曲线运动典型例题
《曲线运动》典型例题
第1节曲线运动结论:质点做曲线运动时,速度的方向是时刻改变的,任一时刻(或任一位置)的瞬时速度方向与这一时刻质点所在位置处的曲线的切线方向一致。
可见,在曲线运动中合外力的作用效果可分成两个方面:产生切线方向的加速度a1,改变速度的大小;产生法线方向的加速度a2,改变速度的方向,这正是物体做曲线运动的原因。
若a1=0,则物体的运动为匀速率曲线运动;而若a2=0,则物体的运动为直线运动。
【例1】关于曲线运动,下列说法中正确的是()A.曲线运动一定是变速运动 B.变速运动一定是曲线运动C.曲线运动可能是匀变速运动 D.变加速运动一定是曲线运动【解析】曲线运动的速度方向沿曲线的切线方向,一定是变化的,所以曲线运动一定是变速运动。
变速运动可能是速度的方向不变而大小变化,则可能是直线运动。
当物体受到的合力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。
做变加速运动的物体受到的合力可能大小不变,但方向始终与速度方向在一条直线上,这时物体做变速直线运动。
正确选项为A、C。
【例2】如图1-8所示,小钢球以初速度v0在光滑水平面上运动,受到磁铁的侧向作用而沿图示的曲线运动到D点,由此可知()A.磁铁在A处,靠近小钢球的一定是N极B.磁铁在B处,靠近小钢球的一定是S极C.磁铁在C处,靠近小钢球的一定是N极D.磁铁在B处,靠近小钢球的磁极极性无法确定【解析】小钢球受磁铁的吸引而做曲线运动,运动方向只会向所受吸引力的方向偏转,因而磁铁位置只可能能在B处,不可能在A处或C处。
又磁铁的N极或S极对小钢球都有吸引力,故靠近小钢球的磁极极性无法确定。
正确选项为D。
【例3】质点在三个恒力F1、F2、F3的共同作用下保持平衡状态,若突然撤去F1,而保持F2、F3不变,则质点()A.一定做匀变速运动B.一定做直线运动C.一定做非匀变速运动D.一定做曲线运动【解析】质点在恒力作用下产生恒定的加速度,加速度恒定的运动一定是匀变速运动。
曲线运动的例子
曲线运动的例子
1. 哎呀,你看那扔出去的飞盘,在空中划过的轨迹不就是曲线运动嘛!它忽高忽低,就像一只调皮的鸟儿在飞翔,多有意思啊!
2. 嘿,想想游乐场里的过山车,那可真是刺激的曲线运动啊!风在耳边呼呼吹,我们的身体跟着车一起上上下下、左拐右弯,这不就是在体验速度与激情的曲线之旅吗?
3. 你们说,跳水运动员从跳台上跳下,在空中的动作算不算曲线运动呀?那优美的姿态,像一条灵动的鱼,在水中画出美妙的曲线,太惊艳啦!
4. 还有啊,那种投石器把石头扔出去,石头飞出去的路线不就是曲线嘛!就好像在和我们玩捉迷藏一样,让人捉摸不透它会落在哪里呢,这多神奇呀!
5. 大家想想,踢出去的足球在空中的飞行,不也是曲线运动嘛!它忽左忽右,让守门员都紧张得不行,简直就是一场精彩的较量!
6. 哎呀呀,公园里小孩玩的秋千,荡起来不就是在做曲线运动嘛!一上一下的,多好玩,看到就想上去坐一坐呢!
7. 要说曲线运动,那骑自行车的时候转弯不也算嘛!身体跟着车倾斜,感受那种向心力,真的很酷呢!
