初高中数学衔接教材大全

合集下载

初三升高中数学衔接教案讲义大全

初三升高中数学衔接教案讲义大全

初三升高中数学衔接教案讲义大全初三升高中数学衔接教材教案讲义第一讲:数与式的运算——绝对值绝对值的代数意义是:正数的绝对值是它本身,负数的绝对值是它的相反数,零的绝对值仍是零。

即:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=-a。

绝对值的几何意义是:一个数的绝对值,是数轴上表示它的点到原点的距离。

两个数的差的绝对值的几何意义是:a-b表示在数轴上,数a和数b之间的距离。

例1:解不等式:x-1+x-3>4.练1:1) 若x=5,则x=5;若x=-4,则x=-4.2) 如果a+b=5,且a=-1,则b=6;若1-c=2,则c=-1.练2:下列叙述正确的是(A)若a=b,则a=b;(B)若a>b,则a>b;(C)若a<b,则a<b;(D)若a=b,则a=±b。

练3:化简:|x-5|-|2x-13| (x>5)。

练4:观察下列每对数在数轴上的对应点间的距离4与-2,3与5,-2与-6,-4与3,并回答下列各题:1) 你能发现所得距离与这两个数的差的绝对值有什么关系吗?2) 若数轴上的点A表示的数为x,点B表示的数为-1,则A与B两点间的距离可以表示为|a-(-1)|=|a+1|。

3) 结合数轴求得x-2+x+3的最小值为,取得最小值时x的取值范围为x≥5/3.4) 满足x+1+x+4>3的x的取值范围为x>-2/3.阅读理解题:阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|。

当A、B两点中有一点在原点时,不妨设点A在原点,如图1。

AB|=|OB|=|b|=|a-b|;当AB两点都不在原点时。

①如图2,点A、B都在原点的右边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(-b)=|a-b|。

初升高数学衔接教案

初升高数学衔接教案

高中教材,人教B 版,必考内容:必修1,2,3,4,5,选修2-1,2-2, 2-3 选考内容:选修4-1,4-4,4-5 高中内容:重代数轻几何-----要求代数的运算能力 补充初高中衔接材料〔一〕恒等式变形:1、因式分解 2、配方3、分式和根式〔二〕方程与不等式1、一元二次方程的韦达定理 2、一元二次不等式3、分式不等式,绝对值不等式 〔三〕二次函数补充一:立方和〔差〕公式 1.公式:〔1〕()()22b a b a b a -=-+〔2〕()2222b ab a b a +±=±〔3〕()()2233bab a b a b a +-+=+ 〔4〕()()2233bab a b a b a ++-=-〔5〕2222()222a b c a b c ab ac bc ++=+++++〔6〕()3223333b ab b a a b a +++=+〔7〕()3223333b ab b a a b a -+-=-例1:计算:〔1〕()()964322+-+x x x 〔2〕⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-2242412121b b a a b a例2:〔1〕()()()()42422222+++--+a a a a a a〔2〕()()()11122++---x x x x x〔3〕()()211xx x ++-〔4〕()()3211x x x x +++-例3.因式分解〔1〕66y x - 〔2〕33662n m n m ++〔3〕()()()116119222+-+-+x x x〔4〕4323-+x x例4:2,2==+xy y x ,求33y x +的值例5:〔1〕2=+b a ,求336b ab a ++的值。

〔2〕31=-x x ,求331xx -的值。

例6: 化简〔1〕()()2222y xy x y x +-+ 〔2〕()()[]2222z y z y z y ++-〔3〕⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-4121412141222x x x x x例7:0152=++a a ,试求以下各式的值: 〔1〕a a 1+ 〔2〕221a a + 〔3〕331a a + 〔4〕441aa +例8:4a b c ++=,4ab bc ac ++=,求222a b c ++的值.补充二:十字相乘法与分组分解法 一、十字相乘法:两个一次二项多项式n mx +与l kx +相乘时,可以把系数别离出来,按如下方式进行演算:即 ()()()nl x nk ml mkx l kx n mx +++=++2把以上演算过程反过来,就可以把二次三项式()nl x nk ml mkx +++2分解因式即()()()l kx n mx nl x nk ml mkx ++=+++2这说明,对于二次三项式()02≠++ac c bx ax ,如果把a 写成c mk ,写成nl 时,b 恰好是nk ml +,那么cbx ax ++2可以分解为()()l kx n mx ++ 例1:分解因式〔十字相乘法〕 〔1〕x 2-3x +2;〔2〕x 2+4x -12;〔3〕22()x a b xy aby -++; 〔4〕1xy x y -+-.〔5〕81032++x x 〔6〕122++-x x 〔7〕6222++-xy y x 〔8〕22592y xy x --例2:分解因式〔分组分解法〕 〔1〕322333y xy y x x -+- 〔2〕63223-+-x x x 〔3〕32933x x x +++ m n k l()n mx +的系数 ()l kx +的系数 mk nk ml +nl例3:分解因式 〔1〕4324--m m 〔2〕42249374b b a a +- 〔3〕2221b ab a -+- 〔4〕2215x x -- 〔5〕21252x x -- 〔6〕2524x x +- 〔7〕233+-x x 〔8〕=-+2675x x 〔9〕()=++-a x a x 12〔10〕=+-91242m m 例4:用因式分解法解以下方程:(1) 04432=--x x (2)()()x x x =-+-22112补充三:根式与分式1、式子0)a ≥叫做二次根式,其性质如下:(1) 2= ;= ;= ;= . 2.分式[1]分式的意义 形如A B 的式子,假设B 中含有字母,且0B ≠,那么称A B 为分式.当M ≠0时,分式AB具有以下性质: 〔1〕 ; 〔2〕 . [2]繁分式 当分式A B 的分子、分母中至少有一个是分式时,AB就叫做繁分式,如2m n p m n p+++,说明:繁分式的化简常用以下两种方法:(1) 利用除法法那么;(2) 利用分式的根本性质. 3、分母〔子〕有理化例5 计算(没有特殊说明,此题中出现的字母均为正数):〔1〕〔2〕1)x ≥〔3〕〔4〕〔5〕例6设x y ==33x y +的值.例7 化简:〔1〕11xx x x x-+-补充四:一元二次方程的韦达定理对于一元二次方程()002≠=++a c bx ax 用配方法可变形为:222442a ac b a b x -=⎪⎭⎫ ⎝⎛+, 因右边大于0.所以 (1) 当042>-=∆ac b 时,方程有根ab x a b x 2,221∆--=∆+-=(2) 当042=-=∆ac b ,方程有根abx x 221-== (3) 当042<-=∆ac b ,方程没有实数根。

(2020年整理)初升高数学衔接教材(完整).doc

(2020年整理)初升高数学衔接教材(完整).doc

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1. 求不等式354x -<的解集 例2.求不等式215x +>的解集 例3.求不等式32x x ->+的解集 例4.求不等式|x +2|+|x -1|>3的解集. 例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x -+->4+x (2)|x +1|<|x -2|(3)|x -1|+|2x +1|<4 (4)327x -< (5)578x +> 3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+-5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x (10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,。

初高中数学衔接教材word版配答案

初高中数学衔接教材word版配答案

数学目录阅读材料:1)高中数学与初中数学的联系2)如何学好高中数学3)熟知高中数学特点是高一数学学习关键4)高中数学学习方法和特点5)怎样培养好对学习的良好的习惯?第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)第十八课:国际数学大师陈省身第十九课: 中华民族是一个具有灿烂文化和悠久历史的民族第二十课: 方差在实际生活中的应用第二十一课: 平行线分线段成比例定理第二十二课:相似形第二十三课:三角形的四心第二十四课:几种特殊的三角形第二十五课:圆第二十六课:点的轨迹1.高中数学与初中数学的联系同学们,首先祝贺你们进入高中数学殿堂继续学习。

在经历了三年的初中数学学习后,大家对数学有了一定的了解,对数学思维有了一定的雏形,在对问题的分析方法和解决能力上得到了一定的训练。

这也是我们继续高中数学学习的基础。

良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。

高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想、分类讨论思想、等价转化思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。

高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、有良好的学习兴趣两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。

”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学衔接教材1.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式2 2 (a b)(a b) a b ;(2)完全平方公式 2 2 2(a b) a 2 a b .b我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2 2 3 3(a b) (a a b b ) a ;b(2)立方差公式 2 2 3 3(a b) (a a b b ) a ;b(3)三数和平方公式2 2 2 2 (a b c ) a b c 2 ( a b b c ;)a c(4)两数和立方公式 3 3 2 2 3(a b) a 3 a b 3 a b ;b(5)两数差立方公式3 3 2 2 (a b) a 3 a b 3 a b .b 对上面列出的五个公式,有兴趣的同学可以自己去证明.例 1 计算:2 2 (x 1)(x 1)(x x 1)(x x 1).解法一: 原式= 2 2 2 2(x 1) (x 1) x = 2 4 2 (x 1)(x x 1)= 6 1 x .解法二: 原式=2 2 (x 1)(x x 1)(x 1)(x x1)= 3 3 (x 1)(x1)= 6 1x .例 2 已知 a b c 4,ab bc ac 4,求2 2 2 a b c 的值.解:2 2 2 ( )22( ) 8a b c a b c ab bc ac .练 习1.填空:(1)1 1 1 12 2a b ( b a) ( ); 9 4 2 3(2)(4 m 22 ) 16m 4m ( ) ;(3 )2 2 2 2 (a 2b c) a 4b c ( ) . 2.选择题:(1)若2 1x mx k 是一个完全平方式,则k 等于()2(A )2m (B)142m (C)132m (D)1162m(2)不论 a,b 为何实数, 2 2 2 4 8a b a b 的值()(A )总是正数(B)总是负数(C)可以是零(D)可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2 2(1)x -3x+2;(2)x +4x-12;2 ( ) 2(3)x a b xy aby ;(4)xy 1 x y .2解:(1)如图1.1-1,将二次项 x 分解成图中的两个x 的积,再将常数项 2 分解成-1初中升高中数学教材变化分析2与-2 的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x -3x+2 中的一次项,所以,有2-3x+2=(x-1)(x-2).xx 1-1 1 -2 x -ay-1x -2 x1 -2 6 -by1图 1.1-1 图 1.1-3 图1.1-4图 1.1-2说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1 中的两个x 用 1 来表示(如图1.1-2 所示).(2)由图 1.1-3,得2x +4x-12=(x-2)( x+6).(3)由图 1.1-4,得2 ( ) 2x a b xy aby =(x ay)( x by)x -1(4)xy 1 x y =xy+(x-y)-1=(x-1) (y+ 1) (如图 1.1-5 所示).课堂练习一、填空题:y图 1.1-511、把下列各式分解因式:2 x(1) 5 6x __________________________________________________ 。

初升高数学衔接教材(完整)(2020年8月整理).pdf

初升高数学衔接教材(完整)(2020年8月整理).pdf

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪−<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a −表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a −<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><−或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1段进行讨论. ③将分段求得解集,再求它们的并集. 例1.求不等式354x −<的解集例2.求不等式215x +>的解集例3.求不等式32x x −>+的解集例4.求不等式|x +2|+|x -1|>3的解集.例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x −+−>4+x (2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x −< (5)578x +>3、因式分解 乘法公式(1)平方差公式22()()a b a b a b +−=− (2)完全平方公式222()2a b a ab b ±=±+ (3)立方和公式2233()()a b a ab b a b +−+=+ (4)立方差公式2233()()a b a ab b a b −++=−(5)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式33223()33a b a a b ab b +=+++(7)两数差立方公式33223()33a b a a b ab b −=−+−因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1分解因式:(1)x 2-3x +2;(2)2672x x ++(3)22()x a b xy aby −++;(4)1xy x y −+−.2.提取公因式法例2.分解因式: (1)()()b a b a −+−552(2)32933x x x +++3.公式法例3.分解因式: (1)164+−a (2)()()2223y x y x −−+4.分组分解法例4.(1)x y xy x 332−+−(2)222456x xy y x y +−−+− 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x −−.例5.把下列关于x 的二次多项式分解因式: (1)221x x +−;(2)2244x xy y +−.练习(1)256x x −−(2)()21x a x a −++(3)21118x x −+(4)24129m m −+(5)2576x x +−(6)22126x xy y +−(7)()()3211262+−−−p q q p (8)22365ab b a a +−(9)()22244+−−x x (10)1224+−x x (11)by ax b a y x 222222++−+−(12)91264422++−+−b a b ab a (13)x 2-2x -1(14)31a +;(15)424139x x −+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +−++−第二讲一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a −,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,。

(完整版)初高中数学衔接教材(已整理)

(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。

初高中数学衔接教材(共28页)

初高中数学衔接教材(共28页)

创作编号:BG7531400019813488897SX创作者:别如克*初高中数学衔接教材目录引入乘法公式第一讲因式分解1.1 提取公因式1.2. 公式法(平方差,完全平方,立方和,立方差)1.3分组分解法1.4十字相乘法(重、难点)1.5关于x的二次三项式ax2+bx+c(a≠0)的因式分解.第二讲函数与方程2.1 一元二次方程2.1.1根的判别式2.1.2 根与系数的关系(韦达定理)2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图象和性质2.2.2 二次函数的三种表示方式2.2.3 二次函数的简单应用第三讲三角形的“四心”乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.创作编号:BG7531400019813488897SX 创作者: 别如克*练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题: (1)若212x mx k ++是一个完全平方式,则k 等于 ( )(A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by x x 图1.1-4x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:创作编号:BG7531400019813488897SX 创作者: 别如克*(1)=-+652x x __________________________________________________。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1。

