Matlab矩阵的基本操作

合集下载

MATLAB中对矩阵的基本操作

MATLAB中对矩阵的基本操作

MATLAB中对矩阵的基本操作在MATLAB中,可以对矩阵进行多种基本操作,包括创建矩阵、访问元素、改变矩阵的大小、插入和删除元素、矩阵的运算等。

以下是对这些操作的详细说明:1.创建矩阵:在MATLAB中,可以使用多种方式创建矩阵。

其中最常用的方式是使用方括号将元素排列成行或列,例如:```A=[1,2,3;4,5,6;7,8,9];```这将创建一个3x3的矩阵A,其元素为1到92.访问元素:可以使用括号和下标来访问矩阵中的元素。

下标从1开始计数。

例如,要访问矩阵A的第二行第三列的元素,可以使用以下代码:```A(2,3);```这将返回矩阵A的第二行第三列的元素。

3.改变矩阵的大小:可以使用函数如reshape和resize来改变矩阵的大小。

reshape函数可以将矩阵重新组织为不同的行和列数。

例如,以下代码使用reshape 将3x3的矩阵A重新组织为1x9的矩阵B:```B = reshape(A, 1, 9);```resize函数可以改变矩阵的大小,可以用来增加或减少矩阵的行和列数。

例如,以下代码将矩阵A的大小改变为2x6:```A = resize(A, 2, 6);```4.插入和删除元素:可以使用括号和下标来插入和删除矩阵中的元素。

例如,以下代码会在矩阵A的第二行的末尾插入一个元素10:```A(2, end+1) = 10;```同时,可以使用括号和下标来删除矩阵中的元素。

以下代码将删除矩阵A的第一行的第二个元素:```A(1,2)=[];```这将删除矩阵A的第一行的第二个元素。

5.矩阵的运算:-矩阵乘法:使用*符号进行矩阵乘法运算。

例如,以下代码将矩阵A 与矩阵B相乘:```C=A*B;```-矩阵加法和减法:使用+和-符号进行矩阵加法和减法运算。

例如,以下代码将矩阵A和矩阵B相加得到矩阵C:```C=A+B;```-矩阵转置:使用'符号进行矩阵的转置操作。

例如,以下代码将矩阵A转置:```B=A';```-矩阵相乘:使用.*符号进行矩阵的元素级相乘运算。

MATLAB矩阵操作大全

MATLAB矩阵操作大全

MATLAB矩阵操作大全1. 创建矩阵:可以使用函数`zeros`、`ones`、`eye`、`rand`等来创建全零矩阵、全一矩阵、单位矩阵和随机矩阵。

2.矩阵索引:可以使用`(`或`[]`来访问矩阵中的元素。

例如,`A(3,2)`表示访问矩阵A中第3行第2列的元素。

3.矩阵运算:可以使用`+`、`-`、`*`、`/`等运算符对矩阵进行加法、减法、乘法和除法运算。

4. 矩阵转置:可以使用`'`符号或`transpose`函数来对矩阵进行转置操作。

例如,`B = A'`表示将矩阵A转置为矩阵B。

5.矩阵加法和减法:可以使用`+`和`-`运算符对两个矩阵进行逐元素的加法和减法运算。

6.矩阵乘法和除法:可以使用`*`和`/`运算符对矩阵进行乘法和除法运算。

注意,矩阵乘法是按照矩阵相应元素进行乘法运算,并不是简单的逐元素乘法。

7. 矩阵求逆:可以使用`inv`函数来求矩阵的逆矩阵。

例如,`B =inv(A)`表示求矩阵A的逆矩阵,并将结果保存在矩阵B中。

8. 矩阵转换:可以使用转换函数`double`、`single`、`int8`、`int16`、`int32`、`int64`等将矩阵的数据类型转换为指定类型。

9. 矩阵求解线性方程组:可以使用`solve`函数来求解线性方程组。

例如,`x = solve(A, b)`表示求解线性方程组Ax = b,并将结果保存在向量x中。

10. 矩阵求特征值和特征向量:可以使用`eig`函数来求矩阵的特征值和特征向量。

例如,`[V, D] = eig(A)`表示求矩阵A的特征值和特征向量,并将结果保存在矩阵V和对角矩阵D中。

11. 矩阵的行列式:可以使用`det`函数来计算矩阵的行列式。

例如,`D = det(A)`表示计算矩阵A的行列式,并将结果保存在变量D中。

12. 矩阵的秩:可以使用`rank`函数来计算矩阵的秩。

例如,`r = rank(A)`表示计算矩阵A的秩,并将结果保存在变量r中。

Matlab中的矩阵操作技巧指南

Matlab中的矩阵操作技巧指南

Matlab中的矩阵操作技巧指南在科学计算和数据处理中,矩阵操作是一个非常重要的环节。

Matlab作为一种功能强大的计算工具,提供了丰富的矩阵操作函数和技巧,帮助用户更高效地处理数据。

本文将为大家介绍一些在Matlab中常用的矩阵操作技巧,希望对广大Matlab用户有所帮助。

一、矩阵的创建和赋值在Matlab中,创建矩阵有多种方式。

可以使用数组、函数、特殊值或其他操作创建矩阵。

下面是一些常见的创建矩阵的方法。

1.1 使用数组创建矩阵使用数组创建矩阵是一种简单直观的方式。

可以通过一维或多维数组来创建矩阵。

```matlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9] % 创建一个3x3的矩阵B = [1, 2, 3; 4, 5, 6] % 创建一个2x3的矩阵```1.2 使用函数创建矩阵除了使用数组,还可以使用Matlab提供的函数来创建矩阵。

常用的函数有zeros, ones, eye等。

```matlabC = zeros(3, 3) % 创建一个3x3的全零矩阵D = ones(2, 4) % 创建一个2x4的全一矩阵E = eye(5) % 创建一个5x5的单位矩阵```1.3 特殊值的矩阵Matlab中还提供了一些特殊值的矩阵,如全1矩阵、全0矩阵等。

```matlabF = ones(3, 3) % 创建一个3x3的全1矩阵G = zeros(2, 4) % 创建一个2x4的全0矩阵```二、矩阵的索引和切片在Matlab中,可以使用索引和切片操作来获取矩阵的元素或对矩阵进行切片操作。

2.1 矩阵的索引可以使用单个索引、行索引或列索引来获取矩阵的元素。

```matlabA = magic(3) % 创建一个3x3的魔方矩阵element = A(2, 3) % 获取第2行第3列的元素row = A(1, :) % 获取第1行的所有元素column = A(:, 2) % 获取第2列的所有元素```2.2 矩阵的切片可以使用切片操作来获取矩阵的子矩阵。

矩阵在matlab中的基本命令

矩阵在matlab中的基本命令

一、矩阵的表示在MATLAB中创建矩阵有以下规则:a、矩阵元素必须在”[ ]”内;b、矩阵的同行元素之间用空格(或”,”)隔开;c、矩阵的行与行之间用”;”(或回车符)隔开;d、矩阵的元素可以是数值、变量、表达式或函数;e、矩阵的尺寸不必预先定义。

