乘法公式与因式分解

合集下载

乘法公式与因式分解

乘法公式与因式分解

A .))((22b a b a b a -+=-B .2222)(b ab a b a +-=-C .222()2a b a ab b +=++D .2() a ab a a b +=+8、下列分解因式正确的是 ( )A.)1(23-=-x x x xB.)2)(3(62-+=-+m m m mC.16)4)(4(2-=-+a a aD.))((22y x y x y x -+=+9、若a 为整数,则a a +2一定能被( )整除A .2B .3C .4D .510、无论x,y 取何值,x 2+y 2-2x+12y+40的值都是 ( )A 、正数B 、负数C 、零D 、非负数11、下列判断两角相等的叙述中,错误的是 ( )A 、对顶角相等B 、 两条直线被第三条直线所截,内错角相等C 、两直线平行,同位角相等D 、∵∠1=∠2,,∠2=∠3∴∠1=∠312、下列计算中,正确的是 ( )A 、22 25 =210B 、a+a=a 2C 、a 2 a 3 = a -1D 、(a+b)2 =a 2+b 2选择题答案书写处1-5 6-10 11-12二、填空(每小题3分,共24分)11、计算(31a+3b )2-(31a-3b )2=________________.12、分解因式:2294b a -=________________.13、如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为 .14、多项式4x 2+1加上一个单项式后能成为一个整式的完全平方,•请你写出符合条件的这个单项式是___________.15、若5,6x y xy -==则22x y xy -=_________,2222x y +=__________。

16、甲、乙两个同学分解因式2x ax b ++时,甲看错了b ,分解结果为()()24x x ++;乙看错了a ,分解结果为()()19x x ++,则a =________,b =________。

乘法公式与因式分解

乘法公式与因式分解

乘法公式与因式分解乘法公式和因式分解是数学中常见的概念和工具。

它们在各个数学领域都有广泛的应用,尤其是在代数和方程中。

本文将详细介绍乘法公式和因式分解的概念、原理和应用。

一、乘法公式乘法公式是指将两个或多个数相乘所遵循的规则。

在代数中,乘法公式往往涉及到字母表示的变量和表达式。

以下是常见的乘法公式:1. 两个数的乘积等于它们的因数相乘:a * b = b * a。

2. 两个数相乘再乘以另一个数等于每个因数分别乘以这个数再相乘:(a * b) * c = a * (b * c)。

3. 任何数与1相乘等于它本身:a * 1 = a。

4. 任何数与0相乘等于0:a * 0 = 0。

乘法公式在解决方程、计算等多个数学问题中起着重要作用。

它们能够简化计算过程、发现规律、推导定理等。

二、因式分解因式分解是将一个数或表达式分解成多个因数相乘的过程。

它是乘法公式的逆运算。

因式分解在求解方程、因式的化简和分析函数图像等方面具有重要意义。

1. 将一个数分解成质因数的乘积是因式分解的基本思想。

质因数是指只能被1和自身整除的数,如2、3、5、7等。

例如,将12分解成质因数的乘积等于2 * 2 * 3。

2. 除法和因式分解之间有密切的关系。

将一个数分解成两个因数相乘,可以使用除法的思想。

例如,用因式分解的方法将24分解成2 * 12,相当于24除以2得到12。

3. 多项式的因式分解需要应用乘法公式的原理。

对于多项式,我们可以先找出公因式,然后使用乘法公式将多项式分解为多个因式相乘的形式。

例如,将x^2 - 4分解成(x - 2)(x + 2)。

因式分解不仅在代数中有重要应用,也在数论、几何等数学分支中有广泛的运用。

它能够帮助我们更好地理解数学问题,简化运算,并发现问题的规律和性质。

三、乘法公式与因式分解的应用乘法公式和因式分解在数学中有广泛的应用。

以下列举其中几个常见的应用:1. 方程的求解:通过应用乘法公式和因式分解,我们可以将方程进行变形和化简,从而更容易求得方程的解。

乘法公式与因式分解计算题

乘法公式与因式分解计算题

乘法公式与因式分解计算题在我们学习数学的漫长旅程中,乘法公式与因式分解计算题就像是一个个神秘的小关卡,等待着我们去突破。

记得我读初中的时候,有一次数学考试,其中就有大量关于乘法公式与因式分解的计算题。

当时,我看着试卷上的那些题目,心里直犯嘀咕:“这可怎么下手啊!”就比如有这样一道题:(x + 3)² - (x - 3)²。

按照乘法公式展开,(x + 3)²等于 x² + 6x + 9,(x - 3)²等于 x² - 6x + 9 。

然后相减,得到 12x 。

那时候,我一会儿忘了平方展开的公式,一会儿又在计算过程中出错,急得满头大汗。

咱们先来说说乘法公式,平方差公式(a + b)(a - b)= a² - b²,完全平方公式(a ± b)² = a² ± 2ab + b²,这两个公式可是解决很多问题的“利器”。

