(完整版)FANUC数控系统硬件的连接
FANUC数控系统硬件的连接
3)额定绘模拟电压输出如下:
爵
衬 输出电压:(0—搭±10V)
符
输出液电流:2mA(最大)椒
位置编码器接恐口JA41的连接:
4)串行主轴秋接口 JA41
5)伺服FS瓷SB总线接口 CO结P10A 伺瘁服控制采用光缆连接,撵完成与伺服单元的连接骇,连接均采 用级连结构。
(1)分离型检测单元矤电源接口CP11 (2)分离型检测单元燕编码器接口
1.FANUC公司发肮展史
2.FANUC公司主隆要产品
3.常见FANUC数偏控系统
二、FANUC数控系细统类型
1.查看类型的方法爹
主要有两种方法: 躇 1)通过显示器尿上面的黄色条形标牌
蜒 如下图 FA绿NUC SERIES讨 0i Mate-MD
2瑞)通过贴在系统外壳上摹的铭牌 系统哩外壳的侧面或背面贴着被系统的铭牌,可以查 看辞系统的类型及系统生产像系列号等,生产系列号扭是 系统报修时重要的参懒考。 如下图瓢 FANUC SER其IES 0i Mate-MD
1.电源接口CP1 掀电源要求:DC24V腔±10%(21.6—幕26.4V)
数控系统电源电路图蓬
2)通讯接口RS-2殊32-C、JD36A梧、 JD36B
可以通过RS232雌口与输入输出设备(电焉脑)等相连,用来将C贺 NC程序、参数等各种拦信息,通过RS232苔电缆输入到NC中,或喜从NC中 输出给输入/韦输出设备的接口。
喉 RS232接口惮还可以传输或监控梯形坝图、DNC加工运行。
RS232传输线沏
DB9常用信号脚接口优说
明
针号
功能说明
缩 针号
功能说明
缩写
写
1
数据载波检测 DCD 6 数据设备准备好 DSR
发那科FANUC硬件接口及连接
CNC 与外围设备的连接
与显示单元/MDI 单元的连接
9″CRT/MDI 7.2″/8.4″和10.4″ LCD/MDI
与标准MDI 单元的连接
MDI单元分T 系列和M系列 9″CRT/MDI 单元 7.2″LCD/MDI 单元 8.4″LCD/MDI 单元 独立式MDI 单元 有英文显示和符号显示 有全键与标准型之分
动力电源的接通、断开
控制单元的信号接地方法
噪音抑制器
强电柜中要用到线圈和继电器。当这些设备 接通/断开时由于线圈自感应会产生很高的脉 冲电压。 导线中的脉冲电压会对电子线路产生干扰 选择由电阻和电容组成的灭弧装置,这种灭 弧装置被称为CR 灭弧装置。(在交流中使用) (电阻在限制脉冲电压的峰值时有用。但不 能限制脉冲电压突然升高的电流,所以推荐 使用CR 灭弧器。) 灭弧器的电容和电阻参考值由静态线圈的直 流阻值和电流来决定。
R: 为每单位长度的导线的电阻[Ω/m] m: 0V 电线的数量(=5V 导线的数量) L: 电线长度[m]
因此, L ≤m/R 一般电缆最长为50m。当使用两个手摇脉冲发 生器时,电缆最长为38.37m;当使用三个手 摇脉冲发生器时,最长为25.58m。
高速跳转信号(HDI)的连接口
与I/O 设备的连接 Nhomakorabea
RS-232-C 串行接口
RS-232-C 接口通常使用如下的信号。
RS-232-C 接口信号的意义
RS-232-C 口和I/O设备之间的连接
18I系统允许的主轴配置
串行主轴接口
模拟主轴接口
位置编码器接口
FANUC系统接线介绍
数控系统是最畅销的机床操纵系统之一。
目前,在国内利用的FANUC数控系统要紧有0系统和0i系统。
针对广大用户的实际情形,本文简要表达这两种系统的连接及调试,把握了这两种系统,其它FANUC系统的调试那么迎刃而解。
1系统与机床的连接0i系统的连接图如以下图,0系统和其他系统与此类似。
图中,系统输入电压为DC42V±10%,约7A。
伺服和主轴电动机为AC200V(不是220V)输入。
这两个电源的通电及断电顺序是有要求的,不知足要求会显现报警或损坏驱动放大器。
原那么是要保证通电和断电都在CNC的操纵之下。
具体时序请见“连接说明书(硬件)”。
其它系统如 0 系统 , 系统电源和伺服电源均为 AC200V 输入。
伺服的连接分 A 型和 B 型 , 由伺服放大器上的一个短接棒操纵。
A 型连接是将位置反馈线接到 CN C 系统;B 型连接是将其接到伺服放大器。
Oi 和近期开发的系统用 B 型。
0系统大多数用 A 型。
