可变配气正时

合集下载

可变气门正时(发展史)1

可变气门正时(发展史)1

1 / 20 ` 可变气门正时的昨天/今天/明天2 / 20`一、 发展史VVT 的技术发展进程:3 / 20`4 / 20`5 / 20`VVT 第一代叶片式-链驱动:6 / 20`VVT 第一代叶片式-皮带轮驱动:7 / 20`VVT 第二代发展:8 / 20`9 / 20`VVT技术VVT技术至今已经有30余年的历史,1980年,AlfaRomeo首次使用VVT技术;Honda,1989年,首次使用具有可变气门升程能力的VVT技术;BMW,2001年,首次使用VVT技术取代了传统的节气门。

韩系车的VVT是根据日本中的丰田的VVT-I和本田的VTEC技术模仿而来,但是相比丰田的VVT-I可变正时气门技术,VVT仅仅是可变气门技术,缺少正时技术,所以VVT发动机确实要比一般的发动机省油,但是赶不上日系车的丰田和本田车省油。

BMW在之前的一代发动机中早已采用该技术,目前如本田的VTEC、i-VTEC、;丰田的VVT-i;日产的CVVT;三菱的MIVEC;铃木的VVT;现代的VVT;起亚的CVVT;江淮的VVT;长城的VVT等也逐渐开始使用。

总的说来其实就是一种技术,名字不同。

10 / 20`VVT-iVVT-i的由来VVT中文意思是“可变气门正时”,由于采用电子控制单元(ECU)控制,因此丰田起了一个好听的中文名称叫“智慧型可变气门正时系统”。

该系统主要控制进气门凸轮轴,又多了一个小尾巴“i”,就是英文“Intake”(进气)的代号。

这些就是“VVT-i”的字面含义了。

VVT—i.系统是丰田公司的智能可变气门正时系统的英文缩写,最新款的丰田轿车的发动机已普遍安装了VVT—i系统。

丰田的VVT—i系统可连续调节气门正时,但不能调节气门升程。

它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。

常见可变配气系统总结

常见可变配气系统总结

常有可变配气系统介绍纲要:在发动机中,进气系统对发动机性能影响很大。

所以,汽车厂家为了提高在原有基础上大幅度的提高发动机性能,都选择了去改正良气系统,此中可变配气系统技术获取了宽泛发展,在实现可变配气系统方面,各大厂家堪称是八仙过海,各显神通。

轿车发动机上常有的 VTEC、i-VTEC、VVT-i 、VVTL-i 、VVT、VVL等字母,表示了这些发动机都采纳了可变气门正时技术。

重点词:可变配气正时(VVT); 本田VTEC系统; 丰田VVTL-i 系统; 保时捷 Variocam 系统; 宝马可变气门正时Valvetronic 系统;大众VVT系统 ; 日产 VVEL系统当前,大部分轿车发动机的配气相位能够随发动机转速、负荷变化而自动调整。

常有调整方式主要有进气门升程、进气门相位、进排气门相位调整。

进气门升程调整又可分为两级调整和连续调整;应用于进气门相位调整的装置可分为叶片式、螺旋式和时规链式。

配气相位调整装置装在凸轮轴正时齿轮( 或正时链轮) 与凸轮轴之间,接受发动机计算机的指令,对发动机配气相位进行自动调整。

如本田汽车的 i-VTEC,丰田汽车的 VVT-i 等。

1.进气门升程两级调整(1)本田 VTEC系统VTEC意为可变气门正时随和门升程电子控制系统。

采纳VTEC技术的发动机拥有 4 个气门,能够提高进排气截面积。

进排气截面积越大,高速气流的流量也就越大,提高了发动机的功率。

发动机低转速时,气门升程很小,以减小进气道面积,增大汽缸内真空度和吸力,提高进气流的惯性,以提高进气效率;发动机高转速时,增大气门升程,增大了进气道截面积,以减小进气阻力,增添进气流量。

气门升程可变,保证了发动机在高、低转速时都能获取优秀性能。

VTEC 有两段或三段调理,当气门从一个升程变换到另一个升程时,因为进气流量忽然增大,发动机的输出功率也忽然增大,致使发动机在整个转速范围内的输出其实不是线性的,也就是说工作不轻柔。

摩托车发动机切换凸轮型线可变配气正时机构研究

摩托车发动机切换凸轮型线可变配气正时机构研究
维普资讯

车工Biblioteka 程 20 年 ( 2 卷 ) 3 06 第 8 第 期
Au o t e E gn ei g tmo i n i e rn v
摩 托 车发 动 机 切 换 凸轮 型线 可 变 配气 正 时 机 构研 究 木
张 力 , 吴俊 刚 ’徐 中明 , , 苏 伟 黄 , 琪
i a ay e .T es d t H1 5 mooc cee gn h wsta h VT me h ns i smpei t cu e a w s n lzd h t ywi j 2 try l n ieso tteV c a i s i l s u tr ,h sl u h h m n r o
gn t igeo eh a a h f.T e VV c a im a wos t o wi h be itk av i n aa tr iewi sn l v r e d c ms a h t h T me h ns h st es fs t a l na e v let c mig p rmee .
可变配气正时(aal vl mn , V ) vr b a e ii V T 技术 i e vt g 在汽车发动机上得到较为广泛 的使用_ J l 。但受制 造成本和机构复杂性的限制 , 在摩托车发 动机 上的 应用仅局限在极少数的大排量摩托 车发动机 , 且均
了一种切换凸轮型线的 V T机构, V 能够实现配气正
控制, 有效改善发动机性能 , 可广泛应用于 中小排量摩托 车发 动机 。
关键词: 可变配气正时。 摩托车发动机 , 汽油机 , 单顶置凸轮轴 A s a c n a Va ib e Vav i n c a im Re e r h o ra l le T mig Me h n s wi w th n a frMooc ce E gn t S i i g C m o try l n i e h c

