工程力学第6章 空间力系重心

合集下载

工程力学第六章(重心)

工程力学第六章(重心)

R2
12
4、实验法
工程中的一些形状复杂和质量分布不均匀的物体,重 心是难以计算的,这时可用实验法确定重心。
1)悬挂法:
求一个物体的重心,由于悬挂点 给物体的力和物体受的重力满足 二力平衡条件,重心必在过悬挂 点的铅直线上。 可以画一经过重心的直线,更换 悬挂点。
F
C
F
C
可以画另一经过重心的直线。 用这种方法,可以求出直线的交 点既为重心,如图所示。
i 1
n
l
z zC Pi i x P yi
i
连续体
x
yC
xC
xc
xdl
l
l
yc
ydl
l
l
zc
zdl
l
l
7
二、确定重心方法
1、查表法
对于均质物体,或有对称轴,对称中心的物体的重心在相应对称轴 ,对称中心上。如圆锥,圆柱重心在其轴线上,球体重心在其几何中心 上。简单形体的重心可以由工程手册查出。也可以进行计算.
1
§ 6-3 重心
一、重心坐标公式
一个物体可以看成是许多微小部分构成。 重力作用于物体的每个微小部分。 如图,每个微小物体的重力视为空间平行力系。整个物体 的重力是这个空间力系的合力。 物体无论如何放置,其合力作用线都通过物体上一个确 z 定点。这一点称为物体的重心。 平行力系合力为:
P Pi
yC
C
y
1 yC h 3 h 3 xC a 5
z
r
C
3 zC r 8
zC
z
y
a
C
x
h
C
yC
b
3 yC b 8

空间力系和重心.ppt

空间力系和重心.ppt

有各力在任意相互垂直的三个坐标轴的每一个轴上的
投影的代数和等于零,以及力系对于这三个坐标轴的
矩的代数和分别等于零。
Fx 0 Fy 0
Fz 0
Mx F 0 My F 0 Mz F 0
§5.4 空间平行力系的中心和物体的重心
一、空间平行力系的中心
若空间力系各合力的作用线相互平行称为空间平行 力系。若力系为一合力,合力的作用点,即是平行力系 的中心。
式中,Rx、Ry、Rz表示合力在各轴上的投影。
已知各力在坐标轴上的投影,则合力的大小和方 向可按下式求得
R Rx2 Ry2 Rz2
2
2
2
Fx Fy Fz
cos Fx / R cos Fy / R
cos Fz / R
式中,α、β、γ分别表示合力与x、y、z轴正向 的夹角。
二、重心的概念
重力的作用点即是空间平行力系的中心,称为物体 的重心。
三、重心和形心的坐标公式
物体重心C的坐标公式为
xC
x i .Wi W
yC
y i .Wi W
zC
z i.Wi W
四、求重心的方法
几种常用的方法:
1.对称法 2.积分法 3.组合法
(按照右手螺旋法则决定之)
空间力对轴的矩等于零的条件
1、力通过轴线
FLeabharlann Fz2、力与轴线平行
Fy Fx
二、合力矩定理
力对轴的矩的解析表示式为
Mx F Fz.yA Fy.zA My F Fx.zA Fz.xA
Mz F Fy.xA Fx.yA
§ 5.3 空间力系的平衡方程及应用
空间任意力系平衡的必要和充分条件是:力系中所
可求出力F 的大小和方

工程力学——空间力系和重心

工程力学——空间力系和重心

图5.2
5.1.2 力在空间直角坐标轴的投影
根据已知条件的不同,空间力F在直角坐标轴上的 投影,一般有两种计算方法。
1. 直接投影法
如果已知力 F 与空间直角坐标系 Oxyz 的三个轴的
正向夹角分别为 , 和 ,如图 5.2 所示,以 F 为对
角线,以 x,y 和 z 轴为棱作直角六面体,由图中看出,
第5章 空间力系和重心
第5章 空间力系和重心
5.1 力沿空间直角坐标轴的分解和投影 5.2 空间汇交力系的平衡方程及其应用 5.3 力对轴之矩 5.4 空间任意力系的平衡方程及应用 5.5 空间任意力系的平衡问题转化为平
面问题的解法 5.6 物体重心和平面图形的形心
5.1 力沿空间直角坐标轴的分解和投影
图 5.4 中 为压力角, 为斜齿轮的螺旋角。试计算圆
周力 F 、径向力 Fr 和轴向力 Fa 的大小。 分析:求解 F 、Fr 和 Fa 的大小,实质上就是求力
F 在空间 3 个坐标轴上的投影。因为只知道 和 ,故
使用二次投影法求解。
图5.4
解:(1) 建立如图 5.4(a)所示直角坐标系 Axyz。 (2) 将啮合力 FN 向平面 Axy 投影得 Fxy,如图 5.4(b), 其大小为
式中,Fix,Fiy,Fiz 分
别为 Fi 在 x,y,z 轴
的投影。
图5.5
合力
FR= Fi = Fixi + Fiy j + Fizk
(5-7)
式中,i,j,k 的系数应分别为合力 FR 在各坐标轴上 的投影。
FRx= Fix FRy= Fiy FRz= Fiz
(5-8)
即合力在某一坐标轴上的投影等于力系中所有分 力在同一坐标轴上的投影的代数和,这就是空间力系 的合力投影定理。

