-π-π=-π==+)(2' 所以 = r 2 A (5.11.2) 由式(5.11.1)和式(5.11.2)得 2 min δ+= A i 由折射定律有 ① ② 图5.11.1

2 sin 2sin sin sin min A A r i n δ+== (5.11.3) 由式(5.11.3)可知,只要测出最小偏向角min δ(顶角已知),就可以计算出棱镜玻璃对该波长的折射率。 【实验内容与步骤】 1.正确调整分光计,使其满足实验要求(参阅§3.9) 2.测定玻璃三棱镜对钠光黄光的最小偏向角 如图 5.11.2所示,旋载物台,使一光学面AC 与平行光管入射方向基本上垂直。当一束钠黄单色光从平行光管发出平行光射向三棱镜AB 光学面,经过三棱镜AC 光学面折射出来,望远镜从毛面BC 底边出发,沿着逆时针旋转,会看到清晰的狭缝像,说明找到折射光路。此时转动小平台连同棱镜,观察狭缝像运动 状态,如果向右移动,偏向角δ变小。再转小平台狭缝像会走到一定位置转折,使δ偏大,此转折点即为该光谱线的最小偏向角位置,把望远镜对准这个转折点,记录下来,为m in T 、min 'T 。然后使望远镜对准入射光(平行光管位置),读取方位为0T 与0'T ,则最小偏向角 ]''[2 1 0min 0min min T T T T -+-=δ 3.计算棱镜折射率 光的颜色_______ 波长_______nm 次数 m in T 0.T m in δ 2 sin 2 sin min A A n += δ 游标I m in T 游标II 'm in T 游标I 0.T 游标II '0T 1 2 3 4 5 ]''[2 1 0min 0min min T T T T -+-=δ 图5.11.2 测最小偏向角示意图

相关文档
最新文档