两种接法不能任意利用 , 与伺服软件有关。
连接时最后的放大器的 JX1B 需插上FANUC提供的短接插头 ,若是遗忘会显现 #401 报警。
另外 , 假设选用一个伺服放大器操纵两个电动机 , 应将大电动机电枢接在M 端子上 , 小电动机接在 L 端子上 , 不然电动机运行时会听到不正常的嗡嗡声。
FANUC系统的伺服操纵可任意利用半闭环或全闭环 , 只需设定闭环型式的参数和改变接线 , 超级简单。
主轴电动机要的操纵有两种接口 : 模拟 (0~1OVDC) 和数值 ( 串行传送 ) 输出。
模拟口需用其它公司的变频器及电动机。
用FANUC主轴电动机时 , 主轴上的位置编码器 ( 一样是 1024 条线 ) 信号应接到主轴电动机的驱动器上 (JY4 口 ) 。
驱动器上的 JY2 是速度反馈接口 , 二者不能接错。
目前利用的 I/0 硬件有两种 : 内装 I/0 印刷板和外部 I/0 模块。
I/0 板经系统总线与 CPU 互换信息;I/0 模块用 I/O LINK 电缆与系统连接 , 数据传送方式采纳串行格式 , 因此可远程连接。
FANUC OiT数控系统硬件连接
L I N K 模块 的 J O l g接 l l _ j 实现 的 。i / o I I N K模块 I ' l S / ,
2 4 V电源 的 近 接 通 过 C P 1接 L j 实 脱 。C B 1 0 - 1 / C B 1 0 7
摔制 嘲板接 口连接 J } j 于控制 板 L 的按钏 。J A 3 A 接 口为于轮控 制接 【 ¨ 1 。 [ : A N t J C O i系统馊什 迎接 总
图 如 图 卜2 。
元 。C A 5 5为 系统 M D I键 盘 接 口。J D 3 6 A / L J D 3 6 B为
R S 2 3 2日 { { , 通f . 、 接l _ 】 。 F A N U C O i T系统 的 多 种 型 伺 服 驱 动 器 外
连接 f 乜 路 小 ‘ 敛, _ 、 i 要 分为 光缆 连接 、 控 制 电路 连接 、 j I 乜 源 连接 、 M C C 急停信 连 接 、 4 j l i m P , 令 连拨 、 倒J J } i l U 机 ¨u 源连接 、 伺服【 t l 机编 码 : { } ; 连接 。
・ 4 2・
专 业 研 究 与 技 术 实践
F A N ! I c O i T数控 系统 硬件 迮 接
数扒 化输 … C O P l O A驱动 器总线 接 口实现 ,此 接 口
为、 尤缆 I J 。 _ 『 A — l 0接 l _ _ j 用 来 与 模拟 上t l f t i  ̄ , b 接 的编 器 连 接 或 行 1 -  ̄ t i 4 羹 门。 J D 1 A为 I / O L I N K接 口, 通 过 J J - L 接 H将 C N C输 … 的 电 信 号 分 配 到 i / o[ , I N K
数控机床系统连接与调试-项目3 FANUC 数控机床硬件连接
项目3 FANUC 数控机床硬件连接
3.相关参数设置
数控机床模拟主轴相关参数设置 见表3-3所示。
项目3 FANUC 数控机床硬件连接
3.2.2数控机床串行主轴控制 1.串行主轴认知
在FANUC 0i系列数控系统中,FANUC CNC控制器与FANUC主轴伺服放大器之间数据 控制和信息反馈采用串行通信进行。
项目3 FANUC 数控机床硬件连接
2.串行主轴硬件连接
数控机床为串行主轴时,JA41连接的是主轴指令信号,如果主轴放大器是βiSVSP 伺服放大器,则JA41连接在JA7B接口,而数控系统的JA40接口空着,而主轴的速 度反馈则连接到βiSVSP主轴放大器的JYA2接口上。
图3-10 数控系统与串行主轴模块连接示意图
图3-6三菱变频器
项目3 FANUC 数控机床硬件连接
表3-2三菱变频器参数设置说明
项目3 FANUC 数控机床硬件连接
(4)变频器在数控机床主轴上的应用
三菱变频器数控机床主轴连接如图2-3所示,其中M是变频主轴电动机。KA11、KA12 是继电器,控制变频器正、反转信号。变频器上C、B端子为系统提供变频工作状态 信息,一般接入PLC输入点,产生报警提示。模拟信号来自数控系统JA40端口。
项目3 FANUC 数控机床硬件连接
2.变频器认知 (2)三菱变频器的端子功能