vvt-i

vvt-i

(1)凌志LS400汽车可变配气正时控制机构(VVT-i) VVT-i系统用于控制进气门凸轮轴在50°范围内调整凸轮轴转角,使配气正时满足优化控制发动机工作状态的要求,从而提高发动机在所有转速范围内的动力性、经济性和降低尾气的排放。 VVT-i系统由VVT-i控制器、凸轮轴正时机油控制阀和传感器三部分组成,如下图所示。其中传感器有曲轴位置传感器、凸轮轴位置传感器和VVT传感器。 LS400汽车的发动机是8缸V型排列4气门式的,有两根进气凸轮轴和两根排气凸轮轴。在工作过程中,排气凸轮轴由凸轮轴齿形带轮驱动,其相对于齿形带轮的转角不变。曲轴位置传感器测量曲轴转角,向ECU提供发动机转速信号;凸轮轴位置传感器测量齿形带轮转角;VVT传感器测量进气凸轮轴相对于齿形带轮的转角。它们的信号输入ECU,ECU根据转速和负荷的要求控制进气凸轮轴正时控制阀,控制器根据指令使进气凸轮轴相对于齿形带旋转一个角度,达到进气门延迟开闭的目的,用以增大高速时的进气迟后角,从而提高充气效率。 1)结构 VVT-i控制器的结构如下图所示,它包括由正时带驱动的外齿轮和与进气凸轮轴刚性连接的内齿轮,以及一个内齿轮、外齿轮之间的可动活塞。活塞的内、外表面上有螺旋形花键。活塞沿轴向的移动,会改变内、外齿轮的相对位置,从而产生配气相位的连续改变。 VVT外壳通过安装在其后部的剪式齿轮驱动排气门凸轮轴。 凸轮轴正时控制阀根据ECU的指令控制阀轴的位置,从而将油压施加给凸轮轴正时带轮以提前或推迟配气正时。发动机停机时,动机ECU的指令,当凸轮轴正时控制阀位于图(a)所示时,机油压力施加在活塞的左侧,使得活塞向右移动。由于活塞上的旋转花键的作用,进气凸轮轴相对于凸轮轴正时带轮提前某一角度。 当凸轮轴正时控制阀位于图(b)位置时,活塞向左移动,并向延迟的方向旋转。进而,凸轮轴正时控制阀关闭油道,保持活塞两侧的压力平衡,从而保持配气相位,由此得到理想的配气正时。 提高充气效率是提高发动机动力性能的重要措施。除了增压以外,合理选择配气相位且能随发动机转速不同而变化,以及利用进气的惯性及谐振效应是提高充气效率的重要途径。 进气惯性及谐振效应是随着发动机转速、进气管长度及管径大小的变化而变化。在不同转速下,进气管长度应有所不同,方能获得良好的进气惯性效应。并且,只有采用可变配气相位,可变进气系统才能适应不同发动机转速下的要求,才能较全面地提高发动机性能。 可变进气系及配气相位改善发动机的性能,主要体现在以下几方面: ①能兼顾高速及低速不同工况,提高发动机的动力性和经济性; ②降低发动机的排放; ③改善发动机怠速及低速时的性能及稳定性。 这里首先介绍可变进气系统,至于可变配气相位以后会以不同的方式再作介绍。 可变进气系统分为两类:(1)多气门分别投入工作;(2)可变进气道系统。其目的都是为了改变进气涡流强度、提高充气效率;或者为了形成谐振及进气脉冲惯性效应,以适应低速及中高速工况都能提高性能的需要。 1.多气门分别投入工作 实现多气门分别投入工作的结构方案有如下两种:第一,通过凸轮或摇臂控制气门按时开或关;第二,在气道中设置旋转阀门,按需要打开或关闭该气门的进气通道,其结构如图3-94a)所示,这种结构比用凸轮、摇臂控制简单。 a)涡轮控制阀示意图 b)低速、小负荷工况 c)高速、大负荷工况 图3-94 多气门分别投入工作示意图 当发动机在节气门部分开度工作时,涡流控制阀关闭(见图3-94b),混合气通过主要螺旋进气道进入气缸。节流的气道促进混合加速,并沿着切线方向进入气缸,这样可以形成较强的进气涡流,对于低速工况及燃烧稀混合气是有利的。 当发动机转速及负荷增加时,仅由主气道进入气缸的混合气不能满足发动机的需要,于是副进气道中的阀门开启,增加进入缸内的混合气(见图3-94c),而且抑制了进气道中进气涡流强度,这对于提高发动机高速工况时的容积效率及燃烧效率、减少能量损失是有利的。 2.可变进气道系统 可变进气道系统是根据发动机不同转速,使用不同长度及容积的进气管向气缸内充气,以便能形成惯性充气效应及谐振脉冲波效应,从而提高充气效率及发动机动力性能。 (1)双脉冲进气系统 双脉冲进气系统由空气室及两根脉冲进气管组成,如图3-95所示。