空间力系 重心

空间力系  重心

(2)方向:转动方向
(3)作用面:力矩作用面.
MO ( F ) r F
第六章 空间力系 重心
§6–3 力对点的矩和力对轴的矩
力对轴的矩
M z ( F ) M O ( Fxy ) Fxy h
力与轴相交或与轴平行(力与轴在同一平面内),力 对该轴的矩为零。
重心C的矢径
Pi ri rC Pi
式中的ΔPi可以是物体中任一部分的重量,而不仅限于微元体。 对由简单形体组成的物体,可用这种方法求重心,称为分割法。
第六章 空间力系 重心
1.计算重心坐标的公式 对y轴用合力矩定理
P xC P x1 P x2 .... P xn P xi 1 2 n i
(1)实际重心偏后,飞机拉起时尾部摩擦跑道导致起火; (2)实际重心偏前,飞机冲到跑道尽头仍然拉起困难;
(3)直升机重心偏离旋翼轴心,使飞行员难以操纵飞机。
第六章 空间力系 重心
•重心:物体所受的重力是一种体积 分布力。不论物体如何放置,其重力 的合力作用线相对于物体总是通过一 个确定的点,这个点称为物体的重 心 。
如一空间力系由F1、F2、…、Fn组成,其合
力为FR,则合力FR对某轴之矩等于各分力对同
一轴之矩的代数和。
M z ( FR ) M z ( Fi )
i
第六章 空间力系 重心
§6–4 空间任意力系向一点的简化· 主矢和主矩
•简化过程:
将力系向已知点 O 简化 —— O 点称为简化中心。
R
z
Rx
第六章 空间力系 重心
活页铰
第六章
空间力系 重心
滑动轴承
第六章

工程力学第6章 空间力系重心

工程力学第6章 空间力系重心

载荷F。钢丝OA和OB所构成的
平面垂直于铅直平面Oyz,并与
该 平 面 相 交 于 OD , 而 钢 丝 OC
则沿水平轴y。已知OD与轴z间
的 夹 角 为 β , 又 ∠ AOD =
∠BOD = α,试求各钢丝中的
拉力。
空间汇交力系
例题4
A
D
Bz F3
F2 αα β
x
O
yC F1
解: 取O点为研究对象,受
力分析如图所示,这些力构 成了空间共点力系。
F
空间汇交力系
例题4
力F2与x轴之间 的 夹 角 为 90o - α , 故它在该轴上的投 影为:
F2x F2 cos (90o ) F2 sin
空间汇交力系
例题4
DB z
A
F' F3
F2 αα β
x
O
yC F1
列平衡方程
Fx 0, F2 sin F3 sin 0 Fy 0,
例题3
Fx
Fz
6-4 空间力系的平衡方程
空间力系的平衡方程为:
Fx 0, mx (F ) 0 Fy 0, my (F ) 0 Fz 0, mz (F ) 0
空间汇交力系
例题4
如图所示为空气动力天平
上测定模型所受阻力用的一个
悬挂节点O,其上作用有铅直
Fz 0,
FAz FBz (F3 F4 ) cos 30 (F1 F2 ) 0
Mx 0, FAZ 0.25 m FBZ 1.25 m (F3 F4) cos 30 0.75 m 0
M y 0, (F1 F2 ) 0.4 m (F3 F4 ) 0.2 m 0 Mz 0, FAx 0.25 m FBx 1.25 m (F3 F4 )sin 30 0.75 m 0

工程力学之空间力系和重心

工程力学之空间力系和重心

工程力学4.1力在空间坐标轴上的投影4.2力对轴的矩·合力矩定理4.3 空间任意力系的平衡方程4.4 平行力系的中心物体的重心工程中常常存在着很多各力的作用线不在同一平面内的力系,即空间力系,空间力系是最一般的力系。

(a)图为空间汇交力系;(b)图为空间任意力系;在(b)图中去了风力即为空间平行力系。

迎面风力侧面风力b4.1 力在空间坐标轴上的投影4.1.1力在空间的表示:力的三要素:大小、方向、作用点(线)大小:作用点:在物体的哪点就是哪点方向:①由α、β、g 三个方向角确定②由仰角θ与俯角ϕ来确定。