以三菱变频器为例,讲解变频器各端子的功能,见图3-5所示。
图3-5三菱变频器的端子
项目3 FANUC 数控机床硬件连接
(3)三菱变频器的设置画面与参数
三菱变频器的外观与设置画面如图3-6所示,相关参数设置说明见表3-2所示。
图3-13伺服放大器光缆连接
FANUC 31i硬件连接及维修操作基础
L轴=JF1 M轴=JF2 N轴=JF3
注意电机的动力输出相序 错误会有SV410,411, 436 绝缘测量时,拆下动力线。
CZ2L/CZ2M L/M电机动力输出
L轴
M轴
PSM/SPM/SVM伺服的电路板组成 1)控制侧板:信号的接收和反馈、PWM的控制、报警检测等 2)功率基板:实现整流或逆变的输出控制,进行功率放大驱动输出控制 3)小接口板:连接控制侧板和功率基板 4)IPM晶体:功率晶体,实现整流或逆变的回路
机床是否有振动
4、当你和服务中心联系时,还请确认一下各项:
机床制造商以及机床形式
系统具体型号 - 例:FANUC 18i-M B 制造生产顺序(软件或硬件变化)
系统加工类型 M—铣
T— 车 P— 冲 系统名称 系统制造系列号(保修凭证)以及系统的DATA SHEET(配置清单) DATA SHEET
:电源单元外部冷却风扇停止
注意:因驱动单元为功率元件,需大量散热,所以不 建议采用屏蔽风扇的做法,这样会造成放大器 损坏,或产生过热报警(ALM431 )
ALM444
:伺服单元内部冷却风尚停止
ALM601
:伺服单元外部冷却风扇停止
三、故障处理步骤
1、系统备件档案记录
系统的型名及系列号
伺服及电机相关的型名 记录所使用机台的硬件配置 外部的I/O单元 其他特殊的系统硬件(SDU、双安检模块等)
PMC相关资料的备份
PMC参数备份 存放在SRAM中
定时器 计数器
K参数 数据表数据
参数设定
梯形图数据
存放在FROM中
梯形图、PMC报警文本、信号注释、IO模块分配
什么时候? 发生的时间? 开机后就发生? 运转一定时间后发生? 关机后再开机还会发生吗?故障的频率如何?
FANUC数控系统的硬件连接介绍PPT(35张)
任务1.1 发那科数控系统的硬件连接
➢ 知识目标: 1、FANUC数控装置接口 2、FANUC进给伺服放大器(数字伺服)接口 3、FANUC模拟主轴伺服(主轴变频器)接口 4、FANUC电源装置接口 5、FANUC I/O LINK模块接口 6、FANUC分离器接口 7、FANUC数控系统总体连接
变频器控制端子说明:
STF:正转启动。 STR:反转启动。 RH、RM、RL:多段转速选择。 SD:端子STF、STR、RH、RM、RL 的公共端子。
端口号 COP10A
JA1 JA2 JD36A/JD36B JA40 JD1A JA7A CP1
用途 伺服FSSB总线接口
CRT MDI RS-232-C 模拟主轴 I/OLINK总线接口 主轴编码器反馈接口 24V电源
布置任务:现场认识FANUC Oi-C系统主板接 口。 步骤: 1)学生使用六角扳手打开系统后板; 2)观察系统接口,掌握每个接口的作用。
2、讲解FANUC 0i数控装 置接口定义
二、FANUC 进给伺服放大器接口
进给伺服系统主要由进给伺服驱动装置及其伺服电动机组 成。
伺服驱动装置接受从主控制单元发出的进给速度和位移指令 信号,作一定的转换和放大后,驱动伺服电动机,从而通过机 械传动机构,驱动机床的执行部件实现精确的工作进给和快速 移动。
开环控制
开环控制特点:结构简单、价格低廉,调试和维修都比较方便, 但精度较低。
FANUC 系统交流伺服放大器的分类:
α系列伺服单元
伺服单元
具有(串J行S1数B)字接口
交 流
(SVU)
β伺服单元
具有伺服总线接口 (COP10A/COP10B)
发那科(FANUC)CNC系统与机床的连接及调试
发那科(FANUC)CNC系统与机床的连接及调试发那科计算机数控系统是最畅销的机床控制系统。
目前在国内主要使用0系统和0i系统,针对广大用户的实际情况,本文简要叙述这两种系统的连接及调试,掌握了这两种系统,其它FANUC系统的调试则迎刃而解。
1.调机步骤:⑴.接线:按照设计的机床电柜接线图和系统连接说明书(硬件)中(书号:B-61393或B-63503)绘出的接线图仔细接线。
⑵.拔掉CNC系统和伺服(包括主轴)单元的保险,给机床通电。
