过程控制—上水箱液位与进水流量串级控制系统

合集下载

水箱液位串级控制系统

水箱液位串级控制系统

水箱液位串级控制系统一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统采用不同控制方案的实现过程。

二、实验设备(同前)三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。

副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。

主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。

副调节器的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。

由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。

本实验系统结构图和方框图如图5-2所示。

图5-2 水箱液位串级控制系统(a)结构图(b)方框图四、实验内容与步骤本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

具体实验内容与步骤按五种方案分别叙述,这五种方案的实验与用户所购的硬件设备有关,可根据实验需要选做或全做。

(一)、智能仪表控制1.将两个SA-12挂件挂到屏上,并将挂件的通讯线插头插入屏内RS485通讯口上,将控制屏右侧RS485通讯线通过RS485/232转换器连接到计算机串口1,并按照下面的控制屏接线图连接实验系统。

将“LT2中水箱液位”钮子开关拨到“OFF”的位置,将“LT3下水箱液位”钮子开关拨到“ON”的位置。

上水箱液位与进水流量串级控制系统设计

上水箱液位与进水流量串级控制系统设计

课程设计任务书摘要设计采用水箱液位和注水流量串级控制,设计系统主要由水箱、管道、三相磁力泵、水压传感器、涡轮流量计、变频器、可编程控制器及其输入输出通道电路等构成。

系统中由液位PID控制器的设定值端口设置液位给定值,水压力传感器检测液位。

涡轮流量计测流量,变频器调节水泵的转速,采用PID算法得出变频器输出值,实现流量的控制。

流量控制是内环,液位控制是外环。

用WinCC组件制作相对应的控制画面,让画面的个按钮与变量相对应,对系统的个参数进行整定,通过不断的调试,使系统尽可能的保持在要求的位置。

系统电源由接触器和按钮控制,系统电源接通后PLC进行必要的自检和初始化,控制器接收到系统启动按钮动作信号后,通过接触器接通电机电源,启动动力系统工作,开始两个闭环系统的调节控制。

关键词:串级控制;PLC控制;PID控制;WinCC组件目录一、概述 (1)1.1 串级控制系统简介 (1)1.2 串级控制系统的特点 (1)1.3 主、副调节器控制规律的选择 (1)1.4 串级控制系统的整定方法 (2)二、课程设计使用的实验设备 (3)2.1 高级过程控制系统实验装置 (3)2.1.1 电源控制台 (3)2.1.2 总线控制柜 (3)2.2 计算机及相关软件 (3)2.2.1 STEP 7简介 (3)2.2.2 WINCC简介 (4)三、基本原理 (5)3.1 系统组成 (5)3.1.1 被控对象 (5)3.1.2 检测装置 (5)3.1.3 执行机构 (6)3.1.4 控制器 (6)3.2 系统工作原理 (6)3.3 控制系统流程图 (7)3.4 系统投入运行步骤 (8)四、串级控制系统PID参数整定 (11)4.1 调节器参数整定过程 (11)4.1.1 主调节器为PID (11)4.1.2 主调节器为PI (13)4.2 系统在阶跃扰动作用下的静、动态性能 (15)4.3 主、副调节器采用不同PID参数时对系统动态性能的影响 (16)结束语 (17)参考文献 (18)一、概述1.1 串级控制系统简介图2.1是串级控制系统的方框图。

水箱水位与水泵供水流量串级控制系统

水箱水位与水泵供水流量串级控制系统

水箱水位与水泵供水流量串级控制系统
简介
本文档将介绍一种水箱水位与水泵供水流量串级控制系统,该系统可以根据水箱的水位变化自动调整水泵的供水流量,确保水箱的水位处于合适的范围内。

系统原理
该系统由水箱、水位传感器、水泵和控制器组成。

水位传感器安装在水箱中,用于测量水位的变化。

控制器根据传感器测量到的水位信息,通过调整水泵的供水流量来控制水箱的水位。

系统工作流程
1. 当水箱的水位低于设定的最低水位时,控制器将开启水泵,并将供水流量调至最大。

2. 当水箱的水位达到设定的最高水位时,控制器将关闭水泵。

3. 当水箱的水位处于最低水位和最高水位之间时,控制器将根据水位的变化调整水泵的供水流量。

水位上升时,供水流量逐渐减小;水位下降时,供水流量逐渐增大。

通过这种方式,系统可以稳定地控制水箱的水位。

优点与应用
该系统具有以下优点:
- 系统简单可靠,易于实现和维护。

- 可根据实际需求设定水位范围,确保水箱的水位在合适的范围内。

- 可自动调整供水流量,避免过度供水或供水不足的情况。

该系统适用于以下场景:
- 水箱供水系统,如楼宇供水系统、农田灌溉系统等。

- 需要稳定控制水位的场合,如水池、水塔等。

总结
水箱水位与水泵供水流量串级控制系统是一种简单可靠的系统,可根据水箱的水位变化自动调整水泵的供水流量。

通过该系统,可
以确保水箱的水位在合适的范围内,避免供水过度或不足的情况发生。

该系统适用于各种水箱供水系统的场合。

液位流量串级控制

液位流量串级控制

水箱液位控制系统的设计摘要:随着现代工业生产过程向着大型、连续方向发展,对控制系统的控制品质提出了日益增长的要求。

在这种情况下,传统的单回路液位控制已经难以满足一些复杂的控制要求,水箱液位控制系统由于控制过程特性呈现大滞后、外界环境的扰动较大,要保持水箱液位最后都保持设定值,用简单的单闭环反馈控制不能实现很好的控制效果,所以采用串级闭环反馈系统。