F F=4.1 力在空间坐标轴上的投影4.1.1力在空间的表示:1、一次投影法(直接投影法)由图可知:cos ,cos ,cos x y z F X F F Y F F Z F αβg==⋅==⋅==⋅4.1.2力在空间坐标轴上的投影2、二次投影法(间接投影法)当力与各轴正向夹角不易确定时,可先将投影到xy 面上,然后再投影到x 、y 轴上,即Fsin cos cos cos cos x xy F X F F F g ϕϕθϕ==⋅⋅=⋅=⋅⋅sin sin sin cos sin y xy F Y F F F g ϕϕθϕ==⋅⋅=⋅=⋅⋅cos sin z F Z F F g θ==⋅=⋅ 4.2 力对轴的矩⋅合力矩定理一、力对轴的矩的概念与计算定义:()()2''z O xy xy m F m F F d OA B ==±⋅=∆的面积由于力和都不能使门转动,所以得出力与轴平行或相交时,力对轴之矩为零。

亦即力与轴共面时,力对轴之矩为零。

y F z F 力对轴的矩是力使刚体绕该轴转动效应的度量,是代数量,其大小等于在垂直于转轴的平面内的分量的大小和它与转轴间垂直距离的乘积,其正负号按右手规则确定,即大拇指方向与轴的正向一致的为正,反之为负。

4.2.2合力矩定理与平面力系情况类同,空间力系的合力矩定理为:12()()()()()z z z z n z i m R m F m F m F m F =+++=∑即:空间力系的合力对某一轴的矩,等于力系中所有各分力对同一轴的矩的代数和。

06空间力系 重心(new)

06空间力系  重心(new)

合力偶Mo称为力系的主矩
M ox M x F M oy M oz
空间力系的平衡方程:
y
M F M F
z
Fx 0, Fy 0, Fz 0
M x F 0, M y F 0, M z F 0



空间汇交力系的平衡方程:
Fx 0 Fy 0 Fz 0
§6-3 力对轴之矩
1、力对轴之矩概念
定义:力使物体绕某一轴转动效应的量度,称为力对该轴 之矩,是用来量度力使物体绕轴转动效应的物理量。
F对转轴z的矩:
mz F mo F2 F2 d

Fz
Fy
Fx
通常规定:从z轴 的正向看去,逆 时针方向转动的 力矩为正,顺时 针方向转动的力 矩为负。
y
xC
重心坐标式
xi Ai A y A yC i i A
o
xc
C yc
x
§6-7 物体重心的求法
1、对称性法—当研究的物体具有对称轴、对称面或对称中心的均抽物体,其
重心一定在对称轴、对称面或对称中心上。
2、分割法—将形状较复杂的物体分成具有简单几何形状的几个部分,每一部 分容易确定,然后,再根据重心坐标求出组合形体的重心(简单几何图形的重 心坐标公式可以查表)。
mx W
W1
Wn W2 z 2 zn x1 W xc x2
c
m W ,
n x i i 1
z1 z
y1 y2 X
Y xn
y
c
W . yC W1 y1 W2 y 2 Wn y n my W
m W ,
n y i i 1 n z i i 1

第六章 空间力系 重心

第六章  空间力系  重心

z
F5 O x F4 m2 y F2 F1 m1
F6 F3
M z ( R) m z ( F i ) ( a F a 2a F a ) ( a F a a F a ) 2a F a a F a a F a (0 m3) a F a m3
三、空间力系平衡的充要条件 力系中诸力在坐标轴上的投影的代数和为零,对各轴 之矩代数和为零。 四、空间一般力系的平衡方程
§ 6-3
一、力对点之矩
力对点之矩和力对轴之矩
z F
mO(F) = r×F
力矩是(定位于矩心的) 定位矢量,其方向由右 手螺旋定则确定。 设r=xi+yj+zk, F=Fxi+Fyj+Fzk,
i j y Fy k z Fz
x
O
y
mO(F) 在坐标轴上 的投影为:
[mO ( F )]x yFz zFy [mO ( F )]y zFx xFz [mO ( F )]z xFy yFx
【例6-4】不计杆件和圆盘自重,求图示结构中夹紧端 A处的约束反力。
【解】1)对结构作受力分析。
2)列平衡方程:
F iz P F A 0 m x ( F i ) Pl m Ax 0 m y ( F i ) m Ay P (l D 2) 0
m (F ) 0 m (F ) 0
x i
y i
z
O未知数 其平衡方程为: F iy 0 m z ( F i ) 0
空间平行力系是空间一般力系的特例。 即: F ix 0
y
F
iz
0
m (F ) 0
mz (F xy) mz (F x) mz (F y)

第六章 空间力系和重心

第六章 空间力系和重心

F
x
0, Fy 0, Fz 0,
例6-2
已知:物重P=10kN,CE=EB=DE;
30
0
求:杆受力及绳拉力 解:画受力图,列平衡方程
F
x
0
F1 sin 45 F2 sin 45 0
FFy0源自FA sin 30 F1 cos 45 cos 30 F2 cos 45 cos 30 0
z
0