空气室的入口处设置节气门,并与两根直径较大的进气管相连接,其目的在于防止两组(每组三缸)进气管中谐振空气柱的互相干扰。每根脉冲管子成为形成谐振空气波的通道,分别连接两组气缸。 将六缸机的进气道分成前后两组,这就相当于两个三缸机的进气管,每个气缸有240°的进气冲程,各气缸之间不会有进气脉冲波的互相干扰。上述可变进气系统的效果在于:每个气缸都会产生空气谐振波的动力效应,而直径较大的空气室、中间的产生谐振空气波的通道同支管一起,形成脉冲波谐振循环系统。 图3-95 双脉冲进气系统示意图 a)低速段(n﹤4400r/min);b)高速段(n﹥4400r/min) 当进气管中动力阀关闭时(见图3-95a),可变进气管容积及总长大约为70cm的进气管,能在发动机转速n=3300r/min时,形成谐振进气压力波,提高了充气效率,使转矩达到最大值。当发动机转速大于4000r/min时,进气管中便不能形成有效的进气压力波,于是动力阀门打开(见图3-95b),两个中间进气通道便连接成一体。优化选择在每个气缸与总管连接的支管容积后,能形成高速(如:n=4400r/min)下谐振进气脉冲波,使转矩值达到较高值。于是在n=1500~5000r/min的范围内,转矩曲线变化平缓,如图3-96所示。 图3-96 采用可变进气系统后的转矩特性(六缸发动机) (2)四气门二阶段进气系统 该进气系统由弯曲的长进气管和短的直进气管与空气室相连接,并分别连接到缸盖的两个进气门上,如图3-97所示。在发动机低、中速工况时由长的弯曲管向发动机供气;而在高速时,短进气管也同时供气(动力阀打开),提高了发动机功率。 在发动机低、中速工况(n﹤3800r/min),动力阀关闭短进气管的通道(见图3-97a)。空气通过长的弯曲气道,使气流速度增加,并且形成较强的涡流,促进良好混合气的形成。此外,进气管的长度能够在进气门即将关闭时,形成较强的反射压力波峰,使进入气缸的空气增加。这都有助于提高发动机低速时的转矩。 在发动机高速工况(n﹥3800r/min),动力阀打开(见图3-97b),额外的空气从空气室经过短进气管进入气缸,改善了容积效率,并且由另一气门进入气缸的这股气流,将低、中速工况形成的涡流改变成滚流运动,更能满足高速高负荷时改善燃烧的需要。 图3-97 四气门二阶段进气系统 a)低速段;b)高速段 (3)三阶段进气系统 该进气系统由末端连在一起的两根空气室管组成,并布置在V形夹角之间。每根空气室通过3根单独的脉冲管连接到左侧或者右侧的气缸上。每一侧气缸形成独立的三缸机,各缸的进气冲程相位为均匀隔开的240°。两根空气室的人口处有各自的节流阀,在两根空气室中部有用阀门控制的连接通道,在空气室末端U形连接管处布置有两个蝶式阀门,如图3-98所示。 图3-98 三阶段进气系统 a)低速(n﹤4000r/min);b)中速(n﹥4000r/min);c)高速(n﹥5000r/min) 在发动机低速工况(n﹤4000r/min)(见图3-98a),两空气室管之间的阀及高速工况用阀关闭。每根空气室管及与其相连接的3根脉冲进气管形成完整的谐振系统,将在一定转速工况下(如:n=3500r/min),将惯性及波动效应综合在一起,从而使充气效率及转矩达到峰值。当发动机转速高于3500r/min时,谐振压力波的波幅值变小,因此可变系统的效果也变差,相应地每个气缸的充气效率也变小。 当发动机转速处于4000~5000r/min之间,即中速工况时(见图3-98b),连接两根空气室的阀门打开,因此部分损坏了低速工况谐振压力波频率,然而却在转速为4500r/min的工况下,形成新的谐振压力波峰,从而使更多的空气或混合气进入气缸。 当发动机转速进一步提高,如:达到5000r/min以上,于是短进气道中蝶阀打开(见图3-98c),在两个空气室之间的短的及直接通道的空气流动,影响了第二阶段的惯性及脉冲效应。然而在高速范围(5000~6000r/min)内,通过各缸进气管的脉冲及谐振作用,建立了新的脉冲压力波及效果。于是三阶段的可变进气系统在三段转速范围内都能形成一个高的转矩峰值,从而提高了整个转速范围内的转矩,使转矩特性更平坦,数值更高。