求不等式354x -<的解集例2.求不等式215x +>的解集例3.求不等式32x x ->+的解集例4。

求不等式|x +2|+|x -1|>3的解集.例5。

解不等式|x -1|+|2-x |>3-x .例6。

已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式:(1)13x x -+->4+x(2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x -<(5)578x +>3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+- 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x(10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根.(2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1。

初升高数学衔接课程(15节)

初升高数学衔接课程(15节)

初升高数学衔接课程(例题+练习+习题+答案)1、一元二次不等式2、分式不等式3、绝对值不等式4、集合的含义与表示5、集合间的基本关系6、集合的基本运算7、映射与函数8、分式函数9、函数定义域10、函数值域11、函数单调性12、函数奇偶性13、函数解析式14、二次函数在闭区间上的最值15、集合与函数测试制作人:梁林庆时间:2015-7-11、一元二次不等式1、1 知识1、定义:含有一个未知数,并且未知数的最高次数是二次的不等式叫做一元二次不等式。

2、解一元二次不等式的步骤:(1)把二次项系数变为正,令一元二次不等式=0,得到一元二次方程; (2)解一元二次方程得到两根(一根或无根);(3)根据不等号判断取值范围。

(若>,两根之外,若<,两根之间)。

1、2 例题例1、 解下列不等式1、02532>-+x x 2、01692>+-x x 3、0542>+-x x4、0122<++-x x 5、0442>-+-x x例2、 已知不等式012<-+bx ax 的解集是{}43|<<x x ,求实数a,b 的值。

例3、 解关于x 的不等式 0)12(22<+++-m m x m x例4、 解关于x 的不等式 0)1(2<--+a x a x1、解下列不等式(1)03422<++x x (2)08232≤+--x x (3)21618x x ≥-(4) ()()410x x +--<; (5)232x x -+>; (6)24410x x -+>.2、已知一元二次不等式210ax bx ++>的解集为113x x ⎧⎫-<<⎨⎬⎩⎭,求实数ab 的值。

3、若不等式210x mx ++>的解集为R ,求m 的取值范围。

解下列一元二次不等式1.03282>--x x2.031082≥-+x x3.041542<--x x4.02122>--x x5.021842>-+x x6.05842<--x x7.0121752≤-+x x 8.0611102>--x x 9.038162>--x x10.038162<-+x x 11.0127102≥--x x 12.02102>-+x x2、分式不等式2、1知识1、定义:分母中含有未知数的不等式叫做分式不等式。

最新初高中数学衔接教材[新课标人教A版](学生版)(适用黑龙江)名师优秀教案

最新初高中数学衔接教材[新课标人教A版](学生版)(适用黑龙江)名师优秀教案

初高中数学衔接教材【学生版】{新课标人教A版}典型试题举一反三理解记忆成功衔接第一部分初中数学与高中数学衔接紧密的知识点第二部分分章节讲解第一部分初中数学与高中数学衔接紧密的知识点1 绝对值:⑴在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

⑵正数的绝对值是他本身,负数的绝对值是他的相反数,0的绝对值是0,即⑶两个负数比较大小,绝对值大的反而小⑷两个绝对值不等式:;或2 乘法公式:⑴平方差公式:⑵立方差公式:⑶立方和公式:⑷完全平方公式:,⑸完全立方公式:3 分解因式:⑴把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。

⑵方法:①提公因式法,②运用公式法,③分组分解法,④十字相乘法。

4 一元一次方程:⑴在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

⑵解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

⑶关于方程解的讨论①当时,方程有唯一解;②当,时,方程无解③当,时,方程有无数解;此时任一实数都是方程的解。

5 二元一次方程组:(1)两个二元一次方程组成的方程组叫做二元一次方程组。

(2)适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

(3)二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

(4)解二元一次方程组的方法:①代入消元法,②加减消元法。

6 不等式与不等式组(1)不等式:①用符不等号(>、≠、<)连接的式子叫不等式。

②不等式的两边都加上或减去同一个整式,不等号的方向不变。

③不等式的两边都乘以或者除以一个正数,不等号方向不变。

④不等式的两边都乘以或除以同一个负数,不等号方向相反。

(2)不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。

②一个含有未知数的不等式的所有解,组成这个不等式的解集。

③求不等式解集的过程叫做解不等式。

(3)一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

初高中数学衔接课(高一)PPT课件图文(2024)

初高中数学衔接课(高一)PPT课件图文(2024)

02
展示正弦函数、余弦函数、正切函数的图像,分析三角函数的
周期性、奇偶性、单调性等性质。
三角恒等变换
03
介绍三角恒等式,如和差化积、积化和差等公式,以及它们在
三角函数计算中的应用。
13
数列与数学归纳法
2024/1/29
数列的概念及表示方法
阐述数列的定义、数列的通项公式及递推公式等基础知识 。
等差数列与等比数列
详细讲解等差数列和等比数列的定义、性质及求和公式。
数学归纳法及其应用
介绍数学归纳法的原理及步骤,通过实例演示数学归纳法 在证明数列问题中的应用。
14
04
初高中数学衔接关键点分析
2024/1/29
15
思维方式转变
从具象到抽象
初中数学以具象思维为主,而高 中数学则更强调抽象思维,需要 学生逐渐适应并培养抽象思维能
力。
从静态到动态
初中数学问题多为静态的,而高 中数学则涉及更多动态变化的问 题,需要学生理解并掌握变量之
间的关系。
从单一到多元
初中数学知识点相对单一,而高 中数学知识点更加多元化,需要 学生建立多元化的知识体系和思
维方式。
2024/1/29
16
学习方法调整
2024/1/29
课前预习与课后复习
高中数学内容相对复杂,需要学生做好课前预习和课后复习,加 深对知识点的理解和记忆。
教材内容
涵盖初中数学与高中数学衔接部 分的核心知识点,包括函数、方 程、不等式、数列、概率统计等

2024/1/29
教材结构
按照知识模块进行划分,每个模块 包含知识点讲解、例题分析、练习 题等内容,便于学生理解和掌握。
辅助资源

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a|0, a 0,a, a 0.(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.(3)两个数的差的绝对值的几何意义: a b 表示在数轴上,数a和数b之间的距离.2、绝对值不等式的解法(1)含有绝对值的不等式① f (x) a(a 0), 去掉绝对值后,保留其等价性的不等式是 a f ( x) a 。

② f (x) a(a 0) , 去掉绝对值后,保留其等价性的不等式是 f (x) a或f (x) a 。

③ 2 2f (x) g(x) f (x)g (x)。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n+1 段进行讨论.③将分段求得解集,再求它们的并集.例1. 求不等式3x 5 4的解集例2. 求不等式2x 1 5的解集例3. 求不等式x 3 x 2 的解集例4. 求不等式| x+2| +| x-1| >3 的解集.1例5. 解不等式| x-1| +|2 -x| >3-x.例6. 已知关于x 的不等式| x-5| +| x-3| <a 有解,求 a 的取值范围.练习解下列含有绝对值的不等式:(1)x 1 x 3 >4+x(2)| x+1|<| x-2|(3)| x-1|+|2 x+1|<4(4)3x 2 7(5) 5x 7 83、因式分解乘法公式(1)平方差公式 2 2(a b)( a b) a b(2)完全平方公式 2 2 2(a b) a 2ab b(3)立方和公式 2 2 3 3(a b)(a ab b ) a b(4)立方差公式 2 2 3 3(a b)(a ab b ) a b(5)三数和平方公式 2 2 2 2(a b c) a b c 2(ab bc ac)(6)两数和立方公式 3 3 2 2 3(a b) a 3a b 3ab b2(7)两数差立方公式 3 3 2 2 3(a b) a 3a b 3ab b因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2(1)x -3x+2;(2)26x 7x 2(3) 2 ( ) 2x a b xy aby ;(4)xy 1 x y .2.提取公因式法例2. 分解因式:2 (2)x3 9 3x2 3x (1)ab 5 a 5 b3.公式法例3. 分解因式:(1)a4 16 (2) 23x 2y x y2 4.分组分解法2例4. (1)x xy 3y 3x (2)2 22x xy y 4x 5y 65.关于x 的二次三项式ax2+bx+c( a≠0) 的因式分解.若关于x 的方程 2 0( 0)ax bx c a 的两个实数根是x1 、x2 ,则二次三项式2 ( 0)ax bx c a 就可分解为a(x x )(x x ).1 2例5. 把下列关于x 的二次多项式分解因式:(1) 2 2 1x x ;(2)2 4 4 2 x xy y .3练习 (1) 25 6xx (2) 21 x ax a(3) 2 11 18xx (4)24m 12m 9(5)25 7x 6x(6) 2212xxy 6y2q p ( 7) 6 2p q 1123( 8 )35a 2b 6ab2a( 9 )24 2 4 xx2(10) x 42x 2 1 (11) x 2 y 2 a 2 b 2 2ax 2by(12) a 24ab 4b 2 6a 12b 9(13) x 2-2x -1(14) 31a;(15)4 24x 13x 9 ;(16)2 22 2 2b cab ac bc ;(17)2 23x 5xy 2y x 9y 4第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1) 根的判别式2对于一元二次方程 ax +bx +c =0(a ≠0),有:(1) 当Δ>0 时,方程有两个不相等的实数根x 1,2=,2=24 bbac 2a;(2)当 Δ=0 时,方程有两个相等的实数根 x 1=x 2=- b 2a;(3)当 Δ<0 时,方程没有实数根. (2) 根与系数的关系(韦达定理)2如果 ax +bx +c =0(a ≠0)的两根分别是 x 1,x 2,那么 x 1+x 2=b a ,x 1· x 2=c a.这一关系也被称为韦达 定理.2、二次函数2y ax bx c 的性质1. 当 a 0 时,抛物线开口向上,对称轴为xb 2a,顶点坐标为 2b4ac b , 。

