2018年秋地大线性代数在线作业一及满分答案【最新版】
(完整word版)线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C ) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B )k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项。
(A) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=0001001001001000( )。
(A ) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B )1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A ) 4 (B) 4- (C) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A)ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A )1- (B )2- (C )3- (D )011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( )。
线性代数习题及解答完整版
线性代数习题及解答完整版线性代数习题及解答HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=() A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =() A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是()A .??A B 可逆,且其逆为-1-1A B B .??A B 不可逆 C .??A B 可逆,且其逆为-1-1?? ???B AD .??A B 可逆,且其逆为-1-1??A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是()A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=() A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是()A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是()A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为() A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是()A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是() A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
东师《线性代数》18秋在线作业2(满分)
(单选题) 1: - A: -B: -C: -D: -正确答案: (单选题) 2: - A: -B: -C: -D: -正确答案: (单选题) 3: - A: -B: -C: -D: -正确答案: (单选题) 4: - A: -B: -C: -D: -正确答案: (单选题) 5: - A: -B: -C: -D: -正确答案: (单选题) 6: - A: -B: -C: -D: -正确答案: (单选题) 7: - A: -B: -C: -D: -正确答案: (单选题) 8: - A: -B: -C: -D: -正确答案: (单选题) 9: -正确答案: (单选题) 10: - A: -B: -C: -D: -正确答案: (多选题) 1: - A: -B: -C: -D: -正确答案: (多选题) 2: - A: -B: -C: -D: -正确答案: (多选题) 3: - A: -B: -C: -D: -正确答案: (多选题) 4: - A: -B: -C: -D: -正确答案: (多选题) 5: - A: -B: -C: -D: -正确答案: (多选题) 6: - A: -B: -C: -D: -正确答案: (多选题) 7: - A: -B: -C: -D: -正确答案:D: -正确答案: (多选题) 9: - A: -B: -C: -D: -正确答案: (多选题) 10: - A: -B: -C: -D: -正确答案: (判断题) 1: - A: 错误B: 正确正确答案: (判断题) 2: - A: 错误B: 正确正确答案: (判断题) 3: - A: 错误B: 正确正确答案: (判断题) 4: - A: 错误B: 正确正确答案: (判断题) 5: - A: 错误B: 正确正确答案: (判断题) 6: - A: 错误B: 正确正确答案: (判断题) 7: - A: 错误B: 正确正确答案: (判断题) 8: - A: 错误B: 正确正确答案: (判断题) 9: - A: 错误B: 正确正确答案: (判断题) 11: - A: 错误B: 正确正确答案: (判断题) 12: - A: 错误B: 正确正确答案: (判断题) 13: - A: 错误B: 正确正确答案: (判断题) 14: - A: 错误B: 正确正确答案: (判断题) 15: - A: 错误B: 正确正确答案: (判断题) 16: - A: 错误B: 正确正确答案: (判断题) 17: - A: 错误B: 正确正确答案: (判断题) 18: - A: 错误B: 正确正确答案: (判断题) 19: - A: 错误B: 正确正确答案: (判断题) 20: - A: 错误B: 正确正确答案: (单选题) 1: - A: -B: -C: -D: -正确答案: (单选题) 2: - A: -(单选题) 3: - A: -B: -C: -D: -正确答案: (单选题) 4: - A: -B: -C: -D: -正确答案: (单选题) 5: - A: -B: -C: -D: -正确答案: (单选题) 6: - A: -B: -C: -D: -正确答案: (单选题) 7: - A: -B: -C: -D: -正确答案: (单选题) 8: - A: -B: -C: -D: -正确答案: (单选题) 9: - A: -B: -C: -D: -正确答案: (单选题) 10: - A: -B: -C: -D: -正确答案: (多选题) 1: -正确答案: (多选题) 2: - A: -B: -C: -D: -正确答案: (多选题) 3: - A: -B: -C: -D: -正确答案: (多选题) 4: - A: -B: -C: -D: -正确答案: (多选题) 5: - A: -B: -C: -D: -正确答案: (多选题) 6: - A: -B: -C: -D: -正确答案: (多选题) 7: - A: -B: -C: -D: -正确答案: (多选题) 8: - A: -B: -C: -D: -正确答案: (多选题) 9: - A: -B: -C: -D: -正确答案:D: -正确答案: (判断题) 1: -。
2018年4月线性代数自考真题及答案
2018年4月线性代数自考真题及答案一、选择题:1.函数y= + 中自变量x的取值范围是( )A.x2B.x2且x1C.x2且x1D.x12.若函数y=(k+1)x+k2-1是正比例函数,则k的值为( )A.0B.1C.1D.-13.若三边长满足,则是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形4.四边形ABCD是平行四边形,点E在边BC上,如果点F是边AD上的点,那么△CDF与△ABE不一定全等的条件是( )A.DF=BEB.AF=CEC.CF=AED.CF∥AE5.某复印店复印收费y(元)与复印面数x(面)的函数图象,从图象中可以看出,复印超过100面的部分,每面收费( )A.0.2元B.0.4元C.0.45元D.0.5元6.在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD 相交于点O,连结AO.若CBD=35,则DAO的度数为( )A.35B.55C.65D.757.以下列各组数为三角形的边长,能构成直角三角形的是( )A.8,12, 17B.1,2,3C.6,8,10D.5,12,98.Rt△ABC中,AB=9,BC=6,B=90,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A. B.2.5 C.4 D.59.下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形10.在边长为2的菱形ABCD中,B=45,AE为BC边上的高,将△ABE沿AE所在直线翻折得△ABE,AB与CD边交于点F,则BF的长度为( )A.1B.C.2D.2 ﹣2二、填空题:11.函数的自变量x的取值范围是12.在Rt△ABC中,ACB=90,点D、E、F分别是AB、AC、BC中点,若CD=5,则EF长为 .13.已知m为整数,且一次函数y=(m+4)x+m+2的图像不经过第二象限,则m= .14.矩形ABCD的对角线AC,BD相交于点O,分别过点C,D作BD,AC的平行线,相交于点E.若AD=6,则点E到AB的距离是________.15.在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为 .16.正方形OA1B1C1,A1A2B2C2,A2A3B3C3,其中点A1,A2,A3在x轴的正半轴上,点B1,B2,B3在直线y=-x+2上,则点A3的坐标为三、计算题:17.计算: 18.计算:四、解答题:19.已知y是关于x的一次函数,且当x=1时,y=﹣4;当x=2时,y=﹣6.(1)求y关于x的函数表达式;答案:1.B.2.B3.C4.B.5.B.6.C7.C.8.B.9.C.10.C.11.-3;12.答案为:513.答案为:m=-3;14.答案为:915.答案为:616.答案为:(1.75,0)17.解:原式=0;18.解:原式=919.解:(1)设y与x的函数解析式是y=kx+b,根据题意得:k+b=-4,2k+b=-6,解得:k=-2,b=-2,则函数解析式是:y=﹣2x﹣2;当x=﹣2时,y=2,当x=4时,y=﹣10,则y的范围是:10。
2018年10月自考02198线性代数试题及答案含评分标准
2018年10月高等教育自学考试全国统一命题考试
线性代数试卷
(课程代码02198)
本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:
1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题
一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中
只有一项是最符合题目要求的,请将其选出。
东北大学线性代数期末试题 及答案
由于
x1 + ax2 = 0, x2 + bx3 = 0, x3 + cx4 = 0, x4 + dx1 = 0 .
1 a00
01b0
D=
= 1 − abcd ,
0 01c
d 001
5分 10 分
故当 abcd ≠ 1时,即当且仅当 x1 = x2 = x3 = x4 = 0 时,二次型 f (x1, x2, x3, x4 ) = 0 .
⇔ α1, a2,,αr 与 β1, β2,, βl 都是α1, a2,,αs , β1, β2,, βt 的极大线性无关组
⇔ R{α1, a2,,αs} = R{β1, β2,, βt}= R{α1, a2,,αs , β1, β2,, βt} .
(2)若
x
使
Ax
=
0
,则必使
β1 = (1,−1,0)T , β2 = (1,1,−1)T .
12 分
将α = (1,1,2)T , β1 = (1,−1,0)T , β2 = (1,1,−1)T 单位化,得正交矩阵
1
6
Q
=
1
6 2
6
1 2 −1 2
0
1
3
−
1
3 1
3
.