如无故障,装上保险,给机床和系统通电。
此时,系统会有#401等多种报警。
这是因为系统尚未输入参数,伺服和主轴控制尚未初始化。
⑶.设定参数:①. 系统功能参数(既所谓的保密参数):这些参数是订货时用户选择的功能,系统出厂时FANUC已经设好,0C和0i不必设。
但是,0D(0TD和0MD)系统,须根据实际机床功能设定#932--#935的参数位。
机床出厂时系统功能参数表必须交给机床用户。
②. 进给伺服初始化:将各进给轴使用的电机的控制参数调入RAM区,并根据丝杠螺距和电机与丝杠间的变速比配置CMR和DMR。
方法如下:·设参数SVS,使显示器画面显示伺服设定屏(Servo Set)。
0 系统设参数#389/0位=0;0i系统设参数#3111/0位=1。
然后在伺服设定屏上设下列各项:·初始化位置0。
此时,显示器将显示P/S 000报警,其意义是要求系统关机,重新启动。
但不要马上关机,因为其它参数尚未设入。
应返回设定屏继续操作。
·指定电机代码(ID)。
根据被设定轴实际使用的电机型号在“伺服电机参数说明书(B—65150)”中查出其代码,设在该项内。
·AMR设0。
·设定指令倍比CMR。
CMR=命令当量/位置检测当量。
通常设为1。
但该项要求设其值的1倍,所以设为2。
·设定柔性变速比(N/M)。
根据滚珠丝杠螺距和电机与丝杠间的降速比设定该值。
FANUC 0I系统的连接与调试
FANUC系统的连接与调试第一节硬件连接简要介绍了0IC/0I Mate C的系统与各外部设备(输入电源、放大器,I/O 等)之间的总体连接,放大器(αi系列电源模块,主轴模块,伺服模块,βis系列放大器,βiSVPM)之间的连接以及和电源,电机等的连接,和RS232C 设备的连接。
最后介绍了存储卡的使用方法(数据备份,DNC 加工等)。
目前FANUC 出厂的0iC/0i-Mate-C包括加工中心/铣床用的0IMC/0i-Mate-MC 和车床用的0iTC/ 0i-Mate-TC,各系统一般配置如下:注意:对于0i Mate-C,如果没有主轴电机,伺服放大器是单轴型(SVU);如果包括主轴电机,放大器是一体型(SVPM),下面详细介绍基本调试步骤。
一、硬件安装和连接1、在机床不通电的情况下,按照电气设计图纸将CRT/MDI 单元、CNC 主机箱、伺服放大器、I/O 板、机床操作面板、伺服电机安装到正确位置。
2、基本电缆连接,如图所示3、总体连接介绍:注意:A)FSSB光缆一般接左边插口。
B)风扇、电池、软键、MDI 等一般都已经连接好,不要改动。
C)伺服检测[CA69]不需要连接。
D)电源线可能有两个插头,一个为+24V 输入(左),另一个为+24V 输出(右)。
具体接线为(1-24V、2-0V、3-地线)。
E)RS232 接口是和电脑接口的连接线。
一般接左边(如果不和电脑连接,可不接此线)。
F)串行主轴/编码器的连接,如果使用FANUC 的主轴放大器,这个接口是连接放大器的指令线,如果主轴使用的是变频器(指令线由JA40 模拟主轴接口连接),则这里连接主轴位置编码器(车床一般都要接编码器,如果是FANUC 的主轴放大器,则编码器连接到主轴放大器的JYA3)。
G)对于I/O Link[JD1A]是连接到I/O 模块或机床操作面板的,必须连接。
H)存储卡插槽(在系统的正面),用于连接存储卡,可对参数、程序、梯形图等数据进行输入/输出操作,也可以进行DNC 加工。
项目二 数控系统硬件连接
任务二:数控系统的硬件连接训练 6) 伺服电机动力电源连接
主要包含伺服主轴电机与伺服进给电机的动力电源连接,伺服主轴电 机的动力电源是采用接线端子的方式连接,伺服进给电机的动力电源是采
用接插件连接,在连接过程中,一定要注意相序的正确。
任务一:数控机床的组成(FANUC)
主 轴 电 动 机
普通型和变频专用电动机
串行数字主轴电动机
任务一:数控机床的组成(FANUC)
主 轴 传 动 机 构
带传动(经过一级降速)
经过一级齿轮的带传动
任务一:数控机床的组成(FANUC)
主 轴 传 动 机 构
内装式电机主轴单元 (电主轴) 几级降速齿轮传动
6.αi伺服模块(SVM2)
TB1: DC300V直 流母线 CXA2B:DC 24V工作电 源与控制信 号总线
CXA2A:DC 24V工作电 源与控制信 号总线