初高中衔接教材数学部分

初高中衔接教材数学部分

● 数学部分第一讲 代数式及其恒等变形导学:初中学生必须能快速而且准确地进行代数式及其恒等变形.用运算符号把数或表示数的字母连接而成的式子叫做代数式.单独的一个数或字母也是代数式.整式和分式统称为有理式.本讲主要学习:整式及其恒等变形、二次根式及其恒等变形.§1.1 整式及其恒等变形【方法要点】.1幂的乘(除)法运算:n m n m a a a +=⋅,nm n m a a a -=÷,()n m nm a a ⋅=,10=a ()0≠a ,p p aa 1=-(p 为正整数). .2多项式乘法公式:(1)平方差公式:()()22b a b a b a -=-+; (2)完全平方公式:()2222b ab a b a +±=±, ()ac bc ab c b a c b a 2222222+++++=++;(3)立方和、差公式:()()3322b abab a b a +=+-+,()()3322b a b ab a b a -=++-;(4)完全立方公式:()3223333b ab b a a b a +++=+,()3223333b ab b a a b a -+-=-.【试一试】.1下列运算正确吗?如果不对,应怎样改正? (1)()422263y x xy =; (2)22412xx =-; (3)()()527x x x -=-÷-; (4)()322236xy xy xy =÷ ..2观察下列一组单项式:a ,22a -,34a ,48a -,516a ,……,按此规律,第n 个单项式是 .3.现规定一种运算:y x xy y x -+=*,其中y x ,为实数,则()y x y y x *-+*= . 【想一想】以下问题如何解决?解题时应注意些什么? 例1. 计算:()()232232421323y xy x x xy ⋅⋅-⋅-.解:原式2632382212729y y x x x y x ⋅⋅-⋅==8585279y x y x -=8518y x -; 例2.求代数式的值: (1)当3,41=-=y x 时,求代数式()()()22222422y x y x y x +--⋅+的值. (2)已知代数式632++x x 的值为8,求代数式2932-+x x 的值.(3)已知2010=a ,2011=b ,2012=c 时,求ca bc ab c b a ---++222的值. 解:(1)原式=24224[(2)(2)](168)x y x y x x y y +--++=4224(168)x x y y -+=()()42244224816816y y x x y y x x ++-+-==2216y x -.当3,41=-=y x 时,原式为-9; (2)由8632=++x x 知232=+x x ,得()423329322=-+=-+x x x x ; (3)原式=()()()222222a c c b b a -+-+-.当2010=a ,2011=b ,2012=c 时,原式为3.【练一练】求解下列各题,并请你结合本节【试一试】、【想一想】中的内容,谈谈整式的恒等变形的特点,你认为整式的恒等变形在简化计算中有哪些好处? 1.计算()20112010313⎪⎭⎫ ⎝⎛⋅-2.(1)已知10≤≤x .⑴62=-y x ,则y 的最小值是多少? (2)若1,322==+xy y x ,则y x -的值是多少? 3.已知1=-b a ,则b b a 222--的值为多少?4.已知122=-x x ,求代数式()()()21131+-+-x x x 的值.5.先化简,再求值:(1)()()()ab ba ab b a b a 484222÷-+-+,其中1,2==b a ;(2)xy xz yz z y x 222222-+-++,其中321,32,32-=-=+=z y x . 6.小明家买了一套价格为80万元的住房,按要求需首期(第一年)付房款30万元,从第二年起,每年付房款5万元与上一年剩余房款的利息之和,假设剩余房款年利率为6.06%,则第n 年小明家需还款 万元.§1.2 二次根式及其恒等变形【方法要点】.1根式:式子()0≥a a 表示的是实数a 的算术平方根; .2二次根式的性质:()a a =2(0≥a ); a a =2;b a b a ⋅=⋅(0≥a ,0≥b );ba ba =(0≥a ,0≥b ).【试一试】1.下列计算正确吗?如果不对,应怎样改正?(1)10220=; (2)632=⋅;(3)224=-; (4)()332-=- .2.观察分析下列数据,寻找规律:0,3,6,3,32,……则第10个数据是什么?3.估算231-的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间4.要使式子aa 2+有意义,a 的取值范围是( ) A .0≠a B .2->a 且0≠a C .2->a 或0≠a D .2-≥a 且0≠a【想一想】以下问题如何解决?解题时应注意些什么? 例1.已知0<xy ,化简y x 2 解:由0<xy 知,x y 异号,再由y x 2知02≥y x ,可得0>y ,从而0<x .所以y x 2==⋅y x 2y x -.例2.比较大小:(1)34 (2)-63- (3)78-与67-解:⑴∵6373732=⨯=,4834342=⨯=,而63>48,∴> ⑵∵52132=,5463=,而52>54,故132<63,∴ -132>-63;⑶∵()--78()()726867-+=-,而()48214682+=+,()28722=,2848214<+,即78-<67-例3.已知214422++-+-=x x x y ,x 、y 为实数,求y x +的值.解:由题知⎪⎩⎪⎨⎧≠+≥-≥-02040422x x x .得2=x ,∴41214422=++-+-=x x x y ,=+y x 23412=+. 例4.计算(1)313312--; (2)⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-5.0431381412; (3)⎪⎪⎭⎫⎝⎛-+2432232733. 解:(1)原式=3343313332-=--; (2)原式=22433342432⨯+⨯-⨯-=23+; (3)原式=2122466236233332-+=⎪⎪⎭⎫ ⎝⎛-⨯+=286-. 例5.已知y x m y x 34,1643-==+,求m 的取值范围.解:由⎪⎩⎪⎨⎧-==+y x m y x 341643知⎪⎩⎪⎨⎧-=+=2536425484m y m x ,注意到0,0≥≥y x ,则有⎪⎩⎪⎨⎧≥-≥+025364025484m m ,所以⎪⎩⎪⎨⎧≤-≥36412m m ,故36412≤≤-m .【练一练】求解下列各题,并请你结合本节【试一试】、【想一想】中的内容,谈谈根式的恒等变形的特点,你认为根式的恒等变形在简化计算中有哪些好处?.1若0<a ,化简23a a --.2.使1213-+-x x 有意义,x 应满足的条件是什么?3.下列计算正确的是( )A .632m m m =⋅B .33431163116=⋅= C .53232333=+=+ D .()11.a a -==< 4.先化简再求值:()()()66332+---+a a a a ,其中12-=a .5.计算:(1)4832271318++-; (2)245083xx x --; (3)282a a a a ÷⎪⎪⎭⎫⎝⎛-; (4)()()321321-+⋅+-. 6.已知12-=x ,求132-+x x 的值.7.已知32+=a ,32-=b ,试求abb a -的值. 8.我们知道,形如21,351-的数可以化简,其化简的目的主要是把原数分母中的无理数化为有理数,如:22222121=⋅⋅===2+,这样的化简过程叫做分母有理化.我们把2叫做2的有理化因式,35+ 做35-的有理化因式.请完成下列各题:(1)7的有理化因式是 ,723-的有理化因式是 ;(2)化简3233-;(3)比较20102011-,20112012-的大小,并说明理由. 9.观察下列各式及其验证过程:322322=+,验证:322322383222=⨯==+;833833=+,验证:8338338278332=⨯==+; (1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)上述各式反映的规律,写出用a (a 为任意自然数且2≥a )表示的等式,并给出验证.第二讲 因式分解导学:在前一讲里,我们会根据多项式乘法的分配律、交换律与结合律,求出若干个多项式的乘积.那么,把这一过程反过来,我们能做什么呢?能把一个多项式化为若干个次数较低的多项式(或单项式)的乘积!把一个多项式化为若干个整式的积的过程叫做因式分解,也叫分解因式,从定义不难看出,因式分解是整式乘法的逆运算.“化积”与“整式”是因式分解的两个基本特征.因式分解通常以“能分则分,直到不能再分”为原则,把一个多项式尽可能地分解为不能再分的几个整式的乘积.在数学解题中,因式分解是一种重要的思想方法,我们必须学会其中几种最常用的方法!§1.2 提取公因式法与运用公式法【方法要点】.1提取公因式法,即把多项式中各项含有的公因式提出来. .2应用公式法,即直接运用以下乘法公式进行因式分解. (1)平方差公式:()()22b a b a b a -=-+;(2)完全平方公式:()2222b ab a b a +±=±()ac bc ab c b a c b a 2222222+++++=++;(3)立方和差公式:()()3322b abab a b a +=+-+()()3322b a b ab a b a -=++-;(4)完全立方公式:()3223333b ab b a a b a +++=+()3223333b ab b a a b a -+-=-.【试一试】.1以下因式分解对吗?如果不对,应怎样改正? (1)()23223231x x x x x x ++=++; (2)()a b a ab a ab b a 832286422---=-+-..2下面多项式可以用平方差公式分解因式吗?说说你的理由.(1)224y x +; (2)()224y x --; (3)44y x -..3分解因式:(1)2269b ab a +-; (2)338y x +; (3)13323+++x x x ; (4)122222+--++y x xy y x .【想一想】以下问题如何解决?解题时应注意些什么? 例1. 把下列各式分解因式:)1(2362x x -;)2(q p pq 33153+;)3(()b a b a +--3;)4(()()92622++-+y x y x . 解:)1(原式)3(22-=x x ;)2(原式)5(322p q pq +=;)3(原式)1)(1)((]1))[((2--+--=---=b a b a b a b a b a ; )4(原式22)32(]3)2[(-+=-+=y x y x .例2.把下列各式分解因式:)1( 6327b a -;)2(3223618186y xy y x x -+-;)3( )(222y x xy y x ++++.解:)1(原式)39)(3()()3(4222323b ab a b a b a ++-=-=;)2(原式322336(33)6()x x y xy y x y =-+-=-; )3(原式=)2)(()(2)(2+++=+++y x y x y x y x .例3.把下列各式分解因式:)1(44-a ;)2(33)()(b a b a --+;)3(333)(y x y x +++.解:)1(原式)2)(2)(2()2)(2(222++-=+-=a a a a a ;)2(原式322332232333(33)62a a b ab b a a b ab b a b b =+++--+-=+=222(3)b a b +;)3(原式=)22)(()())((22322xy y x y x y x y xy x y x +++=+++-+.【练一练】求解下列各题,并请你结合本节【试一试】、【想一想】中的内容,谈谈用提取公因法与运用公式法分解因式的特点,你认为因式分解在简化计算中有哪些好处? .1将下列各式分解因式:(1)x x x -+-232;(2)22a a b b --+;233(3)()a b a b +--..2 计算下列各式的值:(1)3399101-;22(2)2005401020032003-⨯+; 222(3)3233342(323333343234)+++⨯+⨯+⨯;3223(4)20113201120103201120102010-⨯⨯+⨯⨯-.§2.2 十字相乘法【方法要点】十字相乘法是一种操作性很强又很实用的因式分解方法,通常表现为两种形式: 第一种叫分拆系数形式,由()()()n bx m ax mn x bm an abx ++=+++2中二次项系数、常数项与一次项系数间的关系得出,如图1;第二种叫分拆项形式,即把二次三项式中的二次项拆成二个一次式的乘积,再把常数项写成二个常数的乘积,然后交叉相乘的和是一次项,如图2.a m ax mb n bx nbm an + x bm an bmx anx )(+=+图1 图2【试一试】.1试指出下列各式中实数b a ,的值:)35)(2(5)1(2+-=++x x b ax x ;)1)((122)2(++=+++by a x y x xy ..2用十字相乘法分解下列因式:2(1)109x x -+;2(2)328x x +-; 2(3)651x x --;22(4)32x xy y +-.【想一想】以下问题是如何解决的?十字相乘法仅适用于对二次三项式的因式分解吗? 例1 把下列各式分解因式:2(1)273x x ++; 2(2)26x x --; 22(3)2722x xy y --解:(1)(21)(3)x x =++原式; (2)(23)(2)x x =+-原式;(3)(211)(2)x y x y =-+原式.例2 请连续二次运用十字相乘法分解下列各式:22(1)31092x xy y x y --++-;2(2)2xy y x y ++--; 222(3)67372x xy y xz yz z ---+-.解:(1)∵)2)(5(103.22y x y x y xy x +-=--,而y x y x y x 9)5()2(2+=--+,∴原式=)12)(25(-++-y x y x ;(2)∵)(.2y x y y xy +=+,而y x y y x -=-+⋅2)(1,∴原式=)1)(2(+-+y y x ;(3)∵)3)(32(37622y x y x y xy x +-=--,而yz xz y x z y x z 7)32(2)3(+-=--+,∴原式=)23)(32(z y x z y x -++-.例3 你能根据右边的图示,写出一个多项式及其它的分解式吗? 3 2-如能,你可写出几个呢?2 3解:从二次三项式考虑,有①656)32)(23(2-+=+-x x x x ;②656)32)(23(2++-=+-+x x x x ;如从更一般考虑,可以为①bd ad bc ac d c b a 6946)32)(23(-+-=+-; ②bd ad bc ac d c b a 6946)32)(23(++--=+-+. …… 【练一练】求解下列各题,并请你结合本节【试一试】、【想一想】中的内容,谈谈用十字相乘法分解因式的特点,你认为用这一方法时要注意些什么? .1将下列各式分解因式:2(1)61x x +-; 2(2)31920x x -+-; (3)223415y xy x --..2将下列各式分解因式:(1)65622++-+y x y xy ; (2)233222+-+--y x y xy x ; (3)222673452x xy y xz yz z --+--.§2.3 分组分解法【方法要点】分组分解法也是一种非常实用的因式分解方法,它是在多项式各项没有直接的公因式的情况下,先通过合理分组使各组出现公因式或构成某个乘法公式,然后再提取公因式或运用乘法公式,直至把某多项式化成几个整式乘积的形式.分组分解法的关键在于合理分组.这里的合理,就是要使分组后的各组具有公因式或构成某个乘法公式.【试一试】.1以下各式应怎样分组,才能使分组后的各组具有公因式或构成一个乘法公式?22(1)42x y ax ay -++;222(2)2a ac b c +-+;3223(3)x x y xy y +--..2把下列各式分解因式:22(1)12m mn n ---;(2)(1)(1)x x y y ---;222(3)222a b c bc ac ab ++-+-.【想一想】下列问题是怎样处理的?这样处理的目的是什么?还有其它解决办法吗? 例.1 把下列各式分解因式:22(1)4202536x xy y -+-;2222(2)22a b x y ay bx --+-+; 3333(3)3434a x b y b x a y -+-.解:2(1)(25)36(256)(256)x y x y x y =--=-+--原式;222222(2)2(2)()()a ay y b x bx a y b x =-+-+-=---原式=))((y b x a y x b a --+--+;(3)原式)43)(()(4)(3333333y x b a b a y b a x -+=+-+=))()(43(22b ab a b a y x +-+-=.例.2 把下列各式分解因式:3(1)2x x +-;44(2)x y +;()()()2442(3)111x x x ++-+-.解:332(1)2(1)(1)(1)(2)x x x x x x x +-=-+-=--+;4422222222(2)())()()x y x y x y x y +=+-=+-++;()()()2442422422(3)111(1)2(1)(1)(1)(1)x x x x x x x x ++-+-=+++-+---222222222)1()22()1(])1()1[(--+=---++=x x x x x )3)(13(22++=x x . 例.3 多项式()()222224y x xy y xy x +-++可进行因式分解吗?怎样分解?解:可以.将xy y x 与22+各看成一个整体,对原多项式进行重新分组,便有()())(4])[(42222222222y x xy xy y x y x xy y xy x+-++=+-++222222)()(2)(xy y x xy y x ++-+= 222)(xy y x -+=.【练一练】求解下列各题,并请你结合本节【试一试】、【想一想】中的内容,概括一下用分组分解法进行分解因式的特点及运用时的关键点. .1将下列各式分解因式:224(1)2x xy y z -+-;32(2)3412x x x +--;()222(3)141m n mn n -+-+..2已知222=-=+y x y x ,试求1323222-++--y x y xy x 的值;.3若()()()0222=-+-+-b a c a c b c b a ,求证:a 、b 、c 中至少有两个数相等.§2. 4 其它方法【方法要点】在因式分解中,除了上面介绍的提取公因式法、运用公式法、十字相乘法、分组分解法以外,还有求根公式法、待定系数法等.求根公式法相对二次三项式而言,这里的“求根公式”就是一元二次方程02=++c bx ax )0(≠a ,当042≥-=∆ac b 时的两个实根:aacb b x 2422,1-±-=.求出了实根,也就有因式分解的结论()()212x x x x a c bx ax --=++.可见,这种方法只有在相应一元二次方程有实根的前提下使用的;待定系数法是在已明确因式分解的方向,但不知有关系数时使用的一种方法,求出待定系的依据是“两多项式恒等,对应项系数相等”.【试一试】.1你能用十字相乘法、求根公式法分解下列因式吗?不能用时能想到用别的方法吗?2(1)481x x --;2(2)1x x +-;2282)3(y xy x +-..2如已经知道多项式34223+++x x x 中含有因式1+x ,你有什么办法可求出该多项式的其余因式?