专题 勾股定理证明中几种基本图形的拓展应用

合集下载

勾股定理证明及应用-PPT课件

勾股定理证明及应用-PPT课件

1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576



做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=___2_5______ BC=____2_0_____
AC=____1_5_____
1
1
美丽的勾股树
商高是公元前11世纪的中国 人。当时中国的朝代是西周,是
小结
①本节课学到了什么数学知识? ②你了解了勾股定理的发现方法了吗? ③你还有什么困惑?
作业
教材第77页习题18.1第1、2、3题
图1-2
勾股定理(1)
看 一 看
现关朋 什系友 么,家相 ?同用传
学砖 们铺 ,成年 我的前 们地, 也面一 来反次 观映毕 察直达 下角哥 面三拉 的角斯 图形去 案三朋 ,边友 看的家 看某作 你种客 能数, 发量发

2500
C A
B 图2-1
C A
B 图2-2
(图中每个小方格代表一个单位面积)
A
B
图3-2
分割成若干个直角边为 整数的三角形
S正方形c
A
C
1 (72 1) 2
25(面积单位)
B
C
图3-1
A
B
图3-2
思考:面积A,B ,C还有上述关系 吗?
把C“补”成边长为7的 正方形面积加1单位面 积的一半
议一议
(1)你能用三 角形的边长表示 正方形的面积吗 ? (2)你能发现直 角三角形三边长 度之间存在什么 关系吗?与同伴 进行交流。
(1)观察图2-1 正方形A中含有 9 个

勾股定理典型题总结(较难)

勾股定理典型题总结(较难)

勾股定理一.勾股定理证明与拓展 模型一. 图中三个正方形面积关系思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系?例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 .变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.变式2:如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,求S2.(变式2)(变式3)变式3:如图,Rt△ABC 的面积为10cm2,在AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为.(难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB= 90°,以△ABC 的各边为边作三个正方形,点G 落在HI 上,若AC+BC=6,空白部分面积为10.5,则阴影部分面积模型二外弦图DCBA内弦图GFEH例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,每个直角三角形两直角边的和是5。

求中间小正方形的面积为__________;变式1:如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②2x y -=,③2125xy +=,④9x y +=.其中说法正确的有___________(填序号).(变式1) (变式2)变式2:如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长 为变式3:我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称为“赵爽弦图”(如图5),图6是由弦图变化得到的,他是由八个全等的直角三角形拼接而成。

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例

勾股定理在实际问题中的应用举例、利用勾股定理解决立体图形问题勾股定理是揭示直角三角形的三条边之间的数量矢系,可以解决许多与直角三角形有矢的计算与证明问题,在现实生活中有着极其广泛的应用,下面就如何运用勾股定理解决立体图形问题举例说明,供参考。

一、长方体问题例1、如图1,图中有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、变形忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是()A、41cmB、34cmC、50cmD、75cm分析:图中BD为长方体中能放入的最长的木条的长度,可先连接BC,根据已知条件,可以判断BD是RtABCD的斜边,BD是RtA BCD的斜边,根据已知条件可以求出BC的长,从而可求出BD的长。

解:在RtAABC中,AB=5,AC=4,根据勾股定理,得BC= AB2 AC2 = 41,在Rt/\BCD 中,CD=3 , BC= 41 、22BD= BC2 CD2 = 50。

所以选C。

说明:本题的矢键是构造出直角三角形,利用勾股定理解决问题。

二、圆柱问题例2、如图2,是一个圆柱形容器,高18cm,底面周长为60cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口咫1cm的点F出有一苍蝇,急于捕获苍蝇充饥的蜘蛛,所走的最短路线的长度是多少?图2 图3分析:勾股定理是平面几何中的一个重要定理,在遇到立体图形时,需根据具体情况,把立体图形转化为平面图形,从而使空间问题转化为平面问题。

由题意可知,S、F两点是曲面上的两点,表示两点间的距离显然不能直接画出,但我们知道圆柱体的侧面展开图是一个长方形,,于是我们就可以画出如图3的图,这样就转化为平面中的两点间的距离问题,从而使问题得解。

解:IB1出圆柱体的侧面展开图?如图3,由题意、得SB=60m2=30 (cm ),FB=18—1—1=16 ( cm),在Rt/\SBF 中,ZSBF=90°,由勾股定理得,SF= SB2 FB 2 = 302 162 =34 ( cm),所以蜘蛛所走的最短路线的长度是34cm。