COP10B: 驱动器 FSSB总线
JF1:伺服电 机位置编码 器反馈 CZ2L/2M: 伺服电动机 电源输出
COP10A: 驱动器FSSB 总线 JF2:伺服电 机位置编码 器反馈
CM65: SA1信 号输入
CA65: 强电信号 输出(急停)
任务一:数控机床的组成(FANUC)
CE57/53: I/O LINK 总线接口
开/关 程序保护
XS1: SS01J信号 输入
急停 开关
SS01N: 进给轴倍率 波段开关
SS01J: 主轴倍率 波段开关
XS2: SS01N信号 输入
任务一:数控机床的组成(FANUC) 三.PMC单元与I/O LINK连接
FANUC 0I系统的连接与调试
C)伺服电机动力线和反馈线都带有屏蔽,一定要将屏蔽做接地处理,并且信号线和动力线要分开接地,以免由于干扰产生报警。如下所示:
D)对于PSM的MCC(CX3)一定不要接错,CX3的1,3之间只是一个内部触点,如果错接成200V,将会烧坏PSM控制板。如下图所示正确接法。
・按[SETING]软键。(若显示警告信息,请重新设定)。
・在轴设定画面上,指定关于轴的信息,如分离型检测器接口单元的连接器号。
・按[SETING]键(若显示警告信息,重复上述步骤)。此时,应关闭电源,然后开机,如果没有出现5138报警,则设定完成。
・首先把3111#0 SVS设定为1显现伺服设定和伺服调整画面。翻到伺服参数设定画面,如下图示,设定各项(如果是全闭环,先按半闭环设定)。
FANUC系统的连接与调试
第一节硬件连接
简要介绍了0IC/0I Mate C的系统与各外部设备(输入电源、放大器,I/O等)之间的总体连接,放大器(αi系列电源模块,主轴模块,伺服模块,βis系列放大器,βiSVPM)之间的连接以及和电源,电机等的连接,和RS232C设备的连接。最后介绍了存储卡的使用方法(数据备份,DNC加工等)。
G)对于I/O Link[JD1A]是连接到I/O模块或机床操作面板的,必须连接。
H)存储卡插槽(在系统的正面),用于连接存储卡,可对参数、程序、梯形图等数据ቤተ መጻሕፍቲ ባይዱ行输入/输出操作,也可以进行DNC加工。
1)伺服/主轴放大器的连接
以上是以0iC带主轴放大器为例的连接图。
注意:A)PSM、SPM、SVM(伺服模块)之间的短接片(TB1)是连接主回路的直流300V电压用的连接线,一定要拧紧,如果没有拧的足够紧,轻则产生报警,重则烧坏电源模块(PSM)和主轴模块(SPM)。
发那科数控系统的硬件连接
任务实施一: 任务实施一: 完成数控系统、X轴放大器、(Y轴放大器)、 Z轴放大器的FSSB总线的连接。
任务实施二:完成 的连接。 任务实施二:完成I/O LINK 的连接。
任务实施三:完成伺服电机、 任务实施三:完成伺服电机、伺服放大器的连接
3) 主电源连接 主电源是用于伺服放大器动力电源。
4) 输出接伺服电机连接
5) 伺服电机反馈(编码器)的连接
6) 急停与MCC 连接 该部分主要用于对伺服主电源的控制与伺服放大 器的保护,如发生报警、急停等情况下能够切断 伺服放大器主电源。
(1)急停控制回路 急停控制回路一般有两个部分构 成,一个是PMC 急停控制信号 X8.4;另外一路是伺服放大器的 ESP 端子,这两个部分中任意一 个断开就出现报警,ESP 断开出 现SV401 报警,X8.4 断开出现 ESP 报警。但这两个部分全部是 通过一个元件来处理的,就是急 停继电器KA1。 (2) 伺服上电回路 伺服上电回路是给伺服放大器主 电源供电的回路,伺服放大器的 主电源一般采用三相220V 的交 流电源,通过交流接触器接入伺 服放大器,交流接触器的线圈受 到伺服放大器的CX29 的控制, 当CX29 闭合时,交流接触器的 线圈得电吸合,给放大器通入主 电源。
布置任务:现场认识FANUC Oi布置任务:现场认识FANUC Oi-C系统主板接 口。 步骤: 步骤: 学生使用六角扳手打开系统后板; 1)学生使用六角扳手打开系统后板; 观察系统接口,掌握每个接口的作用。 2)观察系统接口,掌握每个接口的作用。
主轴指令信号连接: 发那科的主轴控制采用两种类型,分别是 模拟主轴与串行主轴,模拟主轴的控制对 象是系统JA40 口输出0-10V的电压给变频 器,从而控制主轴电机的转速。 思考:主轴正反转如何控制的?
