无机材料的磁学性能
材料物理性能及测试-作业

第一章无机材料的受力形变1 简述正应力与剪切应力的定义2 各向异性虎克定律的物理意义3 影响弹性模量的因素有哪些?4 试以两相串并联为模型推导复相材料弹性模量的上限与下限值。
5 什么是应力松弛与应变松弛?6 应力松弛时间与应变松弛时间的物理意义是什么?7 产生晶面滑移的条件是什么?并简述其原因。
8 什么是滑移系统?并举例说明。
9 比较金属与非金属晶体滑移的难易程度。
10 晶体塑性形变的机理是什么?11 试从晶体的势能曲线分析在外力作用下塑性形变的位错运动理论。
12 影响晶体应变速率的因素有哪些?13 玻璃是无序网络结构,不可能有滑移系统,呈脆性,但在高温时又能变形,为什么?14 影响塑性形变的因素有哪些?并对其进行说明。
15 为什么常温下大多数陶瓷材料不能产生塑性变形、而呈现脆性断裂?16 高温蠕变的机理有哪些?17 影响蠕变的因素有哪些?为什么?18 粘滞流动的模型有几种?19 影响粘度的因素有哪些?第二章无机材料的脆性断裂与强度1 试比较材料的理论强度、从应力集中观点出发和能量观点出发的微裂纹强度。
2 断裂能包括哪些内容?3 举例说明裂纹的形成?4 位错运动对材料有哪两方面的作用?5 影响强度的因素有哪些?6 Griffith关于裂纹扩展的能量判据是什么?7 试比较应力与应力强度因子。
8 有一构件,实际使用应力为1.30GPa,有下列两种钢供选:甲钢:sf =1.95GPa, K1c =45Mpa·m 1\2乙钢:sf =1.56GPa, K1c =75Mpa·m 1\2试根据经典强度理论与断裂强度理论进行选择,并对结果进行说明。
9 结构不连续区域有哪些特点?10 什么是亚临界裂纹扩展?其机理有哪几种?11 介质的作用(应力腐蚀)引起裂纹的扩展、塑性效应引起裂纹的扩展、扩散过程、热激活键撕裂作用引起裂纹扩展。
12 什么是裂纹的快速扩展?13 影响断裂韧性的因素有哪些?14 材料的脆性有哪些特点?通过哪些数据可以判断材料的脆性?15 克服材料脆性和改善其强度的关键是什么?16 克服材料的脆性途径有哪些?17 影响氧化锆相变的因素有哪些?18 氧化锆颗粒粒度大小及分布对增韧材料有哪些影响?19. 比较测定静抗折强度的三点弯曲法和四点弯曲法,哪一种方法更可靠,为什么?20. 有下列一组抗折强度测定结果,计算它的weibull模数,并对该测定数据的精度做出评价。
无机材料的制备与应用

无机材料的制备与应用无机材料是指没有碳元素化合物的化学物质,包括金属、氧化物、硫化物、氧化氮化合物等。
无机材料广泛应用在电子信息、能源、环保、生物医药等领域,其制备、特性研究及应用也是现代化学的重要研究方向之一。
本文将从无机材料制备、特性与应用三个方面介绍无机材料的相关知识。
一、无机材料的制备1.晶体生长法晶体生长法是最常见的制备无机材料的方法之一,其原理是通过改变混合溶液的组成、温度、时间等条件,使溶液中含有的化学成分逐渐结晶并生长成晶体。
晶体生长法可以制备出包括氧化物、氮化物、硅化物及金属等多种无机材料。
2.水热合成法水热合成法是利用高温高压水环境下化学反应进行无机化合物的合成。
水热合成法能够制备出各种复杂的无机材料,例如氧化物、氮化物、磷酸盐、硅酸盐等。
此外,该法还能够调控无机材料的形态和结构。
3.溶胶-凝胶法溶胶-凝胶法是利用水溶胶与有机溶胶的化学反应,经过干燥、热解等一系列处理使其成为坚硬的凝胶,然后再经过烧制,得到所需的无机材料。
这种方法制备出来的无机材料具有高度纯度和良好的控制性能。
二、无机材料的特性1.结晶度和物相无机材料通常是以晶体的形式出现的,结晶度是衡量无机材料性质的一个重要参数,它与无机材料中晶体的尺寸、数量、形貌等因素密切相关。
物相指样品的晶体相组成,反映了样品中不同的化学组分和结构特征,影响着无机材料的物理化学性质。
2.晶体尺寸和形貌晶体的尺寸和形貌是影响无机材料特性的重要因素。
晶体的尺寸决定了材料内部的原子排列方式以及晶格缺陷的数量和粒界影响程度,同时还与材料的热力学和物理化学性质有关。
晶体的形貌决定了晶体表面化学性质的变化,对完全导电、光学和磁学性质有直接影响,还能影响晶体的力学和电化学性质。
三、无机材料的应用1.电子信息领域在电子信息领域,无机材料有着重要的应用。