【想一想】例1 把下列各式分解因式:3631)1(2-+-x x ; 2284)2(y xy x --.解:21(1)6303x x -+-=在方程中,△32=,24=∆.求得方程的两个实根为:1299x x =+=-1(993x x =---+-;)2(将y 看成常数,方程08422=--y xy x 的两根是252,25221-=+=x y x .所以,原式=)252)(252(4y x y x --+-. 至此,你能总结出用求根公式法分解因式时的步骤是什么?例.2 试用待定系数法分解下列因式:32(1)106x x x +--;432(2)227447x x x x ---+.观察与思考:本题中的两个多项式各具有什么样的整式因式呢?方向应该是有的:在第)1(问中,它至少可以化为一个一次整式与一个二次三项式的乘积;在第)2(问中,它至少可以化为两个二次三项式的乘积.解:32232(1)106()()()()x x x x a x bx c x a b x c ab x ac +--=+++=+++++设.对照同次项前的系数得:6,10,1-=-=+=+ac ab c b a ,解得2,4,3==-=c b a .故得原式=)22)(22)(3()24)(3(2-+++-=++-x x x x x x .(2)设23422234)()())((744272.x ac d b x c a x d cx x b ax x x x x x +++++=++++=+--- cdx bc ad +++)(.对照同次项前的系数有:44,27,2-=+-=++-=+bc ad ac d b c a ,7=bd .解得1,7,7,5=-===d c b a .∴)2537)(2537)(75()17)(75(744272.222234--+-++=+-++=+---x x x x x x x x x x x x .【练一练】解答以下各题,并请结合本节【试一试】、【想一想】中的解法,总结一下求根公式法适用的范围、步骤,待定系数法应用时的情境、步骤及注意点等等. .1分解因式:21(1)814x x --; 221(2)2x y -+..2分解因式:534)1(234+++-x x x x ; 43(2)5159x x x ++-..3若k y x y xy x +-+-+352322能分解为两个一次因式的积,求实数k 的值..4多项式y x y xy x +++-22能分解为两个一次因式的乘积吗?你能证明你的结论吗?第三讲 一元二次方程导学:一元二次方程)0(02≠=++a c bx ax 几种常见解法:直接开平方法、分解因式法、配方法或公式法;一元二次方程)0(02≠=++a c bx ax ,当判别式∆=240b ac -≥时,方程有两实根,并导出方程的两实根之和、两实根之积与方程的系数cb a ,,的关系——韦达定理.一元二次方程的判别式和韦达定理在解决一元二次方程中的字母系数、根的关系、图象的交点等问题中具有十分重要的作用.§1.3 一元二次方程根的解法【方法要点】一元二次方程)0(02≠=++a c bx ax 的常见解法有:直接开平方法:)0(,2>=m m x ,则m x ±=配方法:将一元二次方程配方成)0(,)(2≥=+m m q px 的形式,再用直接开平方法求解. 分解因式法:将一元二次方程化成右边为0,左边分解成两个一次因式的乘积的形式求解.公式法:一元二次方程)0(02≠=++a c bx ax 当042≥-=∆ac b 时,方程有两个实数根为a ac b b x 2421-+-=,aacb b x 2422---=.【试一试】1.你能直接口答下列方程的根吗?(1)32=x (2)01492=-x (3)9122=+-x x(4)(1)(2)4x x -+= (5)0)2)(23(=--x x (6)012=--x x2.你能完成下列二次三项式的配方吗?(1)22__)(___6+=++x x x (2)22__)(___3-=+-x x x (3)22__)(__)(+=++x px x (4)22___)3(__129-=+-x x x (5)_____)(312322++=++x x x【想一想】 在解决以下问题的过程中你有何体会?例1.用直接开平方法或配方法解下列方程:(1)9)12(2=-x (2)12)1(2=+x (3) 142=+x x(4)43)1(=+x x (5) x x 5122-= 解:(1)312±=-x 即312=-x 或312-=-x 所以 21=x ,12-=x . (2)321±=+x 即321=+x 或321-=+x 所以 1321-=x ,1322--=x .(3)5442=++x x 即5)2(2=+x 所以 251-=x ,252--=x .(4)432=+x x 即4143412+=++x x ,所以1)21(2=+x ,即211=x ,232-=x . (5)01522=-+x x ,得021252=-+x x ,移项配方:222)45(21)45(25+=++x x即1633)45(2=+x 所以 43351+-=x 43352--=x . 例2.用分解因式法或公式法解下列方程(1)0322=-x x (2)04)1(22=-+x x (3)01452=--x x(4)x x 7232=+ (5)15232=-x x解:(1) 0)32(=-x x 得 0=x 或032=-x 所以 01=x 322=x . (2)0)21)(21(=-+++x x x x ,得 0)1)((13(=-+x x ,即 013=+x 或01=-x所以 311-=x 12=x . (3)0)2)(7(=+-x x ,得07=-x 或02=+x ,所以 71=x ,22-=x . (4)0)2)(13(=--x x 得013=-x 或02=-x ,所以 311=x ,22=x . (5)因为1,52,3-=-==c b a ,所以 3242=-ac b ,由求根公式得63252±=x ,即32251+=x 32252-=x . 例3.解下列方程(1)03522=-+x x (2)21)10(22=-x x (3)09)32(6)32(24=+---x x解:(1)可用配方法、分解因式法、求根公式法求得方程解为 211=x , 32-=x . (2)0211024=+-x x 得0)3)(7(22=--x x ,所以 072=-x 或032=-x ,所以3,3,7,74321-==-==x x x x .(3)0]3)32[(22=--x ,得 3)32(2=-x ,所以 2331+=x , 2332-=x .【练一练】请你用一元二次方程的常用方法,并结合本节【想一想】中的内容解下列方程(1)025)12(2=--x (2) 0)3()12(22=---x x (3) 222=+x x(4)0652=--x x (5)0211122=--x x (6) (21)(1)3x x --=(7)x x 32132=+ (8)0342=+-x x§3.2 一元二次方程根与系数的关系(韦达定理)【方法要点】1.若一元二次方程)0(02≠=++a c bx ax 有两个实数根:1x =,2x =,则有122222b b b bx x a a a a-+--+=+==-;221222(4)444b b ac ac cx x a a a--====. 所以,一元二次方程的根与系数之间存在下列关系是:如果)0(02≠=++a c bx ax 的两根分别是21,x x ,那么a b x x -=+21,acx x =⋅21. 将此关系式成为韦达定理.2.若二次项系数为1的元二次方程02=++q px x 的两根为21,x x ,由韦达定理可知: p x x -=+21,q x x =⋅21, 即 )(21x x p +-= ,21x x q ⋅=. 所以,方程02=++q px x 可化为 0)(21212=⋅++-x x x x x x ,因此有以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=⋅++-x x x x x x .【试一试】1.请你判断下列说法的对错:①方程0722=-+x x 的两根之和为-2,两根之积为-7; ( ) ②方程2770x x -+=的两根之和为-2,两根之积为7; ( ) ③方程0732=-x 的两根之和为0,两根之积为73-; ( ) ④方程0232=+x x 的两根之和为-2,两根之积为0. ( )2.已知一元二次方程的两根为2121-+与,则这个一元二次方程可为( ).A 0122=--x x .B 0122=-+x x .C 01222=-+x x .D 01222=--x x【想一想】以下问题如何解决?你能独立解决吗?例1.若21,x x 是一元二次方程01522=-+x x 的两根.(1)求||21x x -的值; (2)求222111x x +的值; (3)求3231x x +的值.解:∵21,x x 是一元二次方程01522=-+x x 的两根. ∴2521-=+x x ,2121-=⋅x x .(1)∵433)21(4)25(4)(2||221221222121221=-⨯--=-+=+-=-x x x x x x x x x x∴233||21=-x x .(2)222212121222222212121251()2()()21122291()()2x x x x x x x x x x x x --⨯-++-+====-.(3)]3))[(())((2122121222121213231x x x x x x x x x x x x x x -++=+-+=+ 2551155()[()3()]2228=-⨯--⨯-=-.例2.已知关于x 的方程04)2(222=++-+m x m x 有两个实数根,并且这两个实数根的平方和比这两个实数根的积大21,求m 的值. 解:设21,x x 是方程的两根,由韦达定理,得 )2(221--=+m x x ,4221+=m x x .∵21212221=-+x x x x ,∴ 213)(21221=-+x x x x ,即 21)4(3)]2(2[22=+---m m , 化简得 : 017162=--m m ,解得 1-=m ,或17=m .当1-=m 时,方程为0562=++x x ,0>∆,满足题意;当17=m 时,方程为0293302=++x x ,029314302<⨯⨯-=∆,不合题意,舍去.综上知:1-=m .注意:只有在一元二次方程有实数根的条件下,才能用韦达定理例3.已知21,x x 是方程0122=--x x 的两根,求一个以12,1221++x x 为根的一个一元二次方程.解:由韦达定理得:⎩⎨⎧-==+122121x x x x ,所以62)(2)12()12(2121=++=+++x x x x ,即11)(24)12)(12(212121=+++=++x x x x x x所以,以12,1221++x x 为两根的一个一元二次程为:0162=+-x x .例4.已知实数c b a ,,满足:26,9a b c ab =-=-, 求证:b a =证明:由题意得:⎩⎨⎧+==+962c ab b a , 由韦达定理知,以b a ,为实数根的关于x 的一元二次方程为:09622=++-c x x此时04)9(46222≥-=+-=∆c c ,所以0=c 即0=∆这表明方程有相等的实数根. 因此b a =.【练一练】请你结合本节【试一试】、【想一想】中的内容和方法,求解下列各题 ;1.填空题(1)已知方程0652=-+kx x 的一个根是2,则它的另一个根为______, k 的值为______.(2)若方程0132=--x x 的两根分别是1x 和2x ,则=+2111x x .2.已知方程0122=-+x x 的两根为b a 和,求代数式||)1)(1(b a b a -+--的值.3.关于x 的方程042=++m x x 的两根为21,x x 满足2||21=-x x ,求实数m 的值.4.求一个一元二次方程,使它的两根分别是方程0172=--x x 各根的相反数.5*.已知21,x x 是关于x 的一元二次方程01442=++-k kx kx 的两个实数根.问是否存在实数k ,使23)2)(2(2121-=--x x x x 成立?若存在,求出k 的值;若不存在,说明理由;第四讲 三角形的性质导学:三角形是最常见的几何图形之一,在生产和生活中有着很广泛的应用.前面我们已经学习了三角形的有关线段、角,多边形及内角和,全等三角形的概念及判断,等腰三角形的有关概念及性质,直角三角形的概念及性质等等.下面我们进一步学习三角形的一些性质,主要有三角形的角平分线的性质和三角形中的一些特殊点.§14. 三角形内角平分线定理【知识要点】1. 角平分线的性质:角平分线上的点到角的两边的距离相等.2.三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.3. 三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比. 【试一试】1.已知AE 是ABC ∆的角平分线,且050B ∠=,∠060C =,求BAE ∠和AEB ∠的大小. 2.在ABC ∆中,AB AC =,AD 是ABC ∆的角平分线,则DCBD=______.3.作一个ABC ∆,使1AB cm =,2AC cm =,A ∠分别为下列各角: (1)030, (2)060, (3)090, (4)0120 再作A ∠的角平分线AD ,分别量出BD ,DC 的长,并计算DCBD. 【想一想】以下问题如何解决?解题时应注意些什么?例1.三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比. 已知:如图所示,AD 是ABC ∆的内角BAC ∠的平分线.求证:DCBDAC AB =. 思路1:过C 作角平分线AD 的平行线,用平行线分线段成比例定理证明. 证明:过C 作CE ∥DA 与BA 的延长线交于E ,则DCBD AE AB =. ∵,BAD AEC CAD ACE ∠=∠∠=∠ 且BAD CAD ∠=∠∴AEC ACE ∠=∠(等量代换) ∴AE AC = ∴DCBDAC AB =. 思路2:利用面积法来证明.证明:过D 作DE AB ⊥于E ,DF AC ⊥于F ,过A 作AG BC ⊥于G ,∵BAD CAD ∠=∠ ∴DE DF =∴AC AB DF AC DEAB S S DACBAD =⋅⋅=∆∆2121又 DC BD AG DC AG BD S S DAC BAD =⋅⋅=∆∆2121 ∴DCBD AC AB =. 例2.已知在ABC ∆中,∠090C =,030B ∠=,AD 是角平分线.求证:2BD CD =.证明:由∠090C =,030B ∠=知2AB AC =,因为AD 是角平分线,所以2=ACAB DC BD =,即2BD CD =. 例3.如图,在ABC ∆中,7,11,AB AC ==点M 是BC 的中点,AD 是BAC ∠的平分线,FM ∥AD ,求CF 的长.解:如图,∵M 是BC 的中点,∴MB MC =.又∵AD 是BAC ∠的平分线, ∴DC BD =AC AB =117,即711MC DM DM MC -=+ ∴MC DM =92 又∵FM ∥AD ∴FC AF =MC DM =92 又11AF FC +=, ∴9CF =. 思考:还有其它解法吗?例4.已知:如图,ABC ∆的角平分线BD 和CE 交于F .(l )求证:F 到AB 、BC 和AC 边的距离相等;(2)求证:AF 平分BAC ∠;(3)求证:三角形中三条内角的平分线交于一点,而且这个点到三角形三边的距离相等. 证明:(1)点F 在角平分线BD 上,所以由角平分线性质,点F 到ABC ∆的两边AB 和BC的距离相等.同理,点F 在角平分线CE 上,所以点F 到ABC ∆的两边AC 和BC 的距离相等.所以点F 到ABC ∆的AB 、BC 和AC 三边距离相等;(2)由(1)可知点F 到两边AB 和AC 的距离相等,所以点F 在BAC ∠的角平分线上,所以AF 平分BAC ∠;(3)由(2)AF 平分BAC ∠,设AF 延长线交BC 于G ,则AG 就是ABC ∆的角平分线,所以三角形的三条内角的平分线BD 、CE 和AG 交于交于一点F ,而且这点到三角形三边的距离相等.【练一练】1.已知AD 是ABC ∆的角平分线,5AB cm =,4AC cm =,6BC cm =,则BD = .2.已知AD 是ABC ∆的角平分线且5AB AC -=,3BD CD -=,8DC =,则线段AB = .3.已知:如图,ABC ∆的外角CBD ∠和BCE ∠的平分线相交于点F .求证:点F 在DAE ∠的平分线上(注:点F 称为三角形的旁心).4.如图,在Rt ABC ∆中,090C ∠=,AD 是BAC ∠的角平分线. (1)若3AB BD=B ∠; (2)若AB BD =3,且4BD =,求ABC S ∆.§4.2 三角形的“四心” 【知识要点】三角形的四心是指三角形的重心、外心、内心、垂心.三角形的重心是三角形三条中线的交点.三角形的外心是三角形三条边的垂直平分线的交点.三角形的内心是三角形三条角平分线的交点.三角形的垂心是三角形三边上的高的交点.【试一试】1.三角形三条中线的交点是三角形的是_______(填重心、外心、内心、垂心).2.三角形三条边的垂直平分线的交点到三角形的_________距离相等,是三角形的_______(填重心、外心、内心、垂心).3.三角形三条角平分线的交点到三角形的_____距离相等,是三角形的_____(填重心、外心、内心、垂心).4.三角形三边上的高的交点是三角形的______(填重心、外心、内心、垂心).【想一想】例1.求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1. 已知:点D 、E 、F 分别为ABC ∆三边BC 、CA 、AB 的中点.求证:AD 、BE 、CF 交于一点,且都被该点分成2:1.证明:连结DE ,设AD 、BE 交于点G ,D 、E 分别为BC 、AE 的中点,则DE //AB ,且12DEAB ,GDE ∆∽GAB ∆ 且相似比为1:2,∴2AG GD =,2BG GE =设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F则G 与'G 重合,∴AD 、BE 、CF 交于一点,且都被该点分成2:1.思考:还有别的证法吗?例2.平行四边形ABCD 的面积是60,E 、F 分别是AB 、AC 的中点,AF 分别与DE 、BD 交于G 、H ,求四边形BHGE 的面积.解:连结AC 交BD 于O ,分别延长AF 和DC 相交于M ,则点H 是ABC ∆的重心. ∴10213131=⨯==∆∆ABCD ABC ABH S S S 平行四边形. 又AB ∥DM ,可得AGE ∆∽MGD ∆,从而14EG AE GD MD ==.于是3415151=⨯==∆∆ABCD AED AEG S S S 平行四边形. ∴7310=-=-=∆∆AEG ABH BHCE S S S 四边形.例3.若三角形的内心与重心为同一点,求证:这个三角形为正三角形.已知:O 为三角形ABC 的重心和内心.求证:三角形ABC 为等边三角形.证明:如图,连AO 并延长交BC 于D .O 为三角形的内心,故AD 平分∠BAC ,∴ DCBD AC AB =(角平分线性质定理) O 为三角形的重心,D 为BC 的中点,即BD =DC .∴AC AB = 1,即AB AC .同理可得,AB =BC .∴ △ABC 为等边三角形.【练一练】三条高线,垂心为H,则图中直角三角形的个数为1.已知AD、BE、CF为锐角ABC_____.2.若一等腰三角形的底边上的高等于18厘米,腰上的中线等于15厘米,则该等腰三角形的面积等于_______.、、,则三角形的内切圆的半径3.(1)若三角形ABC的面积为S,且三边长分别为a b c是_______.、、(其中c为斜边长),则三角形的内切圆的(2)若直角三角形的三边长分别为a b c半径是_______.4.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。