初中数学知识归纳勾股定理的推广与应用

初中数学知识归纳勾股定理的推广与应用

初中数学知识归纳勾股定理的推广与应用勾股定理是数学中的重要定理之一,它描述了直角三角形中各边长度之间的关系。

在初中数学学习中,勾股定理是一个重要的基础知识点。

本文将对勾股定理进行推广与应用的知识进行归纳总结。

一、勾股定理的基本概念勾股定理又称毕达哥拉斯定理,指的是直角三角形中,直角边的平方等于另外两条边平方和。

它的数学表达式为:a² + b² = c²,其中a、b 为直角边,c为斜边。

二、勾股定理的推广1. 勾股定理的逆定理逆定理指的是如果一个三角形三边的平方符合a² + b² = c²的关系,那么这个三角形就是直角三角形。

这是勾股定理的逆定理,通过此定理可以判断一个三角形是否为直角三角形。

2. 勾股定理的推广形式勾股定理还可以推广到更多的几何图形中,如四边形、五边形等。

根据勾股定理,我们可以得出四边形的对角线之间的关系以及五边形中对角线的关系,从而解决一些几何问题。

三、勾股定理的应用1. 解决直角三角形的边长问题利用勾股定理,我们可以通过已知两边求第三边的长度,或者已知两边和斜边,求其中一边的长度等。

这种应用是勾股定理最基础的应用之一。

2. 应用于解决几何图形问题除了解决三角形的边长问题外,勾股定理还可以应用于解决一些几何图形的面积、周长等问题。

例如,利用勾股定理可以求得直角三角形的面积,或者利用勾股定理的推广形式,求得四边形的面积等。

3. 应用于解决实际生活问题勾股定理在实际生活中也有很多应用,例如测量房屋的对角线长度、测量地图上两个地点之间的距离、解决船、飞机航行中的导航问题等。

勾股定理的应用帮助我们更好地理解和解决实际问题。

四、勾股定理在高中数学的拓展在高中数学中,勾股定理还有很多拓展应用,例如三角函数的推导与证明、向量和坐标系的运用等。

这些内容超出了初中的范围,在高中学习时会进一步加深对勾股定理的理解。

综上所述,初中数学中的勾股定理是一个重要的基础知识点,它的推广与应用帮助我们解决了很多几何问题。

勾股定理的应用的例子

勾股定理的应用的例子

勾股定理的应用的例子:
一、圆柱侧面上两点间的最短距离圆柱侧面的展开图是一个矩形,圆柱上两点之间最短距离的求法,是把圆柱展开成平面图形,依据两点之间线段最短,以最短路线为构造直角三角形,利用勾股定理求解.
二、长方体(或正方体)表面上两点间的最短距离长方体每个面都是平面图形,所以计算同一个面上的两点之间的距离比较容易,若计算不同平面上的两点之间的距离,就变成了两个面之间的问题,必须将它们转化到同一平面内,即把四棱柱设法展开成一个平面图形,再构造直角三角形利用勾股定理解决,正方体的展开图从哪一面上展开都一样,而长方体的展开图一定要注意打开哪一个侧面,并且向上、下与向左、右展开会出现长度不的路线,应通过尝试从几条路线中选一条符合要求的.
三、折叠问题关于折叠问题的解题步骤:(1)利用重叠的图形传递数据(一般不用重叠的图形进行计算);(2)选择或构造直角三角形,这个直角三角形一般一边已知,另两边可通过重叠图形找到数量关系,从而利用勾股定理列方程求解.。

勾股定理应用课件

勾股定理应用课件

地球重力场测量
利用勾股定理测量地球的重力场, 有助于研究地球的形状、地球自转 、地球内部结构等。
地球磁场
勾股定理在地球磁场测量中用于确 定磁力线的方向和强度,有助于研 究地球的磁场变化和地磁场的起源 。
天文学中的应用
天体定位
通过勾股定理,天文学家 可以计算天体的位置和运 动轨迹,进行精确的天体 定位和测量。
03
勾股定理在日常生活中的 应用
建筑行业中的应用
建筑设计
勾股定理在建筑设计中被广泛应用。设计师利用勾股定理来计算建筑物的垂直 角度和确定建筑物的稳定性。
施工测量
在建筑施工过程中,勾股定理用于测量和定位。例如,确定建筑物的垂直线、 水平线以及确定建筑物的相对位置。
航海中的应用
船舶导航
勾股定理在航海中被用于确定船只的位置和航向。通过测量 太阳或星星与海平面的角度,结合时间差,可以计算出船只 与目标之间的距离和方向。
海洋工程
在海洋工程中,勾股定理用于计算海底深度和定位海底地形 。通过声纳技术测量声波从船只到海底再返回的时间差,结 合声波速度,可以计算出海底深度。
物理学中的应用
力学
在物理学中,勾股定理用于描述力和 运动之间的关系。例如,在自由落体 运动中,物体下落的时间与重力加速 度和初始高度有关,这可以通过勾股 定理进行计算。
电磁学
在电磁学中,勾股定理用于计算电场 和磁场中的矢量关系。例如,在计算 电磁波的传播方向和强度时,需要用 到勾股定理来计算矢量的合成和分解 。
04
勾股定理在现代科技中的 应用
计算机图形学中的应用
01
02
03
3D渲染
勾股定理在3D渲染中用于 确定物体的位置和方向, 以及计算光线在物体表面 反射的角度。