F1 cos 45 sin 30 F2 cos 45 sin 30 FA cos 30 P 0
F1 F2 3.54kN
FA 8.66kN
例6-3 已知:P=1000N ,各杆重不计. 求:三根杆所受力. 解:各杆均为二力杆,取球铰O,画受 力图。
F F
M O ( F , F ) (rA rB ) F M
(3)只要保持力偶矩不变,力偶可在其作用面内任意移转 ,且可以同时改变力偶中力的大小与力偶臂的长短,对刚体 的作用效果不变.
=
=
=
) rBA FR rBA ( F1 F2 ) M ( FR , FR rBA F1 rBA F2 rBA F1 M ( F1 , F1)
(4)只要保持力偶矩不变,力偶可从其所在平面移至另 一与此平面平行的任一平面,对刚体的作用效果不变.
=
=
F1 F1 F2
F2 F3 F3
=
=
定位矢量 滑移矢量 自由矢量 力偶矩矢是自由矢量 力偶矩矢相等的力偶等效——空间力 偶等效定理 (5)力偶没有合力,力偶只能由力偶来平衡.
例6-4 已知:在工件四个面上同时钻5个孔,每个孔所受切削力 偶矩均为80N·m. 求:工件所受合力偶矩在 x, y, z 轴上的投影 解:把力偶用力偶 矩矢表示,平行移 到点A .

大学本科理论力学课程第6章 空间力系和重心(执行)

大学本科理论力学课程第6章 空间力系和重心(执行)

Fx
Fxy
Fxy cos
F
sin
F sin
cos
Fy Fxy sin F sin sin
Fz F cos
反之 F Fx2 Fy2 Fz2
cos Fx / F, cos Fy / F, cos Fz / F
这里注意力向坐标轴投影是代数量 而力向某平面投影是矢量。P103
空间力偶的等效定理:凡矩 矢相等的力偶均为等效力偶。
P108
理论力学电子教程
第六章 空间力系和重心
例 6-3 图示的三角柱刚体是正方体的一半。在其中三个侧面各自
作用着一个力偶。已知力偶(F1 ,F 1)的矩M1=20 N·m;力偶 (F2, F 2 )的矩M2=10 N·m;力偶(F3 ,F 3)的矩M3=30 N·m 。试求合力偶矩矢M。又问使这个刚体平衡,还需要施加怎样一
若引入单位矢量,则力F沿直角 坐标轴分解的表达式为
z Fz
F
Fx
Fy
Fxy y
x
F Fx Fy Fz Fxi Fy j Fzk
理论力学电子教程
测验
(1) 判断下列桁架中的零杆; (2) 计算图示桁架中5杆的内力。
第六章 空间力系和重心
A 4 PB
a
7
53
1
E6 a
D2 C a
理论力学电子教程
理论力学电子教程
第六章 空间力系和重心
第六章 空间力系和重心
§6-1 空间力沿坐标轴的分解与投影 §6-2 空间汇交力系的合成与平衡 §6-3 空间力偶理论 §6-4 力对于点之矩与力对于轴之矩
§6-5 空间任意力系向已知点的简化·主 矢 与主矩·空间力系的合力矩定理 §6-6 空间任意力系的平衡条件与平衡方程 §6-7 平行力系的中心与重心

08_空间力系和重心II

08_空间力系和重心II

第6章空间力系和重心(II)•空间力的分解与投影•空间汇交力系•空间力偶理论•力对点之矩与力对轴之矩•空间任意力系的简化与平衡空间平行力系,,重心•空间平行力系1、空间任意力系向已知点的简化其中其中::i i i i F F ′=r r i o i()i o i M M F =r r r 一空间汇交力系与一空间力偶系等效代替一空间任意力系一空间汇交力系与一空间力偶系等效代替一空间任意力系。

§6-5 空间任意力系向已知点的简化·主矢与主矩·空间力系的合力矩定理1F 2F 3F 力线平移定理力线平移定理((力矩矢量力矩矢量))R i ix iy izR i ix iy iz F F F i F j F k ′==++∑∑∑∑r r r r r r r r 称为力系称为力系((对O 点)的主矩o i o i ()o i o i M M M F ==∑∑r r r r 称为力系的主矢空间空间((附加附加))力偶系的合力偶矩力偶系的合力偶矩((矢)由力对点的矩与力对轴的矩的关系由力对点的矩与力对轴的矩的关系,,有:空间汇交力系的合力空间汇交力系的合力((作用于作用于O O 点)矢量()()()k F M j F M i F M M i z i y i x O r r r r r r r ∑∑∑++=对x x ,,y y ,,z 轴的矩轴的矩。

式中式中::,,分别表示分别表示力力()i x F M r ()i y F M r ()i z F M r i F r—有效推进力RxRx F ′r 飞机向前飞行RyRy F ′r —有效升力飞机上升Rz Rz F ′r —侧向力飞机侧移Ox OxM r —滚转力矩飞机绕飞机绕x x 轴滚转Oy Oy M r —偏航力矩飞机转弯Oz Oz M r —俯仰力矩飞机俯仰2.空间任意力系的简化结果分析(1)当时R O 0,0R O F M ′==r r 则为平衡力系则为平衡力系((与简化中心无关与简化中心无关)。