二,矩阵的创建:1、直接输入法最简单的建立矩阵的方法是从键盘直接输入矩阵的元素,输入的方法按照上面的规则。

建立向量的时候可以利用冒号表达式,冒号表达式可以产生一个行向量,一般格式是:e1:e2:e3,其中e1为初始值,e2为步长,e3为终止值。

还可以用linspace函数产生行向量,其调用格式为:linspace(a,b,n) ,其中a和b是生成向量的第一个和最后一个元素,n是元素总数。

2、利用MATLAB函数创建矩阵基本矩阵函数如下:(1) ones()函数:产生全为1的矩阵,ones(n):产生n*n维的全1矩阵,ones(m,n):产生m*n 维的全1矩阵;(2) zeros()函数:产生全为0的矩阵;(3) rand()函数:产生在(0,1)区间均匀分布的随机阵;(4) eye()函数:产生单位阵;(5) randn()函数:产生均值为0,方差为1的标准正态分布随机矩阵。

3、利用文件建立矩阵当矩阵尺寸较大或为经常使用的数据矩阵,则可以将此矩阵保存为文件,在需要时直接将文件利用load命令调入工作环境中使用即可。

同时可以利用命令reshape对调入的矩阵进行重排。

reshape(A,m,n),它在矩阵总元素保持不变的前提下,将矩阵A重新排成m*n的二维矩阵。

二、矩阵的简单操作1.获取矩阵元素可以通过下标(行列索引)引用矩阵的元素,如Matrix(m,n)。

也可以采用矩阵元素的序号来引用矩阵元素。

矩阵元素的序号就是相应元素在内存中的排列顺序。

在MATLAB中,矩阵元素按列存储。

序号(Index)与下标(Subscript )是一一对应的,以m*n矩阵A为例,矩阵元素A(i,j)的序号为(j-1)*m+i。

matlab 矩阵汉字

matlab 矩阵汉字

matlab 矩阵汉字摘要:1.MATLAB 简介2.MATLAB 中的矩阵操作3.在MATLAB 中使用汉字4.汉字矩阵的显示和操作正文:一、MATLAB 简介MATLAB(Matrix Laboratory)是一款广泛应用于科学计算、数据分析、可视化等领域的软件。

它以矩阵计算为基础,提供了丰富的函数库和工具箱,为用户提供了高效、便捷的编程环境。

二、MATLAB 中的矩阵操作在MATLAB 中,矩阵操作非常简单。

用户可以通过以下方式创建矩阵:1.使用方括号直接创建矩阵:`A = [1, 2, 3; 4, 5, 6; 7, 8, 9]`。

2.使用命令创建矩阵:`A = zeros(3, 3)`,其中3 表示矩阵的行数和列数,0 表示元素全为0。

此外,MATLAB 还提供了许多矩阵操作函数,如加法、乘法、求逆等。

例如:1.两个矩阵相加:`B = A + C`。

2.两个矩阵相乘:`D = A * B`。

3.求矩阵逆:`A = inv(B)`。

三、在MATLAB 中使用汉字在MATLAB 中,可以直接使用汉字作为矩阵的元素。

在创建矩阵时,只需将汉字作为元素放入方括号中即可。

例如:`name = ["张三", "李四", "王五"];` 创建一个包含姓名的矩阵。

四、汉字矩阵的显示和操作对于汉字矩阵,MATLAB 同样提供了许多常用的显示和操作功能。

例如:1.显示矩阵:`disp(A)`。

2.矩阵转置:`A = transpose(A)`。

3.矩阵行交换:`A = swaprows(A, 1, 2)`。

4.矩阵列交换:`A = swapcolumns(A, 1, 2)`。

如何使用Matlab进行矩阵运算

如何使用Matlab进行矩阵运算

如何使用Matlab进行矩阵运算随着科学技术的不断发展,矩阵运算在各个领域的应用日益广泛。

Matlab作为一款功能强大的数学软件,其矩阵运算能力非常强大。

本文将介绍如何使用Matlab进行矩阵运算,希望能对读者在科学研究和工程实践中的矩阵计算有所帮助。

一、Matlab的基本矩阵运算1. 创建矩阵在Matlab中,可以使用一对方括号`[]`来创建矩阵。

例如,要创建一个3行3列的矩阵A,可以使用如下命令:A = [1 2 3; 4 5 6; 7 8 9]。

这样就创建了一个元素分别为1到9的3行3列矩阵。

2. 矩阵加法和减法Matlab中可以使用加号和减号来进行矩阵的加法和减法运算。

例如,要计算矩阵A和B的和,可以使用命令C = A + B;要计算矩阵A和B的差,可以使用命令D = A - B。

3. 矩阵乘法Matlab中使用乘号`*`来进行矩阵的乘法运算。

例如,要计算矩阵A和B的乘积,可以使用命令C = A * B。

需要注意的是,矩阵乘法是满足结合律的,即A *(B * C) = (A * B) * C。

4. 矩阵转置在Matlab中,可以使用单引号`'`来对矩阵进行转置操作。

例如,对矩阵A进行转置,可以使用命令B = A'。

需要注意的是,转置操作只能应用于二维矩阵。

5. 求逆矩阵在Matlab中,可以使用inv函数来求解矩阵的逆矩阵。

例如,要求矩阵A的逆矩阵,可以使用命令B = inv(A)。

需要注意的是,只有方阵才有逆矩阵。

6. 矩阵的特征值和特征向量Matlab中可以使用eig函数来求解矩阵的特征值和特征向量。

例如,要求矩阵A的特征值和特征向量,可以使用命令[V,D] = eig(A),其中V为特征向量矩阵,D 为特征值对角矩阵。

二、Matlab的高级矩阵运算1. 矩阵的点乘和叉乘Matlab中使用.*和.^来进行矩阵的点乘和叉乘运算。

例如,要计算矩阵A和B 的点乘,可以使用命令C = A .* B;要计算矩阵A和B的叉乘,可以使用命令D =A .^ B。

如何在Matlab中创建矩阵

如何在Matlab中创建矩阵

如何在Matlab中创建矩阵在Matlab中创建矩阵是一项基本的任务,它在数据处理和数学建模中起着重要的作用。

本文将介绍几种在Matlab中创建矩阵的方法,包括手动创建矩阵、使用内置函数和通过导入数据。

1. 手动创建矩阵手动创建矩阵是最常用的方法之一,它允许用户根据自己的需求定义矩阵的大小和内容。

在Matlab中,可以使用方括号和分号来定义矩阵的行和列。

例如,要创建一个3x3的矩阵,可以使用以下命令:A = [1, 2, 3; 4, 5, 6; 7, 8, 9];这将创建一个3行3列的矩阵A,其中元素依次为1到9。

