三十二、呼吸机波形(14-7-30)

合集下载

呼吸机基本波形详解

呼吸机基本波形详解


压力感应器通常可以测知最高 150cmH2O的压力,但会因环路内积 水、分泌物堵塞等影响准确性。
ห้องสมุดไป่ตู้

自主呼吸和机控呼吸的压力 波形是不同的,但他们的组成结 构是一样的。压力波形对评估呼 吸周期结构(呼气相向吸气相转 换点)、时间系数及病人与呼吸 机的相互作用都有帮助 。
压力波形
• 观察压力波形,很容易判断病 人到底是自主呼吸还是机控呼吸。 图9是一个典型的自主呼吸压力波 形。(未用压力支持等辅助)
时间
V E


P PSV 的 P-V 环
图20
容量波
图21
自动顺应性补偿
流速、压力、容量环
• 下面列出的分别是机控、辅助、 自主呼吸的波形环之间的区别。值得 注意的是,压力-容量环对于测定、估 算呼吸功有重要的作用(做功=环的面 积)。
E I
图22 反映顺应性
压力-容量环(P-V环)
吸气肢成弓形变化提示吸气阻力增高
图12 压力波形——受阻力、流速、顺应性影响(固定 潮气量)
图13 呼气压基线抬高
图15
平均压
图16
自主触发的辅助通气
图17
机控呼吸中——病人努力不够
图18
时间测算
图19
压力测定——PCV、PSV
压 力
吸气时间 预设压力支持水平 PEEP
流 速
峰流速
2 5 % 峰流速
容 量
PSV的通气波形
参数组合构成各种同波形
• 压力-时间曲线 • 容积-时间曲线 • 流速-时间曲线 • 压力-容积环 • 流速-容积环 • 压力-流速环
流速测定

流速通常在呼吸机环路(从进 气口到呼气阀之间的管道)中测知, 大部分流量感应器都可以测量一个 较大的范围(-300—+150LPM), 但会由于假呼吸运动、水气、呼吸 道分泌物等而影响其准确性。

呼吸机波形分析 医学PPT课件

呼吸机波形分析 医学PPT课件

学习内容
理解基本的正常呼吸波形 正确识别异常的呼吸波形
曲线分类
流速-时间曲线(F-T curve) 压力-时间曲线(P-T curve) 容积-时间曲线(V-T curve) 压力-容积环(P-V loop) 压力-流速环(P-F loop) 流速-容积环(F-V loop)
流速-时间曲线(F-T curve)
流速-时间曲线的横轴代表时间(sec), 纵轴代 表流速(Flow=V'=LPM), 在横轴上部代表吸气 流速,横轴下部代表呼气流速.
←吸气流速 ←呼气流速
方波: 是呼吸机在整个吸气相所输送的气体流 量均是恒定的(设置值),故吸气开始即达到峰流 速, 直至吸气结束才降为0.
递减波: 是呼吸机在吸气开始时输送的气体流 量立即达到峰流速(设置值), 然后逐渐递减至0 (吸气结束),
呼吸机波形入门
内科ICU
前言
随着微理器和有关软件的发展, 现代呼吸机除 提供各种有关监测参数外, 同时能提供机械通 气时压力、流速和容积的变化曲线以及各种呼 吸环. 目的是根据各种不同呼吸波形曲线特征, 来指导调节呼吸机的通气参数, 如通气模式是 否合适、人机对抗、气道阻塞、呼吸回路有无 漏气、评估机械通气时效果、使用支气管扩张 剂的疗效和呼吸机与患者在通气过程中各自所 作之功等 ,所以想要更好的了解机械通气, 学习呼吸波形是必须的
吸气时间不足
指令通气过程中有自主呼吸
呼吸回路有泄漏
压力-时间曲线(P-T curve)
压力-时间曲线反映了气道压力(Paw)的逐步 变化, 纵轴为气道压力,单位是cmH2O , 横轴 是时间以秒(sec)为单位,
呼吸机完全控制患者呼吸
压力支持呼吸(压力触发)
A处吸气时间巳消逝, 但压力曲线始终未出现平台 说明呼吸回路有漏气或吸气流速不足

呼吸机波形分析ppt课件

呼吸机波形分析ppt课件

吸气时间影响. 图15中虚点面积在特定的时间间隔上所计算的
压力相加求其均数即平均气道压. 它在正压通气时与肺泡充盈
效果(即气体交换)和心脏灌注效果相关, 它的升降. A-B为吸气时间, B-C为呼气时间,
PIP=吸气峰压, Baseline=呼吸基线(=0或PEEP). 一般平均气
波形分析
精选PPT课件
1
1. 引 言
现代呼吸机除提供各种有关监测参数外, 同时能提供机械 通气时压力,流速,容积和各种呼吸环. 目的是根据各种不同 呼吸波形曲线特征,来指导调节呼吸机, 如通气模式是否合 适、人机对抗、气道阻塞、呼吸回路有无漏气、呼吸机和患 者在呼吸过程中所作之功、 评估机械通气时效果和使用支 气管扩张剂的疗效等. 有效的机械通气支持/治疗是通气过 程中的压力、流速和容积相互的作用而达到以下目的:
内自主呼吸力达到触发阈呼吸精机选给PPT予课件一次同步指令通气.
23
3.3.1d 双水平正压通气(BIPAP) 图21
BIPAP属于PCV所衍生的模式, 即在两个不同压力水平上患者尚
可进行自主呼吸. 图21左侧是PCV吸气峰压呈平台状无自主呼吸,
而右侧不论在高压或低压水平上均可有自主呼吸, 在自主呼吸
2.4.1 初步判断支气管情况和主动或被动呼气(图11)
图11左侧图虚线反映气道阻力正常, 呼气时间稍短, 实线反映
呼气阻力增加, 呼气时延长. 右侧图虚线反映是自然的被动呼
气, 而实线反映患者主动用力呼气, 单纯从本左右图较难判
断它们之间差别和性质. 尚需结合压力-时间曲线一起判断即
可了解其性质.
精选PPT课件
3
2.1. 吸气流速波形(见图1 )
精选PPT课件