比如计算(2x + 5y)(2x - 5y),这就是典型的平方差公式的应用。

我们把 2x 看作 a ,5y 看作 b ,那么就可以直接得出(2x)² - (5y)²,也就是 4x² - 25y²。

再说说完全平方公式,像(3m + 4n)²,按照公式展开就是 9m² +24mn + 16n²。

这里要特别注意中间项 2ab ,千万别算错系数。

接下来聊聊因式分解。

因式分解是把一个多项式化为几个整式的积的形式。

常见的方法有提公因式法、公式法等。

提公因式法很简单,比如 6x + 9 ,我们能明显看出公因式是 3 ,分解后就是 3(2x + 3)。

公式法就用到咱们前面说的乘法公式的逆运算啦。

比如 x² - 9 ,这就是平方差公式的逆运算,分解为(x + 3)(x - 3)。

咱们再来看几道综合一点的题目。

整式的乘法与因式分解精选全文完整版

整式的乘法与因式分解精选全文完整版

可编辑修改精选全文完整版整式的乘法与因式分解一:[整式的乘法与因式分解]初二数学知识点之整式乘除与因式分解讲解及汇总1.单项式的乘法法那么:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.单项式与多项式的乘法法那么:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法那么:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法那么:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.多项式除以单项式的法那么:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言表达:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言表达:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.除了课堂上的学习外,数学知识点也是学生提高数学成绩的重要途径,本文为大家提供了初二数学知识点解析:二次函数的应用,希望对大家的学习有一定帮助。

2.有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中(如右图),那么此抛物线的解析式为().3.某公司的生产利润原来是a元,经过连续两年的增长到达了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是()4.把一段长1.6米的铁丝围长方形ABCD,设宽为x,面积为y.那么当y最大时,x所取的值是()A.0.5B.0.4C.0.3D.0.6【考点归纳】1.二次函数的解析式:(1)一般式:();(2)顶点式:();(3)交点式:().2.顶点式的几种特殊形式.线()对称,顶点坐标为(,).⑴当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是();⑵当a 0时,抛物线开口向(),有最()(填"高"或"低")点,当X=()时,有最()("大"或"小")值是().【典型例题】一、例1橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP,柱子顶端P处装上喷头,由P处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如下图).假设OP=3米,喷出的水流的最高点A距水平面的高度是4米,离柱子OP的距离为1米.(1)求这条抛物线的解析式;(2)假设不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外6.以下函数关系中,是二次函数的是( )A.在弹性限度内,弹簧的长度y与所挂物体质量x之间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a之间的关系D.圆心角为120°的扇形面积S与半径R之间的关系小编为大家整理的初二数学知识点解析:二次函数的应用相关内容大家一定要牢记,以便不断提高自己的数学成绩,祝大家学习愉快!二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三局部:①系数一各项系数的最大公约数;②字母--各项含有的相同字母;③指数--相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底〞;②如果多项式的第一项的系数是负的,一般要提出“-〞号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。

整式乘法与因式分解的公式

整式乘法与因式分解的公式

整式乘法与因式分解的公式在咱们的数学世界里,整式乘法与因式分解就像是一对亲密无间的好伙伴,它们的公式更是解决各种数学难题的神奇钥匙。

先来说说整式乘法中的平方差公式吧,(a+b)(a - b)= a² - b²。

这就好比我前段时间装修房子的时候,计算房间地面的面积。

房间的长是(x + 5)米,宽是(x - 5)米,那地面的面积就可以用平方差公式来算啦,就是 x² - 25 平方米。

是不是一下子就把复杂的问题简单化了?还有完全平方公式,(a ± b)² = a² ± 2ab + b²。

我记得有一次去市场买水果,摊主给我推荐苹果,说一箱苹果的数量可以用完全平方公式来计算。

假设每排有(x + 3)个,一共排了(x + 3)排,那这一箱苹果就有 x² + 6x + 9 个。

你看,生活中的这些小细节都能和整式乘法的公式联系起来。

说完整式乘法,咱们再聊聊因式分解。

因式分解的公式也特别有用。

比如用平方差公式进行因式分解,a² - b² = (a + b)(a - b)。

就像我组装家具的时候,一个大的木板需要切割成小块,我就得根据木板的尺寸,利用这个公式来计算怎么切才能最合理。

而运用完全平方公式进行因式分解,a² ± 2ab + b² = (a ± b)²。

这让我想起了做手工的时候,要把一块大布料裁剪成合适的形状,就得通过这个公式来规划裁剪的尺寸和方式。

整式乘法和因式分解的公式,不仅在数学的课堂里闪闪发光,在我们的日常生活中也是无处不在。

无论是计算物品的数量,还是规划空间的大小,它们都能派上大用场。

总之,整式乘法与因式分解的公式就像是数学世界里的魔法咒语,只要我们熟练掌握并灵活运用,就能轻松解决各种难题,让数学变得不再那么可怕,反而充满了乐趣和惊喜!希望大家都能和这些公式成为好朋友,在数学的海洋里畅游无阻。