本设计采用水箱液位和注水流量串级控制,设计系统主要由水箱、管道、三相磁力泵、水压传感器、涡轮流量计、变频器、可编程控制器及其输入输出通道电路等构成。

系统中由液位PID控制器的设定值端口设置液位给定值,水压力传感器检测液位。

涡轮流量计测流量,变频器调节水泵的转速,采用PID算法得出变频器输出值,实现流量的控制。

流量控制是内环,液位控制是外环。

制作相对应的控制画面,让画面的个按钮与变量相对应,对系统的个参数进行整定,通过不断的调试,使系统尽可能的保持在要求的位置。

系统电源由接触器和按钮控制,系统电源接通后PLC进行必要的自检和初始化,控制器接收到系统启动按钮动作信号后,通过接触器接通电机电源,启动动力系统工作,开始两个闭环系统的调节控制。

目录1、设计目的和任务 (1)1.1 目的 (1)1.2 主要任务 (1)2、设计方案提出及选择 (1)2.1 液位单闭环控制系统 (1)2.2 液位流量串级控制系统 (1)3、液位串级控制系统组成结构 (2)3.1 串级控制系统的组成 (2)3.2 系统总貌图 (4)4、设计方案的控制流程图和电气原理图 (4)4.1 水箱液位串级控制系统的结构图设计 (4)4.2 水箱液位串级控制系统框图的设计 (5)4.3 电气原理图的设计 (5)5、系统工作原理 (6)5.1 水箱工作原理 (6)5.2 PID控制工作原理 (7)6、软件流程图及程序的编写 (7)7、上位机画面制作 (9)8、PID参数整定 (10)8.1 串级控制回路系统的优点 (10)8.2 串级控制系统的作用 (10)8.3 监控画面参数的调节 (10)9、结果 (11)1、设计目的和任务1.1 目的利用实验室的多容水箱及其辅助检测设备,并采用PLC作为控制器的硬件,设计一个液位控制系统,使得液位能够尽量保持平稳在设定的范围内通过课程设计,加强对课程的理解与掌握,学会查寻资料、方案比较,以及设计计算及系统调试等环节,初步掌握PLC的硬件设计和软件设计,程序调试等PLC系统的开发过程,进一步提高分析解决实际问题的能力。

过程控制—上水箱液位与进水流量串级控制系统

过程控制—上水箱液位与进水流量串级控制系统

1 过程控制系统简介1.1 系统组成本实验装置由被控对象和上位控制系统两部分组成。

系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、气动调节阀、直流电磁阀、PA电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。

1、被控对象水箱:包括上水箱、中水箱、下水箱和储水箱。

储水箱内部有两个椭圆形塑料过滤网罩,防止两套动力支路进水时有杂物进入泵中。

模拟锅炉:此锅炉采用不锈钢制成,由加热层(内胆)和冷却层(夹套)组成。

做温度实验时,冷却层的循环水可以使加热层的热量快速散发,使加热层的温度快速下降。

冷却层和加热层都装有温度传感器检测其温度。

盘管:长37米(43圈),可做温度纯滞后实验,在盘管上有两个不同的温度检测点,因而有两个不同的滞后时间。

管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。

2、检测装置压力传感器、变送器:采用SIEMENS带PROFIBUS-PA通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。

温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。

六个Pt100传感器的检测信号中检测锅炉内胆温度的一路到SIEMENS带PROFIBUS-PA通讯协议的温度变送器,直接转化成数字信号;另外五路经过常规温度变送器,可将温度信号转换成4~20mADC电流信号。

流量传感器、转换器:流量传感器分别用来对调节阀支路、变频支路及盘管出口支路的流量进行测量。

本装置采用两套流量传感器、变送器分别对变频支路及盘管出口支路的流量进行测量,调节阀支路的流量检测采用SIEMENS带PROFIBUS-PA通讯接口的检测和变送一体的电磁式流量计。

3、执行机构调节阀:采用SIEMENS带PROFIBUS-PA通讯协议的气动调节阀,用来进行控制回路流量的调节。

过程控制之液位流量串级控制系统

过程控制之液位流量串级控制系统

过程控制之液位流量串级控制系统1.1控制系统在实际应用中的重要意义单回路控制系统是过程控制中结构最简单的一种形式,它只用一个调节器,调节器也只有一个输入信号,从系统方框图看,只有一个闭环。

在大多数情况下,这种简单系统已经能够满足工艺生产的要求。

但在复杂的控制系统中,则需在单回路的基础上,采取其它措施,组成复杂控制系统,而串级控制系统就是其中一种改善和提高控制品质的极为有效的控制系统。

液位和流量是工业生产过程中最常用的两个参数,对液位和流量进行控制的装置在工业生产中应用的十分普遍。

液位的时间常数T一般很大,因此有很大的容积迟延,如果用单回路控制系统来控制,可能无法达到较好的控制质量。

而串级控制系统则可以起到十分明显的提高控制质量的效果,因此往往采用串级控制系统对液位进行控制。

1.2 系统结构设计过程控制系统由四大部分组成,分别为控制器、调节器、被控对象、测量变送。

本次为流量回路控制,即为闭环控制系统,结构组成如下图1.1所示。

图1.1 液位单回路控制系统框图当系统启动后,水泵开始抽水,通过管道分别将水送到上水箱和下水箱,由HB返回信号,是否还需要放水到下水箱。

其过程控制系统图如图1.2所示。

图1.2 控制系统框图1.3控制系统的总体方框图及工作过程图1.3控制系统框图单容水箱如图1.2所示,Qi 为入口流量,由调节阀开度μ加以控制,出口流量则由电磁阀控制产生干扰。

被调量为水箱中的水位H,它反映水的流入与流出量之间的平衡关系。

现在分析水位在电磁阀开度扰动下的动态特性。

显然,在任何时刻水位的变化均满足下述物料平衡方程:()1i o dH Q Q dt F=- (1.1) 其中 i Q k μμ= (1.2)o Q = (1.3)F 为水箱的横截面积;k μ是决定于阀门特性的系数,可以假定它是常数;k 是与电磁阀开度有关的系数,在固定不变的开度下,k 可视为常数。