空间力系和重心

空间力系和重心

空间力系和重心空间力系和重心各力的作用线不在同一平面内的力系,称为空间力系。

与平面力系类似,空间力系可分为空间汇交力系、空间力偶系和空间任意力系来研究。

空间力系和重心6.1空间力沿坐标轴的分解与投影直接投影法zF= Fx+ Fy+ Fz= Xi+ Yj+ Zk其中,FzαγZkFxFβ Y FyX= F cosα Y= F cosβ Z= F cosγXjixy空间力系和重心二次投影法zX= Fxy cos = F sinγ cos Y= Fxy sin = F sinγ sin Z= F cosγZγkFYj i X Fxyy注意,力在轴上的投影是代数量,而力在平面上的投影是矢量。

x空间力系和重心力的大小和方向余弦:zF= X 2+Y 2+ Z2X cos( F, i )= F Y cos( F, j )= F Z cos( F, k )= FZγkFYj i X Fxyyx空间力系和重心6.2力对点之矩和力对轴的矩6.2.1力对点之矩力对点的力矩矢等于矩心到该力作用点的矢径与该力的矢量积,表示为,M O (F )FOrMO ( F )= r× F空间力系和重心若矢径rz和力F分别为M O (F )B Fr= xi+ yj+ zk F= Xi+ Yj+ Zki则,M O ( F )= r× F= x X j y Y k z Z kOrA( x, y, z )ijyx= ( yZ zY )i+ ( zX xZ ) j+ ( xY yX )k空间力系和重心由此可知力矩矢M O (F )在三个坐标轴上的投影分别为:M Ox ( F )= yZ zY M Oy ( F )= zX xZ M Oz ( F )= xY yX(6 1)力矩矢的始端必须在矩心,不可任意移动,为一定位矢量。

空间力系和重心6.2.2力对轴之矩为度量力对绕定轴转动刚体的作用效应,引入力对轴的矩的概念。

空间力系和重心力对轴的矩的概念作用于刚体的力F对z轴的定义为:M Z ( F )= M O ( Fxy )=± Fxy hM z (F )F这样,空间力对轴之矩归结为平面上的力对点之矩,即力F对任一轴z之矩,等于这力在垂直于z轴的平面内的分量Fxy对该平面和z轴交点O之矩。

空间力系和重心

空间力系和重心

第六章空间力系和重心教学目标1 能熟练地计算力在空间直角坐标轴上的投影和力对轴之矩。

2 了解空间力系向一点简化的方法和结果。

3 能应用平衡条件求解空间汇交力系、空间任意力系、空间平行力系的平衡问题。

4 能正确地画出各种常见空间约束的约束力。

5 对重心应有清晰的概念,能熟练地应用组合法求物体的重心。

本章重点1 力在空间直角坐标轴上的投影和力对轴之矩。

2 空间汇交力系、空间任意力系、空间平行力系平衡方程的应用。

3 各种常见空间约束的约束力。

4 重心的坐标公式。

本章难点空间矢量的运算,空间结构的几何关系和立体图。

教学过程(下页)一、空间力系的简化 1.空间力系向一点简化刚体上作用空间力系),,(21n F F F,将力系中各力向任选的简化中心O 简化。

主矢:∑∑='=C i F F F,与O 点选择无关。

(6-1)主矩:∑∑∑⨯===)()(00i i i i F r F M M M,与O 点的选择有关。

(6-2) 主矢F和主矩0M 的解析表达式222)()()(∑∑∑++=iz iy ix F F F F (6-3) FFx F ix∑=),cos(,FFy F iy∑=),cos(,FFz F iz∑=),cos(2220))(())(())((i z i y i x F M F M F M M ∑∑∑++= (6-4)0)(),cos(M F Mx M i x∑=,00)(),cos(M F My M i y∑=,00)(),cos(M F Mz M i z∑=结论:空间力系向任一点简化,一般可得到一力和一力偶,该力通过简化中心,其大小和方向等于力系的主矢,该力偶的力偶矩矢等于力系对简化中心的主矩。