初高中衔接1 乘法公式与因式分解

初高中衔接1 乘法公式与因式分解

衔接1:乘法公式与因式分解
学习目标:
1、掌握常用的乘法公式,并会逆用公式及十字相乘进行因式分解,会分母、分子有理化;
2、通过学习交流弥补初高中数学知识的脱节,提高观察能力、联想能力和运算能力;
3、在学习的过程中,提高数学素养,培养学习兴趣.
一、课前检测:
1、分解因式
(1) 2524x x +-; (2)226x xy y +-.
二、知识回顾
1、乘法公式
(1)平方差公式: ;
(2)完全平方和公式: ;
(3)完全平方差公式: .
例1 计算:(1))1)(1)(1(2--+a a a (2))132)(132(++--y x y x
例2 已知0122=+-x x ,求x x 1+,221x x +的值.
变式: 已知0132=+-x x ,求
x x 1+,221x x +的值.
例3 (1)化简
3
23+ (2)化简y x y x +-
(3)比较1112-与1011-的大小
2、十字相乘法
例4分解因式
(1)36132---x x (2)25122
--x x
(3)a x a x ++-)1(2(4)6)32(2+++x a ax
三、课堂小结。

第十四章整式的乘法与因式分解复习--ppt课件精选全文

第十四章整式的乘法与因式分解复习--ppt课件精选全文

提:提公因式 提负号
套 二项式:套平方差 三项式:套完全平方与十字相乘法
看: 看是否分解完
3、因式分解应用:
ppt课件
9
1.从左到右变形是因式分解正确的是( D ) A.x2-8=(x+3)(x-3)+1
B.(x+2y)2=x2+4xy+4y2
C.y2(x-5)-y(5-x)=(x-5)(y2+y)
D. 2a2 - 1 (2 a2 - 1) (2 a 1)(a 1)
2
4
22
ppt课件
10
2.下列各式是完全平方式的有( D )
① x2 2x 4 ③x2 2xy y2
② x2 x 1 4
④ 1 x2 - 2 xy y2 93
A.①②③ C. ①②④
B.②③④ D.②④
ppt课件
a0=1(a≠0) 3、幂的乘方: (am )n = amn 4、积的乘方: (ab)n = anbn 5、合并同类项:
解此类题应注意明确法则及各自运算的特点,避免混淆
ppt课件
3
1、若10x=5,10y=4,求102x+3y-1 的值.
2、计算:0.251000×(-2)2001
注意点:
3.(9)1004 ( 1 )670 27
ppt课件
7
1 、已知a+b=5 ,ab= -2,
求(1) a2+b2 (2)a-b
a2+b2=(a+b)2-2ab
(a-b)2=(a+b)2-4ab
2、已知:x2+y2+6x-4y+13=0, 求x-y的值;
3、已知 x 3 1 求x2-2x-3的值

《乘法公式》整式的乘除与因式分解

《乘法公式》整式的乘除与因式分解
运算法则
把系数,同底数幂分别相除后,作为商的因式;对于只在被 除式里含有的字母,则连同他的指数一起作为商的一个因式 。
多项式除以单项式
定义
把一个多项式除以另一个单项式的商叫做多项式除以单项式。
运算法则
把这个多项式的每一项分别除以单项式,再把所得的商相加。
多项式除以多项式
定义
把一个多项式除以另一个多项式的商叫 做多项式除以多项式。
《乘法公式》整式的乘除与 因式分解
2023-11-09
目录
• 乘法公式 • 整式的乘法 • 整式的除法 • 因式分解 • 乘法公式、整式的乘除与因式分解的关系 • 经典例题解析
01
乘法公式
乘法公式的定义
乘法公式的定义
乘法公式是指将两个或多个数相 乘的结果用一个简单的符号表示
。例如,$(a+b)^2$ 表示 $a^2+2ab+b^2$。
因式分解的例题
3. 双十字相乘法
$x^2 + 5xy + 6y^2 = (x+2y)(x+3y)$。
2. 公式法
$a^2 - 8a + 16 = (a-4)^2$。
总结词
因式分解的方法多种多样,通过经典例题 解析可以更好地理解各种方法的适用条件 和操作技巧。
详细描述
因式分解是将一个多项式分解为若干个因 式之积的过程,下面通过一些例题及解析 来探讨因式分解的方法
乘法公式与因式分解的关系
乘法公式在因式分解中的应用
在因式分解中,乘法公式被广泛应用,例如利用乘法公 式进行多项式的展开、分组、约分等,这些方法都是基 于乘法公式进行推导和复杂的乘法公式问题时,通过因式分解可以 将问题转化为更简单的形式,例如利用因式分解解决一 些分式的约分问题。

乘法公式与因式分解

乘法公式与因式分解

乘法公式与因式分解乘法公式和因式分解是数学中常见且重要的概念。

它们在代数运算和解决各种数学问题时起着关键作用。

本文将详细介绍乘法公式和因式分解的概念、应用以及解题方法。

一、乘法公式乘法公式是指一些常见的数学公式,用于求解乘法式子的结果。

常见的乘法公式包括:1. 两个整数相乘:a × b = c2. 平方的乘法公式:(a + b) × (a - b) = a^2 - b^23. 两个二次根式相乘:(a + b) × (c + d) = ac + ad + bc + bd4. 两个多项式相乘:(a + b)(c + d + e) = ac + ad + ae + bc + bd + be这些乘法公式在解决数学问题和代数运算时非常有用。

