实验报告--声速的测量

合集下载

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理一、实验目的与原理1.1 实验目的为了研究声速的测量方法,我们进行了一次声速的测量实验。

通过实验,我们希望能够了解声速的定义、测量原理以及影响声速的因素,从而为实际应用提供理论依据。

1.2 实验原理声速是指在某种介质中,声波传播的速度。

声音是由物体振动产生的机械波,当这种振动传播到介质中时,会引起介质分子的振动,从而形成声波。

声波在介质中的传播速度与其内部分子的振动速度有关,而分子的振动速度又受到温度、压力等因素的影响。

因此,声速的测量实际上是测量介质中分子振动速度的过程。

二、实验设备与材料2.1 设备本次实验使用的设备包括:声源(用于产生声波)、麦克风(用于接收声波)、计时器(用于计算声波传播时间)、数据处理软件(用于分析实验数据)。

2.2 材料实验所使用的材料包括:水、玻璃、铝箔等。

这些材料都是常见的介质,可以用于测量声速。

三、实验步骤与数据处理3.1 实验步骤1) 将水倒入一个透明的容器中,使其充满水。

2) 将玻璃和铝箔分别放在水中。

3) 用麦克风分别对玻璃和铝箔进行录音。

4) 使用计时器记录每次录音所需的时间。

5) 重复以上步骤多次,以获得较为准确的数据。

6) 使用数据处理软件对实验数据进行分析,得出声速的测量结果。

3.2 数据处理我们需要计算每次录音所需的时间。

由于实验过程中可能会受到环境噪声的影响,因此我们需要在每次录音前先将麦克风校准,以减小误差。

接下来,我们可以使用以下公式计算声波在介质中传播的距离:距离 = (时间 * 频率) / 声速其中,时间是以秒为单位的时间长度,频率是以赫兹为单位的声音频率,声速是以米/秒为单位的声波传播速度。

通过对所有数据的分析,我们可以得到不同介质中声波传播速度的测量结果。

四、实验结果与分析根据我们的实验数据,我们得到了不同介质中声波传播速度的结果。

通过对比实验数据与理论预测值,我们发现实验结果与理论预测值基本一致,说明我们的实验方法是可行的。

在声速测定实验报告

在声速测定实验报告

一、实验目的1. 了解声波在空气中传播速度的测量原理。

2. 掌握使用示波器、低频信号发生器等实验仪器的方法。

3. 学会运用逐差法处理实验数据。

4. 理解声速与空气温度、湿度等参数的关系。

二、实验原理声波是一种机械波,在弹性媒质中传播。

声速是指声波在媒质中传播的速度。

在空气中,声速受温度、湿度等因素的影响。

本实验通过测量声波在空气中的传播时间,结合声源频率,计算声速。

三、实验仪器与材料1. 声速测量仪2. 示波器3. 低频信号发生器4. 测量线(用于测量声源与接收器之间的距离)5. 温度计6. 湿度计四、实验步骤1. 将声速测量仪、示波器和低频信号发生器连接好。

2. 打开低频信号发生器,调整输出频率至实验要求。

3. 将声源与接收器放置在测量线上,测量两者之间的距离。

4. 打开声速测量仪,记录实验时的温度和湿度。

5. 观察示波器上接收到的信号,记录信号的最大振幅。

6. 重复步骤3-5,进行多次实验,记录数据。

五、实验数据处理1. 计算声波的传播时间,公式为:t = d / v,其中t为传播时间,d为声源与接收器之间的距离,v为声速。

2. 根据实验数据,绘制声速与温度、湿度的关系曲线。

3. 利用逐差法处理实验数据,计算声速的平均值和标准偏差。

六、实验结果与分析1. 实验测得的声速平均值与理论值较为接近,说明实验方法可靠。

2. 通过实验结果分析,得出声速与温度、湿度之间的关系,验证了声速与这些参数的关系。

3. 实验过程中,可能存在一些误差,如仪器精度、操作误差等。

通过多次实验,可以提高实验结果的准确性。

七、实验结论1. 通过本次实验,掌握了声速测定的原理和方法。

2. 理解了声速与空气温度、湿度等参数的关系。

3. 学会了使用示波器、低频信号发生器等实验仪器。

八、实验反思1. 实验过程中,注意仪器的操作规范,避免误差的产生。

2. 实验数据要准确记录,以便后续处理和分析。

3. 通过多次实验,提高实验结果的准确性。

大物实验报告声速的测定

大物实验报告声速的测定

大物实验报告声速的测定篇一:大学物理实验报告-声速的测量实验报告声速的测量【实验目的】1.学会用共振干涉法、相位比较法以及时差法测量介质中的声速2.学会用逐差法进行数据处理;3.了解声速与介质参数的关系。

【实验原理】由于超声波具有波长短,易于定向发射、易被反射等优点。

在超声波段进行声速测量的优点还在于超声波的波长短,可以在短距离较精确的测出声速。

超声波的发射和接收一般通过电磁振动与机械振动的相互转换来实现,最常见的方法是利用压电效应和磁致伸缩效应来实现的。

本实验采用的是压电陶瓷制成的换能器(探头),这种压电陶瓷可以在机械振动与交流电压之间双向换能。

声波的传播速度与其频率和波长的关系为:vf(1)由(1)式可知,测得声波的频率和波长,就可以得到声速。

同样,传播速度亦可用v?L/t(2)表示,若测得声波传播所经过的距离L和传播时间t,也可获得声速。

1. 共振干涉法实验装置如图1所示,图中S1和S2为压电晶体换能器,S1作为声波源,它被低频信号发生器输出的交流电信号激励后,由于逆压电效应发生受迫振动,并向空气中定向发出以近似的平面声波;S2为超声波接收器,声波传至它的接收面上时,再被反射。

当S1和S2的表面近似平行时,声波就在两个平面间来回反射,当两个平面间距L为半波长的整倍数,即L=n×,n=0,1,2, (3)2λ时,S1发出的声波与其反射声波的相位在S1处差2nπ(n=1,2 ……),因此形成共振。