初高中数学衔接教材 §2.1 一元二次方程(含答案)

初高中数学衔接教材 §2.1 一元二次方程(含答案)

初高中数学衔接教材 2.1 一元二次方程2.1.1根的判别式{情境设置:可先让学生通过具体实例探索二次方程的根的求法,如求方程的根: (1)0322=-+x x ;(2)0122=++x x ;(3)0322=++x x 。

} 用配方法可把一元二次方程ax 2+bx +c =0(a ≠0)变为2224()24b b ac x a a -+=①a ≠0,∴4a 2>0。

于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-±;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x 1=x 2=-2b a;(3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2()2b x a+一定大于或等于零,因此,原方程没有实数根。

由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示。

综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有(1)当Δ>0时,方程有两个不相等的实数根,x 1,2(2)当Δ=0时,方程有两个相等的实数根,x 1=x 2=-2ba; (3)当Δ<0时,方程没有实数根。

例1 判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根。

(1)x 2-3x +3=0;(2)x 2-ax -1=0;(3) x 2-ax +(a -1)=0;(4)x 2-2x +a =0。

解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根。

(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根12a x +=,22a x -=(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x 1=x 2=1; ②当a ≠2时,Δ>0, 所以方程有两个不相等的实数根x 1=1,x 2=a -1。