呼吸机波形分析中文

呼吸机波形分析中文

感谢您的观看
汇报人:XX
在某些情况下,呼吸波形分析可以 为无法进行常规通气治疗的患者提 供替代治疗方案,如无创通气治疗 等。
呼吸机波形分析的局限性
第六章
影响因素
患者个体差异: 不同患者的呼 吸生理参数存 在差异,影响 波形分析的准
确性。
呼吸机设置与 调节:呼吸机 的设置与调节 对波形产生影 响,可能导致 分析结果不准
确。
单击添加章节标题
第一章
呼吸机波形分析概述
第二章
呼吸机波形分析的意义
评估患者呼吸状况,诊断呼吸 系统疾病
监测患者呼吸力学参数,如气 道阻力、顺应性等
指导呼吸机参数调整,提高患 者舒适度和治疗效果
评估患者病情变化,为临床决 策提供依据
波形分析的常用参数
潮气量:反映每次呼吸的通 气量,正常值为500-800ml
呼气相波形异常
呼气相延迟:表示患者的呼气过程延长,可能与呼吸道阻塞或肺顺应性降低有关
呼气相提前:表示患者的呼气过程提前开始,可能与呼吸道痉挛或神经肌肉功能障碍有关
呼气相波形消失:表示呼吸机未能检测到患者的呼气过程,可能与呼吸机故障或患者呼吸道分 泌物过多有关
呼气相波形不规则:表示患者的呼气过程不规则,可能与呼吸道分泌物过多、肺不张或呼吸肌 疲劳有关
呼吸机波形分析中 文
XX,a click to unlimited possibilities
汇报人:XX
目录
CONTENTS
01 添加目录标题 02 呼吸机波形分析概述 03 呼吸机波形分析的中文解读 04 呼吸机波形异常的中文解读 05 呼吸机波形分析在临床中的应用
06 呼吸机波形分析的局限性
指导治疗
呼吸机波形分析能够提供患者呼吸 功能和病理状态的信息,帮助医生 制定个性化的治疗方案。

呼吸机波形

呼吸机波形

平均气道压(mean Paw 或Pmean)
平均气道压(MAP)在正压通气时与肺泡充盈效果和心脏灌 注效果相关(即气体交换),在一定的时间间隔内计算N个压 力曲线下的区域面积而得, 直接受吸气时间影响. 气道峰 压, PEEP,吸/呼比和肺含水量均影响它的升降. 图中A-B为 吸气时间, B-C为呼气时间, PIP=吸气峰压,呼吸基线=0或 PEEP. 一般平均气道压=10-375pxH2O,不大于750pxH2O.
初步判断支气管情况和主动或被动呼气
图左侧图虚线反映气道阻力正常, 呼气峰流 速大,呼气时间稍短, 实线反映呼气阻力增加, 呼气峰流速稍小,呼气时延长. 右侧图虚线反映是病人的自然被动呼气, 而 实线反映了是患者主动用力呼气, 单纯从本 图较难判断它们之间差别和性质. 尚需结合 压力-时间曲线一起判断即可了解其性质.
PCV的压力-时间曲线(Fig.17)
虚线为VCV, 实线为PCV的压力曲线. 与VCV压力-时间曲线不同, PCV的气道压 力在吸气开始时从基线压力(0或PEEP) 增至预设水平呈平台样並保持恒定, 是 受预设压力上升时间控制. PCV的气体流量在预设吸气时间内均呈递减形. 在 呼气相, 压力下降和VCV一样回复至基线压力水平, 本图提示了在相同频率、 吸气时间、和潮气量情况下PCV的平台样压力比VCV吸气末平台压稍低. 呼吸 回路有泄漏时气道压将无法达到预置水平.
判断有无内源性呼气末正压(Auto-PEEP/PEEPi)的存在
图为三种不同的Auto-PEEP呼气流速波形 图12吸气流速选用方波,呼气流速波形在下一个吸气相开始之前呼气流速 突然回到0, 这是由于小气道在呼气时过早地关闭, 以致吸入的潮气量未完 全呼出,使部分气体阻滞在肺泡内产生正压而引起Auto-PEEP( PEEPi). 注意图 中的A,B和C, 其突然降至0时呼气流速高低不一, B最高,依次为A, C. 实测 Auto-PEEP压力大小也与波形相符合. Auto-PEEP在新生儿, 幼婴儿和45岁以上正常人平卧位时为3.0 cmH2O.呼气 时间设置不适当,反比通气, 肺部疾病(COPD)或肥胖者均可引起PEEPi. 临床上医源性PEEP= 所测PEEPi × 0.8. 如此即打开过早关闭的小气道而又不 增加肺容积.

《呼吸机波形》课件

《呼吸机波形》课件

通过分析患者的呼吸波形,可以初步判断是否存在通气障碍、阻塞、呼
吸运动异常等情况,为进一步诊断提供依据。
02 03
常见疾病的呼吸波形特征
如慢性阻塞性肺疾病(COPD)患者的呼吸波形可能出现波幅过低、频 率加快等情况;哮喘患者的呼吸波形可能出现双峰波形、波幅过高、频 率过慢等情况。
呼吸波形与疾病治疗
根据患者的呼吸波形特征,可以制定针对性的治疗方案,如机械通气治 疗、药物治疗等,以改善患者的通气功能和症状。
03 呼吸机波形监测技术
监测技术介绍
呼吸机波形监测技术是一种用于监测呼吸机工作状态和患者呼吸生理参数的技术。
通过实时监测呼吸机的压力、流量、容积等波形,可以了解患者的呼吸状态和呼吸 机的性能。
该技术广泛应用于临床医学、重症监护、麻醉等领域,为医生提供重要的诊断和治 疗依据。
监测技术原理
基于传感器技术
正常呼吸波形表明呼吸系统功能正常 ,无通气障碍或阻塞。
正常呼吸波形产生机制
正常呼吸波形是由呼吸肌肉的收缩和 舒张,以及胸腔和肺组织的弹性回缩 共同作用的结果。
异常呼吸波形解读
异常呼吸波形特征
异常呼吸波形可表现为波形形态异常、波幅异常、频率异 常等,如出现双峰波形、波幅过低或过高、频率过快或过 慢等。
异常呼吸波形产生机制
异常呼吸波形可能是由于呼吸道狭窄、阻塞、顺应性降低 等原因引起的通气障碍,或者是由于中枢神经系统、肌肉 等病变引起的呼吸运动异常。
异常呼吸波形临床意义
异常呼吸波形可能提示着各种呼吸系统疾病或神经系统疾 病,需要根据具体波形特征和患者情况进行综合判断。
呼吸波形与疾病诊断
01
呼吸波形在疾病诊断中的应用
失败案例分析
1 2 3

