垂直平分线的判定
垂直平分线、等腰三角形
第1讲垂直平分线、等腰三角形【知识点】一、垂直平分线1、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.2、线段垂直平分线的性质:垂直平分线上的点线与这条线段两个端点的距离相等几何语言:3、线段垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 几何语言:4、线段垂直平分线的画法:二、等腰三角形1、等腰三角形的定义:有两边相等的三角形叫做等腰三角形2、等腰三角形的性质:性质1:等腰三角形的两个底角相等(简写成“等边对等角”)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合(简写成“三线合一”)几何语言:(1)AB=AC,AD⊥BC,∠=______∠______,______=______。
(2) AB=AC;BD=DC,∠______=∠______,______⊥______。
(3) AB=AC,AD平分∠BAC______⊥______,______=______.性质3:等腰三角形是轴对称图形3、等腰三角形的判定(1)定义(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)几何语言:三、等边三角形1、等边三角形的性质:(1)等边三角形的三条边相等;等边三角形的三个内角都相等,并且每一个内角都等于60°(2)等边三角形是轴对称图形,它有三条对称轴.E D C B A(3)三线合一2、等边三角形的判定(1)定义(2)三个角都相等的三角形是等边三角形.(3)有一个角是60°的等腰三角形是等边三角形.3、含30°角直角三角形的性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
【典型例题】 1、如图2,DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米, AB=10厘米,则∆EBC 的周长为( )厘米A .16B .28C .26D .18。
线垂直平分线的判定
线垂直平分线的判定线垂直平分线是几何学中的一个重要概念,用于描述一个线段被等分成两等分的直线,且这条直线与线段垂直。
在本文中,我们将深入探讨线垂直平分线的定义、性质和判定方法。
我们将从简单的概念入手,逐渐深入探讨该主题的更复杂和有趣的方面。
1. 线垂直平分线的定义线垂直平分线是指一个直线将线段等分,且与线段垂直。
具体而言,对于一个线段AB,如果存在一条直线CD,使得CD将AB分为两等分,并且CD与AB垂直,则CD就是线段AB的垂直平分线。
线垂直平分线的存在可以帮助我们确定线段的中点,并且可以在几何证明中起到重要的作用。
2. 线垂直平分线的性质线垂直平分线具有一些重要的性质,这些性质使得它成为几何学中的一个重要工具:- 线垂直平分线平分线段:线垂直平分线将线段分成两个相等的部分,因此线段的两个端点到线垂直平分线的距离相等。
- 线垂直平分线垂直于线段:线垂直平分线与线段垂直,这意味着线垂直平分线所形成的两个角是直角。
- 线垂直平分线唯一性:对于给定的线段,存在唯一一条垂直平分线。
这是由线垂直平分线的定义所决定的。
如果有两条直线同时满足平分线和垂直线的条件,那么这两条直线将重合。
3. 线垂直平分线的判定方法线垂直平分线的判定方法有多种,我们将介绍两种常见的方法:- 利用垂直线段的性质:如果两条线段长度相等且垂直相交,那么它们的中垂线就是垂直平分线。
- 利用角的平分线的性质:如果两条边相等的角的平分线也相等,则该平分线是垂直平分线。
4. 个人观点和理解线垂直平分线作为几何学中的一个重要概念,对于解决几何问题和证明定理起到至关重要的作用。
它不仅可以帮助我们确定线段的中点,还可以与其他几何概念相结合,拓展我们的几何思维能力。
在解决实际问题时,线垂直平分线的概念也具有一定的应用价值,例如在建筑、地理测量等领域中,它可以帮助我们确保某些结构或地理位置的垂直平均。
深入理解线垂直平分线的概念对于我们的学习和应用都是十分重要的。
13章垂直平分线的判定
作图题 1、如图,在直 线L上求作一点P,使 PA=PB.
L
A
B
p
PA=PB
数学问题源于生活实践,反过来数学又为Байду номын сангаас活实践服务
作图题2
.如图,求作一点P,使PA=PB,PC=PD
A
C
B D
如图,七(1)班与七(2)班两 个班的学生分别在M、N两处参加植树劳动, 现要在道路AB、AC的交叉区域内设一个茶 水供应点P,使P到两条道路的距离相等, 且PM=PN,请你用折纸的方法找出P点并 B 说明理由。
点P在线段 AB的垂直 平分线上
线段垂直平分线上的点到这 条线段两个端点的距离相等
PA=PB
到线段两个端点距离相等的点, 在这条线段的垂直平分线上
任何图形都是有点组成的。因 三、 此我们可以把图形看成点的集 线段的垂直平分线的集合定义: 合。由上述定理和逆定理,线 线段的垂直平分线可以看作是到线 段的垂直平分线可以看作符合 段两上端点距离相等的所有点的集合 什么条件的点组成的图形?