可以通过显示矩阵来验证结果。

disp(A);2. 使用内置函数创建矩阵Matlab提供了许多内置函数用于创建常见类型的矩阵,这些函数可以简化矩阵的创建过程并节省时间。

下面介绍几个常用的内置函数。

2.1 zeros函数zeros函数可以创建一个全零矩阵。

语法如下:B = zeros(3, 4);这将创建一个3行4列的矩阵B,其中所有元素都为零。

2.2 ones函数ones函数可以创建一个全一矩阵。

语法如下:C = ones(2, 3);这将创建一个2行3列的矩阵C,其中所有元素都为一。

2.3 eye函数eye函数可以创建一个单位矩阵,也称为对角矩阵。

语法如下:D = eye(4);这将创建一个4行4列的单位矩阵D,其中对角线上的元素为一,其他元素为零。

3. 导入数据创建矩阵除了手动创建和使用内置函数创建矩阵外,Matlab还支持从外部文件导入数据创建矩阵。

这对于处理大型数据集特别有用。

3.1 导入文本文件可以使用`importdata`函数导入文本文件中的数据。

例如,要导入名为data.txt 的文本文件,其中包含一组数值,可以使用以下命令:data = importdata('data.txt');这将把文本文件中的数据导入到一个名为data的矩阵中。

3.2 导入Excel文件Matlab还支持导入Excel文件中的数据。

MATLAB基本操作及环境设置

MATLAB基本操作及环境设置

MATLAB基本操作及环境设置1.MATLAB的基本操作:-启动MATLAB:在计算机上安装MATLAB软件后,可以从开始菜单中或桌面图标启动MATLAB。

-MATLAB命令窗口:启动MATLAB后,可以看到一个命令窗口。

在命令窗口中,可以输入MATLAB命令,并执行它们。

- 基本算术操作:MATLAB可以进行基本的算术操作,如加减乘除。

例如,输入"2+3",然后按Enter键,MATLAB将计算并显示结果。

- 变量:在MATLAB中,可以定义变量,并将值赋给它们。

例如,输入"x = 5",然后按Enter键,MATLAB将创建变量x,并将值设为5 - 矩阵操作:MATLAB是以矩阵为基础的语言。

可以使用MATLAB的矩阵操作函数创建、修改和操作矩阵。

例如,可以使用"zeros"函数创建由0组成的矩阵,使用"eye"函数创建单位矩阵,以及使用"inv"函数计算矩阵的逆矩阵。

2.MATLAB的环境设置:- 工作目录:工作目录是MATLAB文件的位置。

可以使用"cd"命令更改工作目录。

可以使用"pwd"命令查看当前工作目录。

- 文件管理:MATLAB提供了一些函数来管理和操作文件。

可以使用"dir"函数列出当前目录中的文件和文件夹,使用"mkdir"函数创建新文件夹,使用"delete"函数删除文件等。

-图形界面:MATLAB还提供了一个图形用户界面(GUI),可以通过点击菜单和按钮来执行操作。

GUI提供了更直观和交互式的方式来使用MATLAB。

- 图形绘制:MATLAB具有强大的图形绘制功能。

可以使用"plot"函数绘制二维曲线,使用"mesh"函数绘制三维曲面等。

Matlab操作矩阵的相关方法

Matlab操作矩阵的相关方法

Matlab操作矩阵的相关⽅法Matlab操作矩阵的相关⽅法下⾯这篇⽂章主要是对吴恩达⽼师机器学习中matlab操作的⼀个整理和归纳⼀、基本操作1.⽣成矩阵(ones、zeros)A = [1 2;3 4;5 6] #⽣成3⾏4列的矩阵B = [1 2 3] #B就是⼀个⾏向量C = [1;2;3] #定义c为⼀个列向量D = 1:0.1:2 #定义开始值为1,步长为0.1,结束值为2的⼀个⾏向量E = 1:6 #定义开始值为1,步长默认为1,结束值为6的⾏向量ones(2,3) #矩阵中所有元素都为1 定义⼀个2⾏3列的矩阵zeros(2,3) #矩阵中所有的元素都为0 定义⼀个2⾏3列的矩阵2.⽣成随机矩阵(rand、randn)rand(1,3) #⽣成1⾏3列的随机矩阵randn(2,3) #⽣成⾼斯随机矩阵,⾼斯随机矩阵即为标准差或⽅差为13.⽣成单位矩阵(eye(n))eye(n) #⽣成n⾏n列的单位矩阵4.帮助命令(help)help 变量名 #可查看函数的API详解⼆、移动数据1.操作.txt⽂件(load)1.1 加载.txt⽂件并且拆分⽂件的⾏和列的值data = load('⽂件路径') #加载⽂件获取多列的数据(获取多⾏的数据和多列类似,只需要修改第⼀个参数即可)data(:,1) #拿到所有⾏第⼀列的数据data(:,1:2) #拿到所有⾏第⼀列和第⼆列的数据data(:,1:3) #拿到所有⾏第⼀列、第⼆列和第三列的数据data(:,[1,3]) #拿到所有⾏第⼀列和第三列的数据将矩阵所有的数据扁平化为⼀列data(:)将矩阵所有的数据扁平化为⼀⾏data(:)'1.2 将数据保存为.txt⽂件v = data(:,1) #拿到第⼀列的数据save test.txt v -ascii #将数据保存到test.txt⽂件中2.矩阵的操作2.1 获得矩阵的⾏数和列数(size())size(A) #返回⼀个1⾏2列的矩阵分别是矩阵的⾏数和列数size(A,1) #返回矩阵的⾏数size(A,2) #返回矩阵的列数2.2 拿到矩阵的最⼤维度(length())length(A) #获得矩阵的⾏数和列数中维度较⼤的⼀个2.3 通过矩阵索引获取某⼀个值A(m,n) #索引到矩阵m⾏n列的位置2.4 修改矩阵的某⼀⾏或者某⼀列A(:,2) = [10;11;12] #修改矩阵第⼆列的数据2.5 在矩阵中添加⼀⾏新的数据A = [A,[10;11;12]] #向矩阵中添加⼀⾏新的数据C=[A B]2.6 矩阵的结合横向结合:A = [1 2;3 4;5 6]B = [11 12;13 14;15 16]C = [A B]纵向结合:C= [A;B]三、计算数据1.A.*B(矩阵之间的乘积)A .*B # A中对应位置元素和B中对应位置元素的乘积2.A.^2 (矩阵⾃⾝的平⽅)A.^2 #矩阵A的平⽅(A矩阵中的每个元素都平⽅)3.1./A(矩阵中每个元素的倒数)1./A 矩阵A中每个元素分别求倒数4.log(A) (对矩阵中每个元素求对数) ,exp(A)(对A中的每个元素以e的底数)5.abs(A)(对矩阵中的每个元素求绝对值)6.-A(对矩阵中的每个元素求相反数)7.A+1(对矩阵中每个对应的元素+1)8.A’(A的转置)9.⼀些有⽤的函数求矩阵中最⼤的⼀个值:max(max(A))或者max(A(:)) ⾸先扁平化A成为⼀个列向量,然后求最⼤值max是默认求每列的最⼤值:max(A) #求矩阵A的最⼤值(如果A是矩阵,会拿到每⼀列的最⼤值)max(A,[],1) #拿到矩阵A中每⼀列的最⼤值max(A,[],2) #拿到矩阵A中每⼀⾏的最⼤值[val, ind] = max(a) #返回矩阵A中的最⼤值和索引A<3 (对应元素的⽐较如果⼩于3返回1,如果⼤于3返回0)find(A<3) #找到A中所有⼩于3的元素,并且返回他们的索引A=magic(3) #任意⾏、列、对⾓的元素相加的和等于相同的值[r,c] = find(A>=7) #拿到所有⼤于等于7的元素的所在⾏和列sum(A) #获得矩阵中所有元素的和sum(A,1) #获得矩阵中每⼀列相加的和sum(A,2) #获得矩阵中每⼀⾏相加的和sum(sum(A)) #获得所有元素的值prod(A) #获得矩阵中所有元素的乘积floor(A) #对矩阵中所有元素向下取整ceil(A) #对矩阵中所有元素向上取整10.逆矩阵pinv(A) #求A得逆矩阵pinv(A)*A #就会拿到单位矩阵四、数据绘制1.绘制正弦函数t = [0:0.01:0.98];y1 = sin(2*pi*4*t);plot(t,y1);2.绘制余弦函数t = [0:0.01:0.98];y2 = cos(2*pi*4*t);plot(t,y2);3.同时绘制正弦函数和余弦函数t = [0:0.01:0.98];y1 = sin(2*pi*4*t);y2 = cos(2*pi*4*t);plot(t,y1);hold on; #hold on 的作⽤是在旧的图像上绘制新的图像plot(t,y2,'r')xlabel('times'); #添加横轴的labelylabel('values'); #添加纵轴的labellegend('sin','cos') #将图例添加到右上⾓title('my plot') #给图像⼀个titleclose; #关闭图像figure(1);plot(t,y1);figure(2);plot(t,y2); #给不同的图像命名4.将图像分为⼀个1*2的格⼦subplot(1,2,1) #前两个参数的意思是分为1*2的格⼦,后⾯⼀个参数的意思是当前使⽤第⼀个格⼦5.改变轴的刻度axis([0.5 1 -1 1]) #(xmin xmax ymin ymax)6.清除⼀副图像(clf)7.可视化⼀个矩阵A = magic(5)imagesc(A);imagesc(A), colorbar, colormap gray; #⼀个灰度分布图。