FANUC_0i-D_数控系统基本连接
实验三 FANUC Oi-D数控系统基本连接一。
实验目的1。
了解数控系统的各基本单元。
2.了解数控系统的硬件连接。
二。
实验内容1。
FANUC 0i MateD数控系统基本组成与连接。
2。
电气图形符号、部件功能.3。
电气控制原理与对应的操作过程。
三.实验设备1。
FANUC 0i Mate—TD数控车床。
2。
万用表、十字/一字螺丝刀(中、小型各一套)四.实验要点1。
数控车系统组成、电气关系。
2。
数控车床伺服控制系统的组成与连接。
3.机床各电气控制部件实体与电气图形符号对应关系等。
五。
实验具体要求1。
在进行实物识别时,最好不要给机床及数控系统上电。
只有在需要验证控制过程及各控制部件的响应状态时,才给机床和系统上电,并告知小组其他同学,此时不要触碰任何电气控制部件,避免意外触电.2.对机床进行基本操作,观察与验证各控制部件的工作过程与状态。
六。
相关知识与技能FANUC Oi—D系统可控制4个进给轴和一个伺服主轴(或变频主轴)。
它包括基本控制单元、伺服放大器、伺服电机等。
FANUC 0i Mate-D系统可控制3个进给轴和1个伺服主轴(或变频主轴)。
它包括基本控制单元、伺服放大器、伺服电机和外置I/O模块。
1。
FANUC 0i Mate TD数控车实训电控柜2。
FANUC 0i D/0i Mate D 控制单元接口图上图为0i—MD系统控制单元背板连接布置图,各连接器接口作用见下表:3。
FANUC Oi/0i MateD整个系统间的部件连接4。
FANUC I/O LINK连接(1)0i Mate 用I/0 单元(2)0i 用I/0 单元5。
系统电源的接通顺序按如下顺序接通各单元的电源或全部同时接通。
(1)机床的电源(200VAC)。
(2)伺服放大器的控制电源(200VAC)。
(3)I/O设备;显示器的电源;CNC控制单元的电源(24VDC)。
6.系统电源的关断顺序按如下顺序关断各单元的电源或全部同时关断.(1)I/O设备;显示器的电源;CNC控制单元的电源(24VDC)。
FANUC数控系统的硬件连接介绍(35页)
进给伺服电动机及传动机构
进给伺服电动机
联轴器
滚珠丝杠
进给伺服系统的位置控制形式分类: 半闭环控制
数控机床的半闭环控制时,进给伺服电动机的内装编码器的反 馈信号即为速度反馈信号,同时又作为丝杠的位置反馈信号。 半闭环控制特点:控制系统的稳定性高。 位置控制的精度相对不高,不能消除伺服电动机与丝杠的连接 误差及传动间隙对加工的影响。
厂时与L1、L2短接)。
TH1、TH2:为过热报警输入端子(出厂时,TH1-TH2已短
接),可用于伺服变压器及制动电阻的过热信号的输入。
RC、RI、RE:外接还是内装制动电阻选择端子。 RL2、RL3:MCC动作确认输出端子(MCC的常闭点)。 100A、100B:C型放大器内部交流继电器的线圈外部输入
主电路接触器的控制。
CX4:伺服紧急停止信号输入端,用于机床面板的急停
开关(常闭点)。
SSCK—20数控车床伺服单元连接图
FANUC数控系统的硬件连接介绍(PPT35 页)
(2)βi系列伺服单元
分组练习: βi系列伺服单元接口 并说明用途
FANUC数控系统的硬件连接介绍(PPT35 页)
FANUC数控系统的硬件连接介绍(PPT35 页)
数控车床βi伺服单元连接图
FANUC数控系统的硬件连接介绍(PPT35 页)
FANUC数控系统的硬件连接介绍(PPT35 页)
(3)FANUC 系统αi系列伺服模块端子接口功能
BATTERY:为伺服电动机绝对编码器的电池盒(DC6V)。 STATUS:为伺服模块状态指示窗口。 CX5X:为绝对编码器电池的接口。 CX2A:为DC24V电源、*ESP急停信号、XMIF报警信息输入接 口,与前一个模块的CX2B相连。 CX2B:为DC24V电源、*ESP急停信号、XMIF报警信息输出接 口,与后一个模块的CX2A相连。 C0P10A:伺服高速串行总线(HSSB)输出接口。与下一个伺服 单元的C0P10B连接(光缆)。 C0P10B:伺服高速串行总线(HSSB)输入接口。与CNC系统 的C0P10A连接(光缆)。 JX5:为伺服检测板信号接口。 JF1、JF2:为伺服电动机编码器信号接口。 CZ2L、CZ2M:为伺服电动机动力线连接插口。
FANUC 0i-D主控单元的接口及硬件连接
CNC单元与多主轴模块连接
2020/9/20
FANUC 0i-D主控单元的接口及硬件连接