汽车新技术配置3可变气门正时系统-精选文档

汽车新技术配置3可变气门正时系统-精选文档

授人以鱼不如授人以渔
可变气门正时(与举升)系统的 构造、作用与改良
四、VVT-i

朱明工作室 zhubob@


1.丰田汽车公司称为智能型可变气门正时(VVTi),为连续可变气门正时系统,首先应用在丰田汽 车的高级房车LEXUS上,目前国产COROLLA、 ALTIS及CAMRY也已开始采用。不同的排气量与 发动机时,进气门的开启度数有不同变化, 例如COROLLAALTIS在2’-42‘BTDC时进气门开 启,50‘一10‘ABDC时进气门关闭。 2.VVT-i的设计理念与VANOS相同,都是移动 凸轮轴的位置,以改变气门正时与气门重叠角度, 只是移动凸轮轴的机构有点不同。
授人以鱼不如授人以渔
可变气门正时(与举升)系统 功能

朱明工作室 zhubob@

1-2. 一般发动机进排气门的气 门正时,在任何转速与负荷时, 都是在固定位置开闭,例如发 动机的气门正时规格是6’BTDC、 40`ABDC、3l‘BBDC与9‘ATDC 时,表示进气门在上止点前 6‘打开,下止点后40’关闭;排 气门在下止点前31‘打开,上止 点后9’关闭,如图3.1所示。 如图3.2所示为本田汽车公司 ZCSOHC发动机的气门正时, 注意其曲轴系逆转,且无气门 重叠。
授人以鱼不如授人以渔
可变气门正时(与举升)系统的 构造、作用与改良
四、VVT-i

朱明工作室 zhubob@
3.VVT-i的气门正时连续可变,只针对进气门而设计,如 图3.7所示,排气门的气门正时是固定的。气门正时虽然 连续可变,但举升是固定的。
授人以鱼不如授人以渔
可变气门正时(与举升)系统的构 造、作用与改良
授人以鱼不如授人以渔

摩托车发动机可变正时配气机构的试验研究

摩托车发动机可变正时配气机构的试验研究

a a t e t e i m -m ald s lc m e te g n s i e eo e Th e h n s i o p c n sr cu e hih i d p i o m d u s l ip a e n n i e s d v l p d. e m c a im sc m a ti tu t r , g n v
中小 排量 摩 托 车 发 动 机VVT 构 ,是 在 参 考 国 内 外 机
vvT 术 的基础 上 ,以 嘉陵 J 2 摩托 车 发动 机为 研究 对 技 H1 5

样 的 ,都是 对 车 架 的 实 际 受载 情 况 进 行 不 同 程 度的 简
体 需要 通过 适 当的装 置与 试验 台连接 ,这相 当于摩 托车 和 大 地组 合成 的系 统对 转鼓 相对运 动 ,两者 质量 比近 似 无穷
c nr l b e a c rc n o d i eib l y Co a e i h uo ai o to e ieo a iin l a ib e o tol l c u a y a d g o r la ii . mp r dw t t ea tm tcc nr ld v c ft d t a ra l a n t h r o v
和制 造提供 指导 。
简 化 必 然 带来 误 差 ,试 验 室 模拟 试 验 还 存 在 难 以 克 服 的 问题 ,即对惯 性 力的模 拟 。惯性 力是空 间分 布 力 ,惯 性 力 的模拟 只能 靠运动 模拟 来 间接实 现 。模 拟试 验最 基本
的要 求 是 空 间上 的 限 制 ,不 可能 允 许 车 架 有 大 范 围 的运
控制 电路
试验研 究
T ssa dRe e r h so m nt u e t n s a c e fCa Co o r VVT e ha s M c nim f rM e i m—m a l s lc m e t g ne o d u s l Dip a e n En i s

可变气门正时

可变气门正时

凸轮相位延迟后, 能够减少重叠量,从 而将EGR 量降至最低, 并稳定燃烧。该功能 还能够实现更低的怠 速点。 凸轮相位提前后, 能够增大重叠量,从 而使EGR 效率得以提 高。结果是,EGR 效 率提高能够降低泵送 损失,减少排放
控制重叠量,能够 优化入口惯量,从而 最大化输出性能。
1、VTC系统
合理选择配气正时,保证最好的充气效率,是改善发
动机性能极为重要的技术问题。
在进、排气门开闭的四个时期中,进气门迟闭角的改
变对充气效率影响最大。
加大进气门迟闭角,高转速时充气效率增加有利于最
大功率的提高,但对低速和中速性能则不利。
低了最大功率。
现有的VTEC(可变气门正时和气门升程电子控制)系统,能够
最新设计的VTC(可变正时控制)连续不断地控制气门正时
(凸轮相位)。i-VTEC 是VTEC 和VTC 系统的组合,它能够控 制气门升程、正时并连续不断地控制凸轮相位,以便优化低速、 中速和高速时的燃烧。该系统还能提高燃油经济性,并达到低 排放。
5段工作凸轮 1-凸轮轴 2、6-排气凸轮 3-主进气凸轮 4-中间进气凸轮 5-辅助进气凸轮
摇臂组件 1-正时活塞 2-正时活塞弹簧 3-同步活塞A 4-同步活塞B 5-辅助摇臂 6-中间摇臂 7-主摇臂
VTEC机构中的凸轮有三个, 它们的线型不相同。高速凸 轮位于中央叫做中间凸轮, 它的升程最大;另两个低速 凸轮,较高的一个叫主凸轮, 较低的叫做次凸轮。与这三 个凸轮相对应的中间摇臂、 主摇臂和次摇臂,两个气门 分别安装在主、次摇臂上。 在三个摇臂内有一孔道,内 1-凸轮轴 装有正时活塞、A、B、同 2-主凸轮 步活塞、定位活塞,每个气 3-中间凸轮 4-辅助凸轮 缸的两个进气门上都安装有 5-主摇臂 6-中间摇臂 这样一套VTEC机构。