通过熟练掌握这些公式,可以简化计算过程,提高解题效率。

二、因式分解因式分解指将一个多项式分解成若干个乘法因子的过程。

因式分解的目的是简化多项式的形式,方便问题的求解。

因式分解可以根据多项式的不同形式采用不同的方法。

1. 提公因式法:对于一个多项式,如果各项之间存在公因子,可以将公因子提到括号外,并将其余部分化简为一个新的多项式。

例如,对于表达式4x + 8y,可以提取出2作为公因子,得到2(2x + 4y)。

2. 二次因式分解法:对于一个二次多项式,可以通过因式分解的方法将其分解为两个一次因式的乘积。

例如,对于多项式x^2 + 5x + 6,可以进行二次因式分解,得到(x + 2)(x + 3)。

3. 公式法:对于一些特定的多项式,可以利用一些常见的因式分解公式进行分解。

例如,对于多项式x^2 - 4,可以使用平方差公式进行因式分解,得到(x + 2)(x - 2)。

因式分解在解决代数方程、求解方程根和简化运算等方面具有广泛的应用。

熟练掌握因式分解的方法和技巧,可以帮助我们更好地解决各种数学问题。

三、应用举例下面通过几个具体的数学问题来展示乘法公式与因式分解的应用。

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总

整式的乘法和因式分解知识点汇总1.一元整式的乘法:一元整式是只含有一个变量的整式,例如3x^2+2x+1、一元整式的乘法就是将两个一元整式相乘,可以使用分配律和合并同类项的方法。

例如:(3x+2)(2x-5)=3x*2x+3x*(-5)+2*2x+2*(-5)=6x^2-15x+4x-10=6x^2-11x-102.多项式的乘法:多项式是含有多个项的整式,例如(3x+2)(2x-5)。

多项式的乘法可以通过将每个项相乘,并使用分配律和合并同类项的方法进行简化。

例如:(3x+2)(2x-5)=3x*2x+3x*(-5)+2*2x+2*(-5)=6x^2-15x+4x-10=6x^2-11x-103.完全平方公式:完全平方公式是一种特殊的乘法形式,将一个一元二次多项式乘积进行简化。

完全平方公式为(a + b)^2 = a^2 + 2ab + b^2例如:(x+3)(x+3)=x^2+2*x*3+3^2=x^2+6x+9因式分解知识点汇总:1.因式分解的基本思想:因式分解是将一个多项式表示为若干个乘积的形式,其中每个乘积称为一个因式。

通过因式分解,可以简化计算和解决问题。

2.因式分解的基本方法:2.1提取公因式:将多项式中的公因式提取出来,得到一个公因式和一个因式为公因式的多项式。

例如:2x^2+4x=2x(x+2)2.2公式法:使用已知的公式,例如完全平方公式、差平方公式等,将多项式进行因式分解。

例如:x^2-9=(x+3)(x-3)2.3分组分解法:将多项式中的各项进行分组,并找出可以进行因式分解的共同因式。

例如:ax + bx + ay + by = (a + b)(x + y)2.4平方差公式:将一个二次多项式表示为两个平方的差。

例如:x^2-4=(x+2)(x-2)2.5公因式平方差公式:将一个二次多项式表示为公因式的平方减去另一个平方。

例如:x^2-y^2=(x+y)(x-y)2.6公式的逆运算:将一个多项式进行展开,得到可以进行因式分解的形式。

乘法公式与因式分解练习

乘法公式与因式分解练习

乘法公式与因式分解练习乘法公式和因式分解是初中数学中常见的两个概念。

乘法公式是指通过一定的规则来求解乘法运算,而因式分解则是将一个复杂的代数式分解为若干个简单的乘积形式。

在本文中,我们将通过练习来加深对乘法公式和因式分解的理解。

一、乘法公式练习1. 计算下列乘法:(1) (5 + 7)(3 + 2)(2) (4 - 6)(2 - 1)(3) (8 + 3)(2 - 5)(4) (10 - 2)(6 - 4)2. 计算下列算式的值:(1) (3^2 + 2^2) - 2(3 × 2)(2) (5 + 7)^2 - (3 - 2)^2(3) (4^2 - 3^2) + 2(4 × 3)(4) (8 - 6)^2 + (5 - 4)^2二、因式分解练习1. 将下列代数式因式分解:(1) x^2 + 6x + 9(2) a^2 - 4(3) 9x^2 - 25(4) 16x^2 - 9y^22. 将下列代数式完全因式分解:(1) 4x^2 - 12xy + 9y^2(2) x^2 - 5x + 6(3) 9x^2 - 4(4) 25x^2 - 4y^2以上练习可以帮助我们巩固和熟悉乘法公式和因式分解的运用。