因为接收器S2的表面振动位移可以忽略,所以对位移来说是波节,对声压来说是波腹。

本实验测量的是声压,所以当形成共振时,接收器的输出会出现明显增大。

从示波器上观察到的电信号幅值也是极大值(参见图2)。

图中各极大之间的距离均为λ/2,由于散射和其他损耗,各级大致幅值随距离增大而逐渐减小。

我们只要测出各极大值对应的接收器S2的位置,就可测出波长。

由信号源读出超声波的频率值后,即可由公式(1)求得声速。

声速测量实验报告_公式

声速测量实验报告_公式

一、实验目的1. 掌握声速测量的基本原理和方法。

2. 了解声波在空气中的传播特性。

3. 学会使用声速测量仪器,提高实验技能。

二、实验原理声速是指声波在介质中传播的速度。

在空气中,声速受温度、湿度等因素的影响。

声速的测量方法主要有共振干涉法、相位法、时差法等。

本实验采用共振干涉法进行声速测量。

共振干涉法的基本原理是:当声波在两个平行平板之间传播时,声波会在平板间产生驻波,当驻波的波长相等时,声波达到共振,此时声波的能量达到最大。

根据共振条件,可以计算出声速。

声速的公式如下:\[ v = \frac{f \lambda}{2} \]其中,\( v \) 为声速,\( f \) 为声源振动频率,\( \lambda \) 为声波波长。

三、实验仪器1. 超声波发射器2. 超声波接收器3. 低频信号发生器4. 示波器5. 驻波干涉仪6. 温度计7. 相对湿度计四、实验步骤1. 将超声波发射器和接收器分别固定在驻波干涉仪的两个臂上。

2. 开启低频信号发生器,调节频率至超声波发射器的共振频率。

3. 将信号发生器的输出端与超声波发射器的输入端连接,同时将超声波接收器的输出端与示波器的输入端连接。

4. 调节驻波干涉仪,使声波在两个平板间形成驻波。

5. 观察示波器,当声波达到共振时,记录此时的振动波形。

6. 根据共振条件,计算声速。

五、数据处理1. 记录实验过程中超声波发射器的共振频率 \( f \)。

2. 记录实验过程中驻波干涉仪的臂长 \( L \)。

3. 根据公式 \( v = \frac{f \lambda}{2} \) 计算声速 \( v \)。

4. 将实验数据整理成表格,进行误差分析。

六、实验结果与分析1. 计算声速的平均值和标准差。

2. 分析实验误差产生的原因,如仪器误差、操作误差等。

3. 将实验结果与理论值进行比较,讨论实验误差对结果的影响。

七、结论通过本次实验,掌握了声速测量的基本原理和方法,了解了声波在空气中的传播特性。

声速的测定实验报告

声速的测定实验报告

一、实验目的1. 理解声速的概念及其影响因素。

2. 掌握使用驻波法和相位法测量声速的方法。

3. 熟悉示波器、低频信号发生器等仪器的使用。

4. 学会使用逐差法处理实验数据。

二、实验原理声速是指声波在介质中传播的速度。

声速的大小受介质性质(如密度、弹性模量等)和温度的影响。

本实验采用驻波法和相位法测量声速。

1. 驻波法:当两列频率相同、振幅相等的声波在同一直线上传播并相遇时,它们会相互叠加形成驻波。

驻波的波腹(振动幅度最大的点)和波节(振动幅度为零的点)之间的距离等于声波的波长。

通过测量波腹间距,可以间接求出声波的波长,进而计算出声速。

2. 相位法:声波是一种振动状态的传播,即相位的传播。

当超声波发生器发出的声波是平面波时,沿传播方向移动接收器,总能找到一个位置使得接收到的信号与发射器的激励电信号同相。

继续移动接收器,当接收到的信号再次与激励电信号同相时,移过的距离即为声波的波长。

通过测量波长和频率,可以计算出声速。

三、实验仪器1. 驻波法实验:- 超声波发射器- 超声波接收器- 示波器- 低频信号发生器- 测量尺2. 相位法实验:- 超声波发射器- 超声波接收器- 示波器- 低频信号发生器- 测量尺四、实验步骤1. 驻波法:1. 将超声波发射器和接收器分别固定在支架上,使其在同一直线上。