例如,氧化锌、氧化物太阳能电池、硅基太阳能电池等无机材料被广泛用于光电转换器件的制备。
硅、碳化硅、氮化硅等无机材料常用于微电子技术的制备中,如实现集成电路缩小等。
无机纳米材料的制备及其性能研究

无机纳米材料的制备及其性能研究无机纳米材料是指不含碳原子的纳米粒子,其尺寸在1-100纳米之间。
这些材料具有特殊的物理、化学、光电性能,广泛应用于能源、生物医学、环境保护等领域。
一、无机纳米材料的制备方法无机纳米材料的制备方法多种多样,可以通过化学合成、物理制备、生物合成等方法制备出来。
1.化学合成法化学合成法是最常用的制备无机纳米材料的方法之一。
它是利用化学反应将原子分子逐级聚合形成纳米颗粒。
化学合成法有溶胶-凝胶法、水热法、共沉淀法等。
2.物理制备法物理制备法是将大颗粒材料通过气相、凝聚相等方式得到纳米材料。
物理制备法有溅射法、电子束制备法、化学气相沉积法等。
3.生物合成法生物合成法是利用微生物、真菌和植物等生物体内或表面的成分,经过调节条件获得具有纳米尺寸的无机纳米材料。
生物合成法有微生物培养法、植物培养法等。
二、无机纳米材料的性能研究无机纳米材料具有独特的物理、化学、光电性能,主要表现在以下几方面。
1.电学性能无机纳米材料因其尺寸小并且表面容易受到氧化、还原等反应的影响,电学性能比普通材料要具有明显的差异。
2.光学性能无机纳米材料的光学性能主要包括散射、吸收、发射等,这些性能随着颗粒尺寸的变化而发生变化,且可以通过改变材料的化学组成来调节这些性能。
3.磁学性能无机纳米材料的磁学性能主要体现在微观结构和外部场的影响下。
微观结构因为尺寸小,自旋取向而产生强磁性。
外部场可以通过调节磁场的大小和方向,来调节磁性材料的性能。
4.化学性能无机纳米材料在化学反应中可用于催化,也可以用于吸附有机物,去除水中的污染物,从而具有良好的环境应用前景。
总结无机纳米材料的制备方法众多,制备过程需要考虑材料性质、成本、环境等多方面的因素,进而选择适宜的方法。
同时,无机纳米材料的性能研究对于开发新型材料、提高性能、扩展材料应用等方面有着积极的推动作用。
在未来的科技发展过程中,无机纳米材料的应用前景仍然非常广阔。
材料性能与表征无机材料物理性能教学大纲

材料性能与表征无机材料物理性能教学大纲一、课程介绍《材料性能与表征》是材料类专业学生的学科基础课程。
本课程主要介绍材料的力学、热学、光学、磁学、电学的特性和表征方法,目的是使学生充分认识材料的物理性能以及这些性能在人类物质生活中的意义,学会利用这些知识解释有关材料的许多现象,认识材料的宏观性能与微观机制的联系,为材料的合成、制备、加工和应用指明方向。
主要内容包括:材料的受力变形、材料的脆性断裂与强度,材料的热学性能,材料的光学性能,材料的磁学性能,材料的电学性能等。
教学部分共含32个理论学时,16个实践环节学时。
Introduction“Properties and Characterization of Materials” is the main professional fundamental course for materials science and engineering students. This course mainly introduces the mechanical, thermal, optical, electrical and magnetic properties and characterization method of materials. The main purpose of this course is to make students fully understand the physical properties of materials and theirs significance in human materials life, learn to explain many phenomena of the materials by these knowledge, to understand the relationship between the macroscopic properties and microscopic mechanisms of materials, and to point out