液位对象的传递函数: ()()i H s Q s =2.1 控制规律的比较与选择2.1.1 常见控制规律的类型及优缺点比较PID 控制的各种常见的控制规律如下: 一、比例调节(P 调节)在P 调节中,调节器的输出信号()u t 与偏差信号()e t 成比例,即()()C u t K e t = (2.1)式中Kc 称为比例增益(视情况可设置为正或负), ()u t 为调节器的输出,是对调节器起始值()0u 的增量,()0u 的大小可以通过调整调节器的工作点加以改变。

上水箱液位与进水口流量串级控制实验实验报告

上水箱液位与进水口流量串级控制实验实验报告

《控制工程实验》实验报告实验题目:上水箱液位与进水口流量串级控制实验课程名称:《控制工程实验》姓名:学号:专业:年级:院、所:日期: 2019.04.18实验三上水箱液位与进水口流量串级控制实验一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统的实现过程。

二、实验设备1. 实验装置对象及控制柜 1套2. 装有Step7、WinCC等软件的计算机 1台3. CP5621专用网卡及MPI通讯线各1个三、实验原理本实验为水箱液位的串级控制系统,它是由主控、副控两个回路组成。

主控回路中的调节器称主调节器,控制对象为下水箱,下水箱的液位为系统的主控制量。

副控回路中的调节器称副调节器,控制对象为中水箱,又称副对象,中水箱的液位为系统的副控制量。

主调节器的输出作为副调节器的给定,因而副控回路是一个随动控制系统。

副调节器的的输出直接驱动电动调节阀,从而达到控制下水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的主调节器应为PI或PID控制。

由于副控回路的输出要求能快速、准确地复现主调节器输出信号的变化规律,对副参数的动态性能和余差无特殊的要求,因而副调节器可采用P调节器。

本实验系统结构图和方框图如图1所示。

四、实验内容与步骤本实验选择选择上水箱和中水箱串联作为被控对象。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7全开,将中水箱出水阀门F1-10开度开到70%左右、下水箱出水阀门F1-11开度50%左右(要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

图1 双容水箱液位串级控制系统(a)结构图 (b)方框图1.用 MPI 通讯电缆线将 S7-300PLC 连接到计算机 CP5621 专用网卡,并按照控制柜接线图连接实验系统。

上下两个水箱液位串级控制PLC解读

上下两个水箱液位串级控制PLC解读

目录1、设计目的*************************************************2、设计任务和技术要求*************************************** 2.1、设计任务*********************************************2.2、技术要求*********************************************3、设计正文************************************************* 3.1硬件设计************************************************3.1.1 S7-200 PLC简介************************************3.1.2 方案设计****************************************** 3.2 软件设计**********************************************3.2.1 系统分析******************************************3.2.2 系统实施及程序************************************3.3监控组态设计******************************************4、设计心得************************************************5、参考文献*************************************************6、指导老师评语*********************************************1.设计目的1.加深学生对计算机控制技术理论知识的理解和对这些理论的实际应用能力;2.PLC可编程序控制器广泛地应用于工业生产过程的自动控制领域, 使得工业自动化程度和生产效率得到极大的提高,通过PLC应用系统的设计,提高学生对实际问题的分析和解决能力;3.培养学生根据系统要求,编制相应的控制程序,再在设备上进行调试和检验的能力, 由于整个过程相当于在工程现场完成一个小型的工程项目,这对于加深理解计算机控制技术的理论,熟练掌握可编程序控制器的使用和操作方法,加快学习梯形图语言的速度,以及建立工业控制系统概念、积累工程现场经验、培养动手能力等方面都有较大的帮助;4.培养分析问题、解决问题的独立工作能力,学会实验数据的分析与处理、编写设计说明书和技术总结报告。

水箱液位与进水流量串级控制系统设计

水箱液位与进水流量串级控制系统设计

题目(二):水箱液位与进水流量串级控制系统设计一、初始条件1.课程设计辅导资料:“过程控制系统和应用”、“过程控制系统与仪表”、“过程控制仪表及控制系统”、“过程控制系统”等;2.先修课程:测量仪表与自动化等。

3.主要涉及的知识点:过程控制仪表、控制系统、被控过程等二、要求完成的主要任务1.课程设计时间:4周;2.课程设计内容:本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目所涉及的生产工艺和控制原理进行介绍,针对具体设计选择相应的控制参数、被控参数以及过程检测控制仪表,并画出控制流程图及控制系统方框图。

3.课程设计说明书按学校“课程设计工作规范”中的“统一书写格式”撰写,具体包括:1)目录;2)摘要;3)生产工艺和控制原理介绍;4)控制参数和被控参数选择;5)控制仪表及技术参数;6)控制流程图及控制系统方框图;7)总结与展望;(设计过程的总结,还有没有改进和完善的地方);8)课程设计的心得体会(至少500字);9)参考文献(不少于5篇);10)其它必要内容等。

三、时间安排:具体时间设计内容11月10日指导老师就课程设计内容、设计要求、进度安排、评分标准等做具体介绍。

学生确定选题,明确设计要求11月11日——11月14日查阅与设计有关的资料。

11月17日~11月19日根据查阅的资料,进行方案设计11月20日~11月21日确定系统所需检测元件、执行元件、调节仪表技术参数;画控制流程图及控制系统方框图。

11月24日——11月29日撰写课程设计说明书。

12月1日——12月3日课程设计初稿的修订12月4日上交课程设计说明书。

12月5日课程设计进行答辩I。

新编[工学]过程控制实验报告5上水箱液位和流量串级系统

新编[工学]过程控制实验报告5上水箱液位和流量串级系统

班级:082班座号:姓名成绩:
课程名称:过程控制工程实验项目:上水箱液位和流量串级系统
一、实验目的:
通过实验掌握串级控制系统的基本概念,掌握串级控制系统的组成结构,即主被控参数、
三、实验步骤:
1、打开计算机组态王软件的工程管理器,选中“串级实验”,点击运行,进入串级实验界面。