A
证明:
M
M’
∵点P在线段AB的垂直平分线MN上, (线段垂直平分线上的点到这条线段两个端 ∴PA=PB(?) 点的距离相等). 同理 PB=PC.
B
P C
N ∴PA=PC. (到线段两个端点距离相等的点,在这条线段的垂直平分线上) N’ ∴点P在AC的垂直平分线上; ∴AB,BC,AC的垂直平分线相交于点P.
M
N
A
C
一、线段垂直平分线性质定理:线段垂直平分线上的点到 这条线段两个端点的距离相等。 二、线段垂直平分线判定定理:到线段两个端点距离相等 的点,在这条线段的垂直平分线上。
点P在线段 AB的垂直 平分线上
时线段的垂直平分线的性质与判定课件
学习垂直平分线的注意事项
理解定义
要深入理解垂直平分线的定义,掌握其几何意义 和性质。
掌握性质
要牢记垂直平分线的性质,并能够灵活运用。
培养能力
要通过练习培养自己的分析问题和解决问题的能力。
如何更好地掌握垂直平分线的知识
垂直平分线的定理
定理1
如果一条直线是线段AB的垂直平 分线,那么这条直线上的任意一 点到A和B的距离相等。
定理2
如果一条直线不是线段AB的垂直 平分线,那么这条直线上任意一 点到A和B的距离之差与到AB的距 离相等。
02 线段垂直平分线 的画法
利用尺规作图
确定线段中点
首先确定线段的中点,标记为C。
垂直平分线的数学表示
假设线段AB,点C是AB的中点,那么 AC和BC的垂直平分线就是直线CB。
垂直平分线的性质
性质1
垂直平分线上的任意一点到线段 两端点的距离相等。
性质2
线段两端点关于其垂直平分线对称。
性质3
垂直平分线是线段最短的路径。即 在给定两点A和B的情况下,AC和 BC的垂直平分线是A和B之以线段的中点 C为起点,绘制直线。
确定垂直平分线
以中点C为圆心,以线段长度为 半径,画一个圆。与第一步绘制 的直线相交于两点A和B。连接这 两点,得到的直线即为线段的垂
直平分线。
利用计算机软件作图
选择绘图软件 绘制线段
选择一个具有绘图功能的计算机软件,如Microsoft Visio、 AutoCAD等。
在物理学中的应用
力学
在物理学中,垂直平分线被广泛应用于力学中。例如,在研究物体的运动时,垂 直平分线可以用于确定物体的重心和转动惯量。
垂直平分线性质与判定应用
几何语言:如图,∵⊥AB,AC=BC,点P在上,∴PA=PB
例题讲解
如图,在△ 中,的垂直平分线分别交、于、两点,=4,
△ 的周长是25,则△ 的周长为( )
. 13
. 15
. 17
. 19
解题方法
根据线段垂直平分线性质得出=,==4,求出=8, +
上,作∠ = 90°,且 = ,过点作//,且 = ,
联结,CE.
(1)求证: ⊥ ;
(2)如果 = ,求证:点在线段的垂直平分线上
课堂小结
课堂大总结
垂直平分线性质:
垂直平分线判定:
帮助每一个孩子成就最好的自己!
∴∠ = ∠ = 70°,
∵是的垂直平分线,
∴ = ,
∴∠ = ∠ = 40°,
∴∠ = ∠ − ∠ = 30°
应用练习
如图,在△ 中,∠ = 90°,垂直平分,平分∠,
则∠ =
. 30°
. 35°
. 45°
. 60°
∠ = ∠
=
∴△ ≅△ ,
∴ = ,
∴点在线段的垂直平分线上.
应用练习
已知,如图, = , = , ⊥ 于点, ⊥ 于点,
(1)求证: = .
(2)连接,求证:线段垂直平分线段.