the directions for the synthesis, preparation, processing and application of the materials. The main contents of this course are listed as follows: stress deformation of materials, brittle fracture and strength of materials, thermal properties of materials, optical properties of materials, magnetic properties of materials, electrical properties of materials. The teaching part of this course includes 32 theoretical credit hours and 16 practical credit hours.课程基本信息二、教学大纲1、课程目标1)掌握材料性能的基本理论及其主要影响因素,培养学生对抽象问题的认识,使学生能够针对具体的材料工程问题,建立数学模型并求解。
《无机材料物理性能》课后习题答案解析

课后习题《材料物理性能》第一章材料的力学性能1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
解:由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。
则有当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。
0816.04.25.2ln ln ln 22001====A A l l T ε真应变)(91710909.4450060MPa A F =⨯==-σ名义应力0851.0100=-=∆=A A l l ε名义应变)(99510524.445006MPa A F T =⨯==-σ真应力)(2.36505.08495.03802211GPa V E V E E H =⨯+⨯=+=上限弹性模量)(1.323)8405.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量1-11一圆柱形Al 2O 3晶体受轴向拉力F ,若其临界抗剪强度τf 为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。
解:Maxwell 模型可以较好地模拟应力松弛过程:Voigt 模型可以较好地模拟应变蠕变过程:).1()()(0)0()1)(()1()(10//0----==∞=-∞=-=e EEe e Et t t στεσεεεσεττ;;则有:其蠕变曲线方程为:./)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为0123450.00.20.40.60.81.0σ(t )/σ(0)t/τ应力松弛曲线0123450.00.20.40.60.81.0ε(t )/ε(∞)t/τ应变蠕变曲线)(112)(1012.160cos /0015.060cos 1017.3)(1017.360cos 53cos 0015.060cos 0015.053cos 82332min 2MPa Pa N F F f =⨯=︒︒⨯⨯=⨯=︒⨯︒⨯=⇒︒⨯︒=πσπτπτ:此拉力下的法向应力为为:系统的剪切强度可表示由题意得图示方向滑移以上两种模型所描述的是最简单的情况,事实上由于材料力学性能的复杂性,我们会用到用多个弹簧和多个黏壶通过串并联组合而成的复杂模型。
无机功能材料

无机功能材料无机功能材料是一类具有特定功能的无机材料,其在各种领域中都有着重要的应用价值。
无机功能材料具有独特的物理、化学性质,能够通过其特定的结构和组成实现特定的功能。
在能源、环境、电子、光电等领域中,无机功能材料都发挥着重要作用。
本文将从无机功能材料的定义、特点、应用以及发展趋势等方面进行探讨。
无机功能材料的定义是指那些具有特定功能的无机材料,其功能可以是光学、电学、磁学、催化等方面。