2、点击“自动/手动”按钮,使系统在自动状态,点击“PID设定按钮”,调出PID设定界面。

PID设定1框图是副回路流量参数,PID设定2框图是主回路液位参数。

3、投入参数,观察液位和流量的曲线,调整参数观察计算机控制的效果。

待系统稳定后,给定加个阶跃信号,观察其液位的变化曲线。

4、再等系统稳定后,给系统下水箱加干扰信号,观察下水箱液位变化的曲线。

四、计算机控制的参数设置:
五、实验报告:
1、根据试验结果编写实验报告。

2、按5-2衰减曲线调节器参数计算表填写表格中的数据
3、整理并附上记录仪的下列过渡过程曲线:
(1)整定副调节器时得到的4:1衰减曲线。

(2)整定主调节器时得到的4:1衰减曲线。

(3)主副调节器参数整定后,干扰作用于上水箱中,主变量H1的过渡过程曲线。

(4)主副调节器参数整定后,干扰作用于流量中,主变量H1的过渡过程曲线。

4、列表比较控制质量:。

水箱液位控制系统

水箱液位控制系统

课程设计报告设计题目:水箱液位控制系统班级:自动化0901班学号:**************指导教师:王姝梁岩设计时间:2012年5月7号----5月25号摘要在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。

因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

在这次课程设计中,我们主要是设计一个水箱液位控制系统,涉及到液位的动态控制、控制系统的建模、PID 参数整定、传感器和调节阀等一系列的知识。

通过将电磁流量计和涡轮流量计分别作为主管道和副管道控制系统的调节阀控制水箱液位高度。

首先测取被控液位高度过程的图像,建立了主回路的进水流量和主管道流量、进水流量和水箱(上)液位高度、副回路进水流量和水箱(上)液位、双容水箱的进水流量和水箱(下)液位之间的数学模型,从而加强了对液位控制系统的了解。

然后,通过参数试凑法对PID参数的调试,使上述的模型能快速的达到稳定并且超调量和余差等满足设计要求。

最后通过MATLAB仿真实验,加深了对双容水箱滞后过程以及串级水箱液位过程和前馈控制系统的理解,对工业控制工程中对控制系统设计过程有了一定的认识。

在PID参数整定过程中,我对比例控制,积分控制,微分控制的作用、效果以及调试方法有了一定了解。

通过这次课程设计加深我们对《自动控制原理》、《过程控制系统及仪表》等科目的理解。

关键词:水箱液位控制PID参数整定串级控制前馈控制MATLAB仿真目录1.概述....................................................... - 4 -2.课程设计任务及要求......................................... - 5 -2.1 实验系统熟悉及过程建模................................. - 5 -2.2实现单容水箱(上)液位的单回路控制系统设计.............. - 5 -2.3实现双容水箱液位(上下水箱串联)的单回路控制系统设计.... - 6 -2.4实现水箱(上)液位与进水流量的串级控制系统设计.......... - 6 -2.5实现副回路进水流量的前馈控制............................ - 7 -3 实验系统熟悉及过程建模...................................... - 8 -3.1 描述实验系统的总体结构(结构图及语言描述)。

上、中水箱液位串级PID控制实验

上、中水箱液位串级PID控制实验

上、中水箱液位串级PID控制实验一、实验目的1、掌握串级控制系统的基本概念和组成。

2、掌握串级控制系统的投运与参数整定方法。

3、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。

二、实验设备AE2000型过程控制实验装置、万用表、上位机软件、计算机、RS232-485转换器1只、串口线1根、实验连接线。

三、实验原理上水箱液位作为副调节器调节对象,中水箱液位做为主调节器调节对象。

控制框图如图9-1所示:图9-1上水箱下水箱液位串级控制框图四、实验内容和步骤1、设备的连接和检查1).打开以丹麦泵为动力的支路至上水箱的所有阀门,关闭动力支路上通往其它对象的切换阀门。

2).打开上水箱出水阀和中水箱的出水阀开至适当的开度。

3).检查电源开关是否关闭2、系统连线图图9-2实验接线图1).将上水箱液位信号接至8017的AI0通道,将中水箱液位信号接至8017的AO0通道。

2).将8024的AO1通道接至气动调节阀的控制信号输入端。

3).电源控制板上的三相电源空气开关、丹麦泵电源开关打在关的位置。

3、启动实验装置:1).打开电源带漏电保护空气开关。

打开电源总开关,电源指示灯点亮,即可开启电源。

打开单相泵电源。

2).启动计算机DDC组态软件,进入实验系统相应的实验3).建立工作点将副回路的PID控制器设成手动单击实验界面中的副回路PID控制器标签打开副回路PID控制器界面,然后单击副回路PID控制器的“手动”按钮a、设定工作点单击副回路PID控制器界面中MV柱体旁的增/减键,设置MV(U1)的值c、进行对象动态特性测试(参见已做过的实验)给MV一个阶跃,将1号和3号水箱的液位变化数据记录在表1中:根据实验数据用两点法建立3号和1号水箱的传递函数,作为PID初始参数计算的依据。

4)调节串级的后级a、设置PID参数根据对象特性,查表计算PID初始参数,P=I=D=,并将参数输入到控制器中,并进行微调,使内回路控制效果达到最佳。

过程控制实训

过程控制实训

过程控制实训报告班级:_____________ 电子A1532班 _________姓名:_________________ 万懿锋_____________学号:37 ___________________指导教师:_______________ 曾伟______________扌报告成绩:_______________________________平时成绩:__________________________________操作成绩:__________________________________教师评语:_________________________________________________电子工程学院二零一八年十一月目录实训一三容水箱液位定值控制系统 (1)实训二下水箱液位与进水流量串级控制系统 (3)实训三盘管出水口温度滞后控制系统 (5)实训四盘管出水口水温与热水流量的串级控制系统. (7)实训五盘管出口与锅炉内胆的水温串级控制系统. (9)实训六单闭环流量定值控制系统 (11)实训报告院(系):电子工程学院 课程名称:过程控制实训日期:2018.11.19班级 A1532 组 号学号37 电子信息实验楼405专业 自动化姓名万懿锋实训 名称实训一三容水箱液位控制1 •了解三容水箱液位定值控制系统的结构和组成。