应用练习
如图,已知在△ 中,∠ = 90°, = ,点在边
垂直平分线性质与判定
√
√
思维导图
课程目标
掌握并能运用垂直平分线性质求边长以及角度
掌握并能运用垂直平分线判定进行证明
能灵活应用判定和性质解决综合题
知识讲解
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
线段的垂直平分线
线段的垂直平分线知识要点分析1. 线段垂直平分线性质定理及判定定理线段垂直平分线上的点到这条线段两个端点的距离相等。
(这个结论是经常用来证明两条线段相等的根据之一.)到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
2. 三角形三条边的垂直平分线定理三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(这是一个证明三条直线交于一点的证明根据.)3. 尺规作图尺规作图的概念:只用没有刻度的直尺和圆规进行作图,称尺规作图。
能写出尺规作图的步骤作已知线段的垂直平分线已知底边及底边上的高,求作一个等腰三角形。
【典型例题】考点一:线段垂直平分线性质定理和判定定理例1. 如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?例2、已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点. 求证:PA=PB.想一想:你能写出这个定理的逆命题吗?它是真命题吗?如果是,请你证明它。
这个定理的逆命题:到一条线段两个端点距离相等的点在这条线段的垂直平分线上证明:取AB的中点C,过PC作直线.APBC21这个结论是经常用来证明点在直线上(或直线经过某一点)的根据之一.考点二:尺规作图例3、用尺规作线段的垂直平分线已知:线段AB(如图). A B求作:线段AB的垂直平分线.现在同学们会作一条已知线段的垂直平分线了,那么你能作出一个三角形的三边的垂直平分线吗?如果能,请试一试观察一下三角形三条边的垂直平分线交于一点吗?如果交于一点,你能证明出来吗?例4、已知:在△ABC中,设AB、BC的垂直平分线交于点P,连接AP,BP,CP.求证:P点在AC的垂直平分线上.这就是我们今天学习的又一个定理三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
例5、边及底边上的高,求作等腰三角形.已知:线段a、h求作:△ABC,使AB=AC,BC=a,高AD=h(先分析,作出示意图形,再按要求去作图.)考点三:三角形三条边的垂直平分线的性质例6. 已知:△ABC中,AB=AC,AD是BC边上的一条中线,AB的垂直平分线交AD于O求证:OA=OB=OC.严格性之于数学家,犹如道德之于人.证明的规范性在于:条理清晰,因果相应,言必有据.这是证明者谨记和遵循的原则 一、选择题1、如果一个三角形两边的垂直平分线的交点在第三边上,那么这个三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定*2、已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC于点D 、E ,若BD+CE =5,则线段DE 的长为 ( )A. 5 B. 6 C. 7D. 82题图 3题图3、如图所示,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A 、AB 、BC 两边高线的交点处B 、AC 、BC 两边中线的交点处C 、AC 、BC 两边垂直平分线的交点处D 、∠A 、∠B 的平分线交点处 二、填空题4、如图所示,△ABC 中,∠C=90°,DE 是AB的中垂线,AB=2AC ,BC=18cm ,则BE 的长度为4题图 7题图*5、锐角△ABC 中,∠A=60°,AB ,AC 两边的垂直平分线交于点O ,则∠BOC 的度数是 __________。
垂直平分线判定步骤
垂直平分线判定步骤1.引言1.1 概述概述垂直平分线是在几何学中常见的一个概念,它是指一条直线将一条线段垂直地平分成两个相等的部分。
垂直平分线具有一些特殊的性质,因此在几何问题中具有重要的应用价值。
本文将介绍垂直平分线的定义和性质,并详细说明判定垂直平分线的步骤。
了解这些内容可以帮助读者更好地掌握几何学中的相关知识,提升解题能力。
在正文部分,我们将首先给出垂直平分线的定义和相关性质,包括垂直平分线与直线段的垂直关系、垂直平分线与等距离点的关系等。
通过了解这些性质,我们可以更清晰地认识垂直平分线的特点和作用。
接下来,我们将详细介绍判定垂直平分线的步骤。
在几何问题中,判断一条线是否为垂直平分线是很关键的一步。
我们将通过几个具体的案例,逐步介绍判定步骤,并给出详细的解题思路和方法。
最后,在结论部分,我们将对本文进行总结,并探讨垂直平分线的应用。
垂直平分线在几何学中有广泛的应用,例如在建筑设计、地图制作、光学测量等领域都可以看到其重要作用。
了解垂直平分线的性质和判定步骤,可以帮助我们更好地理解和解决与垂直平分线相关的问题。
通过阅读本文,读者将能够全面了解垂直平分线的定义、性质和判定步骤,为解决几何问题提供有力的工具和方法。
无论是学生还是专业人士,都可以从本文中获得有益的帮助。
让我们一起深入探索垂直平分线的奥秘吧!1.2文章结构文章结构部分的内容可以包括如下内容:文章结构部分的主要目的是为读者提供对整篇文章的整体框架和内容安排的概览。
通过清晰地呈现文章的结构,读者可以更好地理解文章的内容,并能够更有针对性地阅读感兴趣的部分。
本篇文章共分为引言、正文和结论三个部分。
第一部分是引言,主要包括概述、文章结构和目的三个子部分。
其中,概述部分简单介绍垂直平分线的判定问题,并说明其重要性和应用价值。
文章结构部分即本部分的内容,详细介绍了整篇文章的结构和目录,准确指导读者阅读。
第二部分是正文,主要包括垂直平分线的定义和性质以及垂直平分线的判定步骤两个子部分。
垂直平分线定义性质及判定
2、如图; NM是线段AB的中垂线
下列说法正确的有:①②③&
①AB⊥MN,②AD=DB, ③
MN⊥AB, ④MD=DN,⑤AB是
A
MN的垂直平分线
A
D
C
M
D
B
N
如图;若AC=12,BC=7,AB的垂直平分
线交AB于E,交AC于D,求△BCD的周长
A
& 解: ∵ED是线段AB的垂直平分线
在何处?你的方案是什么?
