计算机图形学课程设计 图形绘制变换

合集下载

计算机图形学课程设计

计算机图形学课程设计

计算机图形学课程设计一、课程目标知识目标:1. 让学生掌握计算机图形学的基本概念、基本原理和基本算法,如二维图形的表示、变换、裁剪和三维图形的建模、光照模型等。

2. 使学生了解计算机图形学在实际应用中的发展现状和前景,如虚拟现实、计算机辅助设计等。

3. 帮助学生建立计算机图形学与相关学科(如数学、物理、艺术等)的联系,提高跨学科素养。

技能目标:1. 培养学生运用计算机图形学知识解决实际问题的能力,如使用相关软件进行二维绘图、三维建模等。

2. 提高学生的编程能力,使其能够使用至少一种计算机图形学编程库(如OpenGL、DirectX等)实现基本图形绘制和动画效果。

3. 培养学生的团队协作能力和沟通表达能力,通过小组项目实践,共同完成具有一定难度的计算机图形学任务。

情感态度价值观目标:1. 激发学生对计算机图形学的兴趣,培养其主动探究、创新实践的精神。

2. 培养学生具有良好的审美观,能够从美学的角度评价和优化计算机生成的图形。

3. 强化学生的版权意识,尊重他人知识产权,遵循学术道德,树立正确的价值观。

本课程针对高中年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果,以便于后续的教学设计和评估。

通过本课程的学习,期望学生能够掌握计算机图形学的基础知识,提高实际操作技能,培养良好的情感态度价值观。

二、教学内容1. 计算机图形学基本概念与历史:介绍计算机图形学的定义、发展历程、应用领域及发展趋势。

- 教材章节:第一章 计算机图形学概述- 内容安排:1课时2. 二维图形的表示与处理:讲解二维图形的数学表示、几何变换、裁剪算法等。

- 教材章节:第二章 二维图形处理- 内容安排:4课时3. 三维图形的建模与渲染:介绍三维图形的建模方法、光照模型、纹理映射等。

- 教材章节:第三章 三维图形处理- 内容安排:5课时4. 计算机动画与视觉效果:探讨计算机动画原理、关键帧动画、粒子系统等视觉效果技术。

- 教材章节:第四章 计算机动画与视觉效果- 内容安排:4课时5. 计算机图形学编程实践:学习计算机图形学编程库(如OpenGL、DirectX 等)的基本使用,完成二维和三维图形绘制实例。

计算机图形学第4章图形变换

计算机图形学第4章图形变换

反射变换
总结词
反射变换是将图形关于某一平面进行镜像反射的变换。
详细描述
反射变换可以通过指定一个法向量和反射平面来实现。法向量垂直于反射平面,指向反射方向。在二 维空间中,反射变换可以将图形关于x轴或y轴进行镜像反射;在三维空间中,反射变换可以将图形关 于某一平面进行镜像反射。
03
复合图形变换
组合变换
01
02
03
04
组合变换是指将多个基本图形 变换组合在一起,形成一个复
杂的变换过程。
组合变换可以通过将多个变换 矩阵相乘来实现,最终得到一
个复合变换矩阵。
组合变换可以应用于各种图形 变换场景,如旋转、缩放、平
移、倾斜等。
组合变换需要注意变换的顺序 和矩阵的乘法顺序,不同的顺 序可能导致不同的变换结果。
矩阵变换
矩阵变换是指通过矩阵运算对图形进 行变换的方法。
常见的矩阵变换包括平移矩阵、旋转 矩阵、缩放矩阵和倾斜矩阵等。
矩阵变换可以通过将变换矩阵与图形 顶点坐标相乘来实现,得到变换后的 新坐标。
矩阵变换具有数学表达式的简洁性和 可操作性,是计算机图形学中常用的 图形变换方法之一。
仿射变换
仿射变换是指保持图形中点与 点之间的线性关系不变的变换。
05
应用实例
游戏中的图形变换
角色动画
通过图形变换技术,游戏中的角 色可以完成各种复杂的动作,如
跑、跳、攻击等。
场景变换
游戏中的场景可以通过图形变换 技术实现动态的缩放、旋转和平 移,为玩家提供更加丰富的视觉
体验。
特效制作
图形变换技术还可以用于制作游 戏中的特效,如爆炸、火焰、水
流等,提升游戏的视觉效果。
THANKS