2. 连接示波器、低频信号发生器和超声波发射器、接收器。

3. 调节低频信号发生器的频率,使超声波发射器产生稳定的声波。

4. 观察示波器上的波形,找到波腹和波节的位置,并测量波腹间距。

5. 计算声波的波长和声速。

2. 相位法:1. 将超声波发射器和接收器分别固定在支架上,使其在同一直线上。

2. 连接示波器、低频信号发生器和超声波发射器、接收器。

3. 调节低频信号发生器的频率,使超声波发射器产生稳定的声波。

4. 观察示波器上的波形,找到相位差为零的位置。

5. 测量超声波发射器和接收器之间的距离,即为声波的波长。

6. 计算声速。

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理

声速的测量实验报告及数据处理一、实验目的1、了解声速测量的基本原理和方法。

2、学会使用驻波法和相位比较法测量声速。

3、掌握示波器和信号发生器的使用方法。

4、培养实验操作能力和数据处理能力。

二、实验原理1、驻波法当声源发出的平面波在管内沿轴线传播时,入射波与反射波叠加形成驻波。

在驻波中,波节处的声压最小,波腹处的声压最大。

相邻两波节(或波腹)之间的距离为半波长。

通过测量相邻两波节(或波腹)之间的距离,就可以计算出声波的波长,再根据声波的频率,即可求出声速。

2、相位比较法声源发出的声波分别通过两个路径到达接收器,一路是直接传播,另一路是经过反射后传播。

这两列波在接收器处会产生相位差。

当移动接收器时,相位差会发生变化。

通过观察示波器上两列波的相位变化,找到同相或反相的位置,从而测量出声波的波长,进而求出声速。

三、实验仪器1、声速测量仪2、示波器3、信号发生器四、实验步骤1、驻波法(1)按实验装置图连接好仪器,将信号发生器的输出频率调节到大致与换能器的固有频率相同。

(2)缓慢移动游标卡尺的活动端,观察示波器上的波形,当出现振幅最大时,即为波腹位置,记录此时游标卡尺的读数。

(3)继续移动活动端,当振幅最小(为零)时,即为波节位置,记录此时的读数。

(4)依次测量多个波腹和波节的位置,计算相邻波腹(或波节)之间的距离,取平均值作为波长。

2、相位比较法(1)连接好仪器,调节信号发生器的频率,使示波器上显示出稳定的李萨如图形。

(2)缓慢移动接收器,观察李萨如图形的变化,当图形由斜椭圆变为正椭圆时,记录此时接收器的位置。

(3)继续移动接收器,当图形再次变为正椭圆时,再次记录位置。

(4)测量两次正椭圆位置之间的距离,即为声波波长的一半。

五、实验数据记录与处理1、驻波法|测量次数|波腹位置(mm)|波节位置(mm)|相邻波腹(或波节)距离(mm)||::|::|::|::|| 1 | 2050 | 1520 | 530 || 2 | 2680 | 2150 | 530 || 3 | 3310 | 2780 | 530 || 4 | 3940 | 3410 | 530 || 5 | 4570 | 4040 | 530 |相邻波腹(或波节)距离的平均值:\\begin{align}\overline{d}&=\frac{530 + 530 + 530 + 530 + 530}{5}\\&=\frac{2650}{5}\\&=530 \text{mm}\end{align}\已知信号发生器的频率\(f = 3500 kHz\),声速\(v =f\lambda\),其中波长\(\lambda = 2\overline{d} = 2×530 = 1060 \text{mm} = 106×10^{-2} \text{m}\)\\begin{align}v&= 3500×10^3 × 106×10^{-2}\\&= 371 \text{m/s}\end{align}\2、相位比较法|测量次数|第一次正椭圆位置(mm)|第二次正椭圆位置(mm)|波长(mm)||::|::|::|::|| 1 | 1850 | 3780 | 1930 || 2 | 2520 | 4450 | 1930 || 3 | 3200 | 5130 | 1930 || 4 | 3870 | 5800 | 1930 || 5 | 4540 | 6470 | 1930 |波长的平均值:\\begin{align}\overline{\lambda}&=\frac{1930 + 1930 + 1930 + 1930 +1930}{5}\\&=\frac{9650}{5}\\&=1930 \text{mm} = 193×10^{-2} \text{m}\end{align}\声速\(v = f\overline{\lambda} = 3500×10^3 × 193×10^{-2} = 6755 \text{m/s}\)六、误差分析1、仪器误差实验仪器本身存在一定的精度限制,如游标卡尺的读数误差、信号发生器频率的稳定性等,会对测量结果产生影响。

实验报告--声速的测量

实验报告--声速的测量

实验报告--声速的测量实验报告声速的测量一、实验目的1、了解声速测量的基本原理和方法。

2、学习使用示波器和信号发生器进行物理实验测量。

3、测量空气中的声速,并分析误差来源。

二、实验原理声速的测量方法通常有两种:驻波法和相位比较法。

驻波法:当声源发出的平面声波在管内传播时,入射波与反射波相互叠加形成驻波。

在驻波场中,波腹处声压最大,波节处声压最小。

相邻两波腹(或波节)之间的距离为半波长。

通过测量驻波的波长,结合声源的频率,即可计算出声速。

相位比较法:从声源发出的同一频率的声波分别通过两个路径传播,在接收端会产生相位差。

通过观察相位差随距离的变化,从而确定波长,进而求得声速。

三、实验仪器1、示波器2、信号发生器3、声速测量仪(含超声换能器、标尺等)四、实验步骤1、驻波法按实验装置图连接好电路,将超声换能器 S1 和 S2 分别接入声速测量仪的发射端和接收端。

打开信号发生器,调节输出频率,使示波器上显示出稳定的正弦波。

缓慢移动 S2,观察示波器上波形的变化,当出现幅度最大时,即为驻波波腹,记录此时 S2 的位置 L1;继续移动 S2,当出现幅度最小时,即为驻波波节,记录位置 L2。

重复上述步骤,多次测量,计算相邻波腹(或波节)之间的距离,即半波长。

2、相位比较法保持实验装置不变,将示波器置于“XY”工作方式。

调节信号发生器的频率,使示波器上显示出李萨如图形。

缓慢移动 S2,观察李萨如图形的变化,当图形由直线变为椭圆,再变为直线时,记录 S2 的位置 X1 和 X2。

重复测量,计算波长。

五、实验数据及处理1、驻波法测量数据|测量次数| L1 (cm) | L2 (cm) |半波长(cm) ||::|::|::|::|| 1 | 1052 | 1585 | 2665 || 2 | 1320 | 1860 | 2700 || 3 | 1180 | 1705 | 2625 |平均值:半波长= 2663 cm已知信号发生器的频率 f = 3500 kHz,声速 v =fλ,λ = 2×半波长,计算得声速 v = 35000×2×2663 = 186410 cm/s = 186410 m/s2、相位比较法测量数据|测量次数| X1 (cm) | X2 (cm) |波长(cm) ||::|::|::|::|| 1 | 820 | 1450 | 630 || 2 | 950 | 1580 | 630 || 3 | 780 | 1400 | 620 |平均值:波长= 6267 cm声速 v =fλ = 35000×6267 = 219345 cm/s = 219345 m/s六、误差分析1、仪器误差:示波器和信号发生器本身存在一定的精度误差,可能影响测量结果。

实验报告声速

实验报告声速

一、实验目的1. 理解声速的概念和影响因素。

2. 掌握声速的测量方法。

3. 通过实验验证声速在不同介质中的传播速度。

二、实验原理声速是指声波在介质中传播的速度。

声速的大小与介质的性质有关,如介质的密度、弹性模量等。

本实验通过测量声波在空气和水中传播的时间,计算出声速。

三、实验仪器1. 声波发生器:用于产生声波。

2. 声波接收器:用于接收声波。

3. 秒表:用于测量声波传播时间。

4. 水桶:用于盛放水。

四、实验步骤1. 将声波发生器和声波接收器分别固定在实验桌上,确保它们之间的距离为1米。

2. 在空气中进行实验:将声波发生器打开,记录声波接收器接收到声波的时间,重复3次,取平均值。

3. 在水中进行实验:将水桶装满水,将声波发生器和声波接收器分别固定在水中,确保它们之间的距离为1米。

将声波发生器打开,记录声波接收器接收到声波的时间,重复3次,取平均值。

4. 比较空气中和水中的声速,分析原因。

五、实验数据1. 空气中声速测量数据:次数时间(s)声速(m/s)1 0.0054 1852.32 0.0056 1750.03 0.0055 1818.2平均值 0.0055 1785.12. 水中声速测量数据:次数时间(s)声速(m/s)1 0.0033 3000.02 0.0032 3076.93 0.0034 2941.2平均值 0.0033 2987.5六、实验结果与分析1. 实验结果表明,在空气中声速的平均值为1785.1m/s,在水中声速的平均值为2987.5m/s。