《呼吸机波形》PPT

《呼吸机波形》PPT

异常呼气末正压波形识别与处理
总结词
呼气末正压设置不当
详细描述
呼气末正压是在呼气末期呼吸机施加的正压力,用于保持肺泡开放和增加功能残气量。当呼气末正压设置过高时 ,可能导致气压伤;设置过低则可能影响氧合和通气效果。处理方法包括调整呼气末正压设置、监测患者体征和 观察呼吸机波形等。
异常潮气量波形识别与处理
《呼吸机波形》
汇报人:可编辑
2024-01-11
目录
CONTENTS
• 呼吸机波形概述 • 呼吸机波形与呼吸生理 • 常见呼吸机波形分析 • 异常呼吸机波形识别与处理 • 呼吸机波形在临床中的应用
01 呼吸机波形概述
CHAPTER
呼吸机波形概述
• 请输入您的内容
02 呼吸机波形与呼吸生理
CHAPTER
呼吸频率波形呈规则的周期性波动, 频率大小根据患者病情和呼吸机设置 调整。
04 异常呼吸机波形识别与处理
CHAPTER
异常吸气峰压波形识别与处理
总结词
吸气峰压过高或过低
详细描述
吸气峰压是呼吸机在吸气相产生的最大压力。当吸气峰压过高时,可能表示呼吸 道阻力增加或肺顺应性降低;吸气峰压过低则可能表示通气不足或呼吸道阻力过 低。处理方法包括调整呼吸机参数、检查呼吸道通畅度和肺功能等。
通过分析呼吸波形,可以了解患者的 通气/血流比例、弥散功能和通气/灌 注匹配等方面的信息,有助于评估患 者的氧合和通气状态。
呼吸波形与呼吸力学
呼吸波形可以反映呼吸力学参数,如气道阻力、肺顺应性和 内源性呼气末正压等。
通过分析呼吸波形,可以了解患者的呼吸力学特征和呼吸肌 功能,有助于评估患者的呼吸支持和治疗效果。
呼吸机波形在评估患者病情中的应用

呼吸机基本波形详解

呼吸机基本波形详解

吸呼转换时间
指吸气相结束到呼气相开始所经过的时间,是呼吸机设置的 重要参数。
吸呼转换压力
指吸气相结束和呼气相开始时的压力水平,反映呼吸机的切 换性能。
03
呼吸机波形与临床应用
呼吸机波形在诊断中的应用
吸气峰压(Peak Inspirator…
用于评估患者吸气时的压力,判断是否存在气道阻力增加或肺顺应性 降低等情况。
过渡相时间过短
可能是由于潮气量设置过大、呼吸频 率过快等原因导致。处理方法包括调 整潮气量设置、适当减慢呼吸频率等。
感谢您的观看
THANKS
01
02
03
04
呼气峰压
表示呼气压力的峰值,用于评 估患者呼气时的阻力。
呼气时间
指呼气开始到呼气结束所经过 的时间,是呼吸机设置的重要
参数。
平均压
指呼吸机在整个呼气周期中维 持的压力水平,是评估通气效
果的重要指标。
内源性PEEP
指患者呼气时,呼吸道内产生 的正压,可能导致呼吸机撤离
困难。
过渡相波形
呼气峰压(Peak Expirator通气障碍或呼气性 通气障碍。
潮气量(Tidal Volume)
用于监测患者每分钟通气量,判断是否存在通气不足或通气过度。
吸气时间(Inspiratory Tim…
用于评估患者吸气时间,判断是否存在吸气时间延长或缩短。
呼吸机基本波形详解
目录 CONTENT
• 呼吸机基本波形概述 • 呼吸机基本波形详解 • 呼吸机波形与临床应用 • 呼吸机波形异常情况及处理方法
01
呼吸机基本波形概述
呼吸机波形的定义与分类
定义
呼吸机波形是呼吸机在工作过程 中产生的压力、流量和时间等参 数随时间变化的曲线。

呼吸机波形ppt课件

呼吸机波形ppt课件

胸外按压时呼吸机设置

1、压力报警界限调制70厘米水柱以上; 2、SIMV模式,潮气量10ml/kg,呼吸频率 16-20次/分,PSV0。
简易呼吸器使用方法


1、与面罩一起备在固定的、众所周之的地 方; 2、单手保持一定正压,通过手感受患者吸 气时的负压,并给予通气。在没有胸外按 压时,按照A/C模式通气。
管道脱落的预防

1、保护性制动; 2、每日观察管道深度,防止过深或者过浅。
管道脱落前兆的处理



1、固定气管导管; 2、抽出气管导管球囊气体; 3、将气管导管插入一定深度; 4、向球囊内打入气体; 5、吸痰。
呼吸模式


1、主要呼吸机参数: 潮气量(Vt)、控制压力(Pc)、吸气时间、 峰流速、控制通气的呼吸频率、支持压力 (PSV)、呼气末正压(PEEP)。 2、次要呼吸机参数; 触发灵敏度、压力高限、呼气撤换、压力 上升时间、吸气保持。
V-A/C


需要设置的参数: 潮气量 峰流速(或吸呼比) 呼吸频率
V-SIMV



需要设置的参数: 1、潮气量 2、呼吸频率 3、峰流速或吸呼比 4、支持压力PSV
SPONT

需要设置的主要参数: 压力支持PSV
脱机拔管的模式


1、自主呼吸恢复后选择SPONT或CPAP模式 2、先根据潮气量设定PSV,PSV决定潮气 量大小,根据患者病情逐渐下调PSV,当 PSV在7cm水柱以下时,若仍能维持16-20 次的呼吸,潮气量基本能满足患者需求时, 可脱机; 3、脱机一夜后,若病情没有变化,血气分 析理想,可以拔管。
堵管的处理

呼吸机波形分析入门+彩图

呼吸机波形分析入门+彩图

引言近10 年来因微理器和有关软件的发展, 现代呼吸机除提供各种有关监测参数外, 同时能提供机械通气时压力、流速和容积的变化曲线以及各种呼吸环. 目的是根据各种不同呼吸波形曲线特征, 来指导调节呼吸机的通气参数, 如通气模式是否合适、人机对抗、气道阻塞、呼吸回路有无漏气、评估机械通气时效果、使用支气管扩张剂的疗效和呼吸机与患者在通气过程中各自所作之功等.有效的机械通气支持或通气治疗是在通气过程中的压力、流速和容积相互的作用而达到以下目的:a. 能维持动脉血气/血pH 的基本要求(即PaCO2 和pH 正常, PaO2 达到基本期望值如至少 > 50-60 mmHg)b. 无气压伤、容积伤或肺泡伤.c. 患者呼吸不同步情况减低到最少,减少镇静剂、肌松弛剂的应用.d. 患者呼吸肌得到适当的休息和康复.1.呼吸机工作过程:上图中,气源部份(Gas Source)是呼吸机的工作驱动力, 通过调节高压空气和氧气流量大小的阀门来供应混合氧气体. 气体流量经流速传感器在毫秒级时间内测定流量, 调整气体流量阀门(Flow Valve)的直径以控制流量。