计算机图形学 第4章 图形变换

计算机图形学 第4章 图形变换

=
s x1 s x 2 0 0
0 s y1 s y 2 0
0 0 1
(3) 复合旋转。
cos 1 sin 1 0 cos 2 sin 2 Tr Tr1 ·r 2 sin 1 cos 1 0 sin 2 cos 2 T 0 0 1 0 0 cos(1 2 ) sin(1 2 ) 0 sin(1 2 ) cos(1 2 ) 0 0 0 1
4.对称变换 设图形上的点P(x, y)在x轴和y轴方向分别作变换,结 果生成新的点坐标P‘(x’, y‘),则
x ax by y dx ey
用齐次坐标和矩阵形式可表示为
a d 0 x y 1 x y 1 b e 0 [ax by dx ey 1] 0 0 1 a d 0
y dx y
用齐次坐标和矩阵表示为
1 d 0 [x' y' 1] = [x y 1]· =[x +by dx +y 1] b 1 0 0 0 1
错切变换矩阵为 K2 =
1 d 0 b 1 0 0 0 1
错切变换如图4-7所示。
图4-2 窗口与视图变换
4.2 图形的几何变换
图形变换一般是指对图形的几何信息经过几何变 换后产生新的图形。图形变换既可以看做是坐标系不 动而图形变动,变动后的图形在坐标系中的坐标值发 生变化;也可以看做图形不动而坐标系变动,变动后 该图形在新的坐标系下具有新的坐标值,本节所讨论 的几何变换属于前一种。 对于图形采用齐次坐标表示,可以方便地用变换 矩阵实现对图形的变换。假设二维图形变换前的一点 坐标为[x y 1],变换后为[x' y' 1];三维图形变换前的 一点坐标为[x y z 1],变换后为[x' y' z' 1]。

计算机图形学2010_06三维图形变换

计算机图形学2010_06三维图形变换

第六章 三维图形变换第一节 三维图形变换基础一、三维坐标系xyzxyz右手坐标系左手坐标系三维图形学中习惯上通常是采用右手坐标系。

xy 平面对应于视平面,z 轴垂直于视平面,指向视平面之外。

二、三维齐次坐标及变换矩阵三维图形变换也是基于矩阵运算进行。

矩阵运算的维数被扩展为四维。

三维坐标点采用4元齐次坐标表示:(x , y , z , 1),三维坐标与三维齐次坐标的相互转换如下:三维坐标(x , y ,z )——齐次坐标(x , y ,z , 1) 齐次坐标(x , y ,z , h )——二维坐标(x /h , y /h ,z /h ) 变换矩阵则为4X4的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s nm kr j i h q f e d p c b a 其中:平移变换第二节 三维几何变换一、三维基本变换 1. 平移变换⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010000100001nmk T )1,,,()1,,,(n z m y k x T z y x +++=⋅2. 比例变换)1,,,()1,,,(1000000000000jz ey ax T z y x j e a T =⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= 3. 旋转变换三维的基本旋转变换分为三种,即绕三个坐标轴的旋转变换。

(1)绕z 轴旋转γ角旋转后z 值不变,x,y 值将发生改变,x,y 值的计算公式与平面旋转相同,即:zz y x y y x x ='+='-='γγγγcos sin sin cos 则变换矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=1000010000cos sin 00sin cos γγγγT 有:)1,1,cos sin ,sin cos ()1,,,(γγγγy x y x z y x +-=T(2)绕x 轴旋转α角则旋转后x 的坐标值不变,y 和z 的坐标值将改变,相当于在yz 平面上绕平面原点进行旋转变换。

平面转转变换的公式为:ααααcos sin sin cos y x y y x x +='-='对应而来,这里y 对应于x ,z 对应y ,有:ααααcos sin sin cos z y z z y y +='-='则变换矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=10000cos sin 00sin cos 00001ααααT )1,cos sin ,sin cos ,()1,,,(ααααz y z y x z y x +-=T(3)绕y 轴旋转β角这时,z 对应于x ,x 对应于y 。