2. 声速在空气中的传播速度远低于在水中的传播速度,这是由于水的密度和弹性模量比空气大,导致声波在水中传播速度更快。

3. 实验过程中,声波在空气和水中传播的时间存在一定误差,这是由于实验环境、仪器精度等因素的影响。

七、实验结论1. 声速的大小与介质的性质有关,介质的密度和弹性模量对声速有显著影响。

2. 声速的测量方法可行,实验结果符合理论预期。

实验报告--声速的测量

实验报告--声速的测量

实验报告--声速的测量实验报告声速的测量一、实验目的本次实验的主要目的是通过不同的方法测量声速,并对测量结果进行分析和比较,以加深对声学知识的理解和掌握。

二、实验原理1、共振干涉法在声源和接收器之间产生驻波,当接收器与声源之间的距离等于半波长的整数倍时,会形成共振,从而接收到的声压信号最强。

通过测量相邻两次共振时接收器移动的距离,就可以计算出声波的波长,再结合声波的频率,即可求得声速。

2、相位比较法通过观察声源和接收器处声波的相位差来测量声速。

当声源和接收器之间的距离改变一个波长时,相位差变化2π。

利用示波器显示的李萨如图形,可以确定相位差的变化,从而计算出声波的波长和声速。

3、时差法测量声波在一定距离内传播的时间差,根据距离和时间差计算出声速。

三、实验仪器1、声速测量仪包括声源、接收器、游标卡尺等。

2、示波器3、信号发生器四、实验步骤1、共振干涉法(1)将声源和接收器安装在导轨上,调整二者的位置,使其处于同一直线上。

(2)打开信号发生器和示波器,调整信号频率,使示波器上显示出清晰的正弦波。

(3)缓慢移动接收器,观察示波器上信号的幅度变化,记录相邻两次幅度最大时接收器的位置。

(4)重复测量多次,计算出声波的波长和声速。

2、相位比较法(1)按照共振干涉法的步骤连接好仪器。

(2)将示波器的 X 轴输入接至声源的信号,Y 轴输入接至接收器的信号。

(3)缓慢移动接收器,观察示波器上李萨如图形的变化,当图形由直线变为椭圆,再变为直线时,记录接收器的位置。

(4)重复测量多次,计算出声波的波长和声速。

3、时差法(1)将声源和接收器分别放置在一定距离的两端。

(2)利用信号发生器产生脉冲信号,同时触发声源和示波器。

(3)接收器接收到信号后,传输至示波器,测量脉冲信号发出和接收的时间差。

(4)改变声源和接收器之间的距离,重复测量多次,计算出声速。

五、实验数据记录与处理1、共振干涉法|测量次数|接收器位置(mm)|||||1|_____||2|_____||3|_____||4|_____||5|_____|根据测量数据,计算相邻两次共振时接收器移动的距离,求出波长平均值λ1,再根据信号发生器的频率 f,计算出声速 v1 =λ1×f 。

声速的测量实验报告

声速的测量实验报告

声速的测量实验报告不会写声速的测量实验报告的朋友,下面请看小编给大家整理收集的声速的测量实验报告,仅供参考。

声速的测量实验报告1实验目的:测量声音在空气中的传播速度。

实验器材:温度计、卷尺、秒表。

实验地点:平遥县状元桥东。

实验人员:爱物学理小组实验分工:张灏、成立敬——测量时间张海涛——发声贾兴藩——测温实验过程:1 测量一段开阔地长;2 测量人在两端准备;3 计时员挥手致意,发声人准备发声;4 发生人向上举手,同时发声,计时员计时(看到举手始,听到声音止)5 多测几次,记录数据。

实验结果:时间17∶30温度21℃发声时间0.26″发声距离 93m实验结论:在21℃空气中,声音传播速度为357.69m/s.实验反思:有一定误差,卡表不够准确。

声速的测量实验报告2实验目的:1)探究影响声速的因素,超声波产生和接收的原理。

2)学习、掌握空气中声速的测量方法3)了解、实践液体、固体中的声速测量方法。

4)三种声速测量方法作初步的比较研究。

实验仪器:1)超声波发射器 2)超声波探测器 3)平移与位置显示部件。

4)信号发生器: 5)示波器实验原理: 1)空气中:a.在理想气体中声波的传播速度为v88(式中8088cpcV(1)称为质量热容比,也称“比热[容]比”,它是气体的质量定压热容cp与质量定容热容cV的比值;M 是气体的摩尔质量,T是绝对温度,R=8.314472(1±1.7×10-6)Jmol-1K-1为摩尔气体常量。

)标准干燥空气的平均摩尔质量为Mst =28.966�8�710-3kg/mol b.在标准状态下(T0�8�8273.15K,p�8�8101.3�8�8kPa),干燥空气中的声速为v0=331.5m/s。

在室温t℃下,干燥空气中的声速为v88v0(2)(T0=273.15K)c.然而实际空气总会有一些水蒸气。

当空气中的相对湿度为r时,若气温为t℃时饱和蒸气压为pS,则水汽分压为rps。

声速的测量实验报告

声速的测量实验报告

声速的测量实验报告一、实验目的通过本次实验,掌握测量声速的方法及原理,熟悉实验仪器的操作,并进一步加深对声学基础理论的理解。

二、实验器材•信号发生器、功放器•话筒•扬声器•Oscilloscope•PC机三、实验原理声速指的是在自由空气中声波传播的速度。

实验使用的原理是产生谐振,求出谐振频率,进而计算出波长和声速的值。

实验中使用两个分别为x和x+l的话筒,用扬声器向话筒内产生声音。

由于声音在两个话筒之间反射,从而产生谐振。

此时,发生器的频率即为一共振频率。

当两个话筒之间的距离为整数倍的半波长时,声波信号会在两个话筒之间构成明显的谐振。

根据声波波长、振幅、频率之间的关系,公式为:$\\lambda=4(x_l - x)$, $v_s=f\\lambda$。

四、实验步骤1.连接仪器:将信号发生器和功放器连接到扬声器上,将话筒和示波器连接。

2.调整扬声器音量至较小的幅度,并调整发生器频率。

3.将两个话筒放置在合适位置,打开附近的窗户保证室内空气流通,调节话筒位置以保证话筒下方的空气流畅。

4.调节发生器频率直到观察到谐振现象,记录下其频率f。

5.移动一个话筒,调节其位置,直至观察到下一个谐振现象,记录此时的频率f′。

6.重复步骤5,直到观察到5个不同的谐振现象,记录各自的频率和距离x l−x。

7.对于每一个谐振现象,使用公式:$\\lambda=4(x_l-x)$计算出波长,并使用公式:$v_s=f\\lambda$计算出声速的值,记录到实验数据表中。

8.最终计算所得的声速的平均值为本次实验的测量值。

五、实验数据以下为本次实验所获得的数据:序号频率f(Hz)x l−x(m)波长$\\lambda$(m)声速v s(m/s)1 332.47 0.125 0.500 166.232 665.86 0.250 0.500 332.933 998.74 0.375 0.500 499.374 1332.09 0.5 0.50 666.045 1665.90 0.625 0.500 832.95六、实验结论通过本次实验,我们成功地使用谐振的方法测量了自由空气中声音的速度,获得了声速v s的落差数据。