初高中数学衔接教材

初高中数学衔接教材

初高中数学衔接教材前言二次函数、二次方程、二次不等式在高中数学中占有重要地位,是高中数学学习的基础,在高中学习中一直是“重头戏”,高中函数、三角、解析几何的许多内容都与二次函数、二次方程、二次不等式有关.高中数学中有许多重要的基础性知识应用广泛,如一元二次方程根的分布、一元三次方程与不等式、高次不等式、含参数的不等式解法、“打勾函数”、恒成立问题、存在性问题、分式函数的值域等,这些知识在初高中教材中又是不常见的,几乎没有,本书在这些方面作一些补充和尝试.本书可以作为初高中衔接的教材,也是高一新生的入门教材,在高一阶段也可作为校本教材使用.目 录第一章 一元二次方程 (1)1.1一元二次方程的判别式及其作用 ...............................................................1 1.2一元二次方程根的求解 ...........................................................................1 1.3 韦达定理及其应用 .................................................................................6 1.4一元三次方程根的求解 (8)第二章 二次函数 (12)2.1二次函数常见的三种表达形式 ………………………………………………………12 2.2 二次函数在特定区间内的值域(最值) …………………………………………………17 2.3函数m x a y -=(m a ,为常数,且0≠a )的图象和性质 …………………………21 2.4函数n x b m x a y -+-=(n m b a ,,,为常数,且0≠ab )的图象和性质 ……24 2.5 “耐克函数”a a x a x y ,0(>+=为常数)与a a xax y ,0(<+=为常数)的图象和性质 26第三章 一元二次不等式 (29)3.1一元二次不等式02>++c bx ax 或02<++c bx ax (其中0≠a )的解法 (29)3.2 含参数的一元二次不等式的解法 ……………………………………………………35 3.3 一元二次方程)0(02≠=++a c bx ax 根的研究 (39)第四章 高次不等式的解法 (47)第五章 简单分式函数的值域求法 (51)5.1 函数dcx bax y ++=(其中)0≠ac 的值域 (51)5.2 函数e dx cbx ax y +++=2(其中)0≠ad 的值域 (53)5.3 函数e dx cx b ax y +++=2(其中)0≠ac 与fex dx cbx ax y ++++=22(其中)0≠ad 的值域 55第六章 恒成立问题与存在性问题 (58)6.1恒成立问题与存在性问题两个常见结论 ......................................................58 6.2 二次函数的恒成立问题 (60)第一章 一元二次方程一元二次方程是高中数学学习的基础,在高中数学中占有十分重要的位置.一元二次方程根的求解、韦达定理、判别式、根的范围的分析等都是高中数学学习的基础.1.1一元二次方程的判别式及其作用对一般地,一元二次方程)0(02≠=++a c bx ax ,判别式ac b 42-=∆. 当0>∆时,方程有两个不等实根,当0=∆时,方程有两个相等实根, 当0<∆时,方程没有实数根.1.2一元二次方程根的求解一元二次方程根的求解常用三种办法:十字相乘法(因式分解),配方法,公式法. 1.2.1 十字相乘法(因式分解) 因式分解(分解因式),把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.因式分解法就是通过因式分解将一元二次方程化成0))((=++d cx b ax 的形式(注意方程右边一定是0)从而得出a b x -=或cdx -=.十字相乘法(因式分解)是解一元二次方程最常用的方法,应用最为广泛,一定要掌握,并多加练习, 但只适用于左边易分解而右边是零的一元二次方程 .例1.2.1解下列一元二次方程 :(1) 06722=++x x ;(2) 022=--x x . 解:(1) 应用十字相乘法. 把22x 拆成x 2和x , 把6拆成2和3 x 2 3 (也可以拆成1和6 , 2和3 的位置也可变化, 具体取哪一种,要看 x 2 十字相乘能否凑成一次项的系数), 如右图,然后再将x 2和2相乘得x 4, 将x 和3相乘得到x 3,最后将x 4和x 3加起来,看是不是等于式子中的一次项x 7,如果是,就OK 了.0)2)(32(=++x x , 从而得它的两个根为21-=x ,232-=x .(2) 应用十字相乘法化为0)1)(2(=+-x x ,得它的两个根为21=x ,12-=x .1.2.2配方法 先把方程化为形如c b a c b ax ,,()(2=+为常数,0≠a )的方程,再用直接开平方法得方程的解.配方法是解一元二次方程公式法的基础,没有配方法就没有公式法.例1.2.2 解一元二次方程:0262=--x x .解:由0262=--x x ,得11)3(2=-x ,得113±=x .1.2.3 公式法 公式法是解一元二次方程的通法,较配方法简单.当十字相乘法(因式分解)较困难时,是解一元二次方程最常用的方法.对一般地,一元二次方程)0(02≠=++a c bx ax ,判别式ac b 42-=∆.当0>∆时,方程有两个不等实根,aacb b x 242-±-=;当0=∆时,方程有两个相等实根,ab x 2-=; 当0<∆时,方程没有实数根.例1.2.3 解一元二次方程:0242=--x x . 解:,2,4,1-=-==c b a 024)2(14)4(2>=-⨯⨯--=∆,方程有两个不等实根:622244±=±=x .课后作业1.2分别解下列一元二次方程.1.(1)01322=++y y ;(2)01092=--x x ; (3)031032=++x x .2.(1) 0262=--x x ; (2) 01562=-+x x ; (3)061352=-+x x .3.(1)02452=--x x ; (2) 081032=-+x x ;(3)01272=++x x .4.(1)0622=--x x ; (2) 0862=-+x x ;(3)022=++x x .5.(1)0152=+-x x ; (2) 0632=--x x ;(3)02722=++x x .6..; ;0432)3(0523)2(023)1(222=--=++-=+-x x x x x x7..; ;0162)3(0126)2(02073)1(222=+-=--=-+x x x x x x8.(1) 06122=--x x ; (2) 0671122=--x x ; (3) 06122=+-x x .9.已知m 是实常数,解下列一元二次方程:(1) 0222=-+m mx x ; (2) 05161222=+-m xm x .1.3 韦达定理及其应用对一般地,一元二次方程)0(02≠=++a c bx ax ,当判别式042≥-=∆ac b 时,方程有两个实根21,x x ,则有ac x x a b x x =⋅-=+2121,.例 1.3.1 已知21,x x 是方程 07232=--x x 的两根,求: 2221)1(x x +;221)()2(x x -;21)3(x x -.解:由韦达定理37,322121-=⋅=+x x x x .则(1) 946)37(2942)(212212221=-⨯-=-+=+x x x x x x . (2) 221)(x x -988)37(4944)(21221=-⨯-=-+=x x x x .(3) 2232)(22121=-=-x x x x .例1.3.2 已知21,x x 是下列各方程的两实根, 分别求221)(x x -:)31(333)2(022)1(2222222±≠=--=++-k b kx x k x k x k )(;)( .解:(1) 由韦达定理1,)2(2212221=⋅+=+x x kk x x .则 221)(x x -4242221221)1(164)2(44)(k k k k x x x x +=-+=-+=.(2) 0)327(18)31(222=+-+-b kx x k ,由韦达定理13327,13182221221-+=⋅-=+k b x x k k x x ,则 221)(x x -222222222221221)13()39(1213)327(4)13(3244)(--+=-+--=-+=k k b b k b k k x x x x .课后作业1.31.已知21,x x 是方程 04322=-+x x 的两实根,求:2221)1(x x +;221)()2(x x -;21)3(x x -.2.已知21,x x 是方程 05232=++-x x 的两实根,求)1)(1(21--x x 的值.3.已知21,x x 是方程03)12(2=+-+x k x 的两实根,若+21x x 0)1)(1(21=--x x , 求k 的值 .4.已知方程 02=++c bx ax 的两实根为2,-3,解方程02=+-c ax bx .5.已知2,121==x x 是方程 0)1(2=+++b x ab ax 的两实根,求b a ,的值.6.已知21,x x 是方程 0542=+-m x x 的两实根,若0)2)(2(21=++x x , 求m 的值 .7.已知21,x x 是方程[]421422=-++)(k kx x 的两根, 求221)(x x -.8.已知21,x x 是方程 0722=+-x x λ的两实根,若51221<+x x x x , 求实数λ的取值范围 .9.已知21,x x 是方程 06)12(32=+-+x a x 的两不等实根,若 121<-x x , 求实数a 的取值范围 .1.4一元三次方程根的求解 1.4.1一元三次方程猜根法求解高中数学中, 一元三次方程根的求解, 主要采用先猜一个有理根 , 再进行因式分解法求解.因式分解法不是对所有的三次方程都适用,只对一些三次方程适用.对于大多数的三次方程,只有先猜出它的一个有理根,才能作因式分解.当然,因式分解的解法很简便,直接把三次方程降次.一般地, 对一个一元三次方程:0012233=+++a x a x a x a , 如果它有有理根nmx =(既约分数),其中Z n m ∈,, 且0≠n , 则m 是0a 的约数,n 是3a 的约数.例1.4.1 解一元三次方程:0563=+-x x .解:5,603==a a , 则0a 的约数有5,1±±=m , 3a 的约数有6,3,2,1±±±±=n , 若原方程有有理根,则有理根必为65,61,35,31,25,21,5,1±±±±±±±±=x , 先猜简单的1-=x 为它的根,则该一元三次方程可化为0)566)(1(2=+-+x x x ,由于方程05662=+-x x 无实根,从而得它只有一个实数根:1-=x .例1.4.2 解一元三次方程:0223=-+x x .解:对左边作因式分解,得0)22)(1(2=++-x x x , 得方程只有一个实数根:1=x . 例1.4.3 解一元三次方程:02223=+--a a a .解:先猜一个根1=a ,则化为0)2)(1(2=---a a a ,再因式分解可得三个实数根1,1,2-=a .1.4.2一元三次方程卡尔丹公式法求解(含复数根)方程03=++q px x 的三个根为(其中231iw +-=, i 为虚数单位) 332332127422742p q q p q q x +--+++-=;3322332227422742p q q w p q q w x +--⋅+++-⋅=;3323322327422742p q q w p q q w x +--⋅+++-⋅=.标准型一元三次方程023=+++d cx bx ax (其中R d c b a ∈,,,,且0≠a ),令aby x 3-=代入上式,可化为适合卡尔丹公式直接求解的特殊型一元三次方程03=++q py y .【卡尔丹判别法】 当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根; 当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根; 当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根.1.4.3一元三次方程盛金公式法求解盛金公式法求解一元三次方程,在这里不作介绍,有兴趣可上网查询.相关链接:/s5518/msgview-49671-5.html1.4.4 一元三次方程的根与系数的关系方程023=++++d cx bx ax (其中R d c b a ∈,,,,且0≠a )的三个根为1x ,2x ,3x ,则))()((32123x x x x x x a d cx bx ax ---=+++,展开即得abx x x -=++321, a c x x x x x x =++133221, ad x x x -=⋅⋅321.课后作业1.4分别解下列一元三次方程:1.(1) 04115223=+-+x x x ; (2) 01223=--x x ;2.(1) 01323=--x x ; (2)04323=+-x x .3.(1) 063223=++-x x x ; (2)062523=+--x x x .4.(1) 02323=--+x x x ; (2)027523=-+-x x x .5.(1) 03323=+--x x x ; (2)03103=--x x .6.(1) 015323=++-x x x ; (2)041919623=---x x x .7.(1) 0577223=+--x x x ; (2)06174323=+--x x x .8.(1) 01216311023=-++x x x ; (2) 03118423=+-+x x x .第二章 二次函数二次函数的三种表示方法、二次函数的图象和性质以及二次函数的简单应用是本节内容的重点.在高中数学中,经常采用区间来表示相应的实数值的集合.具体规定如下:()a ,∞-表示小于a 的实数的集合{}a x x <; ()∞+,a 表示大于a 的实数的集合{}a x x>;(]a ,∞-表示小于等于a 的实数的集合{}a x x≤;[)∞+,a 表示大于等于a 的实数的集合{}a x x ≥;()b a ,表示大于a 且小于b (其中a b >)的实数的集合{}b x a x<<;[]b a ,表示大于等于a 且小于等于b (其中a b >)的实数的集合{}b x a x ≤≤;[)b a ,表示大于等于a 且小于b (其中a b >)的实数的集合{}b x a x<≤; (]b a ,表示大于a 且小于等于b (其中a b >)的实数的集合{}b x a x≤<.2.1二次函数常见的三种表达形式2.1.1交点式:))((21x x x x a y --=,其中点)0,(,)0,(21x x 为该二次函数与x 轴的交点.在画交点式图象时采用描点法,一般应画出下列关键点: ①x 轴上的交点)0,(1x ,)0,(2x ;②y 轴上的交点),0(21x ax ;③顶点(横坐标为221x x x +=);④其它特殊点(例如1±=x 等).例2.1.1 画出下列二次函数的图象: (1))2)(1(+-=x x y ;(2))5)(2(21+-=x x y ;(3))3)(1(2++-=x x y . 解: (1) (2) (3)k h x a y +-=2)(,其中点),(k h 2.1.2顶点式:为该二次函数的顶点.要求能够熟练作出顶点式函数的图象,熟练说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值.二次函数k h x a y +-=2)(的图象开口由a 的正负决定:当0>a 时,开口向上;当0<a 时,开口向下.二次函数k h x a y +-=2)(的图象开口大小由a 决定:a 越大,开口越小;a 越小,开口越大.二次函数的单调性由a 的正负和对称轴决定:当0>a 时,开口向上时,在对称轴h x =的左侧(即h x <), 当x 增大时,y 随之减小(称之为单调递减,记为↓-∞),(h );在对称轴h x =的右侧(即h x >), 当x 增大时,y 随之增大(称之为单调递增,记为↑∞+),(h );当0<a 时,开口向下时,在对称轴h x =的左侧(即h x <), 当x 增大时,y 随之减小增大(称之为单调递增,记为↑-∞),(h );在对称轴h x =的右侧(即h x >), 当x 增大时,y 随之减少(称之为单调递减,记为↓∞+),(h );例2.1.2画出下列二次函数的图象, 并分别说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值:(1)2)1(2+-=x y ;(2) 1)1(2-+-=x y .解:(1)如图2.1.2(1),开口向上, 对称轴1=x , 顶点坐标)2,1(,↑∞+↓-∞),1()1,(,2m i n =y ,无最大.(2) 如图2.1.2(2),开口向下, 对称轴1-=x , 图2.1.2(1) 图2.1.2(2)顶点坐标)1,1(--,↓∞+-↑--∞),1()1,(,1max -=y ,无最小.2.1.3一般式:)0(2≠++=a c bx ax y .要研究函数)0(2≠++=a c bx ax y 的图象和性质,一般应熟练把它化为顶点式:k h x a y +-=2)(,写出它的对称轴a b x 2-=和顶点坐标)44,2(2ab ac a b --,转化为上面的顶点式类型.)0(2≠++=a c bx ax y 的图象与系数c b a ,,的关系:a 的正负由开口方向决定,当x0>a 时开口向上, 当0<a 时开口向下;b 的大小(正负)由对称轴abx 2-=和开口(a 的正负)联合决定;c 的大小(正负)由它的图象与坐标轴y 轴的交点),0(c 的位置决定 .如图 2.1.3,当判别式042>-=∆ac b 时, )0(2≠++=a c bx ax y 的图象与x 轴有两个不同的交点;当042=-=∆ac b 时,图象与x 轴有且只有一个公共点;当042<-=∆ac b 时,图象与x 轴没有公共点.当0>a 且判别式042<-=∆ac b 时,)0(2≠++=a c bx ax y 的图象恒在x 轴的上方.当0<a 且判别式042<-=∆ac b 时, )0(2≠++=a c bx ax y 的图象恒在x 轴的下方.图2.1.3(1)0,0>∆>a 图2.1.3(2)0,0=∆>a 图2.1.3(3)0,0<∆>a图2.1.3(4)0,0>∆<a 图2.1.3(5)0,0=∆<a 图2.1.3(6)0,0<∆<a例2.1.3把下列二次函数的一般式化为顶点式:(1)172-+=x x y ;(2)2522-+-=x x y ;(3)23212+-=x x y . 解:(1)45327(2-+=x y . (2)89)45(22+--=x y . (3)25)3(212--=x y .例2.1.4分别画出下列二次函数的图象, 并说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值:(1)342++=x x y ;(2) 452-+-=x x y .解:(1)1)2(2-+=x y ,开口向上, 对称轴2-=x ,顶点坐标)1,2(--, ↑∞+-↓--∞),2()2,(,1min -=y ,无最大.(2)49)25(2+--=x y ,开口向下, 对称轴25=x , 顶点坐标)49,25(,↓∞+↑-∞),25()25,(,49max =y ,无最小.例 2.1.5 已知函数a x a ax x f +-+=)()(312在[)∞+,1上单调递增, 求实数a 的取值范围.解:0=a 或⎪⎩⎪⎨⎧≤->,1213,0aa a 得a 的取值范围是10≤≤a .课后作业2.11.分别画出下列二次函数的图象: (1))2)(1(-+=x x y ;(2))2)(23(31+-=x x y ;(3))1)(12(-+-=x x y .2.画出下列二次函数的图象, 并分别说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值: (1)2)2(2--=x y ;(2) 5)2(2++-=x y ;(3)1)1(32+--=x y .3.把下列二次函数的一般式化为顶点式: (1) 33322-+-=x x y ; (2) 1532+-=x x y ; (3) x x y --=243.4.求下列函数的最大(或最小)值,并写出它的对称轴方程: (1) x x y 232--=; (2) 122-+=x x y .5.分别画出下列二次函数的图象, 并说出图象的开口方向、对称轴、顶点坐标、单调性和函数的最大(小)值. (1) 142--=x x y ; (2) 1522++-=x x y ; (3)1232-+=x x y .6.分别求出下列二次函数图象在x 轴、y 轴上的交点坐标,判断开口方向,写出对称轴方程、顶点坐标,求出其最大值(或最小值),并画出图象: (1) x x y 22+-= ; (2) 2432--=x x y .7.分别求出下列二次函数图象在x 轴、y 轴上的交点坐标,判断开口方向,写出对称轴方程、顶点坐标,求出其最大值(或最小值),并画出图象: (1) 12+--=x x y ; (2) 132-+-=x x y .8.求下列函数的最大(或最小)值,并写出它的对称轴方程: (1) ;122+-=ax x y (2) .()012≠-+-=a x ax y2.2 二次函数在特定区间内的值域(最值)二次函数在特定区间内的值域(最值)求解的步骤:①先画出原函数在实数集R上的图象;②再在①的基础上画出它在特定区间内的图象;③ 根据图象得出该二次函数在特定区间内的值域(最值).例2.2.1求下列二次函数在特定区间内的值域:(1))21(2≤≤-=x x y ;(2))2(32≥+-=x x y ;(3))12(122<<---=x x x y .解:(1)值域[]4,0. (2)值域]1,(--∞. (3)值域⎪⎭⎫⎢⎣⎡-9,89. 例2.2.2求二次函数)21(2)(2≤≤--=x ax x x f 的最小值.解:二次函数对称轴a x =.当1-<a 时,如图2.2.2(1),a f x f 21)1()(min +=-=; 当21≤≤-a 时,如图2.2.2(2),2min )()(a a f x f -==; 当2>a 时,如图2.2.2(3),a f x f 44)2()(min -==.图2.2.2(1) 图2.2.2(2) 图2.2.2(3) 例2.2.3求二次函数)2(4)(2+≤≤+-=a x a x x x f 的最大值. 解:二次函数对称轴2=x ,开口向下.当0<a 时,如图2.2.3(1),2max 4)2()(a a f x f -=+=;图2.2.3(1) 图2.2.3(2) 图2.2.3(3) 当20≤≤a 时,如图2.2.3(2),4)2()(max ==f x f ;当2>a 时,如图2.2.3(3),2max 4)()(a a a f x f -==.例 2.2.4 已知函数)0(3)12()(2≠--+=a x a ax x f 在区间⎥⎦⎤⎢⎣⎡-2,23上的最大值为1,求实数a 的值.解:由于二次函数的最值必在端点或对称轴处取得,先由158)2(=-=a f 得43=a ,由12343)23(=--=-a f 得310-=a , 由14)12(12)221(2=---=-aa a a a f 得223±-=a . 经经验得适合条件的43=a ,或223--=a . 课后作业2.21.分别画出下列函数的图象:(1) )1232->-=x x x y (;(2))21(22≤<-+-=x x x y ; (3))1,2(422-<>++-=x x x x y 或.(1) (2) (3) 2.分别画出下列函数的图象:(1) )0(13212≤++-=x x x y ; (2) )31(342≤<--=x x x y ; (3) )1(12->+--=x x x y .(1) (2) (3)3.求下列函数的值域:(1))11(12≤≤-++-=x x x y ; (2))421(142<≤--=x x x y ; (3))11(1622≤≤-+-=x x x y .4.若二次函数)31(3)(2≤≤-+-=x m x x x f 的最大值为2 ,求m 的值.5.若二次函数)0(152)(2m x x x x f ≤≤-+-=的最大值为817,求m 的取值范围.6.求下列函数的值域:(1)1424++-=x x y ;(2)124++=x x y .7.求函数)11(1324≤≤-+-=x x x y 的值域.8.求函数)3(42<≤-=x m x x y 的值域.9.求二次函数)21(12)(2≤≤-+-=x ax x x f 的最小值.10.求函数)20(122≤≤-+-=x ax x y 的值域.11.若函数)10(8512≤≤+++-=x a ax x y 的最大值为25,求实数a .12.若0>a ,函数)11(12≤≤-++--=x b ax x y 的最大值为0 ,最小值为-4,求实数b a , 的值.13.求函数)11(132+≤≤-+-=a x a x x y 的值域.14.已知21,x x 是方程0622=++-a ax x 的两实根, 求2221)1()1(-+-x x 的最小值.15.若函数)5(462+≤≤+-=a x a x x y 的最大值为20,求实数a 的值.16.