2.空间力系简化的最后结果 (1)空间力系平衡0=F ,00=M,此空间力系为平衡力系。

(2)空间力系简化为一合力偶0=F ,00≠M ,此空间力系简化为一合力偶,合力偶矩矢等于力系主矩0M与简化中心的位置无关。

理论力学-空间力系与重心ppt课件

理论力学-空间力系与重心ppt课件

6 31
FR , j 14.6 FR , k 78.8
13
2、空间汇交力系的平衡条件
空间汇交力系平衡的必要和充分条件为:该力系的 合力等于零。

Fx Fy
0 0
Fz
0
n
FR Fi 0 i 1
称为平衡方程 空间汇交力系的平衡方程
空间汇交力系平衡的必要和充分条件为:该力系中 所有各力在三个坐标轴上的投影的代数和分别等于零。
cos
30
G
0
F1 F2 3.54 kN
α
FA 8.66 kN
FA G
A
y
17
第2节 力对点的矩和力对轴的矩
一、力对点的矩的矢量表示
矢量的模:
MO
(F)
F
d
2 AOAB
矢量的方位:
和力矩作用面的法线方向相同
矢量的指向:
由右手螺旋法则确定
MO (F) r F 力矩矢
力对点的矩矢等于矩心到 该力作用点的矢径与该力的矢 量积。
例题2
参见动画:圆柱斜齿轮受力分析
运动演示
8
例题
空间力系
解: 将力Fn向 z 轴和Oxy 平面投影
例题2
Fz Fn sin
Fxy Fn cos
9
例题
空间力系
例题2
Fz Fn sin Fxy Fn cos
将力Fxy向x,y 轴投影
Fx Fxy sin Fn cos sin Fy Fxy cos Fn cos cos
Theory of Mechanics
理论力学
第四章 空间力系和重心
第四章 空间力系和重心
第1节 第2节 第3节 第4节 第5节 第6节

空间力系与重心

空间力系与重心

轴上的力和力矩平衡条件。只有当这六个方程同时满足时,空间一般力
系才处于平衡状态。
04
重心位置确定方法
几何法确定重心位置
01
02
03
悬挂法
将物体悬挂于一点,通过 测量悬线的长度和方向, 利用几何关系确定重心位 置。
支撑法
将物体支撑于两点,测量 支撑点的位置和支撑力的 大小,通过几何关系求解 重心位置。
度的基础。
06
重心在工程中应用举例
建筑结构稳定性分析
重心位置与结构稳定性
案例分析
在建筑设计中,通过调整结构布局和 构件尺寸,可以改变结构的重心位置, 从而提高结构的稳定性。
以高层建筑为例,通过优化结构布局 和构件设计,降低重心高度,提高结 构的整体稳定性。
地震作用下的重心影响
地震时,建筑物受到水平地震力的作 用,重心位置的高低直接影响结构的 抗震性能。
THANKS
感谢观看
航空航天领域应用
重心与飞行器稳定性
在航空航天领域,飞行器的重心位置对其稳定性和操控性 具有重要影响。合理设计重心位置可以提高飞行器的稳定 性和操控性。
重心与燃料消耗
飞行器的重心位置不仅影响稳定性和操控性,还影响燃料 消耗。通过优化重心位置可以降低飞行器的燃料消耗。
案例分析
以飞机设计为例,通过精确计算和调整机身、机翼等部件 的质量和布局,实现重心的合理分布,提高飞机的稳定性 和经济性。
力多边形封闭
如果将各力矢量按照一定顺序首 尾相接,可以形成一个封闭的力 多边形,这也是空间汇交力系平 衡的一个必要条件。
空间平行力系平衡条件
各力在任意轴上的投影之和为零
对于空间平行力系,所有力在任意选定的轴上的投影之和必须为零,这是平衡 的一个必要条件。

空间力系及重心

空间力系及重心

第六章 空间力系及重心一、内容提要1、空间力对点之矩和对轴之矩1)空间力对点之矩是矢量,且F r F m o ⨯=)(2)空间力对轴之矩是一代数量,其正负号按右手螺旋规则确定,大小有两种计算方法:(a )先将力投影到垂直于轴的平面上,然后按平面上力对点之矩计算,即)()(yz o Z F m F m =(b)若已知力在坐标轴上的投影F x 、F y 和F Z 及该力的作用点的坐标x 、y 、z ,则力对各坐标轴的矩可表示为=)(F m x yF z -zF y=)(F m y zF x -xF z =)(F m z xF y -yF x3) 力对点之矩和力对轴之矩的关系(力矩关系定理):x o x F m F m )]([)(=y o y F m F m )]([)(= z o z F m F m )]([)(=4)特殊情况 当力与轴平行或相交(即力与轴共面)时,力对轴之矩等于零。

2、空间任意力系的简化、合成1)空间任意力系的简化、力系的主矢与主矩主矢R /=∑F i , 主矢的大小和方向与简化中心的位置无关。

主矩M o =∑m o (F), 主矩的大小和转向一般与简化中心的位置有关。

2)空间任意力系的合成结果空间任意力系的平衡方程的基本形式为0=∑x F ,0=∑y F ,0=∑Z F0)(=∑F m x ,0)(=∑F m y ,0)(=∑F m Z2)几种特殊力系的平衡方程(a )空间汇交力系的平衡方程的基本形式为0=∑x F ,0=∑y F ,0=∑Z F(b )空间平行力系,若力系中各力与轴平行,则0≡∑x F ,0≡∑y F ,0)(≡∑F m Z ,其平衡方程的基本形式为:0=∑Z F ,0)(=∑F m x ,0)(=∑F m y(c )空间力偶系的平衡方程的基本形式为0)(=∑F m x ,0)(=∑F m y ,0)(=∑F m Z4、本章根据合力矩定理推导了重心坐标公式。