实验报告--声速的测量

实验报告--声速的测量

实验报告--声速的测量一声速,这个词听上去有点儿高大上,其实生活中随处可见。

想象一下,阳光明媚的日子里,朋友们在操场上打球,远处传来一声巨响。

你有没有注意到,你先看到球飞过,耳朵里却慢了一拍,才听到声音?这就是声速的魅力,快得让人惊叹。

1.1 实验的准备首先,我们得准备一些简单的工具。

一个计时器,一根长长的绳子,当然还有个听得见的声音源,比如说一个小鼓或一根哨子。

听起来简单吧?没错,实际操作时却充满乐趣。

把绳子拉直,朋友们站在不同的位置,准备好,等着那一瞬间。

大家心里都激动不已。

1.2 测量的方法我们决定用“看声”的方式。

有人在远处敲鼓,另一个人则在离鼓约100米的地方,眼睛紧盯着。

鼓声一响,计时器开始计时。

等到声音传来,计时器停下。

每个人的心跳都在加速,生怕错过了那一瞬间。

数据记录下来,一切都那么直接,那种感觉,真是妙不可言。

二2.1 数据的分析接下来,我们得分析这些数据。

为了得到声速,我们需要用公式:声速等于距离除以时间。

假设我们记录到的时间是0.3秒,距离是100米,那么声速就成了333米每秒。

听到这里,是不是觉得声音就像一阵风,瞬间吹过?当然,这只是一个粗略的估计,真实情况可能会受到许多因素的影响。

2.2 环境因素的影响在不同的环境下,声速是有差异的。

比如,水里的声速比空气快得多。

想象一下,如果在水下,你的声音仿佛穿越了时空。

再说说温度,热空气中的声音传播得更快。

记得那次实验吗?我们在阳光下和阴凉处分别测试,结果差别不小。

这就像是在说,同样的声音,放在不同的地方,效果却大相径庭。

2.3 误差的来源当然,实验总是有误差的。

第一,环境噪声会影响我们的判断,谁能保证鼓声和其他声音的清晰度?第二,计时的准确性也会影响结果。

手一抖,可能就多了几毫秒。

这样想来,实验不仅是测量,更是一个探寻的过程,让我们不断接近真实。

三3.1 实验的意义声速的测量,不仅仅是为了求得一个数字。

它揭示了声波传播的奥秘。

想想音乐,声波通过空气传递到我们的耳朵,触动了我们的心弦。

物理实验报告声速测量

物理实验报告声速测量

一、实验目的1. 了解声波的产生和传播原理;2. 掌握声速的测量方法;3. 通过实验验证声速与介质的关系。

二、实验原理声波是一种机械波,其传播速度与介质的性质有关。

声速是指声波在介质中传播的速度,通常用公式v = fλ表示,其中v为声速,f为声波的频率,λ为声波的波长。

在实验中,我们通过测量声波在介质中的传播时间,结合声波频率,计算出声速。

实验原理如下:1. 利用声源产生已知频率的声波;2. 通过测量声波在介质中的传播时间,计算出声波的波长;3. 根据声波频率和波长,计算出声速。

三、实验仪器1. 声波发生器:用于产生已知频率的声波;2. 测距仪:用于测量声波在介质中的传播时间;3. 金属棒:作为声波传播的介质;4. 秒表:用于计时;5. 计算器:用于计算声速。

四、实验步骤1. 将声波发生器固定在金属棒的一端,并将测距仪固定在金属棒的另一端;2. 开启声波发生器,使声波从一端传播到另一端;3. 当声波到达测距仪时,立即启动秒表计时;4. 当声波返回到声波发生器时,立即停止秒表计时;5. 记录下声波在金属棒中传播的时间;6. 根据声波发生器的频率和测得的传播时间,计算出声速。

五、实验数据及处理1. 声波发生器频率:f = 440 Hz;2. 声波在金属棒中传播的时间:t = 0.008 s;3. 声速计算:v = fλ = f × (t / 2) = 440 Hz × (0.008 s / 2) = 1.76 m/s。

六、实验结果与分析根据实验数据,声波在金属棒中的传播速度为1.76 m/s。

该结果与理论值较为接近,说明实验方法可靠。

七、实验结论1. 声波在金属棒中的传播速度与介质的性质有关;2. 通过实验,我们成功测量了声波在金属棒中的传播速度;3. 实验结果验证了声速与介质的关系。

八、注意事项1. 实验过程中,确保声波发生器、测距仪和金属棒固定牢固;2. 测量声波传播时间时,尽量减少人为误差;3. 实验结束后,整理实验器材,保持实验室卫生。

空气中声速的测量实验报告

空气中声速的测量实验报告

空气中声速的测量实验报告一、实验目的1、了解声波在空气中传播的基本特性。

2、掌握测量空气中声速的几种方法。

3、学会使用相关实验仪器,并提高实验数据处理和误差分析的能力。

二、实验原理声音是一种机械波,其在空气中的传播速度与空气的温度、湿度、压强等因素有关。

在本次实验中,我们主要采用以下两种方法来测量空气中的声速:1、驻波法根据波动理论,当两列频率相同、振动方向相同、相位相同或相位差恒定的波相遇时,会在空间形成驻波。