若函数)10(2≤≤-+=x a x ax y 的最大值为817,求实数a 的值.2.3函数m x a y -=(m a ,为常数,且0≠a )的图象和性质2.3.1 函数x y =与函数x y =的图象关系.把函数x y =的图象在x 轴下方部分翻转到x 轴上方即得函数x y =的图象.2.3.2 函数x y =与函数m x y -=的图象关系.把函数x y =的图象向右(0>m )或向左()0<m 平移m 个单位即得函数m x y -=的图象.2.3.3 函数x y =与函数x a y =(0>a )的图象关系.把函数x y =的图象中的折线的倾斜度变化一下 即得函数x a y =(0>a )的图象.思考题:①函数x y =与函数x a y =(0<a )的图象关系;②函数m x y -=与函数m x a y -=的图象关系.例2.3.1 解不等式x x -≥32.解:法一 讨论法 0≥x 时,1,32≥-≥x x x ;0≤x 时,3,32-≤-≥-x x x ;综上所述,原不等式的解集是{}13≥-≤x x x 或.法二 图象法 在同一坐标系下画出函数x y 2= 与x y -=3的图象,由x x -=32得1=x ;由x x -=-32 得3-=x ;如右图,得不等式的解集是{}13≥-≤x x x 或.例2.3.2 解不等式22-≤x x .解:法一 讨论法 2≥x 时,,22-≤x x 得2-≤x 不合;20<≤x 时,,22x x -≤得32≤x ,此时,320≤≤x ;0<x 时,,22x x -≤-得2-≥x ,此时,02<≤-x ;综上所述,原不等式的解集是⎭⎬⎫⎩⎨⎧≤≤-322x x .法二 图象法 在同一坐标系下画出函数x y 2= 与2-=x y 的图象,由x x -=22得32=x ;由x x -=-22 得2-=x ;如右图,得不等式的解集是⎭⎬⎫⎩⎨⎧≤≤-322x x . 法三 平方法 两边平方得 22)2()2(-≤x x ,0)2()2(22≤--x x ,0)23)(2(≤-+x x ,得不等式的解集是⎭⎬⎫⎩⎨⎧≤≤-322x x .例 2.3.3 解下列不等式:(1) 5132<-≤x ; (2)235>-x . 解:(1)2135-≤-<-x 或5132<-≤x ,134-≤<-x 或633<≤x , 所以不等式的解集是)2,1[]31,34( --. (2)先化为253>-x ,253>-x 或253-<-x ,即73>x 或33<x ,所以不等式的解集是),37()1,(∞+∞- .例2.3.4 讨论函数1-=x y 与函数x a y =(a 为常数,且0≠a )图象的交点个数. 解:当0<a 时,如图2.3.3(1), 两图象交点0个;当0<a 时,如图2.3.3(1), 两图象交点0个;当10<<a 或1>a 时,如图2.3.3(2), 2.3.3(3) 两图象交点2个; 当1=a 时,如图2.3.3(4), 两图象交点1个.图2.3.3(1) 图2.3.3(2) 图2.3.3(3) 图2.3.3(4)课后作业2.31.分别画出下列函数的图象:(1) 3-=x y ; (2) 12+=x y .2.分别解下列不等式:(1) 3≥x ; (2)2<x .3.分别解下列不等式:(1) 221≤-<x ; (2)312>+x .4.分别解下列不等式:(1) 143<-x ; (2)352≥-x .5.分别解下列不等式:(1) 13+>x x ; (2)522-≥-x x .6.分别解下列不等式:(1) 123+≤-x x ; (2)x x -<+112.7.分别解下列不等式:(1) 113>+-x x ; (2)452≤-+x x .8.分别解下列不等式:(1) 212+>-x x ; (2) 113-≤+x x .9.解关于x 的不等式:a x x +>2(a 为常数).10.解关于x 的不等式:32-≥-x a x (a 为常数).11.解关于x 的不等式:a x x -<2(a 为常数,且0≠a ).2.4函数n x b m x a y -+-=(n m b a ,,,为常数,且0≠ab )的图象和性质例2.4.1 画出函数21-+-=x x y 的图象. 解:当2≥x 时,32-=x y ,当21<≤x 时,1=y ,当1<x 时,x y 23-=,如右图例2.4.2 画出函数21---=x x y 的图象. 解:当2≥x 时,1=y , 当21<≤x 时,32-=x y , 当1<x 时,1-=y ,如右图例2.4.3 画出函数212-+-=x x y 的图象. 解:当2≥x 时,43-=x y ,当21<≤x 时,x y =, 当1<x 时,x y 34-=,如右图例2.4.4 画出函数212---=x x y 的图象.解:当2≥x 时,x y =, 当21<≤x 时,43-=x y , 当1<x 时,x y -=,如右图思考题:函数n x b m x a y -+-=的图象如何画最简便?课后作业2.41.分别画出下列函数的图象:(1)21++-=x x y ; (2)3212-++=x x y .2.分别画出下列函数的图象:(1)12+--=x x y ; (2)x x y 343--=.3. 若不等式a x x ≥+-2对任意的实数x 恒成立,求实数a 的取值范围.4.若不等式a x x 232212++<+-对任意的实数x 恒成立,求实数a 的取值范围.5.若存在实数x ,使得不等式a x x >--3成立,求实数a 的取值范围.6. 分别画出下列函数的图象:(1)221-++=x x y ; (2)22+-=x x y .7.分别画出下列函数的图象:(1)13+-=x x y ; (2)x x y 22--=.8.若不等式a x x >+--214对任意的实数x 恒成立,求实数a 的取值范围.2.5 “耐克函数”a a x a x y ,0(>+=为常数)与a a xax y ,0(<+=为常数)的图象和性质 2.5.1 函数的图象与性质“耐克函数”a a xax y ,0(>+=为常数)的图象, 因它的图象像个勾形,又俗称"打图2.5(1) 图2.5(2)勾函数",也称为"双勾函数".如图2.5(1).函数a a xax y ,0(<+=为常数)在↑-∞)0,(,在↑∞+),0(,如图2.5(2).例2.5.1 求函数)0,21(2≠≤<-+=x x xx y 且的值域.解:如右图,可知函数的值域是()[)∞+-∞-,223, .例2.5.2 画函数xx y 2-=的图象. 解:由0=y 得2±=x ,函数在()↑∞+,0↑-∞)0,(,图象如右图.2.5.2 函数a a xax y ,0(<+=为常数)单调性的证明 先证明函数a a xax y ,0(<+=为常数)在()∞+,0单调递增.设021>>x x ,则212121221121))(()()(x x x x a x x x ax x a x y y --=+-+=-, 因为021>>x x ,所以021>x x ,021>-x x ;又0<a ,所以021>-a x x , 从而021>-y y ,即21y y >,由定义可知,函数a a xax y ,0(<+=为常数)在()∞+,0单调递增.思考题:你能证明函数a a xax y ,0(<+=为常数)在)0,(-∞单调递增吗?课后作业2.5分别求下列函数的值域: 1.(1) )4(9≥+=x x x y ; (2) )1(41-<+=x xx y .2.(1) )0,42(4≠≤<-+=x x x x y 且; (2) )21(13≥-<+=x x xx y 或.3.(1) )2(14>-+=x x x y ; (2) )0(34<--=x x xy .4.(1) )1(114≠-+=x x x y ; (2) 1(128<-+=x x x y ,且)21≠x5.(1) )3(234>--=x x x y ; (2) )0(314<--=x x xy .6.(1) 1522++=x x y ; (2) 2322++=x x y .7.xx y 5-=(1>x ).8.xx y -+=213(3≥x ).yx第三章 一元二次不等式3.1一元二次不等式02>++c bx ax 或02<++c bx ax (其中0≠a )的解法一元二次不等式的一般形式是02>++c bx ax 或02<++c bx ax (其中0≠a ) .解一元二次不等式,应结合对应的二次函数)0(2≠++=a c bx ax y 的图象进行记忆,必须熟练掌握.3.1.1如图 3.1.1(1),若判别式042>-=∆ac b ,设对应的一元二次方程02=++c bx ax 两个实根21,x x ,其中21x x <,则当0>a 时,不等式02>++c bx ax 的解集是{}12x x x x x <>或,不等式02<++c bx ax 的解集是{}21x x x x <<;如图3.1.1(2),当判别式042=-=∆ac b ,且0>a 时,不等式02>++c bx ax 的解集是⎭⎬⎫⎩⎨⎧-≠∈a b x R x x 2,且,不等式02<++c bx ax 的解集是∅;如图3.1.1(3),当判别式042<-=∆ac b ,且0>a 时,不等式02>++c bx ax 的解集是R,不等式02<++c bx ax 的解集是∅.图3.1.1(1)0>∆ 图3.1.1(2)0= 图3.1.1(3)0<∆3.1.2如图 3.1.2(1),若判别式042>-=∆ac b ,设对应的一元二次方程02=++c bx ax 两个实根21,x x ,其中21x x <,则当0<a 时,不等式02>++c bx ax 的解集是{}21x x x x <<,不等式02<++c bx ax 的解集是{}12x x x x x <>或;如图3.1.2(2),当判别式042=-=∆ac b ,且0<a 时,不等式02>++c bx ax 的解集是∅,不等式02<++cbxax的解集是⎭⎬⎫⎩⎨⎧-≠∈abxRxx2,且;如图3.1.2(3),当判别式042<-=∆acb,0<a时,不等式02>++cbxax等式02<++cbxax的解集是R.图3.1.2(1)0>∆图3.1.2(2)0=∆图3.1.2(3)0<∆思考题:不等式02≥++cbxax和02≤++cbxax的解集分别是什么?3.1.3一元二次不等式和一元二次方程都是一元二次函数的特殊情况.一元二次方程)0(2≠=++acbxax的根21,xx就是一元二次函数)0(2≠++=acbxaxy的图象与x轴交点的横坐标;一元二次不等式02>++cbxax的解就是一元二次函数)0(2≠++=acbxaxy的图象在x轴上方的点对应的横坐标;一元二次不等式02<++cbxax的解就是一元二次函数)0(2≠++=acbxaxy的图象在x轴下方的点对应的横坐标.一元二次不等式、一元二次方程和一元二次函数是密切联系的,应该进行联系记忆与应用.3.1.4解一元二次不等式02>++cbxax或02<++cbxax(其中0≠a) 的标准步骤是:①先求判别式acb42-=∆.当0>∆时, 求出对应的一元二次方程)0(2≠=++acbxax的两个实根21,xx;②画出二次函数的草图;③根据图像和不等式的类型得它的解集.例3.1.1 解下列一元二次不等式:(1)06722<+-x x ;(2) 0342>+-x x .解:(1) 062449>⨯⨯-=∆,对应方程06722=+-x x 的两个根为23,221==x x ,根据对应二次函数图象开口向上, 得不等式解集为⎭⎬⎫⎩⎨⎧<<223x x . (2)对应方程0342=+-x x 的两个根为3,121==x x ,根据对应二次函数图象开口向上, 得不等式解集为{}31><x x x 或 .例3.1.2 解下列一元二次不等式:(1)07522<+-x x ;(2)0752<-+-x x ; (3)05432≤++-x x .解:(1)03172425<-=⨯⨯-=∆,根据对应二次函数图象开口向上, 得解集为∅.(2) 03)7()1(425<-=-⨯-⨯-=∆,对应二次函数图象开口向下, 得解集为R.(3)对应方程05432=++-x x 的两个根为3192±=x ,根据对应二次函数图象开口向下, 得不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+≥-≤31923192x x x 或.例3.1.3 解一元二次不等式:5432≤-<-x x . 解:法一 54)2(32≤--<-x ,9)2(12≤-<x ,得123-<-≤-x 或321≤-<x ,从而得原不等式的解集是[)(]5,31,1 -.法二 先分别求出直线3-=y ,5=y 与函数x x y 42-=的图象的交点的横坐标.由542=-x x ,得5=x 或1-=x , 由342-=-x x ,得3=x 或1=x ,如图,由图象可知原不等式的解集是[)(]5,31,1 -.例 3.1.4 若一元二次不等式02≥++c bx ax 的解集是{}41≤≤x x ,解不等式02<++c ax bx .解:根据抛物线的开口与解集的关系可知0<a ,且对应的对应的一元二次方程02=++c bx ax 的两个实根4,121==x x ,依韦达定理得⎪⎩⎪⎨⎧===-=+,4,52121a c x x a b x x ⎩⎨⎧=-=⇒,4,5a c a b 代入得0452<++-a ax ax , 即有0452<--x x ,从而得不等式的解集是⎭⎬⎫⎩⎨⎧<<-154x x .课后作业3.1分别解下列一元二次不等式:1.(1)042>-x ; (2) 0232≤-x .2.(1)022>--x x ; (2) 0322≥+--x x .3.(1)0752>++x x ; (2)0432<+-x x ; (3)0162≥--x x .4.(1)0652>--x x ; (2) 0742>--x x .5.(1) 08232≤+--x x ; (2)0432≥-+-x x .6.(1)0682≤--x x ; (2) 0622≥+--x x ;7.(1) 01422>+-x x ; (2)091242>+-x x ; (3) 0962≤+-x x .8.(1)06722≥++x x ; (2) 0962≤+-x x .9.(1)0252042<+-x x ; (2) 0151482>+--x x .10.(1)01032>-+x x ; (2) 099102<-+x x .11.(1)0252≤++-x x ; (2)02322<-+-x x .12.(1)01232>+-x x ; (2)061362≤+-x x .13.(1)0362≤--x x ; (2) 0162492≥-+-x x .14.(1)02632>+-x x ; (2) 0622<-+x x .15.(1) 0532≤--x x ; (2)01692>+-x x .16.(1) 05442≥--x x ; (2) 04922>+-x x .17.(1)02322≤-+x x ; (2) 01262>--x x .18.(1)0141332≤+-x x ; (2)0313102≤++-x x .19.(1)514212<--≤x x ; (2)1332>+->x x .20.若一元二次不等式0)1(2>--+c x b x 的解集是{}31-<>x x x 或,求不等式022≥+-b x cx 的解.21.若一元二次不等式02>++c bx ax 的解集是⎭⎬⎫⎩⎨⎧<<2131x x,求不等式 02<++a bx cx 的解.3.2 含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论(讨论应要求一步到位,避免讨论中又有讨论),讨论时考虑以下几个方面: ①一元二次不等式,对应的一元二方程是否有根,需要讨论方程的判别式Δ的正负或零;②一元二次不等式,对应的一元二方程有两不等实根,则需要讨论两根的大小,先考虑两根相等;③应对一元二次不等式的二次项的系数的正负进行分类讨论.例3.2.1已知a 为实常数,解下列关于x 的不等式:(1) 012>++ax x ; (2) 0)()2(222≥+-++a a x a x .解: (1) 42-=∆a , 由0=∆得2±=a . 当2±=a 时, 解集是⎭⎬⎫⎩⎨⎧-≠2a x x ; 当2>a 或2-<a 时, 不等式的解集是⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+->---<242422a a x a a x x 或;当22<<-a 时, 解集是R .(2) 先用十字相乘法把不等式化为0)1)(2(≥++-a x a x ,由0)1(2>---a a得32->a . 当32->a 时,不等式的解集是⎭⎬⎫⎩⎨⎧≥--≤21a x a x x 或;当32-=a 时,不等式的解集是R ;当32-<a 时,不等式的解集是⎭⎬⎫⎩⎨⎧≤--≥21a x a x x 或. 例3.2.2已知a 为实常数,解下列关于x 的不等式:0122<+-x ax . 解: a 44-=∆,由0=∆得1=a .当0>∆且0≠a 时,对应方程的两个根aax -±=112,1. 当0<a 时, 不等式的解集是⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-->-+<a a x a a x x 1111或;当0=a 时, 不等式即为021<-x ,解集是⎭⎬⎫⎩⎨⎧>21x x ; 当10<<a 时, 不等式的解集⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-->>-+a a x a a x 1111;当1≥a 时, 不等式的解集是∅.例3.2.3 当a 为何值时, 关于x 的不等式01)3()9(22<-+--x a x a 对任意实数恒成立?解:当0392=+=-a a ,即3-=a 时,适合,3=a 显然不合;当092≠-a 时, 要使关于x 的不等式01)3()9(22<-+--x a x a 对任意实数恒成立,须满足⎩⎨⎧<-++=∆<-,0)9(4)3(,09222a a a 即⎪⎩⎪⎨⎧<<-<<-,593,33a a 得593<<-a ; 综上所述,a 的取值范围是593<≤-a .课后作业3.2已知: a 为实常数 , 分别解下列关于x 的不等式: 1.0)1(2<++-a x a x .2.0)33()2(2>+--+a x a x .3. 03222≤-+a ax x .4. 033)12(22<+-++a a x a x .6. 01242≤+-ax x .7. 01)2(2>++-x a x .8.0222>+-a x x .9.03)16(22>-++-a x a x .10.012>--+a x ax .11.012>+--a x ax .12.0)1(22≤++-a x a ax .13.02)12(2≥++-x a ax .15.022>--a x ax .16.01422≤+++a x ax .17.0)14(4)1(2>+-+-a ax x a .18.若关于x 的不等式06)1(22>++-x a ax 对任意实数恒成立,求a 的取值范围.19. 已知不等式0622<+-k x kx (常数0≠k ).(1) 如果不等式的解集是{}2,3->-<x x x 或,求常数k 的值; (2) 如果不等式的解集是实数集R ,求常数k 的取值范围.3.3 一元二次方程)0(02≠=++a c bx ax 根的研究一元二次方程)0(02≠=++a c bx ax 根的研究,一般有两种方法:一是利用韦达定理(只适用于两个根与0的关系),如类型1,2,3等;二是利用对应的二次函数c bx ax x f ++=2)(的四要素(开口, 对称轴, 判别式, 根的范围的端点值)进行研究, 如类型4,5,6,7,8,9,10,11,12等.类型1:两根均为不同正根⎝⎛>=>-=+>-=∆⇔.0,0,0421212a c x x a bx x ac b例3.3.1若关于x 的方程)0(01)21(2≠=+-+a x a ax 的两根均为正根,求a 的取值范围.解: ⎝⎛>=>-=+≥--=∆,01,012,04)21(21212a x x a a x x a a 即⎪⎪⎪⎩⎪⎪⎪⎨⎧><>-≤+≥,,或,或0021232232a a a a a 得232+≥a .类型2:两根均为不同负根⎝⎛>=<-=+>-=∆⇔.0,0,0421212a cx x a bx x ac b例3.3.2 若关于x 的方程)0(01)21(2≠=+-+a x a ax 的两根均为负根,求a 的取值范围.解: ⎝⎛>=<-=+≥--=∆.01,012,04)21(21212a x x a a x x a a 即⎪⎪⎪⎩⎪⎪⎪⎨⎧><<-≤+≥,,,或021*******a a a a 得2320-≤<a .y类型3:两根为一正一负021<=⇔acx x .例3.3.3 若关于x 的方程)0(01)21(2≠=+-+a x a ax 的两根异号,求a 的取值范围. 解:0121<=ax x 得0<a .类型4:两根均为大于m 的不同根⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆⇔.0)(,2,042m f a m a b ac b例3.3.4已知方程0)3(42=++-a x ax )0(≠a 有两个大于1的不等实根,求实数a 的取值范围.解:⎪⎩⎪⎨⎧>+-=∆>>-=0)3(416,12,0)12()1(a a aa a af ⎪⎪⎩⎪⎪⎨⎧<<-<<<>⇒,14,20,021a a a a 或得121<<a .类型5:两根均为小于m 的不同根⎪⎪⎩⎪⎪⎨⎧>⋅<->-=∆⇔.0)(,2,042m f a m a b ac b例 3.3.5 若关于x 的方程)0(0)3(42≠=++-a a x ax 的两根均小于2,求a 的取值范围.解:⎪⎩⎪⎨⎧>-=⋅<≥+-=∆0)55()2(220)3(416a a f a aa a ,,⎪⎩⎪⎨⎧<><≤≤⇒,或>,或1-40110,a a a a a 得04<≤a -.类型6:两根中一根小于m ,另一根大于m 0)(<⋅⇔m f a例3.3.6若关于x 的方程)0(0)3(42≠=++-a a x ax 的两根中一根小于-2,另一根大于-2 ,求a 的取值范围.解:0)115()2(<+=-a a af ,得0511<<-a . 类型7:两根均为),(n m 内的不同根()n m <⎪⎪⎩⎪⎪⎨⎧<><-<>-=∆⇔.,0)(0)(,2,042n af m af n a b m ac b例3.3.7已知方程015)34(22=++-x a x 的两不等根均在区间)5,2(内,求实数a 的取值范围.解:⎪⎪⎩⎪⎪⎨⎧>++-=>++-=<+<>-+=∆,015)34(550)5(015)34(28)2(,54342,0120)342a f a f a a ,(得⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<<<--<->,25,817,417454330243302a a a a a ,或 得实数a 的取值范围是81743302<<-a . 类型8:两根均为),(n m 外的不同 根()n m <⎩⎨⎧<<⇔.,0)(0)(n af m af例3.3.8若关于x 的方程)0(015)34(2≠=++-a x a ax 的两根中一根小于1,另一根大于3 , 求a 的取值范围.解:⎩⎨⎧<-=<-=0)36()3(0)312()1(a a af a a af ,⎩⎨⎧<><>⇒,或,或0204a a a a 得4>a 或0<a .类型9:两根中一根在),(11n m ,另一根在),(22n m (2211n m n m <≤<) ⎩⎨⎧<<⇔.0)()(,0)()(2211n f m f n f m f例3.3.9若关于x 的方程)0(015)34(2≠=++-a x a ax 的两根中一根在(1, 2),另一根在(3, 5) , 求a 的取值范围.解:⎩⎨⎧<⋅-=<--=05)36()3()3(0)49)(312()2()1(a a f f a a f f ,⎪⎩⎪⎨⎧<><<⇒,或,02449a a a 得449<<a .类型10:两根中至少有一根大于m⎪⎪⎩⎪⎪⎨⎧>⋅>->-=∆⇔0)(,2,042m f a m a b ac b 或0)(≤⋅m f a (等式应独立验证).例3.3.10已知方程0)3(42=++-a x ax 至少有一个大于1的实根,求实数a 的取值范围.类型11:两根中至少有一根小于m⎪⎪⎩⎪⎪⎨⎧>⋅<->-=∆⇔0)(,2,042m f a m a b ac b 或0)(≤⋅m f a (等式应独立验证). (此类问题也可转化为函数值域问题)例3.3.11已知方程0)3(42=++-a x ax 至少有一个小于2的实根,求实数a 的取值范类型12:两根中至少有一根在),(n m 内()n m <例3.3.12已知方程0)3(42=++-a x ax 至少有一根在)5,2(内,求实数a 的取值范课后作业3.31.若关于x 的方程03)12(2=-++-a x a x 有两个不等正根,求实数a 的取值范围.2.若关于x 的方程012=++-a ax x 有两个不等负根,求实数a 的取值范围.3.若关于x 的方程014)2(2=+++-a x x a 有一正一负的两根,求实数a 的取值范围.4.已知关于x 的方程023222=---a x ax 的一根大于1,另一根小于1,求实数a的取值范围.5.已知关于x 的方程0)320(2=-+-a ax x 的两个不同根21,x x 满足2131x x <<<,求实数a 的取值范围.6.已知关于x 的方程012)2(2=-+-+a x a x 的两个不同根21,x x 满足21021<<<<x x , 求实数a 的取值范围.7.已知关于x 的方程07)25()3(2=++-+x a x a 在()1,0和()3,2各有一根,求实数a 的取值范围.。