B
P30:7题
L
高速公路
7、如图;已知∠AOB和定点P、Q,求作:点M,使 PM=MQ,且点M到∠AOB两边的距离相等&
思考:生活中的数学
某区政府为了方便居民的生 活;计划在三个住宅小区A、B、 C之间修建一个购物中心,试问, 该购物中心应建于何处,才能 使得它到三个小区的距离相等&
l是AB的垂直平分线;观察P1A和
P3
P1B,P2A和P2B,P3A和P3B之
P2
间的关系?
P1
A
B
l
求证:
线段垂直平分l 线上的点到这条线段两端的距离相等
P
A C
能不能写出已知求证并 B 证明呢?
已知:直线m是线段AB的垂直平分线;
P为直线m上的任意一点;
m
P
求证:PA=PB.
证明:通过证明两个三角形全等.
与一条线段两个端点距离相 等的点;在这条线段的垂直平分 线上&
点P在线段 AB的垂直 平分线上
线段垂直平分线上的点 和这条线段两个端点的 距离相等(性质
点到线段两个 端点距离相等
PA=PB
P 与一条线段两个端点距离相 等的点;在这条线段的垂直平 分线上(判定
垂直平分线的性质与判定教案
垂直平分线的性质与判定教案第一章:垂直平分线的定义与性质1.1 垂直平分线的定义介绍线段垂直平分线的概念,即垂直平分线是线段所在的直线,且垂直平分线上的每一点到线段的两个端点的距离相等。
1.2 垂直平分线的性质性质1:线段的垂直平分线垂直于线段所在的直线。
性质2:线段的垂直平分线上的每一点到线段的两个端点的距离相等。
性质3:线段的垂直平分线段将线段平分成两个相等的部分。
第二章:垂直平分线的判定2.1 线段垂直平分线的判定条件判定1:如果一条直线垂直于线段所在的直线,并且通过线段的中点,这条直线是线段的垂直平分线。
判定2:如果一条直线上的每一点到线段的两个端点的距离相等,这条直线是线段的垂直平分线。
2.2 垂直平分线的判定方法方法1:使用直角三角形的性质,通过构造直角三角形来判断直线是否为垂直平分线。
方法2:使用尺规作图,通过作图来判断直线是否为垂直平分线。
第三章:垂直平分线与线段的关系3.1 垂直平分线与线段的交点介绍垂直平分线与线段的交点,即垂直平分线与线段相交的点,这个点到线段的两个端点的距离相等。
3.2 垂直平分线与线段的垂直关系介绍垂直平分线与线段的垂直关系,即垂直平分线与线段所在的直线垂直。
3.3 垂直平分线与线段的中点介绍垂直平分线与线段的中点的关系,即垂直平分线通过线段的中点,并且将线段平分成两个相等的部分。
第四章:垂直平分线的应用4.1 垂直平分线在几何作图中的应用介绍垂直平分线在几何作图中的应用,例如利用垂直平分线来作图求解几何问题。
4.2 垂直平分线在证明中的应用介绍垂直平分线在几何证明中的应用,例如利用垂直平分线的性质和判定来证明几何定理。
4.3 垂直平分线在实际问题中的应用介绍垂直平分线在实际问题中的应用,例如利用垂直平分线来解决生活中的问题。
第五章:总结与拓展5.1 垂直平分线的性质与判定的总结对垂直平分线的性质和判定进行总结,加深学生对垂直平分线的理解。
5.2 垂直平分线的拓展与应用介绍垂直平分线的拓展与应用,例如垂直平分线在平面几何中的重要作用,以及与垂直平分线相关的其他几何概念。
垂直平分线的性质定理和判定定理(含答案)