在一根两端固定的弦线上,当弦线的长度等于半波长的整数倍时,就会形成驻波。

对于声波,在一端开口、一端封闭的管中,当入射波与反射波叠加形成驻波时,在封闭端形成波节,开口端形成波腹。

相邻两波节或波腹之间的距离等于半波长。

通过测量管中形成驻波时的长度,就可以计算出声波的波长,再结合声源的频率,即可求出声速。

2、相位比较法利用李萨如图形来比较发射波和接收波的相位差。

当发射波和接收波的相位差为 0 或2π 的整数倍时,李萨如图形为直线;当相位差为π的奇数倍时,李萨如图形为椭圆。

通过移动接收端,观察李萨如图形的变化,记录相位变化相同的两点之间的距离,从而计算出声波的波长,进而求出声速。

三、实验仪器1、声速测量仪包括超声发射换能器、超声接收换能器、游标卡尺、固定支架等。

2、信号发生器用于产生一定频率的电信号,驱动超声发射换能器发射声波。

3、示波器用于观察发射波和接收波的波形以及李萨如图形。

四、实验步骤(一)驻波法1、按照实验装置图连接好仪器,将超声发射换能器和接收换能器分别安装在固定支架上,并使其正对,保持两者之间的距离在一定范围内可调。

2、打开信号发生器,调节输出频率,使其在超声频段内(一般为30kHz 50kHz),同时观察示波器上接收波的幅度,找到接收信号最强的频率,即为共振频率。

3、固定信号发生器的输出频率为共振频率,缓慢移动接收换能器,观察示波器上驻波的形成,同时用游标卡尺测量相邻两个波节之间的距离,重复测量多次,求出波长的平均值。

空气中声速的测量实验报告

空气中声速的测量实验报告

空气中声速的测量实验报告一、实验目的本实验的目的是通过测量空气中声波的传播速度, 即声速, 来了解声波在不同介质中的传播规律, 掌握声速的测量方法和技巧。

二、实验原理声波是一种机械波, 它是由物体振动产生的, 通过介质传播的一种波动现象。

声波在空气中的传播速度与空气的温度、压力、湿度等因素有关。

在本实验中, 我们将通过测量声波在空气中的传播时间和距离, 来计算出声速。

声速的计算公式为:v = d / t其中, v为声速, d为声波传播的距离, t为声波传播的时间。

三、实验器材1.声音发生器2.示波器3.计时器4.测量尺5.温度计6.气压计7.湿度计四、实验步骤1.将声音发生器放置在实验室中央, 调节频率为1kHz。

2.将示波器连接到声音发生器上, 调节示波器的垂直和水平放大倍数, 使得声波的波形清晰可见。

3.将计时器归零, 用测量尺测量声波从声音发生器到示波器的距离d。

4.按下计时器的启动按钮, 同时发出声波, 记录声波传播的时间t。

5.重复以上步骤3-4, 进行多次测量, 取平均值。

6.根据公式v = d / t, 计算出声速v。

7.测量空气的温度、压力、湿度等因素, 并记录下来。

五、实验结果经过多次测量和计算, 得出声速的平均值为340.29m/s。

空气的温度为25℃, 气压为101.3kPa, 湿度为50%。

六、实验分析通过本实验的测量结果, 我们可以得出以下结论:1.声速与空气的温度、压力、湿度等因素有关。

在本实验中, 空气的温度为25℃, 气压为101.3kPa, 湿度为50%, 这些因素对声速的影响较小。

2.声速在不同介质中有所不同。

在空气中, 声速为340m/s左右, 而在水中, 声速为1497m/s左右。

3.声波的传播速度与介质的密度和弹性有关。

在同一介质中, 声速与介质的密度和弹性成正比。

七、实验结论通过本实验的测量和分析, 我们得出了声速在空气中的测量结果, 并了解了声波在不同介质中的传播规律。

最新实验报告-声速测量

最新实验报告-声速测量

最新实验报告-声速测量在本次实验中,我们旨在通过两种不同的方法来测量声速,并对结果进行比较分析。

实验的主要目的是加深对声速这一物理量的理解,并熟悉相关测量技术。

实验方法一:共振管法1. 制备一根密封良好的玻璃管,管内充满水。

2. 使用标准音叉产生固定频率的声音,并通过水面上方的扬声器播放。

3. 逐渐降低水位,直到在管的开口端听到共振的声音,记录此时的水位高度。

4. 通过测量共振时管内水的长度,结合声波的波长公式(波长=声速/频率),计算声速。

实验方法二:闪光摄影法1. 准备一个封闭的室内空间,设置好麦克风和闪光灯。

2. 利用电子触发器控制闪光灯的开启,同时记录麦克风接收到声音信号的时间。

3. 通过改变麦克风与闪光灯之间的距离,重复实验多次,记录不同距离下的声速数据。

4. 利用声速公式(声速=距离/时间),计算并求平均值。

实验结果与分析通过共振管法,我们得到了声速的初步测量值为343米/秒,与理论值相当接近。

而闪光摄影法得到的声速测量值为342米/秒,略有偏差,这可能是由于实验操作中的微小误差或环境因素造成的。

两种方法所得结果均在可接受误差范围内,验证了实验的可靠性。

通过对比两种方法,我们可以看出,共振管法操作简单,但对环境要求较高;而闪光摄影法虽然设备要求较高,但能提供更为精确的测量结果。

结论本次实验成功地通过两种不同的物理方法测量了声速,并对结果进行了比较。

实验结果表明,尽管存在微小的误差,但两种方法都能有效测量声速,且结果具有一致性。

这不仅加深了我们对声速测量技术的理解,也为我们提供了实验设计和数据分析的宝贵经验。

未来的工作可以集中在进一步减小误差和提高测量精度上。

力学声速测量实验报告

力学声速测量实验报告

一、实验目的1. 了解声速测量的基本原理和方法。

2. 掌握利用驻波法和相位法测量声速的实验技术。

3. 熟悉实验仪器的使用和操作。

4. 培养严谨的实验态度和科学思维。

二、实验原理1. 驻波法:当声波在介质中传播时,如果遇到一个反射面,就会产生反射波。

当反射波与入射波叠加时,形成驻波。

驻波的特点是波节和波腹的位置固定,波节间的距离等于声波的波长。

通过测量波节间的距离,可以计算出声速。

2. 相位法:相位法是利用声波传播过程中,相位的变化来测量声速的方法。

当声波在介质中传播时,其相位会发生变化。

通过测量声源和接收器之间的相位差,可以计算出声速。

三、实验仪器1. 超声波发射器2. 超声波接收器3. 函数信号发生器4. 示波器5. 卷尺6. 秒表7. 温度计四、实验步骤1. 将超声波发射器和接收器固定在实验装置上,确保两者之间的距离为已知值。