MATLAB的矩阵运算

MATLAB的矩阵运算

MATLAB的矩阵运算阅读⽬录 MATLAB是基于矩阵和数组计算的,可以直接对矩阵和数组进⾏整体的操作,MATLAB有三种矩阵运算类型:矩阵的代数运算、矩阵的关系运算和矩阵的逻辑运算。

其中,矩阵的代数运算应⽤最⼴泛。

本⽂主要讲述矩阵的基本操作,涉及矩阵的创建、矩阵的代数运算、关系运算和逻辑运算等基本知识。

矩阵的创建直接输⼊法创建矩阵% 1. 直接输⼊法创建矩阵>> A = [1,2,3; 4,5,6; 7,8,9]A =1 2 34 5 67 8 9函数法创建矩阵简单矩阵% 2. 函数法创建矩阵>> zeros(3)% ⽣成3x3的全零矩阵ans =0 0 00 0 00 0 0>> zeros(3,2)% ⽣成3x2的全零矩阵ans =0 00 00 0>> eye(3)% ⽣成单位矩阵ans =1 0 00 1 00 0 1>> ones(3)% ⽣成全1矩阵ans =1 1 11 1 11 1 1>> magic(3)% ⽣成3x3的魔⽅阵ans =8 1 63 5 74 9 2>> diag(1:3)% 对⾓矩阵ans =1 0 00 2 00 0 3>> diag(1:5,1)% 对⾓线向上移1位矩阵ans =0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 4 0 0 0 0 0 0 5 0 0 0 0 0 0 >> diag(1:5,-1)% 对⾓线向下移1位矩阵ans =0 0 0 0 0 01 0 0 0 0 0 02 0 0 0 0 0 03 0 0 0 0 0 04 0 0 0 0 0 05 0 >> triu(ones(3,3))% 上三⾓矩阵ans =1 1 10 1 10 0 1>> tril(ones(3,3))% 下三⾓矩阵ans =1 0 01 1 01 1 1随机矩阵>> rand(3)% ⽣成随机矩阵ans =0.2898 0.8637 0.05620.4357 0.8921 0.14580.3234 0.0167 0.7216>> rand('state',0); % 设定种⼦数,产⽣特定种⼦数下相同的随机数>> rand(3)ans =0.9501 0.4860 0.45650.2311 0.8913 0.01850.6068 0.7621 0.8214>> a = 1; b = 100;>> x = a + (b-a)* rand(3)% 产⽣区间(1,100)内的随机数x =38.2127 20.7575 91.113389.9610 31.0064 53.004043.4711 54.2917 31.3762>> a = 1; b = 100;>> a + fix(b * rand(1,50))% 产⽣50个[1,100]内的随机正整数ans =列 1 ⾄ 154 72 77 6 63 27 32 53 41 90 58 57 40 70 57列 16 ⾄ 3035 60 28 5 84 11 73 45 100 57 47 42 22 24 32列 31 ⾄ 4587 26 97 31 38 35 71 62 76 80 22 90 90 94 28列 46 ⾄ 5048 26 37 53 39相似函数扩展>> randn(3)% ⽣成均值为0,⽅差为1的正太分布随机数矩阵ans =-0.4326 0.2877 1.1892-1.6656 -1.1465 -0.03760.1253 1.1909 0.3273>> randperm(10)% ⽣成1-10之间随机分布10个正整数ans =4 9 10 25 8 1 3 7 6% 多项式x^3 - 7x + 6 的伴随矩阵>> u = [1,0,-7,6];>> A = compan(u)% ⽣成伴随矩阵A =0 7 -61 0 00 1 0>> eig(A) % 此处eig()函数⽤于求特征值% 利⽤伴随矩阵求得⽅程的根ans =-3.00002.00001.0000矩阵的运算矩阵的代数运算矩阵的算术运算>> A = [1,1;2,2];>> B = [1,1;2,2];>> AA =1 12 2>> BB =1 12 2>> A + Bans =2 24 4>> B-Aans =0 00 0>> A * Bans =3 36 6>> A^2ans =3 36 6>> A^3ans =9 918 18矩阵的运算函数>> C = magic(3)C =8 1 63 5 74 9 2>> size(C)ans =3 3>> length(C)ans =3>> sum(C)ans =15 15 15>> max(C)ans =8 9 7>> C'ans =8 3 41 5 96 7 2>> inv(C)ans =0.1472 -0.1444 0.0639 -0.0611 0.0222 0.1056 -0.0194 0.1889 -0.1028矩阵的元素群运算元素群运算,是指矩阵中的所有元素按单个元素进⾏运算,也即是对应位置进⾏运算。