这些材料通常由金属、非金属元素组成,具有复杂的结构和多样的性质。
无机功能材料的研究和开发,旨在利用其特殊的性能,满足人类对材料功能的需求。
无机功能材料具有多种特点,首先是其多样性。
由于其结构和组成的多样性,无机功能材料可以具有多种功能,如光学材料、电子材料、磁性材料等。
其次是其稳定性和耐高温性。
无机功能材料通常具有较高的熔点和热稳定性,能够在高温环境下保持稳定的性能。
此外,无机功能材料还具有优异的导电、导热性能,以及较好的化学稳定性和机械性能。
在能源领域,无机功能材料被广泛应用于太阳能电池、储能材料、光催化等方面。
例如,钙钛矿材料在太阳能电池中具有较高的光电转换效率,成为研究的热点之一。
在环境领域,无机功能材料被用于污染物的吸附、光催化降解等环境治理技术中。
在电子领域,磁性材料、半导体材料等无机功能材料被广泛应用于电子器件、传感器等方面。
在光电领域,光学玻璃、光学陶瓷等无机功能材料被用于光学器件、激光器件等领域。
未来,无机功能材料的发展趋势将主要集中在多功能化、高性能化和智能化方面。
随着科技的不断进步,人们对材料功能性能的要求也越来越高,无机功能材料将会朝着多功能化方向发展,即一个材料可以实现多种功能。
同时,无机功能材料的性能也将不断提升,实现高性能化。
另外,随着人工智能、物联网等技术的发展,无机功能材料也将朝着智能化方向发展,实现材料的智能感知和响应。
总之,无机功能材料作为一类具有特定功能的无机材料,在各种领域中都有着重要的应用价值。
无机化学中的配合物的磁性性质研究

无机化学中的配合物的磁性性质研究磁性是物体自然具备的性质之一,所谓磁性,就是指物体受到磁场的作用时所表现出来的行为。
磁性被广泛运用于各个领域,如医学、工业、能源等。
在无机化学研究中,配合物的磁性性质是一个重要的研究课题。
配合物是由金属离子和配体结合而成的化合物,它的磁性性质与其成键方式、电子构型等有着密切的关系。
I. 配合物的磁性分类在无机化学中,根据配合物的磁性表现,可以将其分为三类,分别是顺磁性、反磁性和抗磁性。
1. 顺磁性顺磁性是指物质在外加磁场下,其磁偶极矩与磁场方向相同并且强度增大。
顺磁性物质中的电子轨道填充状态是不对称的,这导致一部分电子不成对,形成自旋磁量子数为1/2的自由电子。
顺磁性物质中的金属离子具有未配对电子,磁场作用下这些电子会导致金属离子的总磁矩增强,从而增强配合物的磁性。
例如,Fe2+、Ni2+和Cu2+等金属离子在配位化合物中具有顺磁性。
2. 反磁性反磁性是指物质在外加磁场下,其磁偶极矩与磁场方向相反并且强度减小。
反磁性物质中的电子轨道填充状态是对称的,即其电子成对存在。
反磁性物质中的金属离子具有配对电子,在磁场作用下这些电子会对配合物的磁性产生抵消作用,从而减弱配合物的磁性。
例如,Zn2+、Cd2+和Hg2+等金属离子在配位化合物中具有反磁性。
3. 抗磁性抗磁性是指物质在外加磁场下,其磁偶极矩与磁场方向垂直,且强度基本不变。
抗磁性物质中的电子轨道填充状态是对称的,但是这些电子的自旋方向和运动方向不对称,导致其总磁矩为零,并对配合物的磁性不产生影响。
例如,Be2+、Mg2+和Ca2+等金属离子在配位化合物中具有抗磁性。
II. 研究顺磁性和反磁性配合物的方法研究顺磁性和反磁性配合物的方法有许多,其中最为常用的就是磁学法。
磁学法的原理是利用电子自旋与轨道角动量相互作用的规律,通过测量磁化强度和磁场之间的关系,确定金属离子是否存在未配对电子。
磁化强度指的是一个系统在外加磁场作用下所表现出来的极化程度。
Chap7 无机非金属材料 磁性性能-2012

16
磁学和电学基本物理量的比较
磁学参量(磁路) 名称 单位 Wb 磁通量 磁通密度B 磁场强度H 磁导率 磁阻Rm 磁势Vm Wb/m2 A/m H/m A
名称 电流强度I
电流密度J 电场强度E 电导率 电阻R 电动势V
单位 A
A/m2 V/m V
17
7.2 物质的磁性
按物质对磁场的反应对其进行分类 强烈吸引的物质:铁磁质和亚铁磁质
永磁体
N
S
F 轻微吸引的物质:顺磁质,反铁磁质
(弱磁性) 轻微排斥的物质:抗磁质 强烈排斥的物质:超导体完全抗磁性
18
顺磁质 磁化后其磁矩指向外磁场方向的磁介质。
和铁磁质的比较:两者都具有永久磁矩,有外磁 场时,前者表现出极弱的磁性,后者磁化强度大, 当移去外磁场,则前者不表现出磁性,而后者则 保留极强的磁性。 顺磁质