2. 将函数信号发生器连接到超声波发射器,调节信号发生器的频率为超声波频率。

3. 打开示波器,将超声波发射器的输出信号和接收器的输出信号分别接入示波器的两个通道。

4. 调整信号发生器的输出电压,使示波器上显示的波形清晰可见。

5. 使用卷尺测量超声波发射器和接收器之间的距离。

6. 通过示波器观察超声波发射器和接收器信号之间的相位差,记录下相位差值。

7. 重复步骤5和6,进行多次测量,取平均值作为实验结果。

8. 在实验过程中,记录实验环境的温度和湿度。

五、实验结果与分析1. 驻波法测量声速:根据驻波法原理,声速v可以表示为:v = λf其中,λ为波长,f为频率。

通过测量波节间的距离,可以计算出波长,进而计算出声速。

2. 相位法测量声速:根据相位法原理,声速v可以表示为:v = λf = (2π/Δφ) c其中,Δφ为相位差,c为光速。

通过测量相位差,可以计算出声速。

3. 结果分析:通过对比驻波法和相位法测量得到的声速,可以发现两者存在一定的误差。

这是由于实验过程中存在多种因素的影响,如实验装置的精度、环境温度和湿度等。

声速测量实验报告

声速测量实验报告

声速测量实验报告一、实验背景声速,听起来似乎很简单,但它的测量却是个有趣的挑战。

科学家们早就发现,声音在不同的介质中传播的速度不一样。

这次实验,目的是想更深入了解声速在空气中的表现。

记得小时候,听见雷声总是先于闪电,那时候就好奇,声音究竟是多快的呢?1.1 声速的基本概念声速,简单来说,就是声音在某个介质中传播的速度。

在空气中,声速大约是343米每秒,哇,想想就觉得快得吓人。

温度、气压等因素都会影响声速。

比如,温度越高,声速越快,理由也很简单,空气分子的运动加快,声音就能更快传递了。

1.2 声速的影响因素声音的传播还受很多因素影响。

气温、湿度、风速,甚至是周围的环境都能左右声速。

在寒冷的冬天,声音就没那么迅速,而在潮湿的环境中,声音又能跑得飞快。

总之,声速不是一成不变的,这让我们在实验中充满了期待。

二、实验设计2.1 实验目的我们希望通过这次实验,亲身测量声速,并观察环境变化对声速的影响。

通过实际操作,加深对声速的理解,激发我们对物理学的热爱。

2.2 实验器材实验器材准备得相当简单。

需要一个音响,当然越响越好;一个麦克风,用来接收声音;还有个计时器,记录时间。

哎,科学实验就是这样,少不了各种“黑科技”的辅助。

2.3 实验步骤实验步骤也不复杂。

首先,选择一个安静的环境。

接着,将音响放在一端,麦克风放在另一端。

然后,播放一个声音,开始计时。

等声音到达麦克风时,立刻停止计时。

最后,根据公式,计算声速。

嘿,简单明了吧?三、实验结果3.1 数据记录实验过程中,我们记录了不同温度下声速的变化。

在20度时,声速是343米每秒;在30度时,声速上升到了349米每秒。

数据真是显而易见,温度一升,声速就跟着“飞”起来。

3.2 数据分析分析这些数据,能够看出温度对声速的影响是显著的。

气温升高时,空气分子运动加快,声音传播自然也就迅速了。

这个道理很简单,却又十分有趣。

四、总结通过这次声速测量实验,我们不仅收获了数据,也收获了对声速的深刻理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都信息工程学院物理实验报告姓名: 石朝阳专业: 班级:学号: 实验日期: 2007-9-5下午一段实验教室: 5107 指导教师: 一、【实验名称】超声波声速的测量二、【实验目的】 1、了解声速的测量原理2、学习示波器的原理与使用3、学习用逐差法处理数据三、【仪器用具】1、SV-DH-3型声速测定仪段 (资产编号)2、双踪示波器 (资产编号)3、SVX-3型声速测定信号源(资产编号)四、【仪器用具】1.超声波与压电陶瓷换能器频率20Hz-20kHz的机械振动在弹性介质中传播形成声波,高于20kHz称为超声波,超声波的传播速度就是声波的传播速度,而超声波具有波长短,易于定向发射等优点,声速实验所采用的声波频率一般都在20,60kHz之间。

在此频率范围内,采用压电陶瓷换能器作为声波的发射器、接收器效果最佳。

后盖反压电陶瓷片头正负电图1 纵向换能器的结构简图压电陶瓷换能器根据它的工作方式,分为纵向(振动)换能器、径向(振动)换能器及弯曲振动换能器。

声速教学实验中所用的大多数采用纵向换能器。

图1为纵向换能器的结构简图。

2.共振干涉法(驻波法)测量声速假设在无限声场中,仅有一个点声源S1(发射换能器)和一个接收平面(接收换能器S2)。

当点声源发出声波后,在此声场中只有一个反射面(即接收换能器平面),并且只产生一次反射。

在上述假设条件下,发射波ξ1=Acos(ωt+2πx /λ)。

在S2处产生反射,反射波ξ2=A1cos(ωt+2πx /λ),信号相位与ξ1相反,幅度A1,A。

ξ1与ξ2在反射平面相交叠加,3 合成波束ξξ3=ξ1+ξ2=(A1+A2)cos(ωt-2πx /λ)+A1cos(ωt+2πx /λ)=A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)由此可见,合成后的波束ξ3在幅度上,具有随cos(2πx /λ)呈周期变化的特性,在相位上,具有随(2πx /λ)呈周期变化的特性。

图4所示波形显示了叠加后的声波幅度,随距离按cos(2πx /λ)变化的特征。

发射换能器与接收换能器之间的距离包络波图2 换能器间距与合成幅度实验装置按图7所示,图中S1和S2为压电陶瓷换能器。

S1作为声波发射器,它由信号源供给频率为数十千赫的交流电信号,由逆压电效应发出一平面超声波;而S2则作为声波的接收器,压电效应将接收到的声压转换成电信号。

将它输入示波器,我们就可看到一组由声压信号产生的正弦波形。

由于S2在接收声波的同时还能反射一部分超声波,接收的声波、发射的声波振幅虽有差异,但二者周期相同且在同一线上沿相反方向传播,二者在S1和S2区域内产生了波的干涉,形成驻波。

我们在示波器上观察到的实际上是这两个相干波合成后在声波接收器S2处的振动情况。

移动S2位置(即改变S1和S2之间的距离),你从示波器显示上会发现,当S2在某此位置时振幅有最小值。

根据波的干涉理论可以知道:任何二相邻的振幅最大值的位置之间(或二相邻的振幅最小值的位置之间)的距离均为λ/ 2。

为了测量声波的波长,可以在一边观察示波器上声压振幅值的同时,缓慢的改变S1和S2之间的距离。

示波器上就可以看到声振动幅值不断地由最大变到最小再变到最大,二相邻的振幅最大之间的距离为λ/2;S2移动过的距离亦为λ/2。

超声换能器S2至S1之间的距离的改变可通过转动鼓轮来实现,而超声波的频率又可由声速测试仪信号源频率显示窗口直接读出。

图3 用李萨如图观察相位变化在连续多次测量相隔半波长的S2的位置变化及声波频率f以后,我们可运用测量数据计算出声速,用逐差法处理测量的数据。

3. 相位法测量原理由前述可知入射波ξ1与反射波ξ2叠加,形成波束ξ3即ξ3 =A1cos(2πx /λ)cosωt+A2cos(ωt - 2πx /λ)即对于波束:ξ1 =Acos(ωt - 2πx /λ)由此可见,在经过?x距离后,接收到的余弦波与原来位置处的相位差(相移)为θ= 2π ?x /λ。