2 •掌握三阶系统调节器参数的整定与投运方法。

3 •研究调节器相关参数的变化对系统静、动态性能的影响。

4 .分析P 、PI 、PD PID 四种控制方式对本实训系统的作用。

5 •综合分析五种控制方案的实训效果。

本实训系统结构图和方框图如图1-1所示。

本实训以上、中、下三只水箱串联作被控对象,下水箱的液位高度为系统的被控制量。

由第二章双容特性测试实训可 推知,三容实训 仪器 材料1. 实训对象及控制屏、 SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计 算机一台(DCS 需两台计算机)、万用表一个:2. SA-12挂件一个、3. SA-21挂件一个、4. SA-31挂件一个、 换器两个,网线四根:5. SA-41 挂件一个、6. SA-42挂件一个、RS485/232转换器一个、通讯线一根;SA-22挂件一个、SA-23挂件一个;SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交 CP5611专用网卡及网线;实训 目的 要求实 训 原 理1-1三容液位定值控制系统(a )结构图(b )方框图上水坊电目闯韦阀 Fl- I■"- _______ _____一 ------------ --------------图 * FIT"'下样"嘛I对象是一个三阶系统,可用三个惯性环节来描述。

(完整word版)上水箱液位与进水流量串级控制系统

(完整word版)上水箱液位与进水流量串级控制系统

题目11 上水箱液位与进水流量串级控制系统一、课程设计主要任务及要求1、了解液位-流量串级控制系统的结构组成与原理。

2、掌握液位—流量串级控制系统调节器参数的整定与投运方法。

3、进行串级控制系统PID参数整定。

4、了解阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响.二、实验设备1. THJ-FCS型高级过程控制系统实验装置。

2。

计算机及相关软件。

三、实验原理本实验系统的主控量为上水箱的液位高度H,副控量为气动调节阀支路流量Q,它是一个辅助的控制变量。

系统由主、副两个回路所组成。

主回路是一个定值控制系统,要求系统的主控制量H等于给定值,因而系统的主调节器应为PI或PID控制。

副回路是一个随动系统,要求副回路的输出能正确、快速地复现主调节器输出的变化规律,以达到对主控制量H的控制目的,因而副调节器可采用P控制。

但选择流量作副控参数时,为了保持系统稳定,比例度必须选得较大,这样比例控制作用偏弱,为此需引入积分作用,即采用PI控制规律。

引入积分作用的目的不是消除静差,而是增强控制作用。

显然,由于副对象管道的时间常数小于主对象上水箱的时间常数,因而当主扰动(二次扰动)作用于副回路时,通过副回路快速的调节作用消除了扰动的影响。

本实验系统结构图和方框图如图5-15所示。

图5-15上水箱液位与进水流量串级控制系统(a)结构图(b)方框图四、实验控制系统流程图本实验控制系统流程图如图5—16所示.图5-16 实验控制系统流程图本实验主要涉及三路信号,其中两路是现场测量信号上水箱液位和管道流量,另外一路是控制阀门定位器的控制信号。

本实验中的上水箱液位信号是标准的模拟信号,与SIEMENS的模拟量输入模块SM331相连,SM331和分布式I/O模块ET200M直接相连,ET200M挂接到PROFIBUS-DP总线上,PROFIBUS-DP总线上挂接有控制器CPU315—2 DP(CPU315-2 DP为PROFIBUS-DP总线上的DP主站),这样就完成了现场测量信号向控制器CPU315-2 DP的传送。

过程控制仿真系统实验指导书

过程控制仿真系统实验指导书

目录前言 (3)第一章对象特性测试实验 (4)第一节测试对象特性的方法 (4)实验一上水箱特性测试实验 (14)实验二下水箱特性测试实验 (15)实验三二阶液位特性测试实验 (16)实验四温度加热器特性测试实验 (17)实验五调节阀特性测试实验 (18)第二章单闭环控制系统实验 (19)实验一压力单闭环控制系统实验 (22)实验二温度单闭环控制系统实验 (23)实验三液位单闭环控制系统实验 (24)实验四流量单闭环控制系统实验 (25)实验五二阶液位控制系统实验 (26)第三章串级控制系统实验 (27)串级控制系统的设计与整定 (27)实验一上水箱液位和流量串级控制系统实验 (30)实验二上、下水箱液位串级控制系统实验 (32)第四章前馈控制系统实验 (34)前馈控制系统的原理 (34)实验一前馈反馈控制系统实验 (35)前言过程控制模拟仿真系统是通过计算机仿真技术,将各种过程物理对象转换成数学模型,开发出对象的一阶和二阶过程的动态特性数学模型,计算机动态模拟,达到和真实的控制系统相一致的仿真目的,在教学实验应用方面具有很好的效果。

在仿真系统界面中,设置有各种过程控制器件,包括变频器、水泵、电动调节阀、压力变送器、温度变送器、液位变送器、流量变送器、加热器等。

管道设置为两条回路,主回路用红色管道表示,副回路用白色管道表示,管道为动态流水显示。

在系统运行状态下,只要打开流水管道,就会观察到动态流水过程,比较形象直观。

同时,在各个器件上方的动态文本里显示的是当前的实际值,水箱上标有液位刻度,可以直观的观察液位高度。

系统最右上方一栏显示的是各器件变送的电流值,变送输出电流为标准电流4~20mA,右下方的为输入控制电流,是用来控制调节阀,加热器,变频器,输入电流为标准4~20mA。

该仿真系统将计算机内部变送电流数值通过牛顿模块输出为实际的电流值,而实际控制模拟输入电流又可通过牛顿模块转换为数字信号输入到计算机内。

水箱液位和注水流量串级控制PLC课程设计(DOC)

水箱液位和注水流量串级控制PLC课程设计(DOC)