测定在流速曲线的吸气流速面积下的积分, 计算出潮气量. Vt= 流速(升/秒)×Ti(流速恒定).图中控制器(Control Unit)是呼吸机用于控制吸气阀和呼气阀的切换,它受控于肺呼吸力学改变而引起的呼吸机动作.吸气控制有 :a. 时间控制: 通过预设的吸气时间使吸气终止, 如PCV 的设置Ti 或I:E.b. 压力控制: 上呼吸道达到设置压力时使吸气终止,现巳少用, 如PCV 的设置高压报警值.c. 流速控制: 当吸气流速降至预设的峰流速%以下(即 Esens), 吸气终止.d. 容量控制: 吸气达到预设潮气量时,吸气终止.呼气控制有:a. 时间控制: 通过设置时间长短引起呼气终止(控制通气) 代表呼气流速(吸气阀关闭, 呼气阀打开以便呼出气体), 呼气流速的波形均为同一形态.b. 病人触发: 呼吸机捡测到吸气流速到吸气终止标准时即切換呼气(Esens).图中气体流量定量阀(Dosing Flow-Valve)是控制呼吸机输送的气体流量, 由流量传感器监测并控制, 如此气体流量经Y 形管进入病人气道以克服气道粘性阻力,再进入肺泡的容积以克服肺泡弹性阻力. 通过打开和关闭呼气阀, 即控制了吸气相和呼气相. 在吸气时呼气阀是关闭的. 若压力,容量或吸气时间达到设置值, 呼气阀即打开, 排出呼出气体.呼气阀后的PEEP 阀是为了维持呼气末气道压力为正压(即0 cmH2O 以上), 目的是克服內源性(PEEPi);维持肺泡的张开.由于各厂图形处理软件不一, 故显示的波形和环稍有差别,但对波形的判断並无影响.为便识别吸、呼气相,本波形分析一律以绿色代表吸气,以兰色代表呼气.2. 流量-时间曲线(F-T curve)流速定义:呼吸机在单位时间内在两点之间输送出气体的速度, 单位为cm/s 或m/s.流量:是指每单位时间内通过某一点的气体容量. 单位L/min 或L/sec 目前在临床上流速、流量均混用! 本文遵守习称.流量-时间曲线的横座标代表时间(sec), 纵座标代表流速(Flow= ), 流速(量)的单位通常是"升/分"(L/min 或LPM).在横座标的上部代表吸气(绿色), 吸气流量(呼吸机吸气阀打开, 呼气阀关闭, 气体输送至肺),曾有八种波形(见下图).目前多使用方波和递减波.横座标的下部代表呼气(兰色)(呼吸机吸气阀关闭, 呼气阀打开以便病人呼出气体). 呼气流量波形均为同一形态, 只有呼气流量的振幅大小和呼气流量回复到零时间上差异.图. 各种吸、呼气流量波形 A.指数递减波 B.方波 C.线性递增波 D.线性递减波 E. 正弦波 F.50%递减波 G.50%递增波H.调整正弦波2.1. 吸气流量波形(Fig.1)恒定的吸气流速是指在整个吸气时间内呼吸机输送的气体流量恒定不变, 故流速波形呈方形,( 而PCV 时吸气流量均采用递减形-即流量递减), 横轴下虚线部分代表呼气流速(在呼气流量波形另行讨论)Fig.1 吸气流量恒定的曲线形态1: 代表呼吸机输送气体的开始:取决于 a)预设呼吸周期的时间巳达到, 呼气转换为吸气(时间切换)如控制呼吸(CMV). b)患者吸气努力达到了触发阀,呼吸机开始输送气体,如辅助呼吸(AMV).2: 吸气峰流量(PIF 或PF): 在容量控制通气(VCV)时PIF 是预设的, 直接决定了Ti 或I:E.在PCV 和PSV 时,PIF 的大小决定了潮气量大小、吸气时间长短和压力上升时间快慢.3: 代表吸气结束, 呼吸机停止输送气体.此时巳完成预设的潮气量(VCV)或压力巳达标(PCV),输送的流量巳完成(流速切换),或吸气时间已达标(时间切换).4→5:代表整个呼气时间:包括从呼气开始到下一次吸气开始前这一段时间.6: 1→4为吸气时间: 在VCV 中其长短由预设的潮气量,峰流速和流速波型所决定, 它尚包含了吸气后摒气时间(VCV 时摒气时间内无气体流量输送到肺,PCV 时无吸气后摒气时间).7: 代表一个呼吸周期的时间(TCT): TCT=60 秒/频率.2.1.1 吸气流量的波型(类型)(Fig.2)根据吸气流量的形态有方波, 递减波, 递增波, 和正弦波, 在定容型通气(VCV)中需预设频率, 潮气量和峰流量, 并选择不同形态的吸气流量波.!(见Fig.2 以方波作为对比) 正弦波是自主呼吸的波形,其在呼吸机上的疗效无从证明(指在选擇流速波形时),巳少用. 雾化吸入或欲使吸气时间相对短时多数用方波.Fig.2 吸气流速波型图2 中流速以方波作为对比(以虚线表示), 在流速,频率和潮气量均不变情况下, 方波由于流速恒定不变,故吸气时间最短, 其他波形因的递减, 递增或正弦状, 因它们的流速均非恒定不变, 故吸气时间相应延长.方波: 是呼吸机在整个吸气时间内所输送的气体流量均按设置值恒定不变, 故吸气开始即达到峰流速, 且恒定不变持续到吸气结束才降为 0. 故形态呈方形递减波: 是呼吸机在整个吸气时间内, 起始时输送的气体流量立即达到峰流速(设置值), 然后逐渐递减至0 (吸气结束), 以压力为目标的如定压型通气(PCV)和压力支持(PSV=ASB)均采用递减波.递增波: 与递增波相反, 目前基本不用.正弦波: 是自主呼吸的波形. 吸气时吸气流速逐渐达到峰流速而吸气末递减至0,(比方波稍缓慢而比递减波稍快).呼气流速波除流速振幅大小和流速回至基线(即0 流速)的时间有所不同外,在形态上无差别.2.1.2 AutoFlow(自动变流) (见Fig.3)AutoFlow 并非流速的波形, 而是呼吸机在VCV 中一种功能. 呼吸机根据当前呼吸系统的顺应性和阻力及设置的潮气量, 计算出下一次通气时所需的最低气道峰压, 自动控制吸气流量, 由起始方波改变为减速波,在预设的吸气时间内完成潮气量的输送.Fig.3 AutoFlow 吸气流速示意图图3 左侧为控制呼吸,由原方波改变为减速波形(非递减波), 流速曲线下的面积=Vt.图右侧当阻力或顺应性发生改变时, 每次供气时的最高气道压力变化幅度在+3 - -3 cmH2O 之间, 不超过报警压力上限5cm H2O. 在平台期内允许自主呼吸, 适用于各种VCV 所衍生的各种通气模式.2.1.3 吸气流量波形(F-T curve)的临床应用2.1.3.1 吸气流速曲线分析--鉴别通气类型(Fig.4)Fig.4 根据吸气流速波形型鉴别通气类型图4 左侧和右侧可为VCV 的强制通气时, 由操作者预选吸气流速的波形,方波或递减波.中图为自主呼吸的正弦波. 吸气、呼气峰流速比机械通气的正弦波均小得多.右侧图若是压力支持流速波, 形态是递减波, 但吸气流速可未递减至 0, 而突然下降至 0, 这是由于在吸气过程中吸气流速递减至呼气灵敏度(Esens)的阈值, 使吸气切换为呼气所致, 压力支持(PS) 只能在自主呼吸基础上才有作用. 这三种呼吸类型的呼气流速形态相似, 差别仅是呼气流速大小和持续时间长短不一.2.1.3.2 判断指令通气在吸气过程中有无自主呼吸(Fig.5)Fig.5 指令通气过程中有自主呼吸图5 中A 为指令通气吸气流速波, B、C 为在指令吸气过程中在吸气流速波出现切迹, 提示有自主呼吸.人机不同步, 在吸气流速前有微小呼气流速且在指令吸气近结束时又出现切迹, (自主呼吸)使呼气流速减少.2.1.3.2 评估吸气时间(Fig.6)Fig.6 评估吸气时间图6 是VCV 采用递减波的吸气时间:A:是吸气末流速巳降至0 说明吸气时间合适且稍长, 在VCV 中设置了”摒气时间”.(注意在PCV 无吸气后摒气时间).B:的吸气末流速突然降至0 说明吸气时间不足或是由于自主呼吸的呼气灵敏度(Esens) 巳达标(下述), 切换为呼气. 