配气正时

配气正时

二、配气相位
配气相位: 用曲轴转角表示的进、排气门的 实际开闭时刻和开启的持续 时间。 配气相位图: 用曲轴转角的环形图来表示的配 气相位。 配气相位对发动机工作的影响: 影响发动机的动力性、功率。
配气相位对发动机工作的要求: 延长进、排气时间。进气门早开 晚关,排气门早开晚关
理论上的配气相位分析
下止点过后,随着活塞的上行,气缸内压力逐渐增大,进气气流 速度也逐渐减小,至流速等于零时,进气门便关闭的β角最适宜。 若β过大便会将进入气缸内的气体重新又压回进气管。 进气过程持续时间相当于曲轴转角180°+α+β
进气门的配气相位
排气门的配气相位
1.排气提前角 γ 在做功冲程的后期,活塞到 达下止点前,气门便开启.从排气 门开启到下止点所对应的曲轴转 角称为 排气提前角 一般γ=40°~80° 目的: ①利用气缸内的废气压力提前自由 排气:恰当的排气门早开,气缸 内还有大约300kPa~500kPa的 压力,作功作用已经不大,可利 用此压力使气缸内的废气迅速地 自由排出。 ②减少排气消耗的功率:提前排气 ,等活塞到达下止点时,气缸内 只剩约110kPa~120kPa的压力 ,使排气冲程所消耗的功率大为 减小。 ③高温废气的早排,还可以防止发 动机过热。
排气门的配气相位
2.排气延迟角δ 在活塞越过上止点后,排气 门才关闭.从上止点到排气门关 闭所对应的曲轴转角称为排气 延迟角 一般δ=10°~30° 目的: ①利用缸内外压力差继续排气: 活塞到达上止点时,气缸内的 压力仍高于大气压,利用缸内 外压力差可继续排气。 ②利用惯性继续排气:活塞到达 上止点时,废气气流有一定的 惯性,利用惯性可继续排气. 所以排气门适当晚关可使 废气排得较干净。 排气过程持续时间相当于曲 轴 转角180°+γ+δ

如何正确检修点火正时和配气正时

如何正确检修点火正时和配气正时

如何正确检修点火正时和配气正时(相位)字体: 小中大| 打印编辑:master 发布时间:2008-7-10 09:59 查看次数:719次关键词:切诺基回火“配气正时(相位)”到底指的是什么?根据吉林工业大学陈家瑞主编的《汽车构造》上的定义:“配气正时(相位)就是进、排气门的实际开启时刻”。

为了提高发动机的充气系数,提高发动机的动力性,进、排气门的开启和关闭均有一个提前和迟后角度。

在讲到气门传动组时,《汽车构造》中指出:“气门传动组的作用,是使进、排气门能按配气正时(相位)规定的时刻开闭,且保证有足够的开度。

”“凸轮轴用以使气门按照一定的工作次序和配气正时(相位)及时开闭,并保证气门有足够的升程。

”“发动机工作时,凸轮轴的变形会影响配气正时(相位)。

”凸轮轴上的“凸轮的轮廓应保证气门开启和关闭的持续时间符合配气正时(相位)的要求,且使气门有合适的升程及其升降过程的运动规律。

”凸轮轴是由曲轴通过正时带或正时链条或正时齿轮驱动的,因此,“在装配曲轴和凸轮轴时,必须将正时记号对准,以保证正确的配气正时(相位)和发火时刻。

”通过上面的描述我们可以看出,正确的配气正时(相位)是发动机正常工作的必备条件,一旦配气正时(相位)错了,将影响发动机的正常工作。

其实“对准正时记号”和“配气正时(相位)正确”两者之间就是一对因果关系。

“对准正时记号”是原因,“配气正时(相位)正确”是结果。

在正常的情况下,装配时必须将正时记号对准,因此,正时记号对准是配气正时(相位)正确和发火顺序(点火正时)正确的前提条件,就是说,要想配气正时(相位)和发火顺序(点火正时)正确,必须正时记号对准。

但是,值得注意的是,正时记号对准并不是配气正时(相位)正确和发火顺序(点火正时)正确的充分条件,也就是说,即使正时记号对准了,配气正时(相位)和发火顺序(点火正时)也并不一定正确。

这是因为,正时传动系统中有许多零件,曲轴通过键传动或过盈配合方式带动曲轴正时齿(链)轮,再通过正时带或正时链带动凸轮轴正时齿(链)轮,凸轮轴正时齿(链)轮在通过键传动或过盈配合方式带动凸轮轴,凸轮轴再通过挺柱、挺杆、摇臂驱动或直接驱动气门开闭,这中间存在许多环节,其中的任何一个环节出现问题,例如,键错位、正时带老化、正时链条磨损、凸轮轴变形或磨损、气门间隙错误或液压挺柱故障等均会最终影响“进、排气门的实际开启时刻”,也就是影响了配气正时(相位),从而导致故障。

可变气门正时技术详解

可变气门正时技术详解

可变气门正时技术详解引擎配气机构图为什么要“可变气门行程”?活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,相信这一章的内容不需废话,我们关注的是气门开启程度对引擎进气的问题。

气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。

在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。

往往,工程师们既要兼顾引擎在低速区的扭矩特性,有想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺扭矩……所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们今天要说的“可变气门正时技术”。

该技术既能保证低速高扭矩,又能获得高速高功率,对引擎而言是一个极大的突破。

80年代,诸多企业开始投入了可变气门正时的研究,1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”,英文全称“Variable Valve Timing and Valve Life Electronic Control System,也就是我们常见的VTEC。

此后,各家企业不断发展该技术,到今天已经非常成熟,丰田也开发了VVT-i,保时捷开发了Variocam,现代开发了DVVT……几乎每家企业都有了自己的可变气门正时技术。