信息与电气工程学院课程设计说明书(2013 /2014 学年第 2 学期)课程名称:《可编程序控制器应用》课程设计题目:水箱液位和注水流量串级控制PLC系统设计专业班级:学生姓名:学号:指导教师:刘增环、岑毅南等设计周数: 2 周设计成绩:2014 年7 月11 日1、课程设计目的通过本次课程设计,加深对PLC知识的理解;了解PLC的过程控制工程设计流程及方法;重点掌握PLC 的I/O地址分配、信号采集、PID控制算法、程序编辑以及调试运行的过程及方法。

结合课程设计的内容,熟悉过程控制工程中需要编写的技术文档;加强对PLC编程能力;培养全面、周到的考虑实际问题的习惯;学会查阅有关专业技术资料及设计手册,提高独立设计控制系统的能力并完成课程设计相关任务。

具体任务及目的如下:(1)了解水箱液位控制系统的物理结构、闭环调节系统的数学结构和PID控制算法。

(2)逐一明确各路检测信号到PLC的输入通道,包括传感器的原理、连接方法、信号种类、信号调节电路、引入PLC的接线以及PLC中的编址。

(3)逐一明确PLC到各执行机构的输入通道,包括各执行机构的种类和工作原理,驱动电路的构成,PLC输出信号的种类和地址。

(4)绘制水箱液位控制系统的电路原理图,编制I/O口地址分配表。

(5)编制PLC的程序,结合实验室现有设备进行调试,尽可能多地在实验设备上演示控制过程。

2、课程设计正文2.1技术要求水箱液位和注水流量串级控制系统主要由水箱、管道、水泵、异步电动机、电机控制电器、水压力传感器、涡轮流量计、电动调节阀、可编程控制器及其输入(检测)输出(控制)通道电路构成。

其中电动机和水泵作为动力系统。

系统中由电位器设置液位给定值,水压力传感器检测液位,采用PID算法得出流量给定值。

涡轮流量计检测流量,电动调节阀控制流量,采用PID算法得出电动调节阀开度控制值,实现流量的控制。

流量控制是内环(副调节器),液位控制是外环(主调节器)。

实验四 水箱液位串级控制系统

实验四  水箱液位串级控制系统

实验四水箱液位串级控制系统一、实验目的1.通过实验了解水箱液位串级控制系统组成原理。

2.掌握水箱液位串级控制系统调节器参数的整定与投运方法。

3.研究阶跃扰动分别作用于副对象和主对象时对系统主控制量的影响。

4.掌握液位串级控制系统采用不同控制方案的实现过程。

二、实验设备1、THJ-2 型高级过程控制系统实验装置2、计算机、上位机MCGS 组态软件、RS232-485 转换器1 只、串口线1 根3、万用表1 只三、实验原理本实验为水箱液位的串级控制系统,它是由主、副两个回路组成。

每一个回路中都有一个属于自己的调节器和控制对象,即主回路中的调节器称主调节器,控制对象为下水箱,作为系统的被控对象,下水箱的液位为系统的主控制量。

副回路中的调节器称副调节器,控制对象为中水箱,又称副对象,它的输出是一个辅助的控制变量。

本系统控制的目的不仅使系统的输出响应具有良好的动态性能,且在稳态时,系统的被控制量等于给定值,实现无差调节。

当有扰动出现于副回路时,由于主对象的时间常数大于副对象的时间常数,因而当被控制量(下水箱的液位)未作出反映时,副回路已作出快速响应,及时地消除了扰动对被控制量的影响。

此外,如果扰动作用于主对象,由于副回路的存在,使副对象的时间常数大大减小,从而加快了系统的响应速度,改善了动态性能。

本实验系统结构图和方框图如图所示。

图1 水箱液位串级控制系统(a)结构图 (b)方框图四、实验内容与步骤1、本实验选择中水箱和下水箱串联作为被控对象(也可选择上水箱和中水箱)。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7全开,将中水箱出水阀门F1-10开至适当开度(40%~90%)、下水箱出水阀门F1-11开至适当开度(30%~80% 要求阀F1-10稍大于阀F1-11),其余阀门均关闭。

2、按照实验图接线,将主、副控仪表设置为自动,主控制器Sn=33,addrss=1,CF=0 ,DF=0;副控制器Sn=32,addrss=2,CF=8,DF=0;合上三相电源空气开关,磁力驱动泵上电打水,上位机的主控制器,下水箱的液位设定值8—15cm。

实验3上、中水箱液位串级控制系统实验

实验3上、中水箱液位串级控制系统实验

实验3 上、中水箱液位串级控制系统实验一、实验目的1、掌握串级控制系统的基本概念和组成;2、掌握串级控制系统的投运与参数整定方法;3、研究阶跃扰动分别作用在副对象和主对象时对系统主被控量的影响。

二、实验设备AE2000B型过程控制实验装置、万用表一只三、实验原理上水箱液位作为副调节器调节对象,中水箱液位作为主调节器调节对象。

控制框图如图1所示:图1 上水箱中水箱液位串级控制框图四、实验内容与步骤1、设备的连接和检查:1)将AE2000B 实验对象的储水箱灌满水(至最高高度);2)打开以丹麦泵、电动调节阀、涡轮流量计组成的动力支路至上水箱的出水阀,关闭动力支路上通往其他对象的切换阀;3)打开上水箱和下水箱的出水阀至适当开度;4)检查电源开关是否关闭。

2、系统连线图:1)将I/O信号接口板上的下水箱液位的钮子开关打到OFF位置,上水箱液位的钮子开关打到ON位置;2)按图2所示连线;3)将主调节仪的4~20mA输出接至I/O信号面板的温度变送器转换电阻上转换成1~5V 电压信号,再将此转换信号接至另一调节仪(副调节器)的1端和2端作为外部给定,上水箱液位信号转换为1~5V的信号后接入副调节器的1~5V和地两端。