16 分
1 1
1
1 1
2
6 2
3 0
6 6
6
则 A = QΛQT
=
1
6 2
6
−1 2
0
1
−
3 1
3
2
中国农业大学2017-2018.doc(秋)《线性代数》期末考试试题解析
2017~2018学年秋季学期《线性代数》课程考试试题解析一、填空题(本题满分15分,共有5道小题,每道小题3分,请将合适的答案填在每题的空中)1.设100220345A ⎛⎫⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则1*1|()|4A A --=.解析:由于2211110,|10,,10A A A A A A A *-**=====则31*116(6)|()|441010A A A A A --**---=-==注释本题知识点:(1)1;n A A -*=(2);AA A A A E **==(3).n A A λλ=答案:3(6)10-2.设矩阵101112,011A ⎛⎫⎪= ⎪ ⎪⎝⎭321,,ααα为线性无关的三维列向量组,则向量组123,,A A A ααα的秩为.解析:矩阵101112011A ⎛⎫⎪= ⎪⎪⎝⎭的秩为2,321,,ααα为线性无关的三维列向量组,因此,矩阵123(,,)ααα可逆,而123123(,,)(,,)A A A A αααααα=,则123,,A A A ααα的秩为2.注释本题知识点:(1)矩阵的秩的定义;(2)矩阵秩的性质:若=A PBQ ,其中,P Q 为可逆的矩阵,则=()()R A R B (3)向量组的秩与矩阵秩的关系:向量组321,,ααα的秩等于矩阵123(,,)ααα的秩.答案:2.3.设100020001A -⎛⎫⎪= ⎪⎪⎝⎭,要使A kE +为正定矩阵,k 应满足.解析:100020001A -⎛⎫⎪= ⎪⎪⎝⎭特征值为1,2,1λ=-,则A kE +的特征值为1,2,1k k k λ=-+++,若A kE +为正定矩阵,则10,20,10k k k -+>+>+>,故1k >.注释本题知识点:(1)A 为正定矩阵的充要条件是A 的所有特征值大于零;答案:1k >4.设A 是三阶实对称矩阵,A 的秩()1,R A =若25A A O -=,则A 的非零特征值是.解析:由25A A O -=知矩阵A 的特征值为0λ=或5λ=,由A 的秩()1,R A =知A 的非零特征值是5.注释本题知识点:(1)特征值的定义;(2)正定矩阵的性质.答案:55.在四元非齐次线性方程组Ax b =中,A 的秩R (A )=3,且123,,ααα为它的三个解向量,已知()()1232,0,5,1,1,0,0,2,T Tααα=-+=则方程组Ax b =的通解可以写成.解析:由于A 的秩R (A )=3,则在四元齐次线性方程组0Ax =的基础解系中含有一个非零的解向量.又123,,ααα为Ax b =的三解向量,且()()1232,0,5,1,1,0,0,2,TTααα=-+=则231()2(1,0,0,2)2(2,0,5,1)(3,0,10,4),T T T ααα+-=--=--是齐次线性方程组0Ax =的一个基础解系,则非齐次线性方程组Ax b =的通解为-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+∈ ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭2300,51014k k R .注释本题知识点:(1)线性方程组通解的结构答案:-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+∈ ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭2300,51014k k R 二、选择题(本题满分15分,共有5道小题,每道小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.设矩阵123456789A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,001010100P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,100001010Q ⎛⎫⎪= ⎪ ⎪⎝⎭,则PAQ 为()(A)123456789⎛⎫ ⎪ ⎪ ⎪⎝⎭.(B)132465798⎛⎫⎪ ⎪ ⎪⎝⎭.(C)798465132⎛⎫⎪ ⎪⎪⎝⎭.(D)321987.654⎛⎫⎪ ⎪ ⎪⎝⎭解析:001123100789100798010456001456001465100789010123010132PAQ ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪⎪ ⎪=== ⎪⎪⎪ ⎪⎪ ⎪⎪⎪⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭注释本题知识点:(1)初等矩阵在矩阵行列变换中的作用答案:C2.下列矩阵中,不能相似于对角阵的是()(A)001010.100⎛⎫⎪ ⎪ ⎪⎝⎭(B)111022.003⎛⎫⎪⎪ ⎪⎝⎭(C)121242.121-⎛⎫⎪- ⎪ ⎪-⎝⎭(D)211020.403-⎛⎫⎪⎪ ⎪-⎝⎭解析:(A)中矩阵⎛⎫⎪ ⎪ ⎪⎝⎭001010100是实对称矩阵,能与对角阵相似;(B)中矩阵⎛⎫⎪ ⎪⎪⎝⎭111022003有三个不同的特征值1,2,3λ=,则能对角化;(C)中矩阵-⎛⎫⎪- ⎪⎪-⎝⎭121242121特征值为0,0,3λ=,0λ=为二重特征值,但对应两个线性无关的特征向量,因此能对角化.