计算机图形学二维图形变换

计算机图形学二维图形变换

宁夏师范学院数学与计算机科学学院《计算机图形学》实验报告实验序号:7 实验项目名称:二维图形变换菜单菜单项ID值图形变换(&T)缩放(&Z)ID_TRANSFORM_SCALE图形变换(&T)旋转(&R)ID_TRANSFORM_ROTATE图形变换(&T)对称(&S)ID_TRANSFORM_SYMMETRY 4、在CTransView视图类中添加消息映射函数;对象消息函数ID_TRANSFORM_SCALE COMMAND OnFigureCirleID_TRANSFORM_ROTATE COMMAND OnFigureEllipseID_TRANSFORM_SYMMETRY COMMAND OnTransformSymmetry5、添加自定义的成员变量:CPoint Pt[3]; //三角形定点数组float dAngle; //每一次旋转的角度在视图类CPP文件的构造函数中初始化成员变量Pt[0].x = 540; Pt[0].y = 220;Pt[1].x = 670; Pt[1].y = 130;Pt[2].x = 560; Pt[2].y = 120;dAngle = 0;6、在视图类的OnDraw()函数中加入下列代码,实现视图绘图。

void CTransView::OnDraw(CDC* pDC){CTransDoc* pDoc = GetDocument();ASSERT_VALID(pDoc);// TODO: add draw code for native data here//绘出以以(540,220)、(670,130)、(560,120)为顶点的三角形。

pDC->MoveTo(Pt[0]);pDC->LineTo(Pt[1]);三、运行结果变换前:对称变换:缩放变换:旋转变换:五、教师评语成绩签名:日期:年月日。

计算机图形学图形几何变换的实现

计算机图形学图形几何变换的实现

计算机图形学图形⼏何变换的实现实验五图形⼏何变换的实现班级 08信计2班学号 20080502053 姓名杨少卿分数⼀、实验⽬的和要求:1、掌握⼆维图形⼏何变换的基本原理及⼆维图形的⼏何算法。