几何专题1:线段垂直平分线的性质定理和判定定理一、知识点(抄一遍):1.线段垂直平分线的定义:垂直并且平分一条线段的直线.2.线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.3.线段垂直平分线的判定定理:到线段两端距离相等的点在线段的垂直平分线上.二、专题检测题1.证明线段垂直平分线的性质定理.(注意:证明文字性命题的三个步骤:①根据题意,画出图形;②写出已知和求证;③写出证明过程.)2.证明线段垂直平分线的判定定理.3.定理的几何语言表示(1)线段垂直平分线的性质定理:∵,∴ .(2)线段垂直平分线的判定定理:∵,∴ .4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.几何专题1:线段的垂直平分线答案1. 证明线段垂直平分线的性质定理.已知:如图,直线l 是线段AB 的垂直平分线,垂足为M ,P 为直线l 上的任意一点,连接PA ,PB.求证:PA=PB.证明:①当P 点不与M 点重合时,∵直线l 垂直平分AB ,∴∠PMA=∠PMB=90°,AM=MB.在△APM 和△BPM 中,AM=BM∠PMA=∠PMBPM=PM∴ △APM ≌△BPM (SAS ).∴ PA=PB. ②当P 点与M 点重合时, ∵AM=MB , ∴PA=PB. 由①②可知,该命题成立.2. 证明线段垂直平分线的判定定理.已知:如图,线段AB ,P 为平面内一点,且PA=PB.求证:点P 在线段AB 的垂直平分线上.证明: ①当P 点不在线段AB 所在的直线上时, 过点P 作PC ⊥AB ,垂足为C.∵PA=PB,∴△PAB 是等腰三角形.∵PC ⊥AB,∴AC=BC.∴点P 在线段AB 的垂直平分线上. ②当P 点在线段AB 所在的直线上时, ∵PA=PB, ∴点P 是线段AB 的中点. ∴点P 在线段AB 的垂直平分线上. 由①②可知,该命题成立. 3. 定理的几何语言表示(1)线段垂直平分线的性质定理:∵直线l 垂直平分AB ,∴AP=BP.(2)线段垂直平分线的判定定理:∵PA=PB,∴点P在线段AB的垂直平分线上.4.如图所示,CD垂直平分线段AB,AB平分∠CAD. 求证:AD∥BC.证明:∵CD垂直平分线段AB,∴AC=BC,∴∠CAB=∠B.∵AB平分∠CAD,∴∠CAB=∠DAB,∴∠B=∠DAB,∴AD∥BC.5.如图,在△ABC中,AD是BC边上的高.AC的垂直平分线交DC于点E,且BD=DE.求证:AB+BD=DC.证明:连接AE.∵AD是BC边上的高,BD=DE∴AD垂直平分BE,∴AB=AE.∵点E在AC的垂直平分线上,∴AE=CE,∴AB=CE,∴AB+BD=CE+DE,即AB+BD=DC.6.如图,已知在△ABC中,边AB,BC的垂直平分线相交于点P.求证:点P在AC的垂直平分线上.证明:连接AP,BP,CP.∵点P在AB的垂直平分线上,∴AP=BP同理可证:BP=CP∴AP=CP∴点P在AC的垂直平分线上.7.如图,在△ABC中,点D为BC上一点,连接AD,点E在线段AD上,并且∠1=∠2,∠3=∠4. 求证:AD垂直平分BC.证明:∵∠1=∠2,∴BE=CE.∴点E在线段BC的垂直平分线上.同理可证:点A在线段BC的垂直平分线上∴AE垂直平分BC.即AD垂直平分BC.8.如图所示,在△ABC中,AB=AC,D是AB上的一点,DE⊥BC,交BC于点E,交CA的延长线于点F.求证:点A在DF的垂直平分线上.证明:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠FEC=∠FEB=90°,∴∠B+∠BDE=90°,∠C+∠F=90°.∴∠BDE=∠F.∵∠BDE=∠FDA,∴∠F=∠FDA.∴AF=AD,∴点A在DF的垂直平分线上.。
《线段的垂直平分线》
习题二:求解矩形中垂直平分线的长度问题
总结词
求解矩形中垂直平分线的长度问题,需要理解矩形的性质以及矩形中垂直平分线的定义和性质。
详细描述
首先,我们需要明确矩形的性质。在矩形ABCD中,AC是BD的垂直平分线,并且AC=BD。接着,我们可以利用 矩形的性质来求解垂直平分线的长度问题。具体地,由于AC是BD的垂直平分线,我们可以得到AB=AD, BC=DC。因此,我们可以得到矩形中垂直平分线的长度为AC或BD的长度。