通过这些练习,我们能更好地理解乘法公式的运用规则,以及因式分解的方法和步骤。

通过大量的练习,我们可以提高自己的解题速度和准确率。

总结:乘法公式和因式分解是初中数学中的重要内容。

通过对乘法公式和因式分解的练习,我们能更好地理解和应用它们,在解决数学问题时更加得心应手。

因此,我们要充分利用练习机会,不断提升自己的数学能力。

以上练习题中的内容涵盖了乘法公式和因式分解的常见形式,希望对您有所帮助。

通过不断的练习和积累,相信您能够在数学学习中取得更好的成绩。

为了进一步提高自己的能力,您还可以寻找更多的习题进行练习,加深对乘法公式和因式分解的理解和掌握。

祝您学习进步,数学顺利!。

人教版八年级上册,整式乘法与因式分解

人教版八年级上册,整式乘法与因式分解

整式乘法与因式分解1、主要知识回顾:幂的运算性质:a m ·a n =a m +n (m 、n 为正整数)同底数幂相乘,底数不变,指数相加.()nm a = a mn (m 、n 为正整数)幂的乘方,底数不变,指数相乘.()n n n ba ab = (n 为正整数) 积的乘方等于各因式乘方的积. n m a a ÷= a m-n (a ≠0,m 、n 都是正整数,且m >n ) 同底数幂相除,底数不变,指数相减. 零指数幂的概念:a 0=1 (a ≠0) 任何一个不等于零的数的零指数幂都等于l .负指数幂的概念:a -p =p a 1(a ≠0,p 是正整数)任何一个不等于零的数的-p (p 是正整数)指数幂,等于这个数的p 指数幂的倒数. 也可表示为:pp n m m n ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-(m ≠0,n ≠0,p 为正整数) 单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式: a 2-b 2= (a +b )(a -b )②完全平方公式:a 2+2ab +b 2=(a +b )2a 2-2ab +b 2=(a -b )23.十字相乘法练习:整式运算练习题1.已知2x -y =2,求代数式 [(x 2+y 2)-(x -y)2+2y(x -y)]÷4y 的值。

乘法公式与因式分解

乘法公式与因式分解

第一單元 乘法公式與因式分解1-1乘法公式我們知道5(72)5752×+=×+×一般而言,對任意數a ,b ,c 恆有()a b c ab ac +=+同樣的,()b c a ba ca +=+於是,想計算()()a b c d ++時,可以先將c d +當成一個數,即()()()()a b c d a c d b c d ac ad bc bd ++=+++=+++這個概念可以再推廣,例如()()a b c d e ad ae bd be cd ce +++=+++++也就是當兩組數各自相加、括號起來,再相乘時,可以將前面括號中的每一項逐一乘 後面括號中的每一項,這些兩兩乘積全部相加即得。

這個性質稱為乘法對加法的分配 律,簡稱分配律。

利用分配律,我們來導出一些乘法公式。

(1) 32()()()a b a b a b +=++22()(2)a b a ab b =+++32222322a a b ab a b ab b =+++++322333a a b ab b =+++和的立方 33223()33a b a a b ab b +=+++(2) 33()[()]a b a b −=+−32233()3()()a a b a b b =+−+−+−322333a a b ab b =−+−差的立方 33223()33a b a a b ab b −=−+−例題1求3(21)x −的展開式。

解3322332(21)(2)3(2)13(2)1181261x x x x x x x −=−⋅+⋅−=−+−立即演練求3(52)x +的展開式。

除了上述乘法公式,還可以用分配律導出一些其他的常用公式:(3)2233()()a b a ab b a b −++=−(4)2233()()a b a ab b a b +−+=+例題2將2(3)(39)x x x −++乘開並化簡。