二、FANUC 0i-D CNC单元的接口及硬件连接 3、模拟主轴接口JA40 如果采用非FANUC公司主轴电机,则可以采用变频器驱动。变频 器和CNC之间通过JA40接口连接,这时CNC通过JA40接口给变频器提供 -10V~+10V模拟指令信号。CNC、变频器、主轴电机连接图如图所示。
2020/9/20
CNC、变频器、主轴电动机的连接
FANUC 0i-D主控单元的接口及硬件连接
二、FANUC 0i-D CNC单元的接口及硬件连接 4、I/O Link接口JD51A
对于数控机床各坐标轴的运动控制,即在用户加工程序中的G、F指 令部分,由数控系统控制实现;而对于数控机床顺序逻辑动作,即在用 户加工程序中用M、S、T指令部分,由PMC控制实现。其中包括主轴速度 控制、刀具选择、工作台更换、转台分度、工件夹紧与松开等。这些来 自机床侧的输入、输出信号与CNC之间是通过I/O Link建立信号联系的。
8、伺服放大器接口COP10A
伺服放大器SVM通过COPI0A、COP10B接口接受CNC发出的进给运动速度和位移指令 信号,对传送过来的信号进行转换和放大处理,驱动各轴伺服电动机运转,实现刀具 和工件之间的相对运动。FANUC数控系统与伺服放大器接口之间的连接采用FSSB (FANUC Serial Servo Bus)。对于FANUC单台伺服放大器,有驱动一轴的,有驱动两 轴的,有驱动三轴的。CNC、伺服放大器、伺服电机之间的连接如图所示。
数控机床调试与维修
Debugging and Maintenance of NC Machine Tool
FANUC数控系统连接与调试实训 任务4 0i-F伺服主轴硬件模块
βiSVM-B
βiSVM2-B
3 αi-B电源模块硬件连接
αi-B电源模块硬件连接
控制电源
伺服或主轴 放大器
LED
PS表示电源 7.5(KW)表示
额定功率
订货号购买 备件时使用
CXA2A 跨接电缆 +24V
CXA2D 控制电源+24V
BA
4
3 2
+
1
_
αi-B电源模块硬件连接
动力电
依据电磁接触 器电压选择
伺服主轴硬件连接
1 αi-B&βi-B伺服概述 2 αi-B电源模块硬件连接 3 αi-B主轴放大器硬件连接 4 αi-B伺服放大器硬件连接 5 αi-B放大器整体连接 6 βi-B放大器硬件连接
1 αi-B&βi-B伺服概述
αi-B&βi-B伺服概述
αi&βi伺服概述
FANUC AC SERVO MOTOR αi-B SERIES
(3) CX3 (1)
3 2 1
电磁接触器线圈
DC LINK 直流300V
LED警示灯
CX3 MCC 接口
200V 三相 交流电
电磁接触器 触点
αi-B电源模块硬件连接
放大器急停
CX4 放大器急停
24V(A1) 24V(B1) 0V(A2)
0V(B2) MIFA(A3) BATL(B3) *ESP(A4) XMIFA(B4)
CX37 重力轴断电检测 (可有效防止重例轴下落)
①/②/③与 L1/L2/L3 需一一对应
3 2 1
CX48 电源监控接口
3 αi-B伺服放大器硬件连接
αi-B伺服放大器硬件连接
伺服放大器硬件连接
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RS232传输线
DB9常用信号脚接口说明
针号
1 2 3 4 5
功能说明
数据载波检测 接受数据 发送数据
数据终端准备 信号地
缩 针号 写 DCD 6 RXD 7 TXD 8 DTR 9 GND
功能说明
数据设备准备好 请求发送 清楚发送 振铃提示
(3)分离型检测单元绝对编码器电源接口
6)I/O Link接口 JD51A 0i-D系列和0i Mate-D系列中,JD51A插座位于主板上。 FANUC系统的PMC是通过专用的I/O Link与系统进行通讯的,PMC在进 行着I/O信号控制的同时,还可以实现手轮与I/O Link轴的控制,但外围 的连接却很简单,且很有规律,同样是从A到B,系统侧的JD51A(0i C系 统为JD1A)接到I/O模块的JD1B。电缆总是从一个单元的JD1A连接到下一 个单元的JD1B。尽管最后一个单元是空着的,也无需连接一个终端插头 。 JA3或者JA58可以连接手轮。
3)模拟主轴控制信号接口 JA40 用于模拟主轴伺服单元或变频器模拟电压的给定。
NC与模拟主轴的连接:
注: 1)SVC和EC为主轴指令电压和公共端,ENB1和ENB2为主轴使能信 号 2)当主轴指令电压有效时,ENB1,ENB2接通。当使用FANUC主轴 伺服单元时,不使用这些信号。 3)额定模拟电压输出如下:
6.模拟主轴(JA40)的连接,实训台使用变频模拟主轴,主轴信 号指令由JA40模拟主轴接口引出,控制主轴转速。