一系列可变气门技术虽然商品名各异,但其设计思想却极为相似。

可变气门正时技术之一:保时捷Variocam保时捷911跑车引擎采用的可变气门正时技术Variocam通过气门我们可以发现其两个位置,图中每个进气门分别有2种最大行程,绿色位置显然是高速时气门能够达到的最大行程。

控制气门行程变化的,是两组凸轮控制,一组是高速凸轮,既红色部分的凸轮;另一组是低速凸轮,既高速凸轮之间的凸轮。

可变气门正时技术(VVT)

可变气门正时技术(VVT)

可变气门正时技术(VVT)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。

现代的cvvt也是源自VVT的发动机控制技术。

发动机的气门正时是指气门打开的时间,也就是气门应该在活塞运行到哪个位置的时候打开。

一般我们会感觉,进气门应该在活塞从上止点开始向下运动,进行进气行程的时候打开,在活塞到达下止点完成进气行程的时候关闭;相应的排气门应该是活塞从下止点开始向上运动开始排气行程的时候打开,活塞运行到上止点完成排气行程的时候关闭。

但是,因为空气是有惯性的,它需要一定的反应时间,为了更多的进气和排气,进气门会在活塞向下运动之前打开,并且到达下止点之后才关闭;排气门也是一样,会在活塞向上运动之前打开,到达上止点之后才关闭。

那么我们会发现在活塞到达上止点完成排气行程的时候,也就是进气行程开始之前,会出现进气门和排气门同时打开的现象。

这就是所谓的气门叠加,这个叠加时曲轴转过的角度就气门叠加角。

发动机在其不同的转速范围段,对气门叠加角的需求是不同的,低转速需要较小的气门叠加角,高转速的时候反之,需要较大的气门叠加角。

普遍不带气门正时可变的发动机,是无法同时满足这两个需求的,一般只能采用一个折衷值,那么发动机在高速或者低速的时候运转都不会很舒服。

传统的发动机气门工作状态如下:当发动机处于低转速时,凸轮轴的运转速度较慢,进气速度也相对较慢,气门则保持相对较长的开启时间和较小的开度。

而当车辆在高速路上以120km/h的速度行驶时,发动机的转速则会维持在3000~4000rpm,甚至更高。

这一状态下,气门开闭频率加快,进气速度也加快,虽然进气量大,但气门的开启时间短,使进氧量较少,造成燃烧不完全。

如果在这一传统的发动机配气机构上引入电子控制系统——气门正时控制,那么发动机的工作效率将得到大幅改善。

通过对凸轮轴的改造以及对传感器信号的收集,在低转速时,正时系统可控制凸轮轴使进气门提前开启或延时关闭,以保证气缸在低转速下的进气通畅;高转速时,还可对气门的开度实现适时调整,确保气缸内的燃烧更充分。

可变配气技术

可变配气技术

1说到可变配气相位,可变气门行程这类名字大家可能会有点陌生,但如果说到本田的VTEC,丰田的VVTi,还有保时捷的Variocam等这些名字可能就很熟悉了。

其实这些只是车厂给他们的可变配气技术的不同命名而已,在技术上都是共通的,而这些英文缩写翻译成中文以后就是上面所说的可变配气相位和可变气门行程技术。

要想了解可变配气技术,那首先得了解汽车配气机构的工作原理和特性了。

目前主流车型的配气机构都是用的每缸4气阀(两进两排)设计。

(如图)这种设计最大的好处就是能获得较大的进气支管截面积,从而得到较大的进气流量提高发动机工作效率。

传统的多气门发动机的气门行程是不可变的,这就是说他只有一个固定的行程。

让我们想想,在设计气门行程参数时会有一个什么样的问题呢?如果气门行程设置得较大,那么在发动机高转速时混合气的进气效率肯定是很高的,因为发动机在高转速时空气流速很快,这就需要较大的气门开口才能让混合气尽可能的充满汽缸,但在低转速范围,效果却截然相反,因为发动机在低转速范围时,进气管内的空气流速很慢,这就需要活塞向下行程时那么怎么样得到较大的负压呢?我们不妨做个实验。

我们可以找一根喝饮料用的塑料软管,当把塑料软管的一头放在空气中另一头放在口中用较慢的速度吸气时可以感到塑料软管内很通畅,但能吸到口中的空气很少;如果用手指稍微堵住吸管的一头再用较慢的速度吸气时,可以明显感觉到吸管内真空度变大,且能吸入口中的空气较多了。