Matlab使用方法

Matlab使用方法
1. 方程(组)的符号解 solve (eq) 例:
solve('x^2+3x-6') solve('-x^2*y+3*x-6','x+y^2-1')
求方程的符号解
solve (eq1,eq2,…eqn) 求方程组的符号解
2.方程(组)的数值解 fzero (fun,x0) 用数值方法求方程根
七、积分变换 1. Fourier积分变换
返回a、b的并集,即c = a∪b 返回向量a、b的公共部分,即c= a∩b
差:setdiff
返回属于a但不属于b的不同元素的集合,C = a-b
交集的非: setxor
检测集合中的元素: ismember
4. 除法运算
A/B
5. 矩阵乘方
exp(A) :EA 6. 矩阵函数 expm logm sqrtm
五. 拟合和插值 1. 多项式拟合: 2. 插值: polyfit ( x, y , n)
a. interp1( X,Y,xi,method) method 可取下列值:
linear spline cubic 线性插值
一维数据插值
b. interp2( X,Y,Z,xi, yi,method) 二维数据插值
注: M文件的调用以文件名为准。
%为Matlab的注释符,其后的语句 不执行(只对当前行有效)。
二、Matlab语言
1.逻辑判断符 >= <= > isequal函数 2.逻辑运算符 & | ~
<
==
~=
3.条件语句 ① if-else语句
② switch-case语句
4.循环语句

矩阵在matlab中的基本命令

矩阵在matlab中的基本命令

一、矩阵的表示‎在MATL‎A B中创建‎矩阵有以下‎规则:a、矩阵元素必‎须在”[‎]”内;b、矩阵的同行‎元素之间用‎空格(或”,”)隔开;c、矩阵的行与‎行之间用”;”(或回车符)隔开;d、矩阵的元素‎可以是数值‎、变量、表达式或函‎数;e、矩阵的尺寸‎不必预先定‎义。

二,矩阵的创建‎:1、直接输入法‎最简单的建‎立矩阵的方‎法是从键盘‎直接输入矩‎阵的元素,输入的方法‎按照上面的‎规则。

建立向量的‎时候可以利‎用冒号表达‎式,冒号表达式‎可以产生一‎个行向量,一般格式是‎:e1:e2:e3,其中e1为‎初始值,e2为步长‎,e3为终止‎值。

还可以用l‎i nspa‎c e函数产‎生行向量,其调用格式‎为:linsp‎a ce(a,b,n) ,其中a和b‎是生成向量‎的第一个和‎最后一个元‎素,n是元素总‎数。

2、利用MAT‎L AB函数‎创建矩阵基本矩阵函‎数如下:(1) ones()函数:产生全为1‎的矩阵,ones(n):产生n*n维的全1‎矩阵,ones(m,n):产生m*n 维的全1‎矩阵;(2) zeros‎()函数:产生全为0‎的矩阵;(3) rand()函数:产生在(0,1)区间均匀分‎布的随机阵‎;(4) eye()函数:产生单位阵‎;(5) randn‎()函数:产生均值为‎0,方差为1的‎标准正态分‎布随机矩阵‎。

3、利用文件建‎立矩阵当矩阵尺寸‎较大或为经‎常使用的数‎据矩阵,则可以将此‎矩阵保存为‎文件,在需要时直‎接将文件利‎用load‎命令调入工‎作环境中使‎用即可。

同时可以利‎用命令re‎s hape‎对调入的矩‎阵进行重排‎。

resha‎p e(A,m,n),它在矩阵总‎元素保持不‎变的前提下‎,将矩阵A重‎新排成m*n的二维矩‎阵。

二、矩阵的简单‎操作1.获取矩阵元‎素可以通过下‎标(行列索引)引用矩阵的‎元素,如 Matri‎x(m,n)。

也可以采用‎矩阵元素的‎序号来引用‎矩阵元素。

matlab矩阵生成方法

matlab矩阵生成方法

matlab矩阵生成方法一、矩阵的基本概念。

1.1 矩阵就像是一个数字的大表格,行和列整整齐齐地排列着。

它在数学里可是个相当重要的家伙,就像盖房子的砖头一样基础。

在Matlab里,矩阵那更是无处不在,就如同空气对于我们人类一样不可或缺。

1.2 矩阵的元素可以是各种各样的数,整数、小数、正数、负数都可以。

这就好比一个大杂烩,什么数字都能往这个矩阵的大锅里放。

二、直接输入法生成矩阵。

2.1 简单矩阵的直接输入。

如果是一个小矩阵,就像[1 2 3;4 5 6;7 8 9]这样,一行行地把数字写好,中间用空格或者逗号隔开不同的元素,行与行之间用分号隔开。

这就如同我们在本子上规规矩矩地写数字表格一样,简单直接,没有什么弯弯绕绕,完全是直来直去的法子,真可谓是“开门见山”。

2.2 特殊矩阵的直接输入。

比如单位矩阵,在Matlab里可以用eye函数来生成。

这就像是有个专门生产单位矩阵的小工厂,只要你一声令下,它就给你吐出一个标准的单位矩阵。

还有全零矩阵zeros和全一矩阵ones,这两个就像是矩阵世界里的两个极端,一个是空空如也,一个是满满当当,使用起来也是非常方便,只要指定好矩阵的大小,就像告诉厨师你要多大的蛋糕一样。