勾股定理的应用举例课件

勾股定理的应用举例课件

在天文学中,勾股定理可以用于计算 天体之间的距离和角度等。
物理学
勾股定理可以用于解决一些物理问题, 例如在力学和电磁学中,通过直角三 角形的角度和边长关系来计算力和位 移等。
02
勾股定理在几何图形中的 应用
直角三角形中的勾股定理应用
勾股定理在直角三角形中是最 常见的应用场景,它用于确定 直角三角形的三边关系。
VS
详细描述
在数论问题中,勾股定理常常用于证明与 平方数和完全平方数相关的性质和定理。 例如,证明一个数是否为完全平方数、证 明两个数的平方和等于另一个数的平方等。 通过利用勾股定理,可以推导出与平方数 和完全平方数相关的性质和定理,从而解 决数论问题。
勾股定理在几何问题中的应用
总结词
勾股定理在几何问题中的应用主要涉及与直角三角形和三角形面积相关的性质和定理。
详细描述
在几何问题中,勾股定理常常用于证明与直角三角形和三角形面积相关的性质和定理。 例如,证明直角三角形的面积等于两直角边乘积的一半、证明三角形的面积等于底边和 高的乘积的一半等。通过利用勾股定理,可以推导出与直角三角形和三角形面积相关的
性质和定理,从而解决几何问题。
05
勾股定理的扩展应用
勾股定理在解析几何中的应用
在直角三角形中,直角边的平
方和等于斜边的平方,即$a^2 + b^2 = c^2$,其中$a$和 $b$是直角边,$c$是斜边。
勾股定理在解决实际问题中非 常有用,例如建筑、航海和航 空等领域。
勾股定理在三角形面积计算中的应用
勾股定理也可以用于计算三角形的面积。
已知三角形的三边长度,可以利用勾股 定理求出三角形的面积。
勾股定理在三角函数中还常用于解决 与三角函数图像、性质、变换等相关 的几何问题。

勾股定理的证明和应用(最新整理)

勾股定理的证明和应用(最新整理)

第3章 勾股定理知识结构:3.1勾股定理一、求网格中图形的面积求网格中图形的面积,通常用两种方法:“割”或“补”。

二、勾股定理直角三角形两条直角边的平方和等于斜边的平方。

拓展延伸:(1)勾股定理揭示的是直角三角形的三边关系,所以必须注意“在直角三角形中”这一前提。

(1)直角三角形中两直角边的平方和等于斜边的平方(2)勾股定理的验证-------用拼图法,借助面积不变的关系来证明1.在直角三角形中已知两边求第三边1.勾股定理(3)应用 2.在直角三角形中已知两边求第三边上的高(1)如果三角形的三边长a,b,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形 1.满足a 2+b 2=c 2的三个正整数a,b,c 称为勾股数(1)3,4,5(2)5,12,132.勾股定理的逆定理 (2)勾股数 2.常见的勾股数(3)8,15,17求几何体表面上两点间的最短距离(1)勾股定理的简单应用解决实际应用问题勾股定理 3.应用(2)勾股定理逆定理的应用---------判定某个三角形是否为直角三角形(2)勾股定理主要用于求线段的长度,因此,遇到求线段的长度问题时,首先想到的是把所求线段转化为某一直角三角形的边,然后利用勾股定理求解。

三、勾股定理的验证运用拼图的方式,利用两种不同的方法计算同一个图形的面积来验证勾股定理。

3.2勾股定理的逆定理一、勾股定理的逆定理如果三角形的三边长分别为a,b,c且a2+b2=c2,那么这个三角形是直角三角形。

注意:(1)还没确定一个三角形是否为直角三角形时,不能说“斜边”“直角边”。

(2)不是所有的c都是斜边,要根据题意具体分析。

当满足a2+b2=c2时,c是斜边,它所对的角是直角。

勾股定理与勾股定理的逆定理之间既有区别,又有联系,如下表所示:勾股定理勾股定理的逆定理条件在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边在△ABC中,a2+b2=c2,a,b,c分别为∠A,∠B,∠C的对边结论a2+b2=c2∠C=90°区别勾股定理是以“一个三角形是直角三角形”为条件,进而得到“这个三角形的三边满足a2+b2=c2”,即由“形”到“数”勾股定理的逆定理是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到“这个三角形是直角三角形”,即由“数”到“形”联系都与“一个三角形的三边关系a2+b2=c2”及“直角三角形”有关二、勾股数满足关系a2+b2=c2的3个正整数a,b,c称为勾股数。

勾股定理的应用课件

勾股定理的应用课件
利用勾股定理确定卫星轨 道参数,提高卫星通信的 覆盖范围和信号质量。
广播信号
在广播信号传输中,勾股 定理用于优化信号传输路 径,提高广播信号的覆盖 范围和清晰度。
勾股定理在日常生活中的应用
航海
在航海中,勾股定理用于确定航行方向 和距离,保证船舶能够准确到达目的地 。
VS
测量
在日常生活中,勾股定理用于测量物体的 高度、长度等参数,方便人们进行各种实 际操作。
勾股定理的应用 ppt课件
目 录
• 勾股定理的介绍 • 勾股定理的应用场景 • 勾股定理的实际应用案例 • 勾股定理的扩展应用 • 总结与展望
01
勾股定理的介绍
勾股定理的定义
勾股定理是几何学中的基本定理之一 ,它描述了直角三角形三边的关系。 具体来说,在一个直角三角形中,直 角边的平方和等于斜边的平方。
导航系统
利用勾股定理计算飞行器的位置和速 度,提高航空和航天导航的精度和可 靠性。
航天器设计
在航天器设计中,勾股定理用于确定 火箭的发射角度和卫星轨道的参数, 以确保航天器能够成功进入预定轨道 。
通信工程中的应用
电波传播
在通信工程中,勾股定理 用于计算电波传播的距离 和范围,优化信号传输质 量。
卫星通信
02
勾股定理的应用场景
几何学领域
确定直角三角形
勾股定理是确定直角三角形的重 要工具,通过已知的两边长度, 可以判断是否为直角三角形,并 进一步求出第三边的长度。
解决几何问题
勾股定理在解决几何问题中有着 广泛的应用,如求三角形面积、 判断三角形的形状、计算最短路 径等。
物理学领域
力的合成与分解
在物理学中,勾股定理常用于力的合 成与分解,特别是在分析斜面上的物 体受力情况时,通过勾股定理可以确 定力的方向和大小。