工程力学复习资料

工程力学复习资料

第一章静力学基础第一节静力学的基本概念1、静力学是研究物体在力系作用下平衡规律的科学。

2、力是物体之间的相互机械作用,这种作用使物体的机械运动状态发生变化,同时使物体的形状或尺寸发生改变。

前者称为力的运动效应或外效应,后者称为力的变形效应或内效应。

3、力对物体作用的效应,取决于力的大小、方向(包括方位和指向)和作用点,这三个因素称为力的三要素。

4、力是矢量。

5、力系:作用在物体上的若干个力总称为力系。

6、等效力系:如果作用于物体上的一个力系可用另一个力系来代替,而不改变原力系对物体作用的外效应,则这两个力系称为等效力系或互等力系。

7、刚体就是指在受力情况下保持其几何形状和尺寸不变的物体,亦即受力后任意两点之间的距离保持不变的物体。

8、平衡:工程上一般是指物体相对与地面保持静止或做匀速直线运动的状态。

9、要使物体处于平衡状态,作用于物体上的力系必须满足一定的条件,这些条件称为力系的平衡条件;作用于物体上正好使之平衡的力系则称为平衡力系。

第二节静力学公理1、二力平衡公理:作用于同一刚体上的两个力,使刚体处于平衡状态的必要与充分条件是:这两个力大小相等,方向相反,且作用于同一条直线上(简称等值、反向、共线)。

2、对于刚体来说,这个条件既是必要的又是充分的,但对于变形体,这个条件是不充分的。

3、加减平衡力系公理:在作用于刚体的力系中,加上或减去任意平衡力系,并不改变原力系对刚体的效应。

4、力的可传性原理:作用于刚体上的力,可沿其作用线移动至该刚体上的任意点而不改变它对刚体的作用效应。

5、力的平行四边形法则:作用于物体上同一点的两个力,可以合成为一个合力,合理也作用在该点上,合力的大小和方向则由以这两个分力为邻边所构成的平行四边形的对角线来表示。

6、这种合成力的方法叫矢量加法。

7、作用与反作用定律:两物体间相互作用的力,总是大小相等,方向相反,且沿同一直线。

8、刚化原理:变形体在已知力系作用下处于平衡,如设想将此变形体刚化为刚体,则其平衡状态不会改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xdV
ydV
zdV
连续体:xC
V
dV
, yC
V
dV
, zC
V
dV
V
V
V
其中 dV可用 dS , dl 取代
平行力系的中心 物体的重心
同理:可写出均质体,均质板,均质杆的形心(几何中心) 坐标分别为:
立体:xC

Vi
V
xi
,
yC

Vi
V
yi
,zC

Vi
x
xc

V x V x V V
7.83m
zc

V z V z V V
3.55m
另解:用负体积法 令全部补齐的体积为1,空体积为2
V1 1010 20m3, x1 10m, z1 5m V2 61014m3, x2 13m, z2 7m
yc

A1 y1 A1
A2 y2 A2
1200 5 700 45 1200 700
19.7( mm )
zc

A1z1 A1
A2 z 2 A2
1200 60 700 5 1200 700

39.7( mm
)
求图示匀质块的重心:
例题
z
6
10
6
例题2
将力Fxy向x,y 轴投影 Fx Fxy sin Fn cos sin Fy Fxy cos Fn cos cos
沿各轴的分力为
Fx (Fn cos sin ) i Fy (Fn cos cos ) j Fz (Fn sin ) k
F1 0.8 m G 0.6 m FD 0.6 m FB 1.2 m 0
解方程得
FD 5.8 kN FB 7.777 kN FA 4.423 kN
空间任意力系
例题6
水平传动轴上装有两个胶带轮C和D,半径分别是r1=0.4 m , r2=0.2 m . 套在C 轮上的胶带是铅垂的,两边的拉力F1=3 400 N,F2=2 000 N,套在D轮 上的胶带与铅垂线成夹角α=30o,其拉力F3=2F4。求在传动轴匀速转动时, 拉力F3和F4以及两个径向轴承处约束力的大小。
6-3 力对轴的矩
定义:
mz (F ) mO (Fxy ) Fxy d
它是代数量,方向规定 + –
结论:力过该轴对其矩为零, 力//该轴其矩也为零。即力F 与轴共面时,力对轴之矩为零。
力对轴的矩
例 题3
手柄ABCE在平面Axy内, 在D处作用一个力F,如图所 示,它在垂直于y轴的平面 内,偏离铅直线的角度为α。
V
zi
平板:
xC

Ai
A
xi,yC来自AiAyi
,zC

Ai
A
zi
细杆:
xC

li
l
xi
,
yC

li
l
yi
,zC

li
l
zi
二、推导原理
应用对轴的合力矩定理:
对x轴 ( Pi ) yc Pi yi
yc
Pi yi Pi
将力线转成与y轴平行,再应 用合力矩定理对x 轴取矩得:
静力学篇
第6章 空间力系、重心
6-2 工程中的空间力系
6-2 力在空间坐标轴上的投影
1、一次投影法(直接投影法) 由图可知:
X F cos
Y F cos
Z F cos
2、二次投影法(间接投影法)
当力与各轴正向夹角不易确定时,可先将 F 投影到 xy面上,然后再投影到x、y轴上, 即:
F
F1 F2 cos sin F3 cos sin 0
Fz 0,
联立求解可得
F2 cos cos F3 cos cos F 0
F1 F tan
F2