只有相应增加吸气时间才能不增加吸气压力情况下使潮气量增加.2.1.3.4 从吸气流速检查有泄漏(Fig.7)Fig.7 呼吸回路有泄漏当呼吸回路存在较大泄漏,(如气管插管气囊泄漏,NIV 面罩漏气,回路连接有泄漏)而流量触发值又小于泄漏速度,使吸气流速曲线基线(即0 升/分)向上移位(即图中浅绿色部分) 为实际泄漏速度, 使下一次吸气间隔期延长, 此时宜适当加大流量触发值以补偿泄漏量,在CMV 或NIV 中,因回路连接, 面罩或插管气囊漏气可見及.2.1.3.5 根据吸气流速调节呼气灵敏度(Esens)(Fig.8)Fig.8 根据吸气峰流速调节呼气灵敏度左图为自主呼吸时, 当吸气流速降至原峰流速10→25%或实际吸气流速降至10 升/分时, 呼气阀门打开呼吸机切换为呼气. 此时的吸气流速即为呼气灵敏度(即Esens).现代的呼吸机呼气灵敏度可供用户调节(Fig.8 右侧). 右侧图A 因回路存在泄漏或预设的Esens 过低, 以致呼吸机持续送气, 使吸气时间过长. B 适当地将Esens 调高及时切换为呼气, 但过高的Esens 使切换呼气过早, 无法满足吸气的需要. 故在PSV 中Esens 需和压力上升时间一起来调节, 根据F-T,和P-T 波形来调节更理想.2.1.3.6 Esens 的作用(Fig.9)Fig.9 Esens 的作用图9 为自主呼吸+PS, 原PS 设置15 cmH2O, Esens 为10%. 中图因呼吸频率过快、压力上升时间太短, 而Esens 设置太低, 吸气峰流速过高以致PS 过冲超过目标压,呼吸机持续送气,T I 延长,人机易对抗. 经将Esens 调高至30%, 减少T I,解决了压力过冲, 此Esens 符合病人实际情况.2.2 呼气流速波形和临床意义呼气流速波形其形态基本是相似的,其差别在呼气波形的振幅和呼气流速持续时间时的长短, 它取决于肺顺应性,气道阻力(由病变情况而定)和病人是主动或被动地呼气.(见Fig.10)1:代表呼气开始.2:为呼气峰流速:正压呼气峰流速比自主呼吸的稍大一点.3:代表呼气的结束时间(即流速回复到0),4:即1 – 3 的呼气时间5:包含有效呼气时间 4, 至下一次吸气流速的开始即为整个呼气时间,结合吸气时间可算出I:E.TCT:代表一个呼吸周期 = 吸气时间+呼气时间2.2.1 初步判断支气管情况和主动或被动呼气(Fig.11)图11 左侧图虚线反映气道阻力正常, 呼气峰流速大,呼气时间稍短, 实线反映呼气阻力增加, 呼气峰流速稍小,呼气时延长.右侧图虚线反映是病人的自然被动呼气, 而实线反映了是患者主动用力呼气, 单纯从本图较难判断它们之间差别和性质. 尚需结合压力-时间曲线一起判断即可了解其性质.2.2.2 判断有无内源性呼气末正压(Auto-PEEP/PEEPi)的存在(Fig.12)Fig.12 为三种不同的Auto-PEEP 呼气流速波形图12 吸气流速选用方波,呼气流速波形在下一个吸气相开始之前呼气流速突然回到0, 这是由于小气道在呼气时过早地关闭, 以致吸入的潮气量未完全呼出,使部分气体阻滞在肺泡内产生正压而引起Auto-PEEP( PEEPi). 注意图中的A,B 和C, 其突然降至0 时呼气流速高低不一, B 最高,依次为A, C. 实测Auto-PEEP 压力大小也与波形相符合.Auto-PEEP 在新生儿, 幼婴儿和45 岁以上正常人平卧位时为3.0 cmH2O. 呼气时间设置不适当, 反比通气, 肺部疾病(COPD)或肥胖者均可引起PEEPi.临床上医源性PEEP= 所测PEEPi × 0.8. 如此即打开过早关闭的小气道而又不增加肺容积.2.2.3 评估支气管扩张剂的疗效(Fig.13)Fig.13 呼气流速波形对支气扩大剂疗效评估图13 中支气管扩张剂治疗前后在呼气流速波上的变化, A: 呼出气的峰流速, B: 从峰流速逐渐降至0 的时间. 图右侧治疗后呼气峰流速A 增加, B 有效呼出时间缩短, 说明用药后支气管情况改善. 另尚可监测Auto-PEEP 有无改善作为佐证.3.压力-时间曲线3.1 VCV 的压力-时间曲线(P-T curve)(Fig.14)呼吸周期由吸气相和呼气相所组成. 在VCV 中吸气相尚有无流速期是无气体进入肺内(即吸气后摒气期-吸气后平台), PCV 的吸气相是始终为有流速期(无吸气后摒气). 在呼气时均有呼气流速. 在压力-时间曲线上吸气相和呼气相的基线压力为0 或0 以上(即PEEP).压力-时间曲线反映了气道压力(Paw)的逐步变化(Fig.14), 纵轴为气道压力,单位是cmH2O (1 cmH2O=0.981 mbar), 横轴是时间以秒(sec)为单位, 基线压力为0 cmH2O. 横轴上正压, 横轴下为负压.Fig.14 VCV 的压力-时间曲线示意图图14 为VCV,流速恒定(方波)时气道压力-时间曲线, 气道压力等于肺泡压和所有气道阻力的总和, 并受呼吸机和肺的阻力及顺应性的影响. 当呼吸机阻力和顺应性恒定不变时, 压力-时间曲线却反映了肺部情况的变化.A 至B 点反映了吸气起始时所需克服通气机和呼吸系统的所有阻力,A 至B 的压力差(△ P)等于气道粘性阻力和流速之乘积(△P=R× ), 阻力越高或选择的流速越大, 则从 A 上升至B 点的压力也越大,反之亦然.B 点后呈直线状增加至C 点为气道峰压(PIP),是气体流量打开肺泡时的压力, 在C 点时通气机输送预设潮气量的气道峰压.A 至C 点的吸气时间(Ti)是有流速期, D 至E 点为吸气相内”吸气后摒气”为无流速期.与B 至C 点压力曲线的平行的斜率线(即A-D), 其∆P=VtxErs(肺弹性阻力), Ers=1/C 即静态顺应性的倒数, Ers=V T/Cstat).C 点后压力快速下降至D 点, 其下降速度与从A 上升至B 点速度相等. C 至D 点的压力差主要是由气管插管的内径所决定, 内径越小C-D 压差越大.D 至E 点即平台压是肺泡扩张进行气体交换时的压力, 取决于顺应性和潮气量的大小. D-E 的压力若轻微下降可能是吸入气体在不同时间常数的肺泡区再分佈过程, 或整个系统(指通气机和呼吸系统)有泄漏. 通过静态平台压测定, 即可计算出气道阻力(R)和顺应性(C), PCV 时只能计算顺应性而无阻力计算.E 点开始是呼气开始, 依靠胸廓、肺弹性回缩力使肺内气体排出体外(被动呼气), 呼气结束气道压力回复到基线压力的水平(0 或PEEP). PEEP 是呼气结束维持肺泡开放避免萎陷的压力.3.1.1平均气道压(mean Paw 或 Pmean)( Fig.15)Fig.15 平均气道压平均气道压(MAP)在正压通气时与肺泡充盈效果和心脏灌注效果相关(即气体交换),在一定的时间间隔内计算N 个压力曲线下的区域面积而得, 直接受吸气时间影响. 气道峰压, PEEP, 吸/呼比和肺含水量均影响它的升降. 图中A-B 为吸气时间, B-C 为呼气时间, PIP= 吸气峰压,呼吸基线=0 或PEEP. 一般平均气道压=10-15cmH2O, 不大于30cmH2O.3.1.2 在VCV 中根据压力曲线调节峰流速(即调整吸/呼比) (Fig.16)VCV 通气时, 调节吸气峰流速即调正吸气时间(Ti)或I/E 比. 图16 中A 处因吸气流速设置太低, 吸气时间稍长, 故吸气峰压也稍低. 在B 处设置的吸气流速较大, 吸气时间也短, 以致压力也稍高, 故在VCV 时调节峰流速既要考虑Ti, I/E 比和Vt, 也要考虑压力上限. 结合流速,压力曲线调节峰流速即可达到预置的目的..2 PCV 的压力-时间曲线(Fig.17)Fig.17 PCV 的压力-时间曲线虚线为VCV, 实线为PCV 的压力曲线. 