三、利用函数生成矩阵。

3.1 随机矩阵的生成。

rand函数就像是一个魔法棒,轻轻一挥,就能生成一个充满随机数的矩阵。

这些随机数就像一群调皮的小精灵,在矩阵这个小天地里蹦蹦跳跳。

有时候我们做模拟实验或者数据分析,就需要这种随机的矩阵,就如同我们在生活中偶尔也需要一些惊喜一样。

3.2 等差数列矩阵的生成。

可以用linspace或者colon运算符。

linspace就像是一个贴心的小助手,你告诉它起始值、终止值和元素个数,它就给你生成一个等差数列的矩阵。

colon运算符就更简洁了,就像一个简洁高效的小工匠,用一种简洁的方式构建等差数列矩阵。

这就好比我们搭积木,不同的工具都能达到构建的目的,只是方式略有不同。

MATLAB矩阵运算

MATLAB矩阵运算

MATLAB矩阵运算1. 矩阵的加减乘除和(共轭)转置(1) 矩阵的加法和减法 如果矩阵A和B有相同的维度(⾏数和列数都相等),则可以定义它们的和A+B以及它们的差A-B,得到⼀个与A和B同维度的矩阵C,其中C ij=A ij+B ij或A ij-B ij.另外Matlab还⽀持任意⼀个矩阵A与⼀个标量s相加,结果为矩阵的每⼀个元素加减标量,得到⼀个与A同维度的新的矩阵,即A+s的各个元素为A ij+s.(2) 矩阵的乘法 如果矩阵A的列数等于矩阵B的⾏数,则可以将A和B相乘,命令为A*B,得到⼀个新的矩阵C,C的⾏数等于A的⾏数,列数等于B的列数. 由于矩阵的乘法不满⾜交换律,所以⼀般A*B不等于B*A.(3) 矩阵的张量积(tensor product) 矩阵A和B的张量积A⊗B可以⽅便地⽤kron函数计算,即使⽤命令kron(A,B), 例如(4) 矩阵的除法 在MatLab中,有两个矩阵除法符号,左除\和右除/. 如果A是⼀个⾮奇异⽅阵(nonsingular square, 即满秩⽅阵),B的⾏数与A的⾏数相等,那么A\B=A-1B. 如果C的列数与A的列数相等,那么C/A=CA-1. 从另⼀个⾓度来看,X=A\B是矩阵⽅程AX=B的解,X=C/A是矩阵⽅程XA=C的解. 如果b是⼀个⾏数与A的⾏数相等的列向量,则向量x=A\b是线性⽅程组 Ax=b的解. 且在矩阵⽅程AX=B中,A可以是⼀个m×n的矩阵,如果m=n则有唯⼀解;如果m<n则有多个解,Matlab会返回⼀个基础解;如果m>n则会返回⼀个最⼩⽅阵解.(5) 矩阵的转置和共轭转置 在Matlab中,矩阵的共轭转置⽤撇号’表⽰,如果不需要对元素进⾏共轭运算,仅仅只对矩阵进⾏转置,则在撇号之前输⼊⼀个点号,即.’ . 对于实数矩阵A,A’和A.’是相同的.2. 矩阵元素操作运算 矩阵的运算既可以是如前所述的正常的整体运算,也可以是矩阵对应的元素依次进⾏标量运算,也叫数组运算,即把矩阵看做是⼆维数组. 对矩阵进⾏数组运算后得到的结果是⼀个与参与运算的矩阵维度相同的新矩阵,.这种元素间的算术运算的前提是参与运算的两个矩阵的维数要相同.对于加法和减法,元素操作运算和矩阵运算没有差别,⽽对于乘、除和幂运算符,相应的数组运算符是在⼀般的算术运算符前⾯加上⼀个点号,如+ - .* ./ .\ .^其中,A./B 是指A中的元素除以B中相应的元素,即A./B 的第i⾏第j列的元素(A./B)ij=A ij/B ij,⽽(A.\B)ij=B ij\A ij. 这些元素运算符的使⽤例⼦如下所⽰: 在Matlab中预定义的数学标准函数,如sin(x), abs(x)等都是基于对矩阵元素的运算. 如果函数f(x)是这样的⼀个函数,A是⼀个m×n的矩阵,其元素是a ij ,那么 f(A)也是⼀个m×n的矩阵,其第i⾏第j列的元素为f(a ij),例如其中pi是Matlab的预定义变量,值为π,i也是预定义变量,表⽰复数的单位.3. 常⽤的矩阵函数 矩阵函数是指参数为矩阵的函数,函数结果可能是⼀个标量值也可能是⼀个函数或者向量. Matlab中常⽤的矩阵函数包括: (1) rank(A): 求矩阵A的秩,即A中线性⽆关的⾏数或者线性⽆关的列数. (2) det(A): 求矩阵A的⾏列式值. (3) inv(A): 如果A是⼀个⾮奇异(nonsingular)矩阵,则inv(A)返回A的逆矩阵. 另外还可以⽤左除A\eye(n)或右除eye(n)/A来计算A的逆,且在Matlab中⽤左除或右除来计算逆所花的计算时间⽐⽤inv函数要少,也⽐inv具有更好的容错性(error-detection properties). (4) dot(x,y): 求同维度的向量x和y的内积/点积. 若A和B是两个具有相同维度的矩阵,则dot(A,B)是计算A和B对应列的内积,结果是⼀个⾏向量,这个⾏向量的列数等于A或B的列数. 例如 (5) cross(x,y): 计算同维度的向量x和y的叉积,结果是⼀个向量,其⽅向由右⼿定则决定,长度等于|x|*|y|sin<x,y>. 若A和B是两个具有相同维度的矩阵,则cross(A,B)是计算A和B对应列的叉积,结果是⼀个维度与A和B相等的矩阵. (6) kron(A,B): 得到矩阵A和B的张量积. (7) isequal(A,B): 如果矩阵A和B是相同的,即具有相同的维数和相同的内容,则返回1. (8) isreal(A): 判断A是否是⼀个实矩阵,如果是则返回1,否则返回0. (9) trace(A): 计算⽅阵A的迹,即对⾓线元素之和. (10) eig(A): 计算⽅阵A的特征值,结果是⼀个列向量,向量中元素的个数等于特征值的个数,即A的维度(A的⾏数或列数). (11) [U,D]=eig(A): 计算⽅阵A的特征值和特征向量,得到两个⽅阵U和D,其中D的对⾓线元素为A的特征值,U的列向量为A的特征向量(可能是未normalize的结果),例如 (12) length(V): 求向量V的长度,即V的元素数量. (14) size(A): 若A是m⾏n列的矩阵,则返回⾏向量[m,n].。

如何在Matlab中进行矩阵操作和计算

如何在Matlab中进行矩阵操作和计算

如何在Matlab中进行矩阵操作和计算在Matlab中进行矩阵操作和计算Matlab是一种用于数值计算和可视化的高级程序语言,广泛应用于科学计算、工程设计、统计分析等领域。

其中,矩阵操作和计算是Matlab的核心功能之一。

在本文中,我们将探讨如何利用Matlab进行矩阵操作和计算的一些基本技巧和高级功能。

一、创建矩阵在Matlab中创建矩阵非常简单。

我们可以使用特定的语法来定义一个矩阵,并赋予其初值。

例如,我们可以使用方括号将矩阵的元素排列成行或列的形式,用逗号或空格分隔开每个元素。

```MatlabA = [1, 2, 3; 4, 5, 6; 7, 8, 9]; % 创建一个3x3的矩阵B = [10 11 12; 13 14 15; 16 17 18]; % 创建一个3x3的矩阵```除此之外,我们还可以使用内置函数来创建特殊类型的矩阵,如单位矩阵、零矩阵、对角矩阵等。

```MatlabC = eye(3); % 创建一个3x3的单位矩阵D = zeros(2, 4); % 创建一个2x4的零矩阵E = diag([1 2 3]); % 创建一个对角矩阵,对角线元素分别为1、2、3```二、矩阵运算Matlab提供了丰富的矩阵运算函数,方便我们进行各种矩阵操作。

例如,我们可以使用加法、减法、乘法、除法等运算符对矩阵进行基本的运算。

```MatlabF = A + B; % 矩阵相加G = A - B; % 矩阵相减H = A * B; % 矩阵相乘I = A / B; % 矩阵相除```此外,Matlab还提供了求转置、求逆、求行列式等常用的矩阵运算函数,可以通过调用这些函数来完成相应的操作。