F3

F
2 cos cos

空间平行力系
例题5
如图所示三轮小 车,自重G = 8 kN, 作用于E点,载荷F1 = 10 kN,作用于C点。 求小车静止时地面对 车轮的约束力。
z
6
10
6
6Ⅱ
14Ⅰ
y
4
10
xc

V1x1 V2 x2 V1 V2
x
7.83m
zc

V1x1 V2 x2 V1 V2
3.55m
如果CD=b,杆BC平行于x轴,
杆CE平行于y轴,AB和BC的 长度都等于l。试求力F 对x, y和z三轴的矩。
力对轴的矩
解:应用合力矩定理求解。
力F 沿坐标轴的投影分别为:
Fx F sin
Fy 0
Fz F cos
由于力与轴平行或相交 时力对该轴的矩为零,则有
M x F M x FZ Fz AB CD F l bcos M y F M y FZ Fz BC Fl cos M z F M z Fx Fx AB CD F l bsin
空间任意力系
例题6
解:
以整个系统为 研究对象,建立如 图 坐 标 系 Oxyz , 画
出系统的受力图。
为了看清胶带 轮C和D的受力情 况,作出右视图。
空间任意力系
例题6
系统受空间任意力系的作用,可
写出六个平衡方程,但∑Fy=0自然 满足,所以,有:
Fx 0,
FAx FBx (F3 F4 ) sin 30 0
Fz 0,
FAz FBz (F3 F4 ) cos 30 (F1 F2 ) 0
Mx 0, FAZ 0.25 m FBZ 1.25 m (F3 F4) cos 30 0.75 m 0
M y 0, (F1 F2 ) 0.4 m (F3 F4 ) 0.2 m 0 Mz 0, FAx 0.25 m FBx 1.25 m (F3 F4 )sin 30 0.75 m 0
载荷F。钢丝OA和OB所构成的
平面垂直于铅直平面Oyz,并与
该 平 面 相 交 于 OD , 而 钢 丝 OC
则沿水平轴y。已知OD与轴z间
的 夹 角 为 β , 又 ∠ AOD =
∠BOD = α,试求各钢丝中的
拉力。
空间汇交力系
例题4
A
D
Bz F3
F2 αα β
x
O
yC F1
解: 取O点为研究对象,受
空间平行力系
例题5
解: 以小车为研究对象,主动力和约束反力组成空间平行力系,受力
分析 如图。 列平衡方程
Fz 0,
F1 G FA FB FD 0
M xF 0,
F1 0.2 m G 1.2 m FD 2 m 0
M y F 0,
又已知F3 =2F4,故利用以上方程可以解出所有未知量。
6-5 至 6-7 重心概念及计算
均匀重力场中,“重心、质心与形心三心合一”。
一、计算公式
离散组合体: xC
Pi xi , PPi i
yC

Pi yi , Pi
zC

Pi zi Pi
其中 Pi 可用 Vi , Si , li 取代
X Fxy cos F sin cos
Y Fxy sin F sin sin
Z F cos
例题1
三棱柱底面为直角等 腰三角形,在其侧平面 ABED上作用有一力F,力 F 与 OAB 平 面 夹 角 为 30º, 求力F在三个坐标轴上的 投影。
例题3
Fx
Fz
6-4 空间力系的平衡方程
空间力系的平衡方程为:
Fx 0, mx (F ) 0 Fy 0, my (F ) 0 Fz 0, mz (F ) 0
空间汇交力系
例题4
如图所示为空气动力天平
上测定模型所受阻力用的一个
悬挂节点O,其上作用有铅直
y1 (yc,zc)
y1 5 ( mm ) z1 60 (mm )
I II y2
80
矩形II:
z2 10 y A2 70 10 700( mm2 )
y2

10

70 2

45
(
mm
)
z2 5 (mm )
z
10
形心:
120 z1
单位:mm
y1 (yc,zc)
I II y2
80
z2 10 y
PzC Pi zi ,
zC

Pi
P
zi
三、求重心的方法
1.正、正组合法 2.正、负组合法 3.积分法 4.试验法(平面物体)
( Ⅰ )悬挂法:两次垂线的交点,见P 147 ( Ⅱ )承重法:称重计算,见P 147
例2:求图示物体的形心坐标。
120 z1
单位:mm
z
解: 矩形I:
10
A1 120 10 1200( mm2 )
力分析如图所示,这些力构 成了空间共点力系。
F
空间汇交力系
例题4
力F2与x轴之间 的 夹 角 为 90o - α , 故它在该轴上的投 影为:
F2x F2 cos (90o ) F2 sin
空间汇交力系
例题4
DB z
A
F' F3
相关文档
最新文档