《线段的垂直平分线》
2023-11-08
目 录
• 定义与性质 • 定理与推论 • 垂直平分线的判定 • 垂直平分线的作法 • 垂直平分线的应用 • 习题与解析
01
定义与性质
定义
垂直平分线
一条直线把线段分成两段,其中每段与原线段的两个端点之间的线段相等,这 条直线叫做这条线段的垂直平分线。
中垂线
06
习题与解析
习题一
总结词
证明三角形中垂直平分线的性质定理,需要理解三角 形中线、高线的概念以及它们与垂直平分线的关系。
详细描述
首先,我们需要明确三角形的中线与垂直平分线的定 义。在三角形ABC中,AD是BC边上的中线,则有 AB=AC,BD=DC,AD垂直平分BC。接着,我们可以 利用三角形全等的证明方法来证明垂直平分线的性质 定理。具体地,由于三角形ABD与三角形ACD全等, 我们可以得到角BAD=角CAD,从而证明AD是角BAC 的角平分线。此外,我们还可以证明AD是BC的高线。 因此,我们证明了三角形中垂直平分线的性质定理。
总结词
经过一个已知点作一条线段的垂直平分线, 方法有多种,其中一种是利用中垂线的性质 。
详细描述
首先,需要明确线段的中点,然后过该中点 作一条与原线段垂直的直线,即为所求的垂 直平分线。
垂直平分线的性质与判定
垂直平分线的性质与判定垂直平分线是几何图形中的一种重要类型,其几何图形的性质与判定与内聚离散几何形式有关。
本文将详细讨论垂直平分线的性质与判定,以及其在实际应用中的重要性。
首先,我们来看看垂直平分线是什么。
垂直平分线又称为垂直线,它是在某一条直线上,将该直线分成两等份的一种几何线段。
它以线段AB为基础,由点C在AB上垂直到AB上,AB分割成AC和CB两段等长的线段。
点C就是垂直平分线的交点。
其次,垂直平分线的性质与判定。
由定义可知,AB的垂直平分线的性质是:它在AB上垂直分割AB,使AB的两段等长,AB的中点即AB的垂直平分线的交点。
显然,垂直平分线的性质是由它是AB上垂直分割AB,使AB的两段等长而决定的。
判定垂直平分线是否存在可以依据它是AB上垂直分割AB,使AB的两段等长的性质,通过直线AB的斜率来进行判定。
如果两条直线的斜率相乘结果为-1,则说明两条直线是垂直的,也就说它们存在一个交点,而这个交点就是垂直平分线的交点。
因此,可以得出结论:当两条直线的斜率相乘结果为-1时,两条直线有一个公共点,这个公共点就是垂直平分线的交点。
最后,重点谈一谈垂直平分线在实际应用中的重要性。
垂直平分线在实际应用中有着广泛的用途。
其一,垂直平分线有助于定位几何图形等内聚离散几何形式,从而更好地掌握和表示几何空间信息;其二,垂直平分线构成的三角形可以用作测量和计算面积,从而更好的应用于科学计算、工程设计、地理测量等;其三,垂直平分线在机械自动化系统中有着重要的作用,它可以作为机械机构的基础支撑,从而增强机械机构的稳定性与耐久性。
综上所述,垂直平分线在几何图形中具有重要的性质与判定以及在实际应用中的重要性,它是几何图形中一种重要类型。
因此,我们应该深入研究垂直平分线的性质与判定,掌握其在实际应用中的重要性,以期更好地应用它,促进科学研究的进步与发展。
垂直平分线的判定方法
垂直平分线的判定方法在几何学中,垂直平分线是指一条直线能够将另一条线段垂直分割成两个相等的部分。
判定一条线段是否有垂直平分线是几何学中常见的问题,本文将介绍几种判定方法。
方法一,利用垂直平分线的定义。
根据垂直平分线的定义,一条直线能够将另一条线段垂直分割成两个相等的部分。
因此,我们可以通过测量线段的长度并利用几何工具,如直尺和量角器,来确定是否存在垂直平分线。
具体步骤如下:1. 使用直尺测量线段的长度,并在两端点处做标记。
2. 利用量角器在两个端点处分别构造与线段相垂直的直线。
3. 如果两条垂直线相交于线段的中点,并且线段被垂直分割成相等的两部分,则可以确定存在垂直平分线。