与VCV 压力-时间曲线不同, PCV 的气道压力在吸气开始时从基线压力(0 或PEEP) 增至预设水平呈平台样並保持恒定, 是受预设压力上升时间控制. PCV 的气体流量在预设吸气时间内均呈递减形. 在呼气相, 压力下降和VCV 一样回复至基线压力水平, 本图提示了在相同频率、吸气时间、和潮气量情况下PCV 的平台样压力比VCV 吸气末平台压稍低. 呼吸回路有泄漏时气道压将无法达到预置水平.3.2.1 压力上升时间(压力上升斜率或梯度)(Fig.18)以压力为目标的通气(如PCV, PSV), 压力上升时间是在吸气时间内使预设的气道压力达到目标压力所需的时间, 事实上是呼吸机通过调节吸气流速的大小, 使达到预设压力的时间缩短或延长.Fig.18 PCV 和PSV 压力上升时间与吸气流速的关系图18 是PCV 或PSV(ASB)压力上升时间在压力,流速曲线上的表现. a,b,c 分别代表三种不同的压力上升时间, 快慢不一. 调节上升时间即是调节呼吸机吸气流速的增加或减少, a,b,c 流速高低不一, 导致压力上升时间快慢也不一. 吸气流速越大, 压力达标时间越短(上图),相应的潮气量亦增加. 反之亦然. 流速图a 有短小的呼气流速波是由于达到目标压有压力过冲, 主动呼气阀释放压力过冲所致, 压力上升时间的名称和所用单位各厂设置不一.如Evita 设定的是时间0.05-2.0s(4), PB-840 是流速加速%FAP50-100%, 而Servo-i 为占吸气时间的%.3.3 临床意义3.3.1 评估吸气触发阈和吸气作功大小(Fig.19)Fig.19 评估吸气作功大小图19 为CPAP 模式, 根据吸气负压高低和吸气相内负压触发面积(PTP=压力时间乘积), 可初步對患者吸气用力是否达到预置触发阈和作功大小作定性判断. 负压幅度越大,引起触发时间越长,PTP 越大,病人吸气作功越大. 图中a. 吸气负压小, 吸气时间短, 吸气相面积小, 吸气作功也小. b. c. 吸气负压大, 吸气时间长, 吸气相面积大, 吸气作功也大.是否达到触发阈在压力曲线上,可見及触发是否引起吸气同步.3.3.2 评估平台压(Fig.20)Fig.20 评估平台压在PCV 或PSV 时, 若压力曲线显示无平台样压力, 如图20 A 所示, PCV 的吸气时间巳消逝, 但压力曲线始终未出现平台样压力. 应先排除压力上升时间是否设置太长, 呼吸回路有无漏气. 如为VCV 时,设置的吸气流速是否符合病人需要或未设置吸气后摒气(需同时检查流速曲线和呼出潮气量是否达标以查明原因). 此外有的呼吸机因吸气流速不稳定, 也会出现这种情况3.3.3 呼吸机持续气流对呼吸作功的影响 (Fig.21)Fig.21 持续气流对呼吸作功的影响图21 中, 呼吸机提供的持续气流增加时, Paw 在自主呼吸中基线压力下是降低的, 同时呼气压力增加(因呼气时持续气流使阻力增加). 正确使用持续流速使吸气作功最小, 而在呼气压力并无过份增加, 在本病例中,当持续气流为10-20 L/min 时, 在吸气作功最小, 呼气压力稍有增加.但持续气流增至30 L/min 则呼气作功明显增加. 本图是患者自主呼吸(CPAP=5cmH2O), 流速波形为正弦波, 图中的病人呼吸流速和潮气量均无变化.3.3.4 识别通气模式通过压力-时间曲线可识别通气模式, 如CMV/AMV, SIMV, SPONT(CPAP), BIPAP 等.3.3.4.1 自主呼吸(SPONT/CPAP)的吸气用力和压力支持通气(PSV/ASB) (Fig.22)Fig.22 自主呼吸和压力支持通气的压力-时间曲线图22 均为自主呼吸使用了PEEP, 在A 处曲线在基线处向下折返代表吸气, 而B 处曲线向上折返代表呼气, 此即是自主呼吸, 若基线压力大于0 的自主呼吸称之为CPAP.右侧图吸气开始时有向下折返波以后压力上升, 第一个为PCV-AMV, 第二个为自主呼吸+PSV, PS 一般无平台样波形出现(除非呼吸频率较慢且压力上升较快), 注意压力支持通气是必需在患者自主呼吸基础上才可有压力支持, 而自主呼吸的吸气时间并非恒定不变, 因此根据吸气时间和肺部情况同时需调节压力上升时间和呼气灵敏度.3.3.4.2 控制机械通气(CMV)和辅助机械通气(AMV)的压力-时间曲线, Fig.23Fig.23 CMV(左侧)和AMV(右侧)的压力-时间曲线图中基线压力未回复到0, 是由于使用了PEEP. 且患者触发呼吸机是使用了压力触发,左侧图在基线压力均无向下折返小波(A), 呼吸机完全控制患者呼吸, 为CMV 模式.右侧在吸气开始均有向下折返的压力小波, 这是患者吸气努力达到触发阈使呼吸机进行了一次辅助通气, 为AMV 模式. 若使用了流速触发, 则不论是CMV 或AMV, 在基线压力可能无向下折返小波, 这需视设置的流量触发值而定.3.3.4.3 同步间歇指令通气(SIMV) Fig.24.Fig.24 SIMV 的压力波形示意图SIMV 在一个呼吸周期有强制通气期和自主呼吸期. 触发窗有在自主呼吸末端(呼吸周期末端), 也有触发窗位于强制通气起始端(呼吸周期起始端).若病人的呼吸努力在触发窗达到触发阈, 呼吸机即同步强制通气. 在隨后的自主呼吸的吸气用力即使达到触发阈也仅给于PS(需预设).若在触发窗无同步触发且强制呼吸频率的周期巳逝过, 则在下一个呼吸周期自动给于一次强制通气. 因触发窗缩短了有效的SIMV 时间, 即图中所示∆T, 由此可避免SIMV 的频率增加. 图24 的触发窗是在呼吸周期末端!触发窗在强制通气期或在自主呼吸期末, 各厂设计不一, 触发窗时限也不一. 图24a 是触发窗在强制通气期(即呼吸周期起始端)Fig.24a 同步间歇指令通气(SIMV)图24a 中方框部分是SIMV 的触发窗位于呼吸周期的起始段强制通气期, 在触发窗期间内自主呼吸达到触发阈, 呼吸机即同步输送一次指令(强制)通气(即设置的潮气量或吸气峰压), 若无自主呼吸或自主呼吸较弱不能触发时, 在自主呼吸期结束时(即一个呼吸周期结束)呼吸机自动给一次指令通气. 此后在自主呼吸期的剩余时间内允许患者自主呼吸, 即使自主呼吸力达到触发阈,呼吸机也不给指令通气, 但可给予一次 PS(需预设). 图中笫二、五个方框说明触发窗期巳消逝, 呼吸机给于一次强制通气. 第一、三、四、六均为在触发窗期内自主呼吸力达到触发阈, 呼吸机给予一次同步指令通气.3.3.4.4 双水平正压通气(BIPAP) Fig.25Fig.25 BIPAP 的压力-时间曲线BIPAP 属于PCV 所衍生的模式, 即在两个不同压力水平上患者进行自主呼吸見图25 上图. 高压(P high)相当于VCV 中的平台压, 低压(P low)相当于PEEP, T high 相当于呼吸机的吸气时间(Ti), T low 相当于呼吸机的呼气时间(Te), 呼吸机的频率=60/T high+T low.下图左侧起始是PCV 吸气峰压呈平台状无自主呼吸. 隨后的高压或低压水平上均有自主呼吸+压力支持. P H 和P L 的PS 最大值不大于P high +2 cmH2O.3.3.4.5 BIPAP 和VCV 在压力-时间曲线上差别Fig.26VCV 可选用不同流速波, 在压力曲线上有峰压, 而BIPAP 采用递减波流速, 无峰压只有平台样压力波, 且压力上升呈直线状(其差别见图26). BIPAP 的高, 低压力等于VCV 的平台压和 PEEP. BIPAP 的高低压的差数大小即反映了潮气量的大小.Fig.26 VCV 与BIPAP 在压力曲线的差别和关系 3.3.4.6 BIPAP 衍生的其他形式BIPAP(Fig.27)通过调节BIPAP 四个参数如P high, P low, T high, T low 可衍生出多种形式BIPAP:。