调节器输出的4~20mA接电动调节阀的4~20mA控制信号两端。

3、启动实验装置:1)将实验装置电源插头接到220V的单相电源上;2)打开电源单带漏电保护空气开关,电压表指示220V;3)打开总电源开关,即可开启电源。

4、实验步骤1)开启电动调节阀电源、24V电源、智能调节仪电源,调整好仪表各项参数;图2、实验接线2)设定主控参数和副控参数。

主调节器的参数与单回路闭环控制设定方法一样;3)启动动力支路,待系统稳定后,在上水箱给一个阶跃信号,观察实时曲线的变化,并记录此曲线;4)系统稳定后,在副回路上加干扰信号,观察主回路和副回路上的实时曲线的变化。

记录并保存曲线。

五、实验报告要求分析串级控制和单回路PID控制不同之处?六、注意事项1、实验线路接好后,必须经指导老师检查认可后方可接通电源;2、系统连接好以后,在老师的指导下,运行串级控制实验;3、为保护仪表及用电设备的使用寿命实验完毕,先关闭所有电源开关,再关电源总开关。

上水箱与中水箱液位串级控制工艺流程

上水箱与中水箱液位串级控制工艺流程

上水箱与中水箱液位串级控制工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

上水箱与中水箱液位串级控制工艺流程该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 上水箱与中水箱液位串级控制工艺流程 can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!随着工业生产过程的不断发展与提高,液位控制技术也逐渐成熟和完善。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 过程控制系统简介 (2)1.1 系统组成 (2)1.2 电源控制台 (3)1.3 总线控制柜 (3)2 实验原理 (4)2.1 单容水箱设备工作原理 (4)2.2 双容水箱设备工作原理 (7)2.3 系统工作原理 (9)2.4 控制系统流程图 (9)3实验结果分析 (11)3.1 实验过程 (11)3.2实验分析 (12)3.2.1单容水箱实验结果分析 (12)3.2.2双容水箱实验结果分析 (14)3.2.3单容双容水箱比较 (16)3.3实验结论 (17)总结 (18)参考文献 (19)1 过程控制系统简介1.1 系统组成本实验装置由被控对象和上位控制系统两部分组成。

系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、电动调节阀、直流电磁阀、PA电磁流量计及手动调节阀组成;另一路由变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。

1、被控对象水箱:包括上水箱、中水箱、下水箱和储水箱。

储水箱内部有两个椭圆形塑料过滤网罩,防止两套动力支路进水时有杂物进入泵中。

管道:整个系统管道采用敷塑不锈钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。

2、检测装置压力传感器、变送器:采用SIEMENS带PROFIBUS-PA通讯协议的压力传感器和工业用的扩散硅压力变送器,扩散硅压力变送器含不锈钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。

流量传感器、转换器:流量传感器分别用来对调节阀支路、变频支路及盘管出口支路的流量进行测量。

本装置采用两套流量传感器、变送器分别对变频支路及盘管出口支路的流量进行测量,调节阀支路的流量检测采用SIEMENS带PROFIBUS-PA通讯接口的检测和变送一体的电磁式流量计。

3、执行机构调节阀:采用SIEMENS带PROFIBUS-PA通讯协议的电动调节阀,用来进行控制回路流量的调节。

它具有精度高、体积小、重量轻、推动力大、耗气量少、可靠性高、操作方便等优点。

变频器:本装置采用SIEMENS带PROFIBUS-DP通讯接口模块的变频器,其输入电压为单相AC220V,输出为三相AC220V。

水泵:本装置采用磁力驱动泵,型号为16CQ-8P,流量为32升/分,扬程为8米,功率为180W。

可移相SCR调压装置:采用可控硅移相触发装置,输入控制信号为4~20mA标准电流信号。

输出电压用来控制加热器加热,从而控制锅炉的温度。

电磁阀:在本装置中作为气动调节阀的旁路,起到阶跃干扰的作用。

电磁阀型号为:2W-160-25 ;工作压力:最小压力为0Kg/㎝2,最大压力为7Kg/㎝2 ;工作温度:-5~80℃。

4、控制器控制器采用SIEMENS公司的S7300 CPU,型号为315-2DP,本CPU既具有能进行多点通讯功能的MPI接口,又具有PROFIBUS-DP通讯功能的DP通讯接口。

5、空气压缩机1.2 电源控制台电源控制屏面板:充分考虑人身安全保护,带有漏电保护空气开关、电压型漏电保护器、电流型漏电保护器。

仪表综合控制台包含了原有的常规控制系统,由于它预留了升级接口,因此它在总线控制系统中的作用就是为上位控制系统提供信号。

1.3 总线控制柜总线控制柜有以下几部分构成:(1) 控制系统供电板:该板的主要作用是把工频AC220V转换为DC24V,给主控单元和DP从站供电。

(2) 控制站:控制站主要包含CPU、以太网通讯模块、DP链路、分布式I/O DP从站和变频器DP从站构成。

(3) 温度变送器:PA温度变送器把PT100的检测信号转化为数字量后传送给DP链路。

2 实验原理2.1 单容水箱设备工作原理单容实验系统结构图和方框图如图1所示。

被控量为中水箱的液位高度,实验要求它的液位稳定在给定值。

将压力传感器LT1检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制气动调节阀的开度,以达到控水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI 或PID 控制。

图2.1 单容水箱图 (a)结构图 (b)方框图所谓单容过程,是指只有一个贮蓄容量的过程。

单容过程还可分为有自衡能力和无自衡能力两类。

一、自衡过程的建摸所谓自衡过程,是指过程在扰动作用下,其平衡状态被破坏后,不需要操作人员或仪表等干预,依靠起自身重新恢复平衡的过程。

图2-1所示为一个单容液位被控过程,其流入量1Q ,改变阀1的开度可以改变1Q 的大小。

其流出量为2Q ,它取决于用户的需要改变阀2开度可以改变2Q 。

液位h 的变化反映了1Q 与2Q 不等而引起贮罐中蓄水或泄水的过程.若1Q 作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h 与1Q 之间的数学表达式。