勾股定理的证明及应用ppt课件

勾股定理的证明及应用ppt课件

1
C1
C
B
试一试:
1、等腰直角三角形的面积为8,则 它的周长是多少? 2、一段楼梯,高BC是2米,斜边 AB为4米,在楼梯上铺地毯,至 少需要 米
课堂练习(课本53页): 1.如图,小方格都是边长为1的正方形, 求四边形ABCD的面积与周长.
E
H
5
3 2
F
2 5
13
G
课堂练习(课本53页): 假期中,王强和同学到某海岛上去玩探宝游 戏,按照探宝图,他们登陆后先往东走8千米, 又往北走2千米,遇到障碍后又往西走3千米, 再折向北走到6千米处往东一拐,仅走1千米 就找到宝藏,问登陆点A 到宝藏埋藏点B的距 B 离是多少千米? 1
一个门框的尺寸如图所示,一块长3m,宽 2.2m的薄木板能否从门框内通过?为什么?
连结AC,在Rt△ABC中,根据勾股定理,
5 AC BC AB 1 2 D
2 2 2 2 2
C
因此,AC=
5
≈2.236
2m
A B
大于 木板的宽, 因为AC______
能 从门框内通过. 所以木板____
(1) c (a-b)2 (2) c c c
(3)
(4)
1 ab (a-b)2 = 2 a2+b2-2ab = c2-2ab
C2-4×
可得: a2 + b2 = c2
有趣的总统证法
美国第二十任总统伽菲尔德的证法在数学史上被传为佳话 人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明, 就把这一证法称为“总统”证法。
1. 如图,池塘边有两 点A、B,点C是与BA 方向成直角的AC方向 B 上一点,现在测得 CB=160m,AC= 128m 请你求出A、B两点间 的距离。

勾股定理的推广解析几何中的扩展应用

勾股定理的推广解析几何中的扩展应用

勾股定理的推广解析几何中的扩展应用勾股定理的推广与解析几何中的扩展应用勾股定理是初中数学中常见且重要的定理,它表明在一个直角三角形中,直角边的平方等于另外两边平方和。

然而,勾股定理不仅仅局限于直角三角形,它在解析几何中有着更广泛的应用。

本文将探讨勾股定理的推广以及在解析几何中的扩展应用。

一、勾股定理的推广勾股定理最初是应用于直角三角形,即已知一个直角和两个直角边,计算另外一个直角边的长度。

然而,在实际问题中,我们常常需要求解的不仅仅是直角三角形,而是一般的三角形。

为了满足这个需求,数学家们推广了勾股定理。

1. 倒角定理倒角定理是勾股定理的一种推广,它适用于任意三角形。

倒角定理指出,在一个三角形中,任意一条边的平方等于另外两条边平方的和减去这两条边乘积的两倍。

假设一个三角形的三边分别为a、b、c,倒角定理可以表示为:c² = a² + b² - 2abcos(C)其中,C为三角形的夹角C的度数。

2. 正弦定理正弦定理是勾股定理的另一种推广,它同样适用于任意三角形。

正弦定理指出,在一个三角形中,任意一条边的长度与它所对应的角度的正弦值成正比。

对于一个三角形的三边分别为a、b、c,对应的角度分别为A、B、C,正弦定理可以表示为:a/sin(A) = b/sin(B) = c/sin(C)通过倒角定理和正弦定理,我们可以推广勾股定理在一般三角形中的应用,从而解决更多的实际问题。

二、解析几何中的扩展应用除了在普通三角形中的应用,勾股定理还可以在解析几何中得到扩展应用。

1. 空间几何中的勾股定理勾股定理不仅仅适用于平面几何,还可以推广到空间几何。

在空间几何中,我们可以将三角形的顶点坐标表示为三维空间中的三个点,利用欧几里得距离公式来推导勾股定理。

设一个三角形的三个顶点坐标分别为A(x1, y1, z1),B(x2, y2, z2),C(x3, y3, z3),那么根据欧几里得距离公式有:AB² = (x2 - x1)² + (y2 - y1)² + (z2 - z1)²AC² = (x3 - x1)² + (y3 - y1)² + (z3 - z1)²BC² = (x3 - x2)² + (y3 - y2)² + (z3 - z2)²如果三个顶点组成的三条边满足AB² + BC² = AC²,那么这个三角形就是一个直角三角形。