(D)中矩阵-⎛⎫⎪ ⎪⎪-⎝⎭211020403特征值2λ=为二重特征值,但对应一个线性无关的特征向量,因此不能能对角化.注释:本题知识点:(1)n 阶方阵对角化的充分必要条件是:存在n 个线性无关的特征向量;(2)实对称矩阵一定能对角化.答案:D3.设)(ij a A =是三阶方阵,满足*T A A =,其中*A 为A 的伴随矩阵,A 为A 的行列式,则||A =()(A)0.(B)0或1.(C)-1.(D)1.解析:由*T A A =得,T A A A *==,由于2A A *=,得(1)0A A -=,故0A =或1.注释本题知识点:(1)行列式性质TA A =;(2)行列式性质1n A A-*=.答案:B4.设123,,ξξξ是方程组0Ax =的基础解系,则下列向量组中也是方程组0Ax =的基础解系的是()(A)122331,,ξξξξξξ+++.(B)122331,,ξξξξξξ+-+.(C)122331,,ξξξξξξ---.(D)1231312,,2ξξξξξξξ+-++.解析:(A)中122331123101(,,)(,,)110011ξξξξξξξξξ⎛⎫ ⎪+++= ⎪ ⎪⎝⎭,而矩阵101110011⎛⎫⎪⎪ ⎪⎝⎭可逆,则122331,,ξξξξξξ+++线性无关,为方程组0Ax =的基础解系;(B)中122331123101(,,)(,,)110011ξξξξξξξξξ⎛⎫ ⎪+-+= ⎪ ⎪-⎝⎭,而矩阵101110011⎛⎫ ⎪⎪ ⎪-⎝⎭不可逆,则122331,,ξξξξξξ+++线性相关,不为方程组0Ax =的基础解系;(C)中122331123101(,,)(,,)110011ξξξξξξξξξ-⎛⎫ ⎪---=- ⎪ ⎪-⎝⎭,而矩阵101110011-⎛⎫ ⎪- ⎪⎪-⎝⎭不可逆,则122331,,ξξξξξξ---线性相关,不为方程组0Ax =的基础解系;(D)中1231312123112(,,2)(,,)101110ξξξξξξξξξξ⎛⎫ ⎪+-++= ⎪ ⎪-⎝⎭,而矩阵112101110⎛⎫⎪⎪⎪-⎝⎭不可逆,则1231312,,2ξξξξξξξ+-++线性相关,不为方程组0Ax =的基础解系;注释本题知识点:(1)线性方程组基础解系的定义;(2)向量组的秩与矩阵秩的关系;(3)矩阵秩的性质.答案:A5.设n 维列向量组1,,()m m n αα< 线性无关,则n 维列向量组1,,m ββ 线性无关的充分必要条件为()(A)向量组1,,m αα 可由向量组1,,m ββ 线性表示.(B)向量组1,,m ββ 可由向量组1,,m αα 线性表示.(C)向量组1,,m αα 与向量组1,,m ββ 等价.(D)矩阵1(,,)m A αα= 的秩()R A 等于矩阵1(,,)m B ββ= 的秩()R B .解析:(A)中令12(1,0,0,0),(0,1,0,0)T T αα==;12(0,0,1,0),(0,0,0,1)T T ββ==,则(A)、(B)、(C)都不成立.在(D)中若矩阵1(,,)m A αα= 的秩()R A 等于矩阵1(,,)m B ββ= 的秩()R B ,则1,,m ββ 线性无关;反之1,,m ββ 线性无关,则矩阵1(,,)m A αα= 的秩()R A 等于矩阵1(,,)m B ββ= 的秩()R B .注释本题知识点:(1)向量组的线性表示;(2)向量组的等价;(3)向量组秩的定义及性质.答案:D三、(本题满分14分)计算下列各题1.计算四阶行列式0052002112341326D =--.解析:()()00521234002113263254112340052132621D --===--=--2.设n 阶行列式=det()n ij D a ,其中||(1,)ij a i j i j n =-≤≤,求n D .解析:122301231111111012211111310131111132104111111234012340r r n r r n n n D n n n n n n n n n -----------==-------------213112100001200012200(1)(1)2.1222012324251c c n n c c n n n n n n +--+------==-----------注释本题知识点:(1)行列式性质;(2)行列式的计算方法.四、(本题满分16分)1.设三阶方阵A,B 满足16,A BA A BA -=+且131415A ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,求B .解析:显然A 可逆,用1A -右乘方程两边,得--=+⇒-=116()6A B E B A E B E ,从而--=-116()B A E .--⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭11324,354A A E --⎛⎫⎪⎪⎪-= ⎪⎪⎪ ⎪⎝⎭11121()314A E .从而--⎛⎫ ⎪ ⎪=-= ⎪ ⎪⎪⎝⎭1136()232B A E 2.已知三阶方阵A 的三个特征值分别为1231,0,1,λλλ===-对应的特征向量依次为123(1,2,2),(2,2,1),(2,1,2),T T T p p p ==-=--求矩阵A .解析:由已知,A 可以对角化.令123122(,,)221212P p p p -⎛⎫⎪==-- ⎪⎪⎝⎭,则1101P AP -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,从而1101A P P -⎛⎫⎪= ⎪ ⎪-⎝⎭.112212219212P -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,10210123220A -⎛⎫ ⎪= ⎪ ⎪⎝⎭.