根据动态物料平衡关系有dt dhA Q Q =-21 (2-1)将公式(2-1)表示成增量式为dt hd A Q Q ∆=∆-∆21 (2-2)在静态时,21Q Q =;当1Q 发生变化时,液位h 随之变化,贮蓄出口处的静压随之变化,2Q 也发生变化。

由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线形关系[2]。

但为了简化起见,经线形变化,则可近似认为2Q 与h 成正比关系,而与阀2的阻力2R 成反比。

为了求单容过程的数学模型,需消去中间变量2Q 。

消去中间变量的方法很多,如可用代数代换法,可用信号流图法,也可用画方框图的方法。

这里,介绍后一种方法。

(a )图2-2液位被控过程及其阶跃响应单容液位过程的传递函数为:X t 0 0211)()()(001210+=+==s T K Cs R R s Q s H s W (2-3)式中:0T ——过程的时间常数,c 20R T =;0K ——过程的放大系数,20R K =;C ——过程的容量系数,或称过程容量。

被控过程都具有一定贮存物料或能量的能力,其贮存能力的大小,称为容量或容量系数。

其物理意义:是:引起单位被控量变化时被控过程贮存两变化的大小。

图2-2(b )所示为单容液位被控过程的阶跃响应曲线。

从上述分析可知,液阻2R 不但影响过程的时间常数0T ,而且还影响过程的放大系数0K ,而容量系数C 仅影响过程的时间常数。

在工业生产过程中,过程的纯时延问题是经常碰到的。

如皮带运输机的物料传输过程,管道输送、管道反应和管道的混合过程等。

下面讨论纯时延过程的建模。

图2-3 纯时延单容过程及其响应曲线图2-3所示,流量1Q 通过长度为l 的管道流入贮罐。

当进水阀开度产生扰动后,1Q 需要流经管道长度为l 的传输时间0t 后才流入贮罐,才使液位h 发生变化。

具有纯时延单容过程的阶跃响应曲线如图2-2曲线2所示,它与无时延单容过程的阶跃响应曲线在形状上完全相同,仅差一纯时延0t 。

具有纯时延单容过程的微分方程和传递函数为)(0100t T Q K h dt h d T -=∆+∆s t s 0e 1T K (s)Q H(s)(s)W 0010-+==(2-4)式中:0T ——过程的时间常数,c 20R T =;0K ——过程的放大系数,20R K =;0t ——过程的纯时延时间。

二、无自衡过程的建模所谓无自衡过程,是指过程在扰动的作用下,其平衡状态被破坏后,不需要操作人员或仪表等干预,依靠其自身能力不能重新恢复平衡的过程。

2.2 双容水箱设备工作原理双容实验系统结构图和方框图如图1所示。

被控量为上水箱的液位高度,实验要求它的液位稳定在给定值。

将压力传感器LT1检测到的中水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制气动调节阀的开度,以达到控水箱液位的目的。

为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制,系统的调节器应为PI 或PID 控制。

图2.5 双容水箱图 (a)结构图 (b)方框图主调节器 电动阀 上水箱 中水箱 液位变送器h (液位) 一次干扰 二次干扰 给定值 + - + Q1在工业生产过程中,被控过程往往是由多个容积和阻力构成,这种过程称为多容过程。

现在,以具有自衡能力的双容过程为例,来讨论其建立数学模型的方法。

其被控量是第二只水箱的液位2h ,输入量为1Q 与上述分析方法相同,根据物料平衡关系可以列出下列方程 dth d C Q Q 1121∆=∆-∆ (2-5) 212R h Q ∆=∆ (2-6) dt h d C Q Q 2232∆=-∆ (2-7) 323R h Q ∆=∆ (2-8)为了消去双容过程的中间变量1h 、2Q 、3Q ,将上述方程组进行拉氏变换。

)1)(1()()()(210120++==s T s T K s Q s H s W (2-9) 式中:1R ——第一只水箱的时间常数,121C R T =;2T ——第二只水箱的时间常数,322R C T =;0K ——过程的放大系数,30R K =;21C ,C ——分别是两只水箱的容量系数。

流量1Q 有一阶跃变化时,被控量2h 的响应曲线。

与单容过程比较,多容过程受到扰动后,被控参数2h 的变化速度并不是一开始就最大,而是要经过一段时延之后才达到最大值。

即多容过程对于扰动的响应在时间上存在时延,被称为容量时延。

产生容量时延的原因主要是两个容积之间存在阻力,所以使2h 的响应时间向后推移。

容量时延可用作图法求得,即通过2h 响应曲线的拐点D 作切线,与时间轴相交与A ,与2h 相交与C ,C 点在时间轴上的投影B ,OA 即为容量时延时间c t ,AB 即为过程的时间常数T 。

对与无自衡能力的双容过程,被控量为2h ,输入量为1Q 。

1Q 产生阶跃变化时,液位2h 并不立即以最大的速度变化,由于中间具有容积和阻力。

2h 对扰动的响应有他、一定的时延和惯性。

)1(11)()()(0120+==Ts s T s Q s H s W (2-10) 式中:T 0——过程积分时间常数,T 0 = C 2;T ——第一只水箱的时间常数。

同理,无自衡多容过程的数学模型为n Ts s T s W )1(11)(00+= (2-11) 当然无自衡多容过程具有纯时延时,则其数学模型为s t n e Ts s T s W 0)1(11)(00-+=(2-12) 2.3 系统工作原理本系统的主控量为上水箱的液位高度H ,副控量为气动调节阀支路流量Q ,它是一个辅助的控制变量。

系统由主、副两个回路所组成。

主回路是一个定值控制系统,要求系统的主控制量H 等于给定值,因而系统的主调节器应为PI 或PID 控制。

副回路是一个随动系统,要求副回路的输出能正确、快速地复现主调节器输出的变化规律,以达到对主控制量H 的控制目的,因而副调节器可采用P 控制。

但选择流量作副控参数时,为了保持系统稳定,比例度必须选得较大,这样比例控制作用偏弱,为此需引入积分作用,即采用PI 控制规律。

相关文档
最新文档