《勾股定理的应用》 知识清单

《勾股定理的应用》 知识清单

《勾股定理的应用》知识清单一、勾股定理的基本内容勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

如果直角三角形的两条直角边长分别为 a 和 b,斜边长为 c,那么 a²+ b²= c²。

二、勾股定理的证明方法1、赵爽弦图法我国古代数学家赵爽通过“弦图”证明了勾股定理。

他用四个全等的直角三角形拼成一个大正方形,中间是一个小正方形。

通过面积关系可以得出勾股定理。

2、毕达哥拉斯证法古希腊数学家毕达哥拉斯的证明方法是通过两个以直角边为边长的正方形面积之和等于以斜边为边长的正方形面积。

三、勾股定理在几何中的应用1、求边长已知直角三角形的两条边,求第三条边。

例如,在一个直角三角形中,两条直角边分别为 3 和 4,那么斜边的长度为√(3²+ 4²) = 5 。

2、判断三角形是否为直角三角形如果一个三角形的三条边长分别为 a、b、c,且满足 a²+ b²= c²,那么这个三角形就是直角三角形。

3、求图形中的线段长度在一些复杂的几何图形中,通过构造直角三角形,运用勾股定理来求相关线段的长度。

四、勾股定理在实际生活中的应用1、测量问题在无法直接测量某些长度时,可以通过构建直角三角形,利用勾股定理来间接测量。

比如测量旗杆的高度,可通过测量其影子长度以及一根已知长度标杆的影子长度,利用相似三角形和勾股定理来计算旗杆高度。

2、行程问题在一些行程问题中,若涉及到直角三角形的路径,可以运用勾股定理求解。

比如,一个人向东走了 a 米,再向北走了 b 米,此时他与起点的距离就是√(a²+ b²) 米。

3、工程问题在建筑、工程施工中,经常需要计算直角结构的尺寸和距离,以确保工程的准确性和安全性。

例如,在确定建筑物的直角墙角是否垂直时,可以测量两条相邻边的长度,然后计算是否满足勾股定理。

4、航海问题在航海中,确定船只与灯塔或其他目标的距离时,如果已知角度和某一边的长度,可以通过构建直角三角形,运用勾股定理计算距离。

勾股定理16种经典证明方法与在实际生活中的应用

勾股定理16种经典证明方法与在实际生活中的应用

勾股定理16种经典证明方法与在实际生活中的应用ab c ab b a 214214222⨯+=⨯++【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即整理得 .【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF.222c b a =+ab 21∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º.∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA.∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º.又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于.∴ . ∴ .【证法3】(赵爽证明)以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB.∵ ∠HAD + ∠HAD = 90º,∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2.∵ EF = FG =GH =HE = b ―a ,∠HEF = 90º.()2b a +()22214c ab b a +⨯=+222c b a =+ab 21∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于.∴ .∴ .【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC.∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC 是一个等腰直角三角形,它的面积等于.又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC.∴ ABCD 是一个直角梯形,它的面积等于.∴ .∴ .【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P.∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,()2a b -()22214c a b ab =-+⨯222c b a =+ab 21221c ()221b a +()222121221c ab b a +⨯=+222c b a =+∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º.又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a.∴ BDPC 是一个边长为a 的正方形.同理,HPFG 是一个边长为b 的正方形.设多边形GHCBE 的面积为S ,则, ∴ .【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P. 过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N.∵ ∠BCA = 90º,QP ∥BC ,,21222ab S b a ⨯+=+abS c 2122⨯+=222c b a =+∴ ∠MPC = 90º,∵ BM ⊥PQ ,∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º,∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c ,∴ Rt ΔBMQ ≌ Rt ΔBCA.同理可证Rt ΔQNF ≌ Rt ΔAEF.从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD. 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L.∵ AF = AC ,AB = AD ,∠FAB = ∠GAD ,∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =.同理可证,矩形MLEB 的面积 =.∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积221a 2a 2b∴ ,即 .【证法8】(利用相似三角形性质证明)如图,在Rt ΔABCa 、b ,斜边AB 的长为c ,过点C 作在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90∠CAD = ∠BAC ,∴ ΔADC ∽ ΔACB.AD ∶AC = AC ∶AB ,即 .同理可证,ΔCDB ∽ ΔACB ,从而有 .∴ ,即 .【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c. 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R. 过B 作BP ⊥AF ,垂足为P. 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H.∵ ∠BAD = 90º,∠PAC = 90º,∴ ∠DAH = ∠BAC.又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA.∴ DH = BC = a ,AH = AC = b.由作法可知, PBCA 是一个矩形,所以 Rt ΔAPB ≌ Rt ΔBCA. 即PB = CA = b ,AP= a ,从而PH = b ―a.222b ac +=222c b a =+AB AD AC ∙=2AB BD BC ∙=2()222AB AB DB AD BC AC =∙+=+222c b a =+∵ Rt ΔDGT ≌ Rt ΔBCA ,Rt ΔDHA ≌ Rt ΔBCA.∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º,∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ).用数字表示面积的编号(如图),则以c 为边长的正方形的面积为①∵=,,∴ = . ②把②代入①,得= = .∴ .【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).543212S S S S S c ++++=()[]()[]a b a a b b S S S -+∙-+=++21438abb 212-985S S S +=824321S ab b S S --=+812S S b --98812212S S S S b S S c ++--++=922S S b ++22a b +222c b a =+∵ ∠TBE = ∠ABH = 90º,∴ ∠TBH = ∠ABE.又∵ ∠BTH = ∠BEA = 90º,BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE.∴ HT = AE = a.∴ GH = GT ―HT = b ―a.又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º,∴ ∠GHF = ∠DBC.∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC. 即 .过Q 作QM ⊥AG ,垂足是M. 由∠BAQ = ∠BEA = 90º,可知 ∠ABE= ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌Rt ΔABE. 所以Rt ΔHBT ≌ Rt ΔQAM . 即 .由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE.∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE ,∴ ∠FQM = ∠CAR.又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC. 即.∵ ,,,又∵ ,,,27S S =58S S =64S S =543212S S S S S c ++++=612S S a +=8732S S S b ++=27S S =58S S =64S S =∴ ==,即 .【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c. 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a. 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得=== ,即,∴ .【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有,∵ AB = DC = c ,AC = BD = b ,∴ ,即 8736122S S S S S b a++++=+52341S S S S S ++++2c 222c b a =+ADAE AC ∙=2()()BD AB BE AB -+()()a c a c -+22a c -222a cb -=222c b a =+BD AC BC AD DC AB ∙+∙=∙222AC BC AB +=22b ac +=a b aa B ACD c∴ .【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c. 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r.∵ AE = AF ,BF = BD ,CD = CE ,∴ = = r + r = 2r,即 ,∴ .∴ ,即 ,∵ ,∴ ,又∵ = = == ,∴ ,∴ ,∴ , ∴ .【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D.假设,即假设 ,则由==可知 ,或者 . 即 AD :AC ≠AC :AB ,或者 BD :222c b a =+()()()BF AF CD BD CE AE AB BC AC +-+++=-+CD CE +r c b a 2=-+c r b a +=+2()()222c r b a +=+()222242c rc r ab b a ++=++ab S ABC 21=∆ABC S ab ∆=42AOC BOC AOB ABC S S S S ∆∆∆∆++=br ar cr 212121++()r c b a ++21()r c c r ++221rc r +2()ABC S rc r ∆=+442()ab rc r 242=+22222c ab ab b a +=++222c b a =+222c b a ≠+222AB BC AC ≠+AB AB AB ∙=2()BD AD AB +BDAB AD AB ∙+∙AD AB AC ∙≠2BD AB BC ∙≠2c b a r r r O F D B ABC ≠BC :AB.在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :∠ADC ≠∠ACB.在ΔCDB 和ΔACB ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则∠CDB ≠∠ACB.又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾.所以,的假设不能成立.∴ .【证法15】(辛卜松证明)222AB BC AC ≠+222c b a =+ab 21ab 21ab 21ab 212c2b 2a B C b a b a b a b a b ac c c cb ab ab b a b a设直角三角形两直角边的长分别为a 、b ,斜边的长为c. 作边长是a+b 的正方形ABCD. 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为 ;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 =.∴ ,∴ .【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c. 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC ,则 AD = c.∵ EM = EH + HM = b + a , ED = a ,∴ DM = EM ―ED = ―a = b.又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b ,∴ Rt ΔAED ≌ Rt ΔDMC.∴ ∠EAD = ∠MDC ,DC = AD = c.∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º,∴ ∠BAF=∠DAE.连结FB ,在ΔABF 和ΔADE 中,()ab b a b a 2222++=+()22214c ab b a +⨯=+22c ab +22222c ab ab b a +=++222c b a =+()a b +∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE ,∴ ΔABF ≌ ΔADE.∴ ∠AFB = ∠AED = 90º,BF = DE = a.∴ 点B 、F 、G 、H 在一条直线上.在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a ,∴ Rt ΔABF ≌ Rt ΔBCG.∵ , , , ,∴ ===∴ .勾股定理在实际生活中的应用勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三边之间的数54322S S S S c +++=6212S S S b ++=732S S a +=76451S S S S S +===6217322SS S S S b a ++++=+()76132S S S S S ++++5432SS S S +++2c222c b a =+量关系,是我们在直角三角形中解决边长计算问题的重要理论依据,同时勾股定理在我们实际生活中应用也很广泛。

高中几何知识解析勾股定理的证明与应用

高中几何知识解析勾股定理的证明与应用

高中几何知识解析勾股定理的证明与应用一、勾股定理的证明勾股定理是数学中最基础的几何定理之一,也是高中数学必学的重要内容。

下面我们将介绍几种常见的证明方法。

1. 几何法证明:勾股定理最常见的证明方法之一是几何法证明。

具体的证明过程可以用一个平面直角三角形来说明。

假设在直角三角形ABC中,角C为直角,边AC与边BC分别记为a和b,边AB记为c。

我们可以通过将边BC沿AC边作为底边展开,构造一个以直角三角形ABC为底面的正方形ABDE以及一个以边AC为直径的半圆。

首先,我们可以发现正方形ABDE的边长等于c,而半圆的直径为AB,即也等于c。

由于正方形的面积等于边长的平方,所以正方形ABDE的面积为c²,而半圆的面积为πc²/4(其中π为圆周率)。

接下来,我们可以将正方形ABDE切割成4个直角三角形,它们与直角三角形ABC面积相等。

将这些三角形沿AC边折叠,可以将它们放置在以边AC和边BC为直径的半圆内。

由于直角三角形ABC的面积等于这些折叠后的三角形的面积之和,即等于半圆的面积减去正方形的面积。

代入式子,我们可以得到:a*b/2 = πc²/4 - c²,化简后可以得到勾股定理的成立:a² + b² = c²。

2. 代数法证明:除了几何法证明外,我们还可以通过代数法来证明勾股定理。

我们可以用平面直角坐标系表示直角三角形ABC,假设顶点A位于原点,点B的坐标为(c, 0),点C的坐标为(0, b)。

根据直角三角形的定义,我们可以得到点C与点B的连线为直角边AC,点A与点C的连线为直角边BC。

根据坐标公式,直角边AC和BC的长度分别为a和b。

根据两点间距离公式,我们可以得到:a = √((0 - c)² + (b - 0)²) = √(c² + b²),二次方根表示距离的长度,代入式子,我们可以得到勾股定理的成立:a² + b² = c²。