第3讲 乘法公式和因式分解

第3讲 乘法公式和因式分解

第3讲 乘法公式和因式分解一、考点知识梳理【考点1 平方差公式】两数和与这两数差的积,等于它们的平方差(a +b)(a -b)=a 2-b 2【考点2 完全平方公式】两数的平方和,加上(或者减去)它们的积的两倍等于它们和(或差)的平方(a±b)2=a 2±2ab +b 2【考点3 因式分解】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即,. 形如,的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. m m ()()22a b a b a b -=+-()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b对于二次三项式,若存在 ,则 分组分解法 对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.二、考点分析【考点1 平方差公式】【解题技巧】能够运用平方差公式进行多项式乘法运算的必须是两个二项式,两项都能写成平方的形式,且符号相反.反之能够运用平方差公式分解因式的多项式必须是二项式且符号相反.【例1】(2019河北沧州中考模拟)若(a ﹣b ﹣2)2+|a +b +3|=0,则a 2﹣b 2的值是( )A .﹣1B .1C .6D .﹣6【一领三通1-1】(2019 山东青岛模拟)若k 为任意整数,且993﹣99能被k 整除,则k 不可能是( )A .50B .100C .98D .97【一领三通1-2】(2019辽宁大连模拟)先化简,再求值:(a +b)(a -b)+b(a +2b)-b 2,其中a =1,b =-2.【一领三通1-3】(2019河北石家庄中考模拟)计算并观察、探究下列式子①(x ﹣1)(x +1)= x 2﹣1②(x ﹣1)(x 2+x +1)= x 3﹣1③(x ﹣1)(x 3+x 2+x +1)=x 4﹣1④(x ﹣1)(x 4+x 3+x 2+x +1)=x 5﹣1⑤(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=x 6﹣1…由以上规律(1)填空:(x ﹣1)(x n +x n ﹣1+…+x +1)= . 2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++(2)求:22019+22018+22017+…+22+2+1 的值.【分析】(1)利用多项式乘以多项式法则计算得到结果,规律总结得到一般性结论,写出即可;(2)原式变形后,利用得出的规律计算即可得到结果.【考点2 完全平方公式】【解题技巧】能运用完全平方公式进行多项式乘法运算的,必须是两个数(或差)的平方和的形式,反之能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【例2】(2019辽宁锦州中考模拟)如果二次三项次x 2﹣16x +m 2是一个完全平方式,那么m 的值是( )A .±8B .4C .﹣2D .±2【一领三通2-1】(2019山东聊城中考模拟)已知a ,b 是△ABC 的两边,且a 2+b 2=2ab ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .锐角三角形D .不确定【一领三通2-2】(2019沧州九中模拟)当s =t +12时,代数式s 2-2st +t 2的值为 . 【分析】运用完全平方公式分解因式【一领三通2-3】(2019•吉林长春中考)先化简,再求值:(2a +1)2﹣4a (a ﹣1),其中a =.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【一领三通2-4】(2018,江苏南京模拟)先化简,再求值:2(21)2(21)3a a +-++,其中a =【分析】直接运用(a+b)2=a 2+2ab+b 2进行计算、化简.【考点3 因式分解】【解题技巧】因式分解的一般步骤:(1)如果多项式各项有公因式,应先提取公因式;(2)如果各项没有公因式,可以尝试使用公式法来分解因式,看是否符合平方差公式还是完全平方公式,有时需考虑用十字交乘法;(3)检查因式分解是否彻底,必须分解到每一个因式不能再分解为止.类型一、提公因式法分解因式1、 分解因式:(1);(2).【总结升华】在提取公因式时要注意提取后各项字母,指数的变化,另外分解要彻底,特别是因式中含有多项式的一定要检验是否能再分,分解因式后可逆过来用整式乘法验证其正确与否.2、利用分解因式证明:能被120整除.【思路点拨】25=,进而把整理成底数为5的幂的形式,然后提取公因式并整理为含有120的因数即可.【总结升华】解决本题的关键是用因式分解法把所给式子整理为含有120的因数相乘的形式. 类型二、公式法分解因式3、放学时,王老师布置了一道分解因式题:,小明思考了半天,没有答案,就打电话给小华,小华在电话里讲了一句,小明就恍然大悟了,你知道小华说了句什么话吗?小明是怎样分解因式的.【思路点拨】把分别看做一个整体,再运用完全平方公式解答.222284a bc ac abc +-32()()()()m m n m m n m m n m n +++-+-712255-25725()()()222244x y x y x y ++---()()x y x y +-、【总结升华】本题主要考查利用完全平方公式分解因式,注意把看作完全平方式里的是解题的关键.4、若多项式5x 2+17x ﹣12可因式分解成(x +a )(bx +c ),其中a 、b 、c 均为整数,则a +c 之值为何?( )A .1B .7C .11D .13故选:A .5、)把下列各式进行因式分解(1)4(x ﹣2)2﹣1;(2)(x+y )2+4(x+y+1).【思路点拨】(1)直接利用平方差公式分解因式即可;(2)经过变形,利用完全平方公式分解因式即可.【总结升华】此题主要考查了公式法分解因式,熟练掌握乘法公式是解题关键.举一反三: 类型三、十字相乘法和分组分解法分解因式6、分解因式:(1)(2)【总结升华】做题之前要仔细观察,注意从整体的角度看待问题.()()x y x y +-、,a b ()()222222x x ----()2224420x xx x +---7、(x ﹣y )2+5(x ﹣y )﹣50.课堂测1.(2019·安徽中考模拟)下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.(2018·江苏中考模拟)把多项式x 2+ax+b 分解因式,得(x+1)(x -3),则a 、b 的值分别是() A .a=2,b=3 B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-33.(2018·广西中考真题)下列各式分解因式正确的是( )A .x 2+6xy+9y 2=(x+3y )2B .2x 2﹣4xy+9y 2=(2x ﹣3y )2C .2x 2﹣8y 2=2(x+4y )(x ﹣4y )D .x (x ﹣y )+y (y ﹣x )=(x ﹣y )(x+y )4.(2019·山东中考模拟)多项式4a ﹣a 3分解因式的结果是( )A .a (4﹣a 2)B .a (2﹣a )(2+a )C .a (a ﹣2)(a+2)D .a (2﹣a )25.(2018·安徽中考模拟)将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a -2D .(a+2)2-2(a+2)+1利用公式法解决代数式求值问题的方法1.(2018·河南中考模拟)已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .22.(2017·陕西中考模拟)已知实数x 满足22110x x x x +++=,那么1x x +的值是( )A .1或﹣2B .﹣1或2C .1D .﹣23.(2019·江苏中考模拟)若x 2+mx -15=(x+3)(x+n),则m 的值为( )A .-5B .5C .-2D .2课后习题一、选择题1.(2019,湖南湘潭中考模拟)下列式子,正确的是( )A. 3+=B. 1)1=C. 122-=-D. 2222()x xy y x y +-=-(2019,安徽蚌埠中考模拟) 下列多项式中,能用公式法分解因式的是( )A.x 2-xyB. x 2+xyC. x 2-y 2D. x 2+y 23.(2019•河北石家庄中考模拟)若要使4x 2+mx +成为一个两数差的完全平方式,则m 的值应为( ) A . B . C . D .4.(2019•山东青岛中考模拟)如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )5.(2019•辽宁本溪中考模拟)有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积( )A .4a 2B .4a 2﹣abC .4a 2+abD .4a 2﹣ab ﹣2b 2 二、填空题1.(2019•呼和浩特中考)因式分解:x 2y ﹣4y 3= .2.(2019•辽宁沈阳中考)因式分解:﹣x 2﹣4y 2+4xy = .3.(2019•甘肃兰州中考)因式分解:a 3+2a 2+a = .4.(2019•山东威海中考)分解因式:2x 2﹣2x += .5.(2019,江苏省连云港中考模拟)当12s t =+时,代数式222s st t -+的值为 . 6. (2019,山西省太原中考模拟)分解因式(4)4x x ++的结果是 .7.(2019,山东潍坊中考模拟)分解因式:32627x x x +-= .8. (2019,河北沧州中考模拟)有许多代数恒等式可以用图形的面积来表示,如图①,它表示了(2m +n )(m+n)=2m2+3mn+n2(1)图②是将一个长2m、宽2n的长方形,沿图中虚线平均分为四块小长方形,然后再拼成一个正方形(图③),则图③中的阴影部分的正方形的边长等于(用含m、n的代数式表示)(2)请用两种不同的方法列代数式表示图③中阴影部分的面积.方法①方法②(3)请你观察图形③,写出三个代数式(m+n)2、(m﹣n)2、mn关系的等式:;(4)根据(3)题中的等量关系,解决如下问题:若已知x+y=7,xy=10,则(x﹣y)2=;(5)小明用8个一样大的长方形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案,图案甲是一个正方形,图案乙是一个大的长方形,图案甲的中间留下了边长是2cm的正方形小洞.则(a+2b)2﹣8ab 的值为.三、解答题1.(2019湖南怀化中考模拟)先化简,再求值:(2a-1)2-2(a+1)(a-1)-a(a-2),其中a=2+1.2.(2019浙江宁波中考模拟)化简:(a+b)2+(a-b)(a+b)-2ab.3、(2019浙江金华中考模拟)先化简,再求值:(x+5)(x-1)+(x-2)2,其中x=-2.4.(2019江苏省淮安中考模拟)先化简,再求值:[]21y 1,))(()(2=-=÷+-+-,其中x x y x y x y x5. 已知a +b =3,ab =﹣10.求:(1)a 2+b 2的值;(2)(a ﹣b )2的值.6.下面是某同学对多项式(x 2﹣4x +2)(x 2﹣4x +6)+4进行因式分解的过程.解:设x 2﹣4x =y ,原式=(y +2)(y +6)+4 (第一步)=y 2+8y +16 (第二步)=(y +4)2(第三步)=(x 2﹣4x +4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2﹣2x )(x 2﹣2x +2)+1进行因式分解.7.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长.8.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S.方法一:S=.方法二:S=.(2)求a,b,c之间的等量关系(需要化简).(3)请直接运用(2)中的结论,求当c=10,a=6,S的值.。