方法二,利用垂直平分线的性质。
除了利用垂直平分线的定义外,我们还可以利用垂直平分线的性质来判定是否存在。
垂直平分线的性质包括以下几点:1. 垂直平分线与线段的中点重合。
2. 垂直平分线与线段的两端点连线相互垂直。
基于以上性质,我们可以采用以下方法来判定是否存在垂直平分线:1. 找到线段的中点,并画出经过中点且与线段垂直的直线。
2. 判断该直线是否与线段的两端点连线相互垂直。
3. 如果满足以上条件,则可以确定存在垂直平分线。
方法三,利用坐标几何的方法。
在坐标几何中,我们可以利用坐标系中点的坐标来判定是否存在垂直平分线。
具体步骤如下:1. 假设线段的两个端点分别为A(x1, y1)和B(x2, y2)。
2. 求出线段的中点坐标M((x1+x2)/2, (y1+y2)/2)。
3. 计算线段AB的斜率k=(y2-y1)/(x2-x1)。
4. 判断通过中点M且斜率为-k的直线是否存在于坐标系中。
5. 如果存在,则可以确定存在垂直平分线。
综上所述,我们可以通过几何工具的测量、垂直平分线的性质和坐标几何的方法来判定是否存在垂直平分线。
在实际问题中,我们可以根据具体情况选择合适的方法来解决问题,从而更好地理解和运用垂直平分线的概念。
垂直平分线课件
首先,将圆规的两脚分开,分别置于 已知线段的两个端点上。然后,将圆 规的笔头置于线段的中点,旋转圆规 即可得到垂直平分线。
利用尺规作图作垂直平分线
总结词
尺规作图是一种更为精确的作图方法 ,通过尺规作图可以作出更为精确的 垂直平分线。
详细描述
首先,用直尺画出已知线段。然后, 用圆规以线段的中点为圆心,分别在 已知线段的两侧画弧。接着,用直尺 连接两个交点,即可得到垂直平分线 。
02
垂直平分线也是一条直线,它经 过线段的中点,并且与线段垂直 。
垂直平分线的图形定义
在几何图形中,垂直平分线通常用一 条通过线段中点并与线段垂直的虚线 表示。
这条虚线将线段分为两个相等的部分 ,并且与线段垂直。
垂直平分线的性质
垂直平分线上的任意一点到线段两端的距离相等。 经过线段中点的直线是该线段的垂直平分线。
利用垂直平分线性质解决实际问题
要点一
总结词
要点二
详细描述
垂直平分线的性质在实际问题中有着广泛的应用,如解决 几何作图问题、确定物体的位置等。
在几何作图问题中,利用垂直平分线的性质可以确定对称 点的位置。在解决实际问题时,如建筑、机械设计等领域 ,垂直平分线的性质可以帮助确定物体的位置和方向,简 化问题的解决过程。
垂直平分线的逆定理
总结词
垂直平分线的逆定理是,如果一条直线是某点的垂直平分线,则这条直线上有两点到该点的距离相等。
详细描述
垂直平分线的逆定理是一个与判定定理相反的结论。如果一条直线是某点的垂直平分线,那么在这条直线上存在 两个点,它们到该点的距离是相等的。这个逆定理常常用于证明两条线段相等,或者确定一个点是否在某条直线 上。
质等来进行判定。
垂直平分线的判定
2.如图,AB=AC,MB=MC上, 求证: 直线AM是线段BC的 垂直平分线上.
A
M
B
C
1. 如图,在△ABC上,已知点D在BC上,且BD +AD=BC.求证: 点D在AC的垂直平分线上.
证明:∵ BD+AD=BC
∴AD=BC-BD=CD
∴点D在AC的垂直平分 线上(到一条线段两个端 点距离相等的点,在这条 线段的垂直平分线上)
C
B
判断
(1)如图,CDAB于D,则AC=BC。( )
C A
D
C
B
A
D
B
(2)如图,AD=BD,则AC=BC。( )
C
A
D
B
1. 已知线段AB (1)若CA=CB,问:过C点的直线是 不是线段AB的垂直平分线?若不是,请找出 反例.
(2)若CA=CB,DA=DB,问过C和D两点 的直线是不是线段AB的垂直平分线?为什么?