2、巩固所学理论知识,加深对⼆维变换的理解,加深理解利⽤变换矩阵可⽤简单图形得到复杂图形的理解。

3、通过编程完成⼆维图形的⼏何变换动态过程。

4、观察改变图形的形状、⼤⼩、位置等,其关键是坐标的变换。

⼆、实验内容:1、将四边形以原点为中⼼,以10度为间隔做360度旋转。

2、齿轮的边缘轮廓⽣成的⼏何变换,编制利⽤旋转变换绘制齿轮的程序。

3、⼏何图形变换算法(缩放、旋转和平移),编程实现⼆维图形齐次坐标变换的算法和组合变换的算法。

三、实验步骤1、将四边形以原点为中⼼,以10度为间隔做360度旋转。

程序代码:#include#include#include#includedouble sin(),cos();double xmax=639.0,ymax=399.0;double f[3][3],xx,yy;scx(double xi){int x;x=(int)(xi+xmax/2);return(x);}scy(double yi){int y;y=ymax-(int)(yi+ymax/2);return(y);}parallel(double dx,double dy){f[0][0]=1.0;f[0][1]=0.0;f[0][2]=0.0;f[1][0]=0.0;f[1][1]=1.0;f[1][2]=0.0;f[2][0]=dx;f[2][1]=dy;f[2][2]=1.0;}rotate(double theta){double th=theta/180*3.1415627;f[0][0]=cos(th);f[0][1]=sin(th); f[0][2]=0.0; f[1][0]=-sin(th); f[1][1]=cos(th); f[1][2]=0.0; f[2][0]=0.0; f[2][1]=0.0;f[2][2]=1.0;}scale(double s){f[0][0]=s;f[0][1]=0.0;f[0][2]=0.0;f[1][0]=0.0;f[1][1]=s;f[1][2]=0.0;f[2][0]=0.0;f[2][1]=0.0;f[2][2]=1.0;}taishox(){f[0][0]=1.0;f[0][1]=0.0;f[0][2]=0.0;f[1][0]=0.0;f[1][1]=-1.0;f[1][2]=0.0;f[2][0]=0.0;f[2][1]=0.0;f[2][2]=1.0;}taishoy(){f[0][0]=-1.0;f[0][1]=0.0;f[0][2]=0.0;f[1][0]=0.0;f[1][1]=1.0;f[1][2]=0.0;f[2][0]=0.0;f[2][1]=0.0;f[2][2]=1.0;}taishoo(){f[0][0]=-1.0;f[0][1]=0.0;f[0][2]=0.0;f[1][0]=0.0;f[1][1]=-1.0;f[1][2]=0.0;f[2][0]=0.0;f[2][1]=0.0;f[2][2]=1.0;}taishoxy(){f[0][0]=0.0;f[0][1]=1.0;f[0][2]=0.0;f[1][0]=1.0;f[1][1]=0.0;f[1][2]=0.0;f[2][0]=0.0;f[2][1]=0.0;f[2][2]=1.0;}axis(){line(scx(0),scy(-ymax/2),scx(0),scy(ymax/2)); line(scx(-xmax/2),scy(0.0),scx(xmax/2),scy(0.0)); }tuoq(double a,double b){f[0][0]=1.0;f[0][1]=b;f[0][2]=1.0;f[1][0]=a;f[1][1]=1.0;f[1][2]=0.0;f[2][0]=0.0;f[2][1]=0.0;f[2][2]=1.0;}affinex(double x,double y,double d){xx=x*f[0][0]+y*f[1][0]+f[2][0];return(xx);}affiney(double x,double y,double d){yy=x*f[0][1]+y*f[1][1]+f[2][1];return(yy);}main(){int graphdriver=DETECT,graphmode;static double x1[]={0.0,10.0,100.0,110.0,0.0}; static double y1[]={0.0,50.0,50.0,0.0,0.0};static double x2[5];static double y2[5];int i;double r,xx,yy;initgraph(&graphdriver,&graphmode,"");srand((unsigned)time(NULL));for(r=0;r<=360;r=r+10){rotate(r);for(i=0;i<=4;i++){x2[i]=affinex(x1[i],y1[i],1.0);y2[i]=affiney(x1[i],y1[i],1.0);}setcolor(RGB(rand()%256,rand()%256,rand()%256)); Sleep(80);for(i=0;i<=3;i++){line(scx(x2[i]),scy(y2[i]),scx(x2[i+1]),scy(y2[i+1]));}}getch();closegraph();}运⾏结果:截图:2、齿轮的边缘轮廓⽣成的⼏何变换。

计算机图形学 7图形变换ppt课件

计算机图形学 7图形变换ppt课件

然后实行对称变换:
最后,把坐标恢复至原坐标原点(0,0,0)处,即做逆 变换为:

所以,最后所得齐次坐标的表达式为:
第四节 投影变换

将三维坐标的几何体变换成二维表示的图形就是投影 变换。 投影:将n维的点变换成小于n维的点。 注:以下所讲的概念均是指在三维空间中。 在三维空间中,选择一个点,可称该点为投影中心,不经 过该点再定义一个平面,称该平面为投影面,从投影中心 向投影面引出任意条射线,称这些射线为投影线,穿过物 体的投影线将于投影面相交,在投影面上形成物体的像, 称这个像为三维物体在二维投影面上的投影。 根据投影中心与投影平面之间的距离不同,投影可分 为平行投影和透视投影。平行投影的投影中心与投影平面 之间的距离为无穷大,而对透视投影,该距离是有限的。 投影可分为以下几类:

1.平行投影 平行投影根据投影方向与投影面的夹角分为两类, 即正投影与斜投影,当投影方向垂直与投影平面 时称为正投影,否则为斜投影。如下图:
(1)正投影与三视图 通常所说的三视图(正视图、俯视图、侧视图)均是正投 影
三视图的生成就是把x,y,z坐标系下的形体投影到z=0 的 平面,变换到u,v,w坐标系。一般情况下还需要将三 个 视图在一个平面上画出。 1)将一个点(X,Y,Z)变成XOZ平面上的投影点(X, 0,Z),得到主视图。
中心思想是先用折线生成圆弧或椭圆弧,然后再对折线进 行变换。此时要考虑: (i)原来逼近的误差在变换后的变化; 简单说明一下变换前后的误差关系。 (ii)折线的段数越多,变换折线的计算量就越大
2)利用“先变换,再生成”的方法变换圆弧、椭圆弧
由解析几何知识可知,椭圆在线形变换下仍为椭圆,而 且中心仍为中心。

此外,我们还可以相对于某一点或某一直线进行对称, 其方法是:先进行适当的平移、旋转再进行平移变换。 例:写出相对于X=Xa,Z=Za进行对称的变换。 解:进行对称变换的对称轴是一条平行于y轴的直线,利 用复合变换则有: 首先:把坐标原点移到点( Xa ,0, Za )则变换矩阵为:

计算机图形学图形变换

计算机图形学图形变换

计算机图形学图形变换实验五:图形变换⼀、实验⽬的:1、掌握图形变换的基本⽅法。

2、初步掌握映射菜单消息和捕获键盘消息的⽅法。

⼆、实验内容及要求:1、以三⾓形为例,使⽤Visual C++实现⼆维图形的平移、旋转和缩放功能。

2、每⼈单独完成实验。

3、按要求撰写实验报告,写出实验⼼得,并在实验报告中附上程序的核⼼算法代码。

三、实验设备:微机,Visual C++6.0四、实验内容和步骤:1、打开VC,新建⼀个MFC Appwizard项⽬,选择创建单⽂档⼯程(SDI⼯程)。

假设⼯程名为Transform。

如图1和图2所⽰。

图1图22、在图2的界⾯上点击Finish,完成⼯程的创建。

3、在TransformView.h⽂件中,加⼊如下代码:public:CPoint Pt[3]; //存储三⾓形的三个顶点float dAngle; //存储三⾓形旋转的⾓度4、在类CTransformView的构造函数中定义三⾓形的三个顶点的初始坐标和dAngle的初值,代码如下;CTransformView::CTransformView(){// TODO: add construction code herePt[0].x = 200; Pt[0].y = 220;Pt[1].x = 260; Pt[1].y = 300;Pt[2].x = 360; Pt[2].y = 180;dAngle = 0.0;}5、在类CTransformView中添加成员函数void DrawTriangle(CDC *pDC),并实现该函数。

(该部分代码请同学们⾃⼰实现,为了简便编程,可以使⽤MoveTo和LineTo函数,也可以调⽤⾃⼰在实验2中编写的DDA或者Bresenham画线函数);6、在类CTransformView的OnDraw()函数中添加绘制三⾓形的代码;void CTransformView::OnDraw(CDC* pDC){CTransformDoc* pDoc = GetDocument();ASSERT_V ALID(pDoc);// TODO: add draw code for native data here}7、映射菜单消息,⽅法是打开ResourceView菜单,依次展开MENU \ IDR_MAINFRAME,添加“图形变换”主菜单项,在其下添加“平移”,如图3所⽰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机图形学实验报告课程名称 : 计算机图形学实验名称 :图形绘制与变换学院 : 电子信息工程学院专业 : 计算机科学与技术班级 : 11计科本 01班学号 : ************ ** : ****** : ***二零一四年目录一、引言------------------------------------------------------------------------------------------------------------- 3二、设计需求 ------------------------------------------------------------------------------------------------------ 32.1 设计目标----------------------------------------------------------------------------------------------- 32.2 设计环境----------------------------------------------------------------------------------------------- 32.2.1 VC++6.0-------------------------------------------------------------------------------------- 32.2.2 MFC-------------------------------------------------------------------------------------------- 42.3 设计题目及要求 ------------------------------------------------------------------------------------ 42.4 总体流程图 ------------------------------------------------------------------------------------------ 4三、课程设计原理 ------------------------------------------------------------------------------------------------ 53.1 实现的算法-------------------------------------------------------------------------------------------- 53.1.2 Bresenham算法画直线 -------------------------------------------------------------------- 53.1.3 中心点算法画圆和椭圆-------------------------------------------------------------------- 53.2 图形变换的基本原理-------------------------------------------------------------------------------- 73.2.1 平移变换-------------------------------------------------------------------------------------- 73.2.2 旋转变换 ------------------------------------------------------------------------------------ 83.2.3 比例变换 ------------------------------------------------------------------------------------ 8四、总体设计与功能实现 --------------------------------------------------------------------------------------- 84.1 主要界面设计----------------------------------------------------------------------------------------- 84.2 设置颜色界面----------------------------------------------------------------------------------------- 84.2.1 界面设置代码-------------------------------------------------------------------------------- 84.2.2 运行结果-------------------------------------------------------------------------------------- 94.3 二维线画图元实现----------------------------------------------------------------------------------- 94.4 画多边形功能的实现 ---------------------------------------------------------------------------- 134.5 画Bezier曲线功能的实现--------------------------------------------------------------------- 144.6 二维图形变换的实现 ---------------------------------------------------------------------------- 164.7 三维图形的变换 ---------------------------------------------------------------------------------- 17五、实验心得体会一、引言计算机图形学(Computer Graphics,简称CG)是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。