初中数学:勾股定理的15种应用

初中数学:勾股定理的15种应用

初中数学:勾股定理的15种应用
勾股定理的15种应用
应用1 勾股定理理解三角形
应用2 勾股定理与网格问题
应用3 利用勾股定理解决折叠问题
应用4 利用勾股定理证明线段的平方关系
应用5 利用勾股定理解决实际问题:求梯子滑落高度
应用6 利用勾股定理解决实际问题:求旗杆高度
应用7 利用勾股定理解决实际问题:求蚂蚁爬行距离
应用8 利用勾股定理解决实际问题:求大树折断前的高度
应用9 利用勾股定理解决实际问题:求水杯中筷子长度问题
应用10 利用勾股定理解决实际问题: 解决航海问题
应用11 利用勾股定理解决实际问题: 求河宽
应用12 利用勾股定理解决实际问题: 求台阶上的地毯长度
应用13 利用勾股定理解决实际问题:判断是否超速
应用14 利用勾股定理解决实际问题:判断是否受台风影响
应用15 利用勾股定理解决实际问题: 利用勾股定理选址使到两地距离相等
【小结】本题考查了三角形的重心:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了勾股定理.
【变式求解】。

高考数学中的勾股定理及其扩展应用

高考数学中的勾股定理及其扩展应用

高考数学中的勾股定理及其扩展应用在数学领域中,勾股定理是最为著名的定理之一。

这个定理也被称作毕达哥拉斯定理,在数学教育中被广泛地使用。

在高中数学中,勾股定理是必学的知识之一。

这篇文章将探讨高考数学中的勾股定理及其扩展应用。

勾股定理的基本原理是什么?勾股定理是一个简单而又经典的数学定理,它是数学中三角函数、几何和代数的基础,被广泛应用于实际问题的解决中。

从根本上来说,勾股定理表明了三角形中三条边与其对应角之间的关系。

在具体的数学表达式上,勾股定理可以被描述为:$ a^{2} + b^{2} = c^{2} $其中a、b、c是表示直角三角形的三条边长的变量,c表示斜边的长度。

勾股定理如何应用于高考数学?在高考数学中,勾股定理是必须学习掌握的知识之一。

首先,它是基于三角形基础定理中最重要的一条,这个基础定理也是高中数学学习的核心。

除此之外,勾股定理还被用于测量和计算几何的问题。

例如,如果数学家需要测量一座房屋的高度,可以利用勾股定理在地上和房屋之间建立一个直角三角形。

另外,对于计算几何学生来说,勾股定理还将被用于寻找平行线、点到直线的距离以及验证等等问题。

勾股定理在数学领域的更广泛应用尽管勾股定理经常被用于高考数学和实际问题的解决中,还有一些更深入的应用。

例如,勾股定理可以用于证明多个数学问题,如以下两个例子:1. 三角形的相似性质三角形是代数和几何学的基础。

勾股定理的应用可以帮助学生证明三角形相似的定理。

例如,如果两个三角形的两个角分别相等,则这两个三角形是相似的。

勾股定理可以帮助用于证明这个乘法的等式。

2. 圆的特性勾股定理也可以被用于研究圆的特性。

圆可以被认为是一种非常特殊的三角形,其中两个半径相等的边缘形成一个直角。

因此勾股定理可以被应用于获得圆的特性及推导式子。

总结:勾股定理是高中数学学习中的重点,但它也有广泛的应用于实际问题的解决中和数学领域的其他学科中。

当然,学习这个定理需要一定的时间和精力,但掌握它可以引领学生开发更深层次数学问题的解决技巧。

勾股定理在空间几何中的扩展

勾股定理在空间几何中的扩展

勾股定理在空间几何中的扩展勾股定理是初中数学中最为基础和重要的定理之一,它描述了直角三角形三个边长之间的关系。

然而,勾股定理并不仅局限于二维平面几何,它在空间几何中也有着重要的应用和扩展。

本文将介绍勾股定理在空间几何中的应用和扩展,探索勾股定理的新境界。

一、勾股定理在三维空间中的应用在平面几何中,勾股定理可以用来计算任意两个边已知的直角三角形的第三边的长度。

而在空间几何中,勾股定理同样适用于求解空间中的直角三角形。

空间中的直角三角形是指在三维空间中的三个线段相互垂直的三角形。

空间中的勾股定理可以表述为:对于直角三角形,斜边的平方等于其他两个边的平方之和。

即在三维空间中,勾股定理仍然成立。

勾股定理在空间中的应用非常广泛。

比如,在建筑工程中,我们常常需要计算三维空间中的距离、角度和斜率等。

勾股定理可以帮助我们精确地计算和测量。

此外,在航空航天领域中,勾股定理也被广泛应用于导航、飞行轨迹规划等方面。

二、勾股定理的空间扩展除了在三维空间中的应用,勾股定理还可以进一步扩展到更高维度的空间。

在数学中,空间维度表示一个空间的坐标轴数目。

二维空间具有两个坐标轴,三维空间具有三个坐标轴,而高维空间则有更多的坐标轴。

在高维空间中,勾股定理的应用同样重要。

不过,勾股定理的具体表达形式会有所不同。

在二维平面中,勾股定理可表示为a² + b² = c²,而在三维空间中,勾股定理可表示为a² + b² + c² = d²。

其中,d表示斜边的长度。

三、勾股定理的应用案例1. 在四维空间中,勾股定理可表示为a² + b² + c² + d² = e²。

这个定理在物理学中有着广泛的应用,特别是在描述四维时空中的物理现象时,如爱因斯坦的相对论。

2. 在五维空间中,勾股定理可表示为a² + b² + c² + d² + e² = f²。

勾股定理16种经典证明方法与在实际生活中的应用

勾股定理16种经典证明方法与在实际生活中的应用

ab c ab b a 214214222⨯+=⨯++【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF,∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º,∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º,∴ ∠EHA + ∠GHD = 90º.又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴ ()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+.【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠DEC = 180º―90º= 90º.∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD, ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a . ∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N .∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ ,∴ ∠BMP = 90º,∴ BCPM 是一个矩形,即∠MBC = 90º. ∵ ∠QBM + ∠MBA = ∠QBA = 90º, ∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点 L .∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于221a,ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a .同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB∴ 222b ac += ,即 222c b a =+【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB . AD ∶AC = AC ∶AB ,即 AB AD AC •=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2.∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC . 又∵ ∠DHA = 90º,∠BCA = 90º,AD = AB = c , ∴ Rt ΔDHA ≌ Rt ΔBCA . ∴ DH = BC = a ,AH = AC = b .由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得98812212S S S S b S S c ++--++==922S S b ++ = 22a b +. ∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º, BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a .∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠BHT = 90º, ∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º, ∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27SS =. 过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58SS =. 由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c ,即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -, 即222a c b -=,∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = bAD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC ADDC AB •+•=•,∵ AB = DC = c ,AD = BC = a , AC = BD = b ,∴ 222ACBC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2. ∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ ab S ABC 21=∆,∴ABC S ab ∆=42, 又∵AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442,∴()ab rc r 242=+, ∴ 22222c ab ab b a +=++, ∴ 222c b a =+. 【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+• 可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC ,则 AD = c .∵ EM = EH + HM = b + a , ED = a , ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a ,∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c .D D∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=,732S S a +=,76451S S S S S +===,∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++ =5432S S S S +++=2c∴ 222c b a =+.勾股定理在实际生活中的应用勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三边之间的数量关系,是我们在直角三角形中解决边长计算问题的重要理论依据,同时勾股定理在我们实际生活中应用也很广泛。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 勾股定理证明中几种基本图形的拓展应用
一、勾股数
1.如图,已知所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为5,则,,,A B C D 四个小正方形的面积之和等于 .
2.如图,已知在Rt ABC ∆中,90ACB ∠=︒,
4AB =,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于 .
3.如图,已知ABC ∆为直角三角形,分别以直角边
,AC BC 为直径作半圆AmC 和BnC ,以AB 为直径作半圆ACB ,记两个月牙形阴影部分的面积之和为1S ,ABC ∆的面积为2S ,则1S 与2S 的大小
关系为 . 4.如图,以Rt ABC ∆的三边为斜边分别向外作等腰直角三角形.若斜边
3AB =,则图中阴影部分的面积
为 .
5.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形
ABCD ,正方形CEFG ,正方形KHIJ ,正方形JLMN 的边长分别是3,5,2,3,则最大正方形ROPQ 的面积是 .
二、弦图
6.如图是“赵爽弦图”,其中ABH ∆,BCG ∆,CDF ∆和DAE ∆是四个全等的直角三角形, 四边形ABCD 和EFGH 都是正方形,根据这个图形的面积关系,可以证明勾股定理.设,,AD c AE a DE b ===,取10,2c a b =-=.
(1)求正方形EFGH 的面积以及四个直角三角形的面积和;
(2)求2()a b +的值.
7. (1)如图①是《赵爽弦图》.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.
(2)现有一张长为6.5 cm ,宽为2 cm 的纸片,如图②,请你将它分割成6块,再拼合成一个正方形. (要求:先在图②中画出分割线,再画出拼成的正方形并标明相应数据)
8.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”后人称其为“赵爽弦图”(如图①).图②是弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形
ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,若12310S S S ++=,求2S 的值.
第8题图 9. 如图①,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
① ② ③
第9题图
(1)拼成的正方形的面积是多少?
(2)在如图②的33⨯方格图中,画出一个面积为5的正方形; (3)如图③,请你把十个小正方形组成的图形纸,剪开并拼成一个大正方形,在原图上用虚线画出剪拼示意图.
参考答案
一、勾股数
1. 50
2. 2π
3.12S S =
4.92
5. 47 二、弦图
6.(1) 4EFGH S =正方形
四个直角三角形的面积和为 96.
(2) 2()196a b +=
7. (1)小正方形的面积为1
(2)如图所示
8. 210
3S =
9. (1)拼成正方形的面积为5
(2)如图①所示
(3)如图②所示。

相关文档
最新文档