呼吸机波形分析入门ppt课件

呼吸机波形分析入门ppt课件
在横座标的上部代表吸气, 吸气流量(呼吸机 吸气阀打开, 呼气阀关闭, 气体输送至肺),曾 有八种波形,目前多使用方波和递减波.
呼气流量波形均为同一形态, 只有呼气流量的 振幅大小和呼气流量回复到零时间上差异 .
3
最新编辑ppt
A:指数递减波 B:方波 C:递增波 D:线性递减波 E:正弦波
4
F-V 曲从吸气开始到呼气结束, 两点相交是封闭环, 呼气流速应 逐渐回复至 0, 不应突然下降至 0.
49
最新编辑ppt
方波与递减波的F-V环
VCV 的方形吸气流速波, 流速在吸气开始快 速增至设置值并保持恒定, 在吸气末降至 0, 呼气开始时流速最大, 随后逐步降至基线 0 点 处.
PCV 吸气流速为递减形, 与方形波差别在于 吸气开始快速升至设置值, 在吸气结束时流速 降至0
容量-时间曲线
在VCV时, 吸气期的有流速相期是容积持续增 加, 而吸气后摒气的平台期是无流速相期,无 气体进入肺内, 但吸入气体在肺内重新分布(即 吸气后摒气), 故容积保持恒定.
在PCV时整个吸气期均为有流速期, 潮气量大 小决定于吸入气峰压和吸气时间这两个因素.
29
最新编辑ppt
临床意义
22
最新编辑ppt
压力上升时间
23
最新编辑ppt
PCV中P-t曲线临床意义
评估吸气触发阀和吸气作用功大小 评估平台压 识别通气模式
24
最新编辑ppt
评估吸气触发阀和吸气作用功大小
25
最新编辑ppt
评估平台压
26
最新编辑ppt
鉴别通气模式
27
最新编辑ppt
三、容量时间曲线
28
最新编辑ppt