注释本题知识点:(1)矩阵的运算;(2)特征值特征向量的定义与矩阵对角化的定义.五、(本题满分12分)设有向量组12341111101121,,,,,2324335185a a a a a b a β⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪++ ⎪ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭问,a b 为何值时,1.β不能由1234,,,a a a a 线性表示.2.β能由1234,,,a a a a 线性表示,且表示式唯一.3.β能由1234,,,a a a a 线性表示,且表示式不唯一,并写出一般表示式.解析:设=++121233x a x a x a β,设1234(,,,)A a a a a =,对增广矩阵(,)A β实行初等行变换()11111111110112101121,2324300103518500010A r a b a b a a β⎛⎫⎛⎫⎪ ⎪--⎪⎪= ⎪ ⎪+++ ⎪⎪++⎝⎭⎝⎭,由此可见(1)当1,0a b =-≠时,方程组无解,即β不能由1234,,,a a a a 线性表示;(2)当1a ≠-时,β能由1234,,,a a a a 线性表示,且表示式唯一;(3)当1,0a b =-=,方程组有无穷多解,并且112212123142202112112010001x k k x k k k k x k x k -+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪+-- ⎪⎪ ⎪ ⎪ ⎪=++= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭即=-+++-++∈121122132412(2)(12),(,).k k a k k a k a k a k k R β.注释本题知识点:(1)向量的线性表示与线性方程组的关系;(2)线性方程组的求解过程与方法.六、(本题满分10分)设A 是n 阶方阵,,,123ααα是n 维列向量,且10α≠,11A αα=,212A ααα=+,323A ααα=+,证明:向量组,,123ααα线性无关.解析:设有三个数123,,k k k 使得1122330k k k ααα++=(1),(1)式两边同时左乘A,可得1122330k A k A k A ααα++=,即11212323()()0k k k ααααα++++=,整理得12123233()()0k k k k k ααα++++=.(2)(2)减(1)得21320k k αα+=,(3)(3)式两边左乘A,得2131320k k k ααα++=(4)(4)减(3)得310k α=,因为10α≠,可得30k =,代入(3)式,可得20k =,从而10k =,即123,,ααα线性无关.注释本题知识点:(1)向量组的线性无关性的定义;(2)证明向量组的线性相关性的方法.七、(本题满分12分)设二次型22212312313(,,)222(0)T f x x x x Ax ax x x bx x b ==+-+>中二次型的矩阵A 的特征值之和为1,特征值之积为-12.1.求,a b 的值.2.用正交变换将二次型f 化为标准形,并写出所用的正交变换及标准形.解析:(1)二次型f 的矩阵为002002a b A b ⎛⎫⎪= ⎪⎪-⎝⎭,设A 的特征值为123,,λλλ,由已知条件知123221a λλλ++=+-=,21230020421202a ba b b λλλ==--=--,得1,2a b ==(2)由矩阵A 的特征多项式2102||020(2)(3)202E A λλλλλλ---=-=-+-+,得到A 的特征值为1232,2,3λλλ===-,对于特征值122λλ==,解齐次线性方程组(2)0E A x -=,得基础解系12(2,0,1),(0,1,0)T T ξξ==,对于33λ=-,解齐次线性方程组(3)0E A x --=,得基础解系3(1,0,2),T ξ=-由于123,,ξξξ已经是正交向量组,故只需将其单位化123,(0,1,0),T T T ηηη===-令010Q ⎫⎪⎪= ⎪ ⎪,则Q 为正交矩阵,在正交变换x Qy =下,二次型的标准行为222123223f y y y =+-.注释本题知识点:(1)矩阵特征值、特征向量的定义与性质;(2)二次型化标准形的方法.八、(本题满分6分)设α为n 维单位列向量,E 为n 阶单位矩阵,求n 阶矩阵T A E αα=-的全部特征值并证明其不可逆.解析:因为-=T E A αα为对称矩阵,由=()1T R αα,知-=()1R E A ,则-=()1R A E .所以A-E 的特征值有一个是非零的,其余n -1个都是0.设矩阵A 的所有特征值为12,,n λλλ ,则A-E 的特征值为121,1,,1n λλλ--- .因此,121,1,,1n λλλ--- 中有n -1个都是0,即12,,n λλλ 有n -1个都是1,由121,1,,1n λλλ--- 中有一个非零知,12,,n λλλ 中有一个不等于1.又因为0T A E ααααα=-=,所以0是A 的特征值.所以矩阵A 的所有特征值为1,1, ,1,0.因为0是A 的特征值,所以A 不可逆.注释本题知识点:(1)矩阵秩的有关结论:()1,0T R ααα=≠;(2)矩阵特征值、特征向量的定义与性质.。
中国地质大学《线性代数》在线作业二-00110
地大《线性代数》在线作业二-0011方阵A和A的转置有相同的特征值.