7.I/O Link[JD1A],本接口是连接到I/O Link的。注意按照从 JD1A到JD1B的顺序连接,即从系统的JD1A出来,到I/O Link的JD1B为止 ,下一个I/O设备也是如此,如若不然,则会出现通讯错误而检测不到 I/O设备。
FANUC 0i D/0i mate D系统接口图
数控系统接口说明: 1.FSSB光缆连接线,一般接左边插口(若有两个接口),系统总
是从COP10A到COP10B,本系统由左边COP10A连接到第一轴驱动器的 COP10B。
2.风扇、电池、软键、MDI等在系统出厂时均已连接好,不用改 动,但要检查在运输的过程中是否有地方松动,如果有,则需要重新连 接牢固,以免出现异常现象。
3.常见FANUC数控系统
二、FANUC数控系统类型
1.查看类型的方法
主要有两种方法: 1)通过显示器上面的黄色条形标牌 如下图 FANUC SERIES 0i Mate-MD
2)通过贴在系统外壳上的铭牌 系统外壳的侧面或背面贴着系统的铭牌,可以查看系 统的类型及系统生产系列号等,生产系列号是系统报修时 重要的参考。 如下图 FANUC SERIES 0i Mate-MD
1.电源接口CP1 电源要求:DC24V±10%(21.6—26.4V)
数控系统电源电路图
2)通讯接口RS-232-C、JD36A、JD36B
可以通过RS232口与输入输出设备(电脑)等相连,用来将CNC程序 、参数等各种信息,通过RS232电缆输入到NC中,或从NC中输出给输入/ 输出设备的接口。
缩写
DSR RTS CTS DELL
DB25常用信号脚接口说明
针号 1 2 3 4 5 6 7 8 9 10
功能说明 空
发送数据 接受数据 请求发送 清楚发送 数据设备准备好
信号地 载波检测
空 空
针号 11 12-17 18 19 20 21 22 23 24 25
功能说明 空 空 空 空
数据终端准备 空
日本FANUC公司自50年代末期生产数控系统以来, 已开发出40多种系列的数控系统,特别是70年代中期开 发出FS5、FS7系统以后,所生产的系统都是CNC系统。 从此,FANUC公司的CNC系统大量进入中国市场,在中国 CNC市场上处于举足轻重的地位。
1.FANUC公司发展史
2.FANUC公司主要产品
FANUC数控系统硬件的连接
CNC装置由软件和硬件组成,硬件为软件的运行提供了 支持环境。有专用计算机数控装置(简称专机数控)和通用个 人计算机数控装置(简称PC数控)两种。
CNC系统软件框图
FANUC i系列内装式系统
1
任务引入
2
任务目标
3
任务实施
固
一、FANUC数控系统简介
振铃指示 空 空 空
RS232-C数据线接线图
注意事项: 1)禁止带电插拔数据线,插拔时至少有一端是断电的,否则极 易损坏机床和PC的RS232接口。 2)使用台式机时一定要将PC外壳与机床地线连接,以防漏电烧 坏机床串口。 3)当传输不正常时,波特率可以设的低一些,如4800bps,但要 注意PC侧要与机床侧设置一致。 4)机床侧与PC侧同时关机。
FANUC i系列机箱共有两种形式,一种是内装式,另
一种是分离式。
内装式CNC与LCD的实装
FANUC i系列分离式系统
FANUC 0i-TD系统结构示意图
数控系统主机硬件
发那科0iD 数控系统主机方框图
FANUC 0i系统各板插接位置图
三、FANUC数控系统硬件连接
FANUC 0i系统各板插接位置实物图
名称的解释:
0i-表明的是FANUC 系统的类型(名称),由这个名称 可知系统的种类和档次。
M-表明的是这种系统用在什么类型的机床上,M 用于 铣床或加工中心,T 用于车床,P 用于冲床,L 用于激光 机床,G用于磨床。
D-表明的是系统的版本,由同一系统的开发的先后来 定义,比如,0i-A,0i-B,0i-C 。
输出电压:(0—±10V) 输出电流:2mA(最大)
位置编码器接口JA41的连接:
4)串行主轴接口 JA41
5)伺服FSSB总线接口 COP10A 伺服控制采用光缆连接,完成与伺服单元的连接,连接均采用级连 结构。
(1)分离型检测单元电源接口CP11 (2)分离型检测单元编码器接口
3.伺服检测口[CA69],不需要连接。 4.电源线一般有两个接口,一个为+24V输入(左),另一个+24V 输出(右),每根电源线有三个管脚,电源的正负不能接反,具体接线 如下:
(1)24V (2)0V (3)保护地
5.RS232接口,它是与电脑通讯的连接口,共有两个,一般接左边, 右边为备用接口,如果不与电脑连接,则不用接此线(推荐使用存储卡 代替RS232口,传输速度及安全性都比串口优越)。