乘法公式以及因式分解公式知识点

乘法公式以及因式分解公式知识点

1、同底数幂相乘:底数不变、指数相加:n m n m a a a +=∙
同底数幂相除:底数不变、指数相减:n m n m a a a -=÷
2、幂的乘方:底数不变、指数相乘:()mn n m a a =
3、积的乘方:等于把积的每一个因时分别乘方,再把所得的幂相乘:m m m b a ab =)(
4、单项式乘以单项式:把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的
字母,则连同它的指数作为积的一个因式
5、单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加
6、多项式与多项式相乘:先用一个多项式的每一项分别乘以另一个多项式的每一项,再把
所得的积相加
7、单项式相除:把它们的系数与同底数幂分别相除作为商的因式,对于只在被除式里含有
的字母,则连同它的指数作为商的一个因式
8、多项式除以多项式:先把这个多项式的每一项除以这个多项式,再把所得的商相加
9、任何不等于0的数的0次幂都等于10
=a (a ≠0)
10、平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差()()22b a b a b a -=-+
11、完全平方公式:两个数的和(差)的平方,等于这两个数的平方和加上(减去)这两个
数积得2倍
()2222b ab a b a ++=+
()2222b ab a b a +-=-
12、p 、q 型整式乘法:()()()pq x q p x q x p x +++=++2。