A:错误
B:正确
答案:B
等价的两个线性无关向量组所含有向量的个数一定相等。
A:错误
B:正确
答案:B
(1,1,0), (1,0,1), (0,1,1)构成为3维向量空间的一个基。
A:错误
B:正确
答案:B
AX=b有无穷多解,那么Ax=0有非零解。
B:正确
答案:A
合同的两个矩阵的秩一定相等
A:错误
B:正确
答案:B
非齐次线性方程组任意两个解之差为对应系数的齐次线性方程组的解。
A:错误
B:正确
答案:B
若AX=0只有零解,那么AX=b有唯一解。
A:错误
B:正确
反对称矩阵的主对角线上的元素和为0
A:错误
B:正确
答案:B
矩阵A的行列式不等于零,那么A的行向量组线性相关。
A:错误
B:正确
答案:A
如果一个矩阵的行向量组为正交的单位向量组且为方阵,那么这个矩阵的行列式为1。
A:错误
B:正确
答案:B。
2018-线性代数课后习题答案-范文word版 (23页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==线性代数课后习题答案篇一:线性代数课后习题答案习题答案习题 1(参考答案)1.程序与算法的概念及二者的区别是什么?程序:为了实现特定目标或解决特定问题而用计算机语言偏写的指令序列,它由算法和数据结构组成。
算法:(Algorithm)是在有限步骤内求解某一问题所使用的一组定义明确的规则。
通俗地讲,就是计算机解题的步骤。
算法与程序的区别:计算机程序是算法的一个实例,同一个算法可以用不同的计算机语言来表达。
2.简述程序设计语言发展的过程程序设计语言经过最初的机器代码到今天接近自然语言的表达,经过了四代的演变。
一般认为机器语言是第一代,符号语言即汇编语言为第二代,面向过程的高级语言为第三代,面对象的编程语言为第四代。
3.简述高级程序设计语言中面向过程与面向对象的概念。
“面向过程”是一种以过程为中心的编程思想。
首先分析出解决问题所需要的步骤,然后用函数把这些步骤一步一步地实现,使用的时候依次调用函数即可。
一般的面向过程是从上往下步步求精,所以面向过程最重要的是模块化的思想方法。
“面向对象”是一种以事物为中心的编程思想。
面向对象的方法主要是将事物对象化,对象包括属性与行为。
面向过程与面向对象的区别:在面向过程的程序设计中,程序员把精力放在计算机具体执行操作的过程上,编程关注的是如何使用函数去实现既定的功能;而在面向对象的程序设计中,技术人员将注意力集中在对象上,把对象看做程序运行时的基本成分。
编程关注的是如何把相关的功能(包括函数和数据)有组织地捆绑到一个对象身上。
4.C语言程序的特点是什么?(1)C语言非常紧凑、简洁,使用方便、灵活,有32个关键字,有9种流程控制语句。
(2)C语言运算符丰富,共有45个标准运算符,具有很强的表达式功能,同一功能表达式往往可以采用多种形式来实现。
线性代数考试题和答案
线性代数考试题和答案****一、单项选择题(每题3分,共30分)1. 矩阵的秩是指矩阵中线性无关的行(列)向量的最大个数,以下关于矩阵秩的描述正确的是()。
A. 矩阵的秩等于其行数B. 矩阵的秩等于其列数C. 矩阵的秩是其行向量和列向量线性无关的最大数量D. 矩阵的秩与矩阵的行数和列数无关**答案:C**2. 向量组的线性相关性是指()。
A. 向量组中至少有一个向量可以由其他向量线性表示B. 向量组中所有向量都是零向量C. 向量组中至少有一个向量是零向量D. 向量组中所有向量都是线性无关的**答案:A**3. 对于一个n阶方阵A,若其行列式|A|=0,则矩阵A是()。
A. 可逆的B. 不可逆的C. 正定的D. 负定的**答案:B**4. 矩阵A和B相乘,结果为零矩阵,即AB=0,以下说法正确的是()。
A. A和B中至少有一个是零矩阵B. A和B都是零矩阵C. A和B线性相关D. A和B线性无关**答案:A**5. 线性方程组有唯一解的充分必要条件是()。
A. 系数矩阵是可逆的B. 系数矩阵的行列式不为零C. 增广矩阵的秩等于系数矩阵的秩D. 系数矩阵的秩等于未知数的个数**答案:D**6. 矩阵的特征值是指()。
A. 矩阵的对角元素B. 矩阵的非零元素C. 满足|A-λI|=0的λ值D. 矩阵的行元素**答案:C**7. 两个向量α和β,若α=kβ(k≠0),则称向量α和β是()。
A. 线性无关的B. 线性相关的C. 正交的D. 垂直的**答案:B**8. 矩阵A的转置记作()。
A. A'B. A^TC. A^*D. A^H**答案:B**9. 以下哪个矩阵是对称矩阵()。
A. [1 2; 3 4]B. [1 3; 2 4]C. [1 2; 2 1]D. [1 0; 0 1]**答案:C**10. 以下哪个矩阵是正交矩阵()。
A. [1 0; 0 1]B. [1/√2 1/√2; -1/√2 1/√2]C. [1 2; 3 4]D. [1 0; 0 -1]**答案:B**二、填空题(每题4分,共20分)11. 若矩阵A=[1 2; 3 4],则矩阵A的行列式|A|=______。
2018年10月自考04184线性代数(经管类)试题及答案含评分标准
2018年10月高等教育自学考试全国统一命题考试
线性代数(经管类) 试卷
(课程代码04184)
本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:
1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题
一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中
只有一项是最符合题目要求的,请将其选出。
线性代数课后作业参考答案
第一章作业参考答案1-1. 求以下排列的逆序数:(1)134782695 (3)13…(2n-1)(2n)(2n-2)…2 解:(1)t=0+0+0+0+4+2+0+4=10(2)t=0+0+…+0+2+4+6+…+2(n-1)=2(1+2+3+…+n-1)=(1)2(1)2n n n n -⨯=-1-2. 在6阶行列式的定义式中,以下的项各应带有什么符号? (1)233142561465a a a a a a解:()12(234516)4,•3126454t t t t ====128t t t =+=为偶数,故该项带正号。
1-3. 用行列式的定义计算:(1)0004004304324321(3)0123100010001x x x a a a x a ---+解:(1)12412312400040043(1)(1)444425604324321tq q q a a a ++=-=-⨯⨯⨯⨯=∑ (3)1320123100010()(1)(1)001x x x x x x a x x a x a a a x a --=⨯⨯⨯++-⨯⨯⨯-⨯-+233432103210(1)(1)(1)(1)(1)a a x a x a x a x a +-⨯-⨯-⨯+-⨯-⨯=++++1-4. 计算下列行列式:(1) 1111111111111111--- (3)1200340000130051- (5)1111111111111111a a b b +-+- (7)n a b b b b a b b D b b b a=解:(1)11111111111102001(2)(2)(2)81111002011110002--==⨯-⨯-⨯-=-----(3)()120034001213(1423)113532001334510051-=⨯=⨯-⨯⨯-⨯-⨯=⎡⎤⎣⎦- (5)111111111111111000001111000011110000a a a a a aab a b a b b a b a b++----==+-------2221111110000000000000000a aa b a a a b b b bab+--===---(7)(1)(1)(1)n a b b b a n b a n b a n b b a b b b a bD b b b a b b a+-+-+-==111111100[(1)][(1)][(1)]()00000n ba b a b a n b a n b a n b a b bb a a b--=+-=+-=+---1-5. 证明:(1)332()xy x y y x y x x y x yx y ++=-++ (3)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++=++++++证明:(1)2()2()2()xy x y x y x y x y yx y x y x y x x yxy x y x y +++++=+++1111112()2()00x y y x y x x y x x y x yx y yx=++=+-+--2332()[()]2()x y x y x y x y =+-+-=-+(3)22222222222222222222(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469(1)(2)(3)214469a a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d ++++++++++++=++++++++++++222221262126021262126a ab bc cd d ++==++1-6. 计算下列行列式:(1)001000000100n a a D a a=(3)12311100002201(1)n n n n ------解:(1)2001000000000(1)10000000100100nn a a a a a D a aa a a==+-⨯⨯2nn a a-=-(3)123112321110001100002200022000001(1)0000(1)n nn n n n n ----=-------112323342101000(1)!(1)002002(1)n n n n n n n n +++++++++++--+===----1-7. 解下列方程:(1)24211231223()023152319x D x x -==-解:要使原方程有解,观察可知只有两种可能:①当221x -=时,即1x =±时,4()0D x = ②当295x -=时,即2x =±时,4()0D x = 综上所述,原方程的解为1,-1,2,-21-8. 设1578111120963437D --=--,试证:414243440A A A A +++=证明:根据拉普拉斯定理可知4142434411110A A A A ⨯+⨯+⨯+⨯=即414243440A A A A +++=1-9. 