如图5所示。

因此能通过示波器,用李萨如图法观察测出声波的波长。

4. 时差法测量原理连续波经脉冲调制后由发射换能器发射至被测介质中,声波在介质中传播,经过t时间后,到达L距离处的接收换能器。

由运动定律可知,声波在介质中传播的速度可由以下公式求出:速度V=距离L/时间t图4 发射波与接收波通过测量二换能器发射接收平面之间距离L和时间t ,就可以计算出当前介质下的声波传播速度。

五、【实验内容】1.仪器在使用之前,加电开机预热15min。

在接通市电后,自动工作在连续波方式,选择的介质为空气的初始状态。

2. 驻波法测量声速。

2.1 测量装置的连接:图5 驻波法、相位法连线图如图5所示,信号源面板上的发射端换能器接口(S1),用于输出一定频率的功率信号,请接至测试架的发射换能器(S1);信号源面板上的发射端的发射波Y1),用于观察发射波形;接收换能器(S2)形Y1,请接至双踪示波器的CH1( 的输出接至示波器的CH2(Y2)2.2 测定压电陶瓷换能器的最佳工作点只有当换能器S1的发射面和S2的接收面保持平行时才有较好的接收效果;为了得到较清晰的接收波形,应将外加的驱动信号频率调节到换能器S1、S2的谐振频率点处时,才能较好的进行声能与电能的相互转换(实际上有一个小的通频带),以得到较好的实验效果。

按照调节到压电陶瓷换能器谐振点处的信号频率,估计一下示波器的扫描时基t/div,并进行调节,使在示波器上获得稳定波形。

超声换能器工作状态的调节方法如下:各仪器都正常工作以后,首先调节发射强度旋钮,使声速测试仪信号源输出合适的电压(8,10VP-P之间),再调整信号频率(在25,45kHz),选择合适的示波器通道增益(一般0.2V,1V/div之间的位置),观察频率调整时接收波的电压幅度变化,在某一频率点处(34.5,37.5kHz之间)电压幅度最大,此频率即是压电换能器S1、S2相匹配频率点,记录频率FN,改变S1和S2间的距离,适当选择位置,重新调整,再次测定工作频率,共测5次,取平均频率f。

2.3 测量步骤将测试方法设置到连续波方式,合适选择相应得测试介质。

完成前述2.1、2.2步骤后,观察示波器,找到接收波形的最大值。

然后转动距离调节鼓轮,这时波形的幅度会发生变化,记录下幅度为最大时的距离Li-1,距离由数显尺(数显尺原理说明见附录2)或在机械刻度上读出,再向前或者向后(必须是一个方向)移动距离,当接收波经变小后再到最大时,记录下此时的距离Li。

即有:波长λi=2?Li -Li-1?,多次测定用逐差法处理数据。

3.相位法/李萨如图法测量波长的步骤将测试方法设置到连续波方式,合适选择相应的测试介质。

完成前述2.1、2.2步骤后,将示波器打到“X-Y”方式,并选择合适的通道增益。

转动距离调节鼓轮,观察波形为一定角度的斜线,记录下此时的距离Li-1;距离由数显尺(数显尺原理说明见附录2)或机械刻度尺上读出,再向前或者向后(必须是一个方向)移动距离,使观察到的波形又回到前面所说的特定角度的斜线,记录下此时的距离Li。

即有:波长λi=?Li -Li-1?4. 干涉法/相位法测量数据处理已知波长λi和频率f i,(频率由声速测试仪信号源频率显示窗口直接读出。

)则声速Ci=λi×f i。

因声速还与介质温度有关,所以必要时请记下介质温度t?。

5. 时差法测量声速步骤图6 时差法测量声速接线图按图6所示进行接线。

将测试方法设置到脉冲波方式,并选择相应的测试介质。

将S1和S2之间的距离调到一定距离(?50mm),再调节接收增益,使显示的时间差值读数稳定,此时仪器内置的计时器工作在最佳状态。

然后记录此时的距离值和信号源计时器显示的时间值Li-1、ti-1。

移动S2,如果计时器读数有跳字,则微调(距离增大时,顺时针调节;距离减小时,逆时针调节)接收增益,使计时器读数连续准确变化。

记录下这时的距离值和显示的时间值Li、ti。

则声速Ci=(Li-Li-1)/(ti-ti-1)。

六、【注意事项】1(严禁将液体(水)滴到数显尺杆和数显表头内,如果不慎将液体滴到数显尺杆和数显表头上。

2(使用时应避免声速测试仪信号源的功率输出端短路。

3(声速测量仪上的手轮只能向一个方向旋转,不然要出现空回误差。

七、【数据记录】1(测量共振频率FN2( 驻波共振法FN= 35.685KHz t= 20 0C3( 相位比较法 t=200C4( 时差法 t=200C八、【数据处理】t=20C时声速的理论值:V 331.45,t273.15(m/s) 331.45,20273.15343.40(m/s)1) 驻波共振法数据处理如下:(L6,L1),...,(L10,L5) L 25,...,(102.180,77.258) (82.350,57.035)25 5.069mm波长: 2 L 10.138mm声速:V1 f 10.138 10,3 35.685 103m/s 361.77m/s 百分误差:A12) 相位比较法数据处理如下:V,V0V0 1000 361.77,343.40343.40 1000 5.40,...,(L10,L5)’(L6,L1) L 25(79.326,54.150),...,(99.213,74.428) 4.916mm 25’’’’波长: 2 L 9.832mm声速:V2 f 9.832 10,3 35.685 103m/s 350.85m/s 百分误差:A2 V,V0V0 1000 350.85,343.40343.40 10000 2.203) 时差法数据处理如下:(L4,L1),...,(L6,L3)V3 (T4,T1),...,(T6,T3)(184.065,134.105),...,(208.608,163.695) 351.64m/s(612,465),...,(685,560)A3V,V0V0 1000 351.64,343.40343.40 10000 2.400九、【实验结果】V1 361.77(m/s) 1) 驻波共振法: A 5.4 1V2 350.85(m/s) 2) 相位比较法: 0 A2 2.20V3 351.64(m/s)3) 时差法: 0A 2.40 3十、【问题讨论】。

相关文档
最新文档