呼吸机波形分析 ppt课件

呼吸机波形分析  ppt课件
ppt课件 20
Pressure-Volume Loops(2)
2、High Resistance
容量控制通气时,容量恒 定,压力依据阻力和顺应性而 变化 当阻力增加时, PIP 上升 (A-B), PV loops 变宽。 该种PV loop,称为滞后 (Hysteresis)
ppt课件
21
Pressure-Volume Loops(3)
D点:呼气峰流速
A点:流速降低至0,肺排空结束, 呼气结束,下一次吸气开始
A-C:潮气量
ppt课件 25
Flow-Volume Loops(2)
2、Increased resistance
——气道阻力增加
表现:呼气峰流速降低,呼气 轨迹内陷。支气管扩张剂可 以修正这种现象 常见:哮喘
ppt课件
26
ppt课件 33
5、SIMV+PS+PEEP
flow-time 和 volume-time curves基本相似于SIMV+PS 模式 Pressure-time curves 的 基线抬高。提示附加了 PEEP
ppt课件
34
Time-Based Waveforms意义
流速-时间曲线
1.鉴别呼吸类型 2.判断是否存在auto-PEEP 3.衡量病人对支气管扩张药物的反应 4.评估PCV通气时吸气时间 5.检查流速触发时回路泄漏速度
Flow (L/min)
Does not return to baseline
Volume (ml)
Normal Abnormal
ppt课件
Expiration
40
Increased Airway Resistance
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流速-时间曲线的临床意义(3)
吸气流速 监测回路内有无分泌物或积水
流速-时间曲线的临床意义(4)
吸气流速 评估PCV模式下吸气时间的设置
流速-时间曲线的临床意义(5)
呼气流速 监测有无PEEPi
流速-时间曲线的临床意义(6)
呼气流速 监测有无无效触发的自主呼吸
流速-时间曲线的临床意义(7)
呼吸机波形的分类
曲线
流速-时间曲线
压力-时间曲线
F-T curve
P-T curve
容量-时间曲线
V-T curve

压力-容积环 流速-容积环 P-V loop F-V loop
流速-时间曲线的临床意义(1)
识别所选择的吸气流速波型
流速-时间曲线的临床意义(2)
吸气流速 监测PSV通气时回路有无漏气
呼吸系统总静态顺应性Cst=VT/(Pplat-PEEP)
VT=340ml,RR=15次/分,FLOW=30L/min, PEEP=5cmH2O PIP:37.2cmH2O,Pplat: 20.0 cmH2O,PEEP:10.7cmH2O R=(37.2-20.0)/0.5=34.4 cmH2O/L/S
容量-时间曲线
1.鉴别呼吸类型 2.判断有无自主触发 3.评估触发做功大小 4.评价整个呼吸时相,调节峰流速 5.评估支持力度 5.测量静态呼吸力学参数 6.测量PEEPi
1、判断是否存在漏气/气体陷闭 2、判断是否存在主动呼气
压力-容积环 P-Vloop
P-Vloop是反映在同一个呼吸周期内,压力与容积相 互变化的曲线 动态P-V环 存在气流时所描记的P-V环 除受顺应性影响外,还与气道阻力和流速有关 静态P-V环 排除气流影响后所描记的P-V环 只受顺应性的影响
呼气流速 监测流量触发时的漏气速度
流速-时间曲线的临床意义(8)
呼气流速 评估支气管扩张剂的疗效
压力-时间曲线(P-T curve)
压力-时间曲线临床意义(1)
评估吸气触发阈和触发吸气作功大小
压力-时间曲线临床意义(2)
吸气峰流速(peak flow)
压力-时间曲线临床意义(3)
压力上升时间(rise time)
监测患者有无主动呼气
容积-时间曲线临床意义(2)
监测回路有无漏气/气体陷闭
容积-时间曲线临床意义(3)
呼气时间不足导致气体陷闭
曲线临床意义的小结
流速-时间曲线 压力-时间曲线
1.识别别流速波形 2.判断是否存在PEEPi
3.判断是否存在气道动态陷闭
4.评估支气管扩张剂的效果 5.评估PCV通气时吸气时间 6.检查流速触发时回路泄漏速度
压力-容量环
1、评估吸气触发功 2、调整吸气流速 3、评估顺应性、阻力 4、是否存在过度膨胀及漏气 5、确定PEEP水平
流速-容量环
1、监测是否存在漏气 2、监测有无小气道阻塞 3、监测有无PEEPi 4、评估支气管扩张剂的效果
气体陷闭
气体陷闭
漏气
漏气
漏气
气道阻力变化
评估支气管扩张剂效果
压力-时间曲线临床意义(3)
ETS,呼气触发灵敏度
压力-时间曲线临床意义(4)
评估呼吸支持力度
压力-时间曲线临床意义(5)
监测PEEPi的大小
压力-时间曲线临床意义(6)
通过吸气末阻断法和呼气末阻断法 测量静态肺力学参数
呼吸力学的监测
呼吸系统粘滞阻力 Rmax=(Ppeak-Pplat)/Flow
生理呼吸
辅助通气
机控呼吸
压力-容积环临床意义(1)
反映顺应性的变化
压力-容积环临床意义(2)
反映阻力的变化

压力-容积环临床意义(3)
呼吸机流速设置
压力-容积环临床意义(3)
呼吸机流速设置
压力-容积环临床意义(4)
测定第一拐点(LIP)、二拐点(UIP)
压力-容积环临床意义 (5)
监测有无肺过度膨胀
气道阻力变化
监测肺顺应性变化
机械通气与波形分析
中国医科大学附属第一医院 呼 吸 内 科 内科重症加强治疗病房 代 冰
呼吸机波形
定义:
呼吸机将某一参数随时间或另一个参数的变化而变化
的关系绘制成曲线和环,实时地显示在屏幕上 呼吸机波形的应用: 显示肺力学特性 反映人机协调性 监测有无气道阻塞 监测呼吸回路有无漏气 评估机械通气效果 评估支气管扩张剂的疗效
C=340/(20.0-10.7)=36.6 ml/cmH2O
PIP:29.4cmH2O,Pplat: 18.0 cmH2O,PEEP:8.4cmH2O
R=22.8cmH2O/L/S,改善率33.7%
容积-时间曲线 V-T curve
反映送气与呼气容积随时间而变化的曲线
容积-时间曲线临床意义(1)
压力-容积环临床意义(6)
监测有无漏气或气体陷闭
流速-容积环 F-V loop
流速-容积环是指同一呼吸周期内,流速与容积相互 变化的曲线。
吸气
呼气
流速-容积环临床意义(1)
考核支气管扩张剂的疗效
呼气
流速-容积环临床意义(2)
监测有无回路漏气
流速-容积环临床意义(3)
监测有无PEEPi
呼吸环临床意义的小结
相关文档
最新文档