发动机的吸气原理也是一样的,所以在低转速时如果气门的开度较大,就会因为进气管内的真空度不够而吸气效率下降。

所以汽车设计师在选择气门开度时既不能太大,也不能太小。

如果开度大那么虽然高转速时功率能提高,但低转速时由于进气量太小,会让发动机的扭力下降,工作不稳定,严重时甚至熄火。

反之如果选择较小的气门开度,那么低转速时的扭力虽然提高了,但高转速时的功率却发挥不出来。

这就产生了一对矛盾。

所以设计师只能选择一个折中的气门行程来尽可能的兼顾到高低转速的动力发挥。

7-大众车系可变气门正时技术

7-大众车系可变气门正时技术

2.工作原理
(1)当发动机转速低于1300r/min时,电磁控制阀不通电, 滑阀使A油道与主油道相通,控制油压即作用在控制活塞的下 方,推动控制活塞向上运动,使上部链条变长,进气凸轮轴即
反向转动一定角度θ,进气门早开角度变小,进、排气门的重
叠角变小,防止发动机回火,低速运转平稳。
(2)当发动机转速高于1300r/min时, 电磁控制阀通电, 磁吸力使滑阀右移,沟通B油道和主油道,控制油压即作用在 控制活塞的上方,推动控制活塞向下运动,使下部链条变长,
在低速区,其曲线与充气效率ηv 曲线
相近似。
二、大众车系的可变气门正时技术
它由正时链条、链轮及可变相位调节器和电磁控制阀组 成。其调节原理如下:
(1)驱动端(固定端)是排气凸轮轴,在正时皮带的驱动下 顺时针转动,不可能逆转,相对进气凸轮轴而言为“固定端”。 它拉动进气凸轮轴也顺时针旋转,驱动气门开闭。
(3)电磁控制阀线圈的电阻值为10~18Ω,控制滑阀轴向 移动,滑阀上有4道隔墙,转换控制油道,产生“提前”或 “迟后”调节。滑阀的中间隔墙上有一沟槽,使滑阀微量轴 移,即产生“封闭”或“沟通”作用。
(4)主油道进油口处有节流球,可使控制油压柔和地变化。 回油道孔在滑阀末端隔墙内,保证B油道在不“提前”时泄油; “提前”时又封闭回油道。
大众车系可变气门 正时技术
一、概述
发动机“可变气门正时技术”(Variable Valve Timing) 在大众车系广泛使用,如宝来、奥迪、帕萨特等。配气相位角 的大小因车而异,总的目的是:利用气流的惯性和压差,使进 气充分、排气彻底,提高动力性和经济性。
在配气相位的四个角度中,进气 晚关迟后角,在不同的转速时对发动 机性能的好坏影响最大(充气效率、 转矩、功率)。其次为重叠角的大小, 影响缸内排气效果好坏或产生回火现 象。发动机的最大功率转速和最大转 矩转速不是对应的,最大转矩是发生
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈尔滨应用职业技术学院毕业论文教务处制毕业论文项目表摘要本文介绍了国内外可变气门技术的发展状况。

并根据气门控制参数的变化情况,对可变气门技术进行了详细的分类。

结合目前典型的可变气门机构,对实现可变气门技术的途径进行了系统的阐述与评价。

通过实例介绍了可变气门技术改善发动机性能及在实现汽油机均质充量压缩着火(HCCI)方面的应用。

通过分析指出,叶片式可变凸轮轴相位机构是目前可行性较强的技术途径。

众所周知发动机是靠燃料在汽缸内燃烧做功来产生功率的,由于输入的燃料量受到吸入汽缸内空气量的限制,因此发动机所产生的功率也会受到限制,如果发动机的运行性能已处于最佳状态,再增加输出功率只能通过压缩更多的空气进入汽缸来增加燃料量,从而提高燃烧做功能力。

因此在目前的技术条件下,涡轮增压器是惟一能使发动机在工作效率不变的情况下增加输出功率的机械装置。

关键词:可变配气正时;涡轮增压;汽油机AbstractThis paper introduces the development of variable valve technologies. Control parameters according to changes in valve, variable valve timing technology for a detailed classification. Combined with the current typical variable valve body, the variable valve technology to achieve a systematic approach described and evaluated. Introduced through examples variable valve technology to improve engine performance and in the realization of gasoline homogeneous charge compression ignition (HCCI) in the application. Through analysis that vane variable camshaft phase is the feasibility of a strong body of technical means.As we all know the engine is fuel combustion in the cylinder by acting to produce power, as the amount of fuel input by the inhalation of limits on the amount of air inside the cylinder, so the power generated by the engine will be limited, if the engine's operating performance has been at its best further increase in output power can only be compressed more air into the cylinders to increase fuel consumption, thereby enhancing the combustion of acting ability. Therefore, the current technical conditions, the turbocharger is the only way the efficiency of the engine without changing the mechanical device to increase power output.Key words: variable valve timing; turbocharged; gasoline目录摘要 (I)Abstract (II)绪论..................................................................................................................................... I V 第1章配气正时可变技术 (1)1.1 可变气门正时技术之一:保时捷Carioca (1)1.2 可变气门正时技术之二:本田VTEC (1)1.3 可变气门正时技术之三:雷诺—日产CVTC (1)1.3.1 VVT(发动机可变气门正时技术) (2)1.3.2 CVVT(连续可变气门正时技术) (2)1.3.3 DVVT(进排气双连续可变气门正时技术) (3)第2章发动机配气机构可变技术 (4)2.1 可变进气系统 (4)2.2 可变配气机构 (4)2.2.1 可变配气相位原理 (5)2.2.2 可变配气相位机构 (5)第3章三阶段可变气门相位和升程控制系统介绍 (7)3.1可变配气相位 (7)3.1.1发动机低速运转 (7)3.1.2发动机高速运转 (7)3.2可变气门相位和升程控制系统介绍 (8)第4章可变气门正时技术的趋势 (9)结语 (10)参考文献 (11)致谢 (12)绪论随着社会科学技术的迅猛发展,特别是现代社会对能源与坏境要求的日益提高,作为现代交通最重要的工具——汽车,其发动机的整机性能已经引起人们的广泛关注。