简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。

是计算机科学的一个分支领域,主要关注数字合成与操作视觉的图形内容。

计算机图形学研究的是应用计算机产生图像的所有工作,不管图像是静态的还是动态的,可交互的还是固定的,等等。

图形API是允许程序员开发包含交互式计算机图形操作的应用而不需要关注图形操作细节或任务系统细节的工具集。

计算机图形学有着广泛的应用领域,包括物理、航天、电影、电视、游戏、艺术、广告、通信、天气预报等几乎所有领域都用到了计算机图形学的知识,这些领域通过计算机图形学将几何模型生成图像,将问题可视化从而为各领域更好的服务。

计算机图形学利用计算机产生让人赏心悦目的视觉效果,必须建立描述图形的几何模型还有光照模型,再加上视角、颜色、纹理等属性,再经过模型变换、视图变换、投影操作等,这些步骤从而实现一个完整的OpenGL程序效果。

OpenGL是一个开放的三维图形软件包,它独立于窗口系统和操作系统,以它为基础开发的应用程序可以十分方便地在各种平台间移植。

计算机图形学通过应用OpenGL的功能,使得生成的图形效果具有高度真实感。

学习计算机图形学的重点是掌握OpenGL在图形学程序中的使用方法。

事实上,图形学也把可以表示几何场景的曲线曲面造型技术和实体造型技术作为其主要的研究内容。

同时,真实感图形计算的结果是以数字图像的方式提供的,计算机图形学也就和图像处理有着密切的关系。

通过21世纪是信息的时代,在日新月异的科技更新中相信计算机会发挥越来越重要的作用,计算机图形学也会在更多的领域所应用,虽然我国在这方面还比较薄弱,但相信会有越来越好的时候的。

二、设计需求2.1 设计目标以图形学算法为目标,深入研究。

继而策划、设计并实现一个能够表现计算机图形学算法原理的或完整过程的演示系统,并能从某些方面作出评价和改进意见。

通过完成一个完整程序,经历策划、设计、开发、测试、总结和验收各阶段,达到:巩固和实践计算机图形学课程中的理论和算法;学习表现计算机图形学算法的技巧;培养认真学习、积极探索的精神。

2.2 设计环境2.2.1 VC++6.0VC++6.0是 Microsoft 公司推出的一个基于 Windows 系统平台、可视化的集成开发环境,它的源程序按 C++语言的要求编写,并加入了微软提供的功能强大的 MFC(Microsoft Foundation Class)类库。

MFC 中封装了大部分 Windows API 函数和 Windows 控件,它包含的功能涉及到整个 Windows 操作系统。

MFC 不仅给用户提供了 Windows 图形环境下应用程序的框架,而且还提供了创建应用程序的组件,这样,开发人员不必从头设计创建和管理一个标准 Windows 应用程序所需的程序,而是从一个比较高的起点编程,故节省了大量的时间。

另外,它提供了大量的代码,指导用户编程时实现某些技术和功能。

因此,使用VC++提供的高度可视化的应用程序开发工具和 MFC 类库,可使应用程序开发变得简单。

2.2.2 MFCMFC(Microsoft Foundation Classes) ,是一个微软公司提供的类库( class libraries)以 C++类的形式封装了 Windows 的 API,,它包含了窗口等许多类的定义。

各种类的集合构成了一个应运程序的框架结构,以减少应用程序开发人员的工作量。

其中包含的类包含大量 Windows 句柄封装类和很多 Windows 的内建控件和组件的封装类。

MFC 6.0 版本封装了大约 200 个类,其中的一些可以被用户直接使用。

例如CWnd 类封装了窗口的功能,包括打印文本、绘制图形及跟踪鼠标指针的移动等;CsplitterWnd 类是从 CWnd 类派生出来的,继承了基类或称父类 CWnd 类的所有特性,但增加了自己的功能,实现拆分窗口,使窗口至少可被拆分成两个窗口,用户可以移动两个窗口之间的边框来改变窗口的大小;CtoolBar 类可以定义工具栏等。

相关文档
最新文档