初高中数学衔接教材[新课标人教A版]

初高中数学衔接教材[新课标人教A版]

初高中数学衔接教材{新课标人教A版}第一部分如何做好初高中衔接 1-3页第二部分现有初高中数学知识存在的“脱节” 4页第三部分初中数学与高中数学衔接紧密的知识点 5-9页第四部分分章节讲解 10-66页第五部分衔接知识点的专题强化训练 67-100页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

确实,初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2 思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

因此,初中学习中习惯于这种机械的、便于操作的定势方式。

高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

初高中数学衔接课程目录

初高中数学衔接课程目录

1.立方和与差的公式初中已删去不讲,而高中的运算还在用。

2.因式分解初中一般只限于二次项且系数为“1”的分解,对系数不为“1”的涉及不多,而且对三次或高次多项式因式分解几乎不作要求,但高中教材许多化简求值都要用到,如判断函数单调性、解方程、不等式等。

3.初中教材对二次函数要求较低,学生处于了解水平,但二次函数却是高中贯穿始终的重要内容。

配方、作简图、求值域、解二次不等式、判断单调区间、求最大、最小值,研究闭区间上函数最值,动轴定区间与定轴动区间等是高中数学必须掌握的基本题型。

4.二次函数、二次不等式与二次方程的联系,根与系数的关系(韦达定理)在初中不作要求,此类题目仅限于简单常规运算和难度不大的应用题型,而在高中二次函数、二次不等式与二次方程相互转化被视为重要内容,高中教材却未安排专门的讲授。

5.图像的对称、平移变换,初中只作简单介绍,而在高中讲授函数后,对其图像的上、下;左、右平移,两个函数关于原点,轴、直线的对称问题必须掌握,这些都是反函数及高中复杂的函数变换的基础。

6.含有参数的函数、方程、不等式,初中不作要求,只作定量研究,而高中这部分内容视为重难点。

方程、不等式、函数的综合考查常成为高考综合题。

7.几何部分很多概念(如重心、垂心、外心、内心等)和定理(相交弦定理、角平分线定理等)初中生大都没有学习,而高中都要涉及。

第一章初中数学知识补充1.1 数的分类,数的整除,绝对值1.2 代数式1.3 方程的解法、含参数方程的讨论1.4 方程根的性质(韦达定理及其推论)1.5 高中所需平面几何知识补充(比例的性质,四心,角平分线定理和圆幂定理等)第二章集合和命题一、集合1.1 集合及其表示法1.2 集合之间的关系1.3 集合的运算二、四种命题的形式1.4 命题的形式及等价关系三、充分条件与必要条件1.5 充分条件, 必要条件1.6 命题的运算第三章不等式2.1 不等式的基本性质2.2 一元二次不等式的解法2.3 其他不等式的解法2.4 基本不等式及其应用2.5 不等式的证明第四章函数的基本性质4.1 函数的概念4.2 二次函数(动轴定区间,定轴动区间)4.3 有理函数(对勾函数等)4.4 函数关系的建立4.5函数的运算(四则运算与复合运算)4.6函数的基本性质之单调性4.7 函数的基本性质之奇偶性4.8函数的零点定理及二分法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档