在广大工程师、生产厂家以及用户之间形成的共同焦点:动力性、经济性、可靠性、耐久性、工艺性以及最新严格规范的排放性,都对汽车发动机的整机性能提出了严格的考验。

传统的发动机气门驱动系统采用机械凸轮机构控制进气门和排气门,这种机构的气门开启时刻、开启持续角和气门升程是固定不变的,难以满足汽油机全工况性能优化的需要。

大家都之道,发动机是汽车的“心脏”,一个企业发动机的生产能力,代表着企业的研发、技术实力。

在油价飞涨的今天,发动机更是至关重要,一款省油的发动机,就是用最少的油,输出最大的功率和扭矩,而且其可靠性,环保值都要最大化。

在发动机诸多省油的途径中,采用配气系统可变装置这种技术是最为人们所知的,像本田的VTEC系统,伊兰特的CVVT发动机,以及丰田所使用的VVT-i发动机,都是采用可变配气系统,即改变发动机的正时时间,气门升程等来实现效率的最大化,达到节油的目的。

第1章配气正时可变技术发动机技术发展到今天,民用车转速范围已经拓展到6000rpm乃至9000rpm,低速和高速时,气门开启关闭的时刻需要与转速匹配。

在低转速时,进气速度慢,所以气门重叠角可以相对大一些,应该应该让进气门提前打开和延时关闭的时间更长一些,以保证充分进气;在高转速情况下,由于混合气流速很快,那么气门重叠角就应变小,让气门提前开启和延时关闭的时间减短,这样才不会造成进排气干涉。

发动机才能在保证不发生进排气干涉的情况下,让其在各个工况都能得到充分的进气,从而提高了发动机的工作效率,也让发动机在低转时能有充分的扭力输出,高转速时能有更强大的功率输出,让发动机扭力输出得更平稳,特性曲线更线性。

为了达到这种“可变”的效果,各家企业都有自己的一套手段来对配气正时进行调整。

1.1 可变气门正时技术之一:保时捷Carioca在凸轮轴左边有一凸轮轴同步齿形带轮,曲轴动力通过正时链条传递到带轮,并进一步输送到凸轮轴上,以控制凸轮轴角度,进而控制配气正时角。

保时捷在凸轮轴同步齿形带轮上设置了一个液压装置,当ECU接收位于曲轴的传感器的信息,并进行处理后,将该转速下的配气正时角转变成为电信号传送到液压装置,由液压装置加压,使凸轮轴同步齿形带轮能够顺、逆时针在红色和蓝色位置之间自由转动,达到控制配气正时角的目的。

1.2 可变气门正时技术之二:本田VTEC该发动机匹配的是单VTEC系统,其配气正时角的调整只设置于进气门,而对排气门并无此作用。

齿形皮带驱动白色部分凸轮轴同步齿形带轮,而凸轮轴与图中蓝色部分相连,蓝色部分为凸轮轴末端,其位置与凸轮轴同步齿形带轮存在一定的夹角,通过液压对该角度进行调整,从而控制凸轮轴偏摆的位置,达到改变配气正时角的目的。

1.3 可变气门正时技术之三:雷诺—日产CVTC雷诺、日产合并之后,多项技术都在集团内部进行共用。

其中就包括日产潜心研究的CVTC连续可变气门正时系统。

其原理与本田VTEC接近,也是采用液压作用改变凸轮轴同步齿形带轮与凸轮轴末端的夹角,从而改变配气正时角。

在凸轮轴与正时齿轮之间有高压油区和低压油区。

只要调节两个油区之间的压力差,就能改变配气正时角了。

两个油区的油压通过油压控制阀调节的。

当高压油路(图中红色重叠角增大,适用于低转速;当电磁阀控制黄色区域压力高于红色区域压力时,凸轮轴逆时针偏转一定角度,配气正时被提前,这样重叠角减小,适用于高转速。

这里另外说一下,大众公司相似的技术是“Variable Valve Timing”,中文叫做“可变进气相位(正时)”。

其原理与本田的VTEC 相似,不过相对较简单,少了升程控制系统,对气门的控制没有VTEC精确。

但在ea888上的1.8t fish采用的是新一代的可变正时控制系统,也是液压控制,比以前的老引擎上的控制系统要精确,响应更加敏捷,但也只是进气门正时控制,并没有实现对排气门的正时控制。

大众好像没有采用气门升程控制技术,因此不能控制气门升程大小,不知道为什么,是不是因为在进气歧管上已经有变截面技术来控制气流了?VVT(Variable Valve Timing)即可变气门正时系统,是当下热门的发动机技术之一,该系统最大的优点是油耗省动力强。

如果说汽车的心脏是发动机,那么VVT技术发动机则相当于一颗拥有高科技的“智能心脏”。

在低碳生活的风潮下,拥有出众节能减排效果的VVT发动机成为很多家轿的选择。

VVT门派下高手众多,VVT、CVVT、DVVT、VVT-I、双VVT-I各有各的优势也各有各的软肋。

1.3.1 VVT(发动机可变气门正时技术)技术特点:通过提高充气效率,增加发动机功率,以提高燃油效率。

由于缺少连续正时技术,在中段转速下扭矩不足,与CVVT、DVVT相比,动力油耗表现相对较弱VVT 通过对气门的控制进行配气,改变进气门的打开与关闭时间,可以提高进气充量,使发动机的扭矩和功率可以得到进一步的提高。

优点是省油、功升比大,而缺点是中段转速扭矩不足,由于多摇臂和凸轮组机构的介入,发动机运转噪音大,维修使用的成本也大幅增加。

相关文档
最新文档