乘法公式与因式分解

乘法公式与因式分解

乘法公式与因式分解乘法公式是数学中的重要概念之一,它与因式分解密切相关。

本文将探讨乘法公式与因式分解的概念、应用以及计算方法。

一、乘法公式的概念乘法公式是指将两个或多个数相互乘积的规则。

常见的乘法公式有两类:整式的乘法公式和分式的乘法公式。

整式的乘法公式指的是多项式之间的乘法规则,如(a+b)(c+d)=ac+ad+bc+bd;分式的乘法公式则是指两个分式相乘的规则,如ab/cd=(a/c)(b/d)。

二、乘法公式的应用乘法公式在代数运算中有广泛的应用。

在多项式的乘法运算中,乘法公式可以简化计算步骤,提高计算效率。

例如,将一个多项式与另一个多项式相乘时,可以利用乘法公式将其分解为多个互相独立的项,并将各项的系数相乘得到最终结果。

同样,在分式运算中,乘法公式可以将两个分式相乘,得到一个新的分式,从而简化计算。

三、因式分解的概念因式分解是指将一个复杂的表达式拆解成多个简单因式的过程。

在数学中,因式分解是一种常用的求解问题的方法。

例如,对于一个多项式表达式,通过因式分解可以将其分解为两个或多个乘积形式的简单因式相乘,从而更好地理解和处理该表达式。

四、乘法公式与因式分解的关系乘法公式与因式分解密切相关。

在因式分解过程中,使用乘法公式可以将一个多项式进行拆解,形成由简单因式相乘的形式。

同时,通过乘法公式的合理运用,也可以进行因式分解的计算过程,进一步理解和推导出较为复杂的因式。

五、乘法公式的计算方法乘法公式的计算方法根据具体情况而定。

对于整式的乘法公式,可以根据分配律和结合律,按照一定的顺序进行计算。

需要注意的是,在乘法过程中要对指数和系数进行合理的运算和组合。

而对于分式的乘法公式,可以利用分数的乘法法则,将分子相乘得到新的分子,分母相乘得到新的分母,从而得到新的分式。

六、因式分解的计算方法因式分解的计算方法具体取决于所要分解的表达式的特点。

一般来说,可以使用因式分解的常见方法,如公因式提取法、配方法、换元法等。

乘法公式与因式分解(A)

乘法公式与因式分解(A)

专题: 乘法公式与因式分解一、 乘法公式我们在初中已经学习或了解了的一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+.(3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.练习一1.填空:(1)221111()9423a b b a -=+( );(2)(4m + 22)164(m m =++ ); 2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值 ( ) (A )总是正数 (B )总是负数 (C )可以是零 (D )可以是正数也可以是负数二、分解因式1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++;2.提取公因式法与分组分解法例2 分解因式:(1)32933x x x +++; (2)1xy x y -+-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠ 就可分解为12()()a x x x x --.例3 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-; (3)2231x x +-;练习二1.选择题:多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分解因式:(1)x 2+6x +8; (2)8a 3-b 3;(3)x 2-2x -1; (4)4(1)(2)x y y y x -++-练习三分解因式:(1) 34381a b b - (2) 76a ab - (3)2105ax ay by bx -+-(4)2222()()ab c d a b cd --- (5)22x y ax ay -++ (6)2222428x xy y z ++-(7)226x xy y +- (8)222()8()12x x x x +-++ (9)21252x x --(10)22568x xy y +- (11)2616x x +- (12)3234x x -+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


做一做:把下列各式分解因式
(1) a4 81b4 (2) 8a3 2a (3) 27a3bc 3ab3c
绝对挑战
(1)用简便方法计算: (81 1 )2 (78 1 )2
2
2
(81 1 )2 (78 1 )2
2
2
(81 1 78 1)(81 1 78 1) 2 22 2
160 3 480
绝对挑战 (2)把9991分解成两个整数的积。
9991 10000 9 1002 32 (100 3)(100 3) 103 97
(1)形如___________形式的多项式可以用平方 差公式分解因式。 (2)因式分解通常考虑_提__取__公__因__式__法___方法。
(3)因式分解要___彻__底____
说能出你这节课的收获和体验让大家 与你分享吗?
做一做:分解因式
(1) 16a2 9b2 (2) 1 a2b2 c2
4 (3) (2n 1)2 (2n 1)2
合作学习:把下列各式因式分解
(1) a4 81
(2) 4 x3 y 9xy3
注意虑其他法。 (2)因式分解要彻底,直到不能分解为止。
(1) x2 1
(2) x2 0.04 y2
(3) 4x2 y2
(4) 4x2 y2
(5) x2 y2
例1:把下列各式分解因式
(1) 16a2 1
(2) m2n2 4l 2 (3) 9 x2 1 y4
25 16 (4) ( x z)2 ( y z)2
乘法公式、因式分解
(a b)(a b) a2 b2
两个数的和与这两个数的差的积,等于这两个数 的平方差。
a2 b2 (a b)(a b)
两个数的平方差,等于这两个数的和与这两个数 的差的积。
用平方差公式分解因式的关键:在于把多项式看成怎样 的两个数的平方差。
做一做:下列多项式可以用平方差公式分解因式吗?
相关文档
最新文档