解:∵ED是线段AB的垂直平分线
∴BD=AD
A
∴ △BCD的周长=BD+DC+BC
=AD+DC+BC
B
E
D
12
C
变式:如图,若AC=12,△BCD的周长=25, AB的垂直平分线交AB于E,交AC于D,求BC。
=AC+BC =12+7 =19 所以△BCD的周长为19。 7
4.在△ABC中,DE为BC 的垂直平分 线,DE⊥BC交∠BAC的平分线AE于 点E,EF⊥AB于F点, A
B
C
线段的垂直平分线
一、性质:线段垂直平分线上的点到这条线段两个端 点的距离相等。 二、判定:到线段两个端点距离相等的点,在这条 线段的垂直平分线上。
垂直平分线的判定
垂直平分线的判定
垂直平分线的判定:垂直平分线垂直且平分其所在线段。
垂直平分线上任意一点,到线段两端点的距离相等。
三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
一、判定方法
①利用定义:经过某一条线段的中点,并且垂直于这条线段的直线是线段的垂直平分线②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(即线段垂直平分线可以看成到线段两端点距离相等的点的集合)。
二、垂直平分线的性质定理
1、垂直平分线垂直且平分其所在线段。
2、垂直平分线上任意一点,到线段两端点的距离相等。
3、三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等。
4、垂直平分线的判定:必须同时满足(1)直线过线段中点;(2)直线⊥线段。
定义经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线,又称“中垂线”。
三、怎样画垂直平分线
用圆规,随便拉比所求线段1/2更长的距离,然后以线段两个端点为圆点画弧线,左边画右弧线,右边画左弧线,左右两边弧线相交在线段上下交于两点。
两点相连,画出的就是线段的垂直平分线。
这样做的原理是:菱形对角线垂直平分。
线段的垂直平分线的一种判定方法
线段的垂直平分线的一种判定方法
一种简单的判定垂直平分线的方法是使用勾股定理。
根据勾股定理,
如果一个三角形的两条边的平方和等于第三边的平方,那么这个三角形就
是直角三角形。
在判定垂直平分线的过程中,我们可以将线段分为两个部分,并构造
一个与线段垂直的线段。
如果这个构造的线段与原线段的两部分长度相等,那么就可以判定为垂直平分线。
具体判定的步骤如下:
1.找到线段的中点。
将线段进行平分,找到线段的中点。
设该中点为M。
2.构造与线段垂直的线段。
从线段的中点M开始,向线段的一侧延伸
画一条线段NQ,使得NQ与线段相交并垂直。
3.计算线段的长度。
分别计算线段的两部分的长度,即线段的起点到
中点M的长度和中点M到线段的终点的长度。
4.比较两部分的长度。
将步骤3计算出的两部分的长度进行比较,如
果它们相等,那么可以判定为垂直平分线。
这种方法的基本原理是,如果线段的中点到两个端点的距离相等,并
且与线段平分线交叉的垂直线长度相等,那么这条垂直线就是线段的垂直
平分线。
此外,也可以使用向量的方法进行判定。
将线段的两个端点表示成向
量的形式,然后计算这两个向量的和,将和向量除以2,得到的结果就是
线段的中点。
然后再计算中点到线段的两个端点的向量,如果这两个向量垂直且相等,那么就可以判定为垂直平分线。
总的来说,线段的垂直平分线是将线段分为两部分,并使两部分的长度相等,并且与线段垂直的线段。
通过勾股定理或向量的方法,我们可以判定一个线段是否存在垂直平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F
各学习小组交流讨论
(3)如右图,P是∠AOB的平分线OM上任 意一点,PE⊥CA于E,PF⊥OB于F, 连结EF.求证:OP垂直平分EF.
A
E B
G
F D C
中垂线的判定练习 2.如右图,P是∠AOB的平分线OM上任 意一点,PE⊥OA于E,PF⊥OB于F, 连结EF. 求证:OP垂直平分EF.
中垂线的判定练习:
3:如图,在△ABC中, AB=AC, ∠A =120°,
AB的垂直平分线交AB于E,交BC于F。
求证:CF=2BF
A E ቤተ መጻሕፍቲ ባይዱ C
中垂线判定的练习
1: 已知如图,在△ABC中,AB=AC, AD为BC边上的高,且DE⊥AB,DF⊥AC。 (1) 求证:点D在EF的垂直平分线上
A
E B
G
F D C
中垂线判定的练习
例: 已知如图,在△ABC中,AB=AC, AD为BC边上的高,且DE⊥AB,DF⊥AC。 (1) 求证:AD为线段EF的垂直平分线
知识回顾:中垂线
定义:经过某一条线段的中点,并且垂 直于这条线段的直线叫做这条线 段的垂直平分线(中垂线)。 特点:直线垂直且平分线段。
定理: 线段垂直平分线上的点到这条线段的 两个端点距离相等.
垂直平分线的判定 方法1:垂直+过中点
方法2:证明在线段垂直平分线上 的两点。(两点确定一条直线)
3. 如左下图,D为BC边上一点, 且BC=BD+AD,则AD____DC, 点D在__________的垂直平分线上.