用Cramer 法则解下列方程组:(1)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩解:该方程组的系数行列式为215113062702121476D ---==--,常数向量8950β⎛⎫⎪⎪= ⎪- ⎪⎝⎭1815193068152120476D ---==--- 22851190610805121076D --==----3218113962702521406D --==-- 4215813092702151470D --==---312412343,•4,•1,•1D D D Dx x x x D D D D∴====-==-==1-10. (1)问λ取何值时,下列齐次方程组有非零解?12312313220300x x x x x x x x λλ++=⎧⎪++=⎨⎪-=⎩解:要使原方程有解,由定理1.8知2223112001λλλλ=+-=- 解得11λ=或22λ=-。
(精选)线性代数课后作业及参考答案
(精选)线性代数课后作业及参考答案《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003,则A-1等于()A.130012001B.100120013C. 1 3 00 010 00 1 2D. 1 2 00 10013.设矩阵A=312101214---,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解2η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<n< bdsfid="226" p=""></n<>B.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
地大期末考试 线性代数答案
线性代数答案一、选择题1、C2、C3、A4、A5、C 二、填空题 1、122、入≠-2且入≠13、k=44、245、⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--23234252251三、计算题1、已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=300020001,313211212B A ,求1)(-AB 。
解:因为111)(---=A B AB ,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-230002100011B , ()⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫⎝⎛------→⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎭⎫⎝⎛---=------51515252512595151520111000100010210111002100011120210115002101130021010920210211100001010313212211100010001313211212I A⎪⎪⎪⎭⎫ ⎝⎛=-----51515252512591011A ,所以 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----==---103103535156109011)(111A B AB2.求向量组),0,2,1,1(),6,1,7,1(),2,1,2,1(321-=-==ααα)6,5,2,4(4=α的极大无关组,并用极大无关组表示其余向量。
解: ⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛----→⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛-----→⎪⎪⎪⎪⎪⎭⎫⎝⎛--=00007100301060010000710041104111 00011204110411122401120635041116062521121724111A ,因此,极大无关组为321,,ααα 且 3214736αααα++-=。
3、方程组4、已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A ,求正交矩阵T 使得AT T 1-为对角矩阵。
解:1) 首先求其特征值:0)1)(4(211121112||2=--=---------=-λλλλλλA I ,其特征根为:.4,1321===λλλ2) 求各特征值的特征向量,当121==λλ时求得特征向量为TT)1,0,1(,)0,1,1(--,将其正交化得TT)1,21,21(,)0,1,1(---, 再将其单位化得 TT )22,61,61(,)0,21,21(---当43=λ时特征向量为T)1,1,1(,将其单位化得T)31,31,31(.3)所得正交矩阵⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=31620316121316121T , ⎪⎪⎪⎭⎫ ⎝⎛=-4111AT T 为对角矩阵.5、解原式=0321402143014321------ = 4000830086204321 =1ⅹ2ⅹ3ⅹ4=24 所以原式D=24四、证明题设n 阶方阵A 满足032=--I A A ,求证A-2I 和A +I 都可逆。