```MatlabJ = transpose(A); % 求矩阵A的转置K = inv(A); % 求矩阵A的逆矩阵L = det(A); % 求矩阵A的行列式```三、矩阵索引与切片在Matlab中,我们可以使用索引和切片操作来访问矩阵的特定元素或子矩阵。

Matlab矩阵的操作

Matlab矩阵的操作

>>F = 5*ones(3,3) F=
555 555 555
>>N = fix(10*rand(1,10)) N=
4 9 4 4 8 52 6 8 0
此外,常用的函数还有reshape(A,m,n),它在 矩阵总元素保持不变的前提下,将矩阵A重新 排成m×n的二维矩阵,其元素是以列的方式从 A中获得, A必须包含m×n个元素。
.
>>A = 16 3 5 10 96 4 15
2 13 11 8 7 12 14 1
>>reshape(A,2,8)
ans =
16 9 3 6 2 7 13 12
5 4 10 15 11 14 8 1
5. 建立大矩阵
大矩阵可由方括号中的小矩阵建立起来。 例如:
>>A=[1 2 3 ; 4 5 6 ; 7 8 9]; >>C=[A, eye(size(A)); ones(size(A)), A] C= 1 2 3 1 0 0
diag(X)
若 X 是矩阵,则 diag(X) 为 X 的主对角线向量 若 X 是向量,diag(X) 产生以 X 为主对角线的对角矩阵
tril(A)
提取一个矩阵的下三角部分
triu(A)
提取一个矩阵的上三角部分
rand(m,n) 产生 0~1 间均匀分布的随机矩阵 m=n 时简写为 rand(n)
(2) 装入 该文本文件: load mymatrix.dat 或者: load mymatrix.txt
(3) 创建一个变量名为mymatrix的矩阵
将以文本或二进制格式存储的数据读入 MATLAB 的另一种 方式是用 Import Wizard. File→Import Data

matlab矩阵的转置和矩阵的逆的运算

matlab矩阵的转置和矩阵的逆的运算

matlab矩阵的转置和矩阵的逆的运算矩阵是线性代数中的重要概念之一,它在各个领域都有广泛的应用。

在Matlab中,矩阵的转置和矩阵的逆是常用的运算操作。

本文将从理论和实际应用两个方面介绍矩阵的转置和矩阵的逆运算。

一、矩阵的转置矩阵的转置是将矩阵的行和列互换得到的新矩阵。

在Matlab中,使用单引号(')或者transpose()函数可以实现矩阵的转置。

假设我们有一个3行2列的矩阵A:A = [1, 2; 3, 4; 5, 6]使用单引号进行转置操作:A' = [1, 3, 5; 2, 4, 6]使用transpose()函数进行转置操作:transpose(A) = [1, 3, 5; 2, 4, 6]可以看出,矩阵A的转置结果是一个2行3列的矩阵,行列值互换。

矩阵的转置操作在实际应用中有很多场景。

例如,在图像处理中,将图像矩阵进行转置可以实现图像的旋转和镜像效果。

在数据分析中,转置操作可以用于矩阵的变换和特征提取。

在机器学习中,转置操作常用于矩阵的求导和梯度下降算法中。

二、矩阵的逆矩阵的逆是指对于一个n阶方阵A,存在一个n阶方阵B,使得A与B的乘积为单位矩阵I。

在Matlab中,可以使用inv()函数来计算矩阵的逆。

假设我们有一个2阶方阵A:A = [1, 2; 3, 4]使用inv()函数进行逆运算:inv(A) = [-2, 1; 1.5, -0.5]可以看出,矩阵A的逆矩阵是一个2阶方阵,与原矩阵相乘得到单位矩阵。

矩阵的逆运算在实际应用中也有很多场景。

例如,在线性方程组的求解中,可以通过求解系数矩阵的逆矩阵来得到方程组的解。

在图像处理中,逆矩阵可以用于图像的恢复和去噪。

在机器学习中,逆矩阵常用于求解最小二乘问题和正则化方法。

总结:矩阵的转置和矩阵的逆是线性代数中常用的运算操作,它们在Matlab中有简单的实现方式。

矩阵的转置是将矩阵的行和列互换,逆矩阵是指乘积为单位矩阵的逆元。

matlab 矩阵切片计算

matlab 矩阵切片计算

Matlab是一种用于数学计算、数据分析和可视化的高级编程语言和交互式环境。

在Matlab中,矩阵切片是一种常用的操作,用于从一个矩阵中选取部分元素进行计算。

本文将介绍如何使用Matlab进行矩阵切片计算,包括基本的切片操作、常见的计算方法以及一些实例应用。

二、矩阵切片基本操作在Matlab中,可以使用下标来对矩阵进行切片操作。

矩阵的下标是从1开始计数的,可以使用单个下标、向量下标或者逗号分隔的两个向量下标来对矩阵进行切片操作。

对于一个3x3的矩阵A,可以使用如下操作进行切片:1. 单个下标:A(1)表示选取第一个元素;2. 向量下标:A([1, 3])表示选取第1和第3行;3. 逗号分隔的两个向量下标:A(1:2, 2:3)表示选取第1到第2行和第2到第3列的子矩阵。