第七章 无机材料的磁学性能
§7.1 基本概念
一、磁矩
磁性的起源
磁源于电:环形电流周围的磁场,符合右螺旋法则,其磁矩 定义为:
m IAn
m – 载流线圈的磁矩
I - 载流线圈通过的电流
A - 载流线圈的面积 n - 载流线圈平面的法线方向上的单位矢量
产生磁矩的原因
轨道磁矩 电子围绕原子核的轨道 运动,产生一个非常小 的磁场,形成一个沿旋 转轴方向的磁矩,即轨 道磁矩。 自旋磁矩 每个电子本身有自旋运 动产生一个沿自旋轴方 向的磁矩,即自旋磁矩。 • Orbita l 轨道磁矩 • Spin 自旋磁矩
• 在磁介质中,磁场强度和磁感应强度的关系为������
B H
• 式中的μ为介质的磁导率,是材料的特性常数。 • μ的单位为H/m。
• 除了SI单位制以外,还有一种高斯(Gauss)单位制, 当使用高斯单位制时,磁感应强度的表达式为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可编辑ppt
14
例:绘出铁磁性、亚铁磁性、顺磁性及 抗磁性的磁化曲线
磁化强 度M
磁化曲线
可编辑ppt
磁场强 度H
15
例:绘出铁磁性、亚铁磁性、顺磁性及 抗磁性的磁化曲线
磁化强 度M
铁磁性 亚铁磁性
顺磁性 磁化曲线
磁场强
度H
可编辑ppt 抗磁性
16
第七章
可编辑ppt
1
可编辑ppt
2
物质的磁性
B—磁感应强度
μ---磁导率
可编辑pHpt ---磁场强度
3
物质的磁性
• 磁场强度H
H I 2 r
r---磁场中一点距 导线距离
B H
• 磁导率 0 4 1 0 7 H /m (亨 利 每 米 )
r 0 可编辑ppt
4
物质的磁性
• 磁化率 • 磁化强度
般约为-10-5,为负值
可编辑ppt
10
❖顺磁性
➢顺磁性物质的主要特征是不论外加磁场是否存在, 原子内部存在永久磁矩 ,在外磁场作用下,各个原子 磁矩会沿外磁场方向择优取向,使材料表现出宏观 磁性
➢顺磁性物质的磁性除了与有关外,还依赖于温度,
其磁化率与绝对温度成反比, 室温下约为10-5
➢特点:磁场强度获得增强
C T
M:正值
➢顺磁性物质的过渡元素、稀土元素、钢系元素, 还有铝铂等金属,都属于顺磁物质
可编辑ppt
11
❖铁磁性
➢有一类物质如Fe,Co,Ni,室温下磁化率可达 10-3数量级,这类物质的磁性称为铁磁性
➢铁磁性物质即使在较弱的磁场内,也可得 到极高的磁化强度,而且当外磁场移去后, 仍可保留极强的永久磁性。各类磁性物质的 -曲线示于下图
可编辑ppt
12
❖铁磁性
➢铁磁体的铁磁性只在某一温度以下才表现出
来,超过这一温度,铁磁性消失。这一温度
称为居里点其磁化率与温度的关系服从居里
一外斯定律
ቤተ መጻሕፍቲ ባይዱ C
❖亚铁磁性
T TC
类似于铁磁性,磁化率比铁磁性略低些
可编辑ppt
13
❖反铁磁性
➢反铁磁性物质大都是非金属化合物, 如MnO。
➢原子具有磁矩,其相邻原子或离子的磁 矩作反方向平行排列,总磁矩为0,这种 材料称为反铁磁性材料
❖抗磁性 ❖顺磁性 ❖铁磁性 ❖亚铁磁性 ❖反铁磁性
可编辑ppt
9
❖抗磁性
➢ 材料本身没有原子磁矩,外磁场会使材料中电 子的轨道运动发生变化,感应出很小的磁矩, 其方向与外磁场方向相反,称为抗磁性
➢ 当磁化强度M为负时,固体表现为抗磁性 ➢Bi,Cu,Ag,Au 等金属具有这种性质 ➢ 抗磁性物质的抗磁性一般很微弱,磁化率一
10
0
0
M H
单位磁场强度的磁化强度
可编辑ppt
5
物质的磁性
磁化强度 磁化强度也是描述磁质被磁化后其磁性 强弱的一个物理量。
MH
称为磁化率或磁化系数
可编辑ppt
6
物质磁性的本质
材料的磁性来源于原 子磁矩,原子磁矩包括
电子轨道磁矩 电子自旋磁矩 原子核磁矩
很小,只有电子磁矩的几千分之一,在考虑它对 原子磁矩的贡献时可以忽略不计.
可编辑ppt
7
物质磁性的本质
电子的磁矩
➢ 由电子的轨道磁矩和自旋磁矩组成原子固有 磁矩,也称本征磁矩
➢ 如果原子中所有电子壳层都是填满的,其电 子磁矩相互抵消,因而不显磁性
➢ 对一些具有不对称电子结构的原子,有些电 子层并未完全填满,其电子磁矩不会全部相 互抵消,因而显示磁性.
可编辑ppt
8
磁性的分类