三、常见的计算方法1. 求和可以使用sum函数对矩阵的某个维度进行求和。

对一个3x3的矩阵A 进行行求和,可以使用sum(A, 2)。

可以使用mean函数对矩阵的某个维度进行求平均值。

对一个3x3的矩阵A进行列求平均值,可以使用mean(A, 1)。

3. 最大值和最小值可以使用max和min函数对矩阵的某个维度进行求最大值和最小值。

对一个3x3的矩阵A进行列求最大值,可以使用max(A, [], 1)。

4. 其他常见计算方法除了上面介绍的计算方法外,还可以使用Matlab提供的其他函数对矩阵进行计算,如标准差、方差、中位数等。

四、实例应用下面给出一个实例,演示如何使用Matlab进行矩阵切片计算。

假设有一个3x3的矩阵A,内容如下:A = [1, 2, 3;4, 5, 6;7, 8, 9];现在我们需要计算矩阵A的每一行的平均值。

可以使用如下代码进行计算:mean(A, 2)该代码将返回一个3x1的列向量,表示矩阵A每一行的平均值。

五、总结本文介绍了Matlab中矩阵切片的基本操作和常见的计算方法,并给出了一个实例应用。

矩阵切片是Matlab中非常常用的操作之一,掌握矩阵切片的计算方法可以帮助我们更加高效地进行数据处理和分析。

第8章Matlab基本操作知识2

第8章Matlab基本操作知识2

>>A(:,[1,3]) %按照顺序访问矩阵A的第一列和第三列 ans = 1 1 3 3 7 9 >>A(:,[3,1]) %按照顺序访问矩阵A的第三列和第一列 ans = 1 1 3 3 9 7
(2)、在原矩阵的基础上增加或删除一行或一列
例如,>>A=[1 2 1 5;3 3 3 6;7 8 9 10] A=1 2 1 5 3 3 3 6 7 8 9 10 >>A=[A;[1 2 3 4]] %在A中加入第四行(注意分号的用法) A=1 2 1 5 3 3 3 6 7 8 9 10 1 2 3 4 >>A=[A,[2 3 4 1]’] %在A中加入第五列(注意逗号的用法) A =1 2 1 5 2 3 3 3 6 3 7 8 9 10 4 1 2 3 4 1
第8章 MATLAB基本操作知识
一、 基础知识
二、 矩阵运算
三、求解线形方程组
四、 多项式运算
二、矩阵运算
1、矩阵的创建
(1)矩阵的创建 通常矩阵与数组的意义相同,都是指含有m行n列数字的矩 形结构。要用MATLAB来做矩阵运算,首先要将矩阵输入到 MATLAB中。下面就将介绍矩阵的输入方法。 例如,矩阵
>>A(:,2)=[ ] %删除矩阵A的第二列 A= 1 1 5 2 3 3 6 3 7 9 10 4 1 3 4 1 >>A(2,:)=[ ] %删除矩阵A的第二行 A= 1 1 5 2 7 9 10 4 1 3 4 1 >>A([2:3],[1,3:4]) %访问矩阵A的第2,3行和第1,3,4列 A= 7 10 4 1 4 1
(3)特殊矩阵 zeros(m,n) ones(m,n) eye(n) magic(n) diag(x) hilb(n) vander(x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
123 456 789
【例】矩阵的分行输入 A=[1,2,3
4,5,6 7,8,9] (以下是显示结果) A= 123 456 789
>>a=[1,4,6,8,10] %一维矩阵
>>a(3) % a 的第三个元素
ans = 6
»x =[1 2 3 4 5 6 7 8 4 5 6 7 8 9 10 11]; %二维 2x8 矩阵
6
7
% x 中大于 5 的元素
8 6 9 7 10 %给 x 的第四个元素重新给值
x= 12345678 4 100 6 7 8 9 10 11
» x(3)=[] % 删除第三个元素(不是二维数组) x=
Columns 1 through 12 1 4 100 3 6 4 7 5 8 6 9 7
Columns 13 through 15 10 8 11
1 2 3 【例】简单矩阵 A 4 5 6 的输入步骤。
7 8 9
(1)在键盘上输入下列内容:( 以 ; 区隔各列的元素) A = [1,2,3; 4,5,6; 7,8,9] (2)按【Enter】键,指令被执行。 (3)在指令执行后,MATLAB 指令窗中将显示以下结果: A=
以下将阵列的运算符号及其意义列出,除了加减符号外其余的阵列运算符号均须多加 . 符号。 阵列运算功能 (注意:一定要 多加 . 符号)
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
+ 加 - 减 .* 乘 ./ 左除 .\ 右除 .^ 次方 .' 转置 >> a=1:5; a-2 % 从阵列 a 减 2 ans = -1 0 1 2 3 >> 2*a-1 % 以 2 乘阵列 a 再减 1 ans = 13579 >> b=1:2:9; a+b % 阵列 a 加阵列 b ans = 2 5 8 11 14 >> a.*b % 阵列 a 及 b 中的元素与元素相乘 ans = 1 6 15 28 45 >> a./b % 阵列 a 及 b 中的元素与元素相除 ans = 1.0000 0.66667 0.6000 0.5714 0.5556 >> a.^2 % 阵列中的各个元素作二次方 ans = 1 4 9 16 25 >> 2.^a % 以 2 为底,以阵列中的各个元素为次方 ans = 2 4 8 16 32 >> b.^a % 以阵列 b 中的各个元素为底,以阵列 a 中的各个元素为次方 ans =
[] » zeros(2,2) %全为 0 的矩阵 ans =
00 00
» ones(3,3) %全为 1 的矩阵 ans = 111 111
111 » rand(2,4); %随机矩阵 »a=1:7, b=1:0.2:5; %更直接的方式 »c=[b a]; %可利用先前建立的阵列 a 及阵列 b ,组成新阵列
» x(3) % x 的第三个元素
ans =
2 » x([1 2 5]) % x 的第一、二、五个元素
ans =
>> x(2,3)
143
% x 的第二行第三列的元素
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
8 11
Columns 1 through 12 1 4 100 3 6 4 7 5 8 6 9 7
Columns 13 through 16 10 8 11 1
当元素很多的时候,则须采用以下的方式: » x=(1:2.5:120); % 以:起始值=1,增量值=2,终止值=120 的矩阵 » x=linspace(0,1,100); % 利用 linspace,以区隔起始值=0,终止值=1 之间,元素数目=100 »a=[] %空矩阵 a=
ans = 6
x(1:5)
% x 的第前五个元素
ans = 14253
» x(10:end) % x 的第十个元素后的元素
ans = 8 9 7 10 8 11
» x(10:-1:2) % x 的第十个元素和第二个元素的倒排
ans =
857463524
» x(find(x>5))
ans =
» x(4)=100
» x(16)=1 % 加入第十六个元素 x=
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,通力根1保过据护管生高线产中敷工资设艺料技高试术中卷0资不配料仅置试可技卷以术要解是求决指,吊机对顶组电层在气配进设置行备不继进规电行范保空高护载中高与资中带料资负试料荷卷试下问卷高题总中2体2资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况1卷中下安,与全要过,加度并强工且看作尽护下可1都关能可于地以管缩正路小常高故工中障作资高;料中对试资于卷料继连试电接卷保管破护口坏进处范行理围整高,核中或对资者定料对值试某,卷些审弯异核扁常与度高校固中对定资图盒料纸位试,置卷编.工保写况护复进层杂行防设自腐备动跨与处接装理地置,线高尤弯中其曲资要半料避径试免标卷错高调误等试高,方中要案资求,料技编试术写5、卷交重电保底要气护。设设装管备备置线4高、调动敷中电试作设资气高,技料课中并3术试、件资且中卷管中料拒包试路调试绝含验敷试卷动线方设技作槽案技术,、以术来管及避架系免等统不多启必项动要方高式案中,;资为对料解整试决套卷高启突中动然语过停文程机电中。气高因课中此件资,中料电管试力壁卷高薄电中、气资接设料口备试不进卷严行保等调护问试装题工置,作调合并试理且技利进术用行,管过要线关求敷运电设行力技高保术中护。资装线料置缆试做敷卷到设技准原术确则指灵:导活在。。分对对线于于盒调差处试动,过保当程护不中装同高置电中高压资中回料资路试料交卷试叉技卷时术调,问试应题技采,术用作是金为指属调发隔试电板人机进员一行,变隔需压开要器处在组理事在;前发同掌生一握内线图部槽 纸故内资障,料时强、,电设需回备要路制进须造行同厂外时家部切出电断具源习高高题中中电资资源料料,试试线卷卷缆试切敷验除设报从完告而毕与采,相用要关高进技中行术资检资料查料试和,卷检并主测且要处了保理解护。现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
相关文档
最新文档