总之,曲线运动在我们生活中无处不在,给我们带来了很多乐趣和惊喜!。
物理曲线运动练习题20篇及解析
物理曲线运动练习题20篇及解析一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道PA 在A 点相切.BC 为圆弧轨道的直径.O 为圆心,OA 和OB 之间的夹角为α,sinα=35,一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用,已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:(1)水平恒力的大小和小球到达C 点时速度的大小;(2)小球到达A 点时动量的大小;(3)小球从C 点落至水平轨道所用的时间.【答案】(15gR (223m gR (3355R g 【解析】试题分析 本题考查小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力.解析(1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有0tan F mg α=① 2220()F mg F =+② 设小球到达C 点时的速度大小为v ,由牛顿第二定律得2v F m R=③ 由①②③式和题给数据得034F mg =④ 5gR v = (2)设小球到达A 点的速度大小为1v ,作CD PA ⊥,交PA 于D 点,由几何关系得 sin DA R α=⑥(1cos CD R α=+)⑦由动能定理有22011122mg CD F DA mv mv -⋅-⋅=-⑧ 由④⑤⑥⑦⑧式和题给数据得,小球在A 点的动量大小为1232m gR p mv ==⑨ (3)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有 212v t gt CD ⊥+=⑩ sin v v α⊥=由⑤⑦⑩式和题给数据得 355Rt g =点睛 小球在竖直面内的圆周运动是常见经典模型,此题将小球在竖直面内的圆周运动、受力分析、动量、斜下抛运动有机结合,经典创新.2.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g s v H L=-201[1]42()s T mg H L L =+- 【解析】【分析】【详解】(1)由万有引力等于向心力可知22Mm v G m R R = 2Mm G mg R= 可得2v g R= 则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g sv H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星= 解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.3.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。
高中物理曲线运动典型题及答案
高中物理曲线运动典题及答案一、单选题(本大题共14小题,共56.0分)1.某一滑雪运动员从滑道滑出并在空中翻转时经多次曝光得到的照片如图所示,每次曝光的时间间隔相等。
若运动员的重心轨迹与同速度不计阻力的斜抛小球轨迹重合,A,B,C和D表示重心位置,且A和D处于同一水平高度。
下列说法正确的是A. 相邻位置运动员重心的速度变化相同B. 运动员在A、D位置时重心的速度相同C. 运动员从A到B和从C到D的时间相同D. 运动员重心位置的最高点位于B和C中间2.在光滑的水平面上,质量m=1kg的物块在的水平恒力F作用下运动,如图所示为物块的一段轨迹。
已知物块经过P、Q两点时的速率均为v= 4m/s,用时为2s,且物块在P点的速度方向与PQ连线的夹角α=30°.关于物块的运动,下列说法正确的是( )A. 水平恒力F=4NB. 水平恒力F的方向与PQ连线成90°夹角C. 物块从P点运动到Q点的过程中最小速率为2m/sD. P、Q两点的距离为8m3.如图所示,从匀速运动的水平传送带边缘,垂直弹入一底面涂有墨汁的棋子,棋子在传送带表面滑行一段时间后随传送带一起运动.以传送带的运动方向为x轴,棋子初速度方向为y轴,以出发点为坐标原点,棋子在传送带上留下的墨迹为( )A. B. C. D.4.如图所示,水平桌面上有一涂有黑色墨水的小球,给小球一个初速度使小球向右做匀速直线运动,它经过靠近桌边的竖直木板ad边前方时,木板开始做自由落体运动。
若木板开始运动时,cd边与桌面相齐平,则小球在木板上留下的墨水轨迹是( )A. B.C. D.5.如图所示,长度为l的轻杆上端连着一质量为m的小球A(可视为质点),杆的下端用铰链固接于水平地面上的O点.置于同一水平面上的立方体B恰与A接触,立方体B的质量为M.今有微小扰动,使杆向右倾倒,各处摩擦均不计,而A与B刚脱离接触的瞬间,杆与地面夹角恰为37°(sin37°=0.6,cos37°=0.8),重力加速度为g,则下列说法正确的是( )A. A、B质量之比为27∶25B. A落地时速率为√2glC. A与B刚脱离接触的瞬间,A、B速率之比为3∶5D. A与B刚脱离接触的瞬间,B的速率为√3gl56.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L1和L2,中间球网高度为ℎ.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3ℎ.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v的最大取值范围是( )A. L12√g6ℎ<v<L1√g6ℎB. L14√gℎ<v<√(4L12+L22)g6ℎC. L12√g6ℎ<v<12√(4L12+L22)g6ℎD. L14√gℎ<v<12√(4L12+L22)g6ℎ7.在爆炸实验基地有一发射塔,发射塔正下方的水平地面上安装有声音记录仪。
高中物理曲线运动21个典型题
高中物理曲线运动21个典型题典型例题1——关于飞机轰炸飞机在离地面720m的高度,以70的速度水平飞行,为了使飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标的水平距离多远的地方投弹?(不计空气阻力取)可以参考媒体展示飞机轰炸目标的整个过程以及分析,帮助理解.解:设水平距离为子弹飞行的时间:水平距离典型例题2——关于变速运动火车上的平抛运动在平直轨道上以的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m.间隔时间为1s.两物体落地点的间隔是2.6m,则当第一个物体下落时火车的速度是多大?(取)分析:如图所示、第一个物体下落以的速度作平抛运动,水平位移,火车加速到下落第二个物体时,已行驶距离.第二个物体以的速度作平抛运动水平位移.两物体落地点的间隔是2.6m.解:由位置关系得:物体平抛运动的时间:由以上三式可得点评:解本题时,作出各物体运动情况的草图对帮助分析题意十分重要.先后作平抛运动的物体因下落高度相同,所以运动的时间相同,但下落的时间不同于火车加速度运动的时间,不要混淆.典型例题3——关于三维空间上的平抛运动分析光滑斜面倾角为,长为,上端一小球沿斜面水平方向以速度抛出(如图所示),小球滑到底端时,水平方向位移多大?解:小球运动是合运动,小球在水平方向作匀速直线运动,有①沿斜面向下是做初速度为零的匀加速直线运动,有②根据牛顿第二定律列方程③由①,②,③式解得说明:中学阶段研究的曲线运动一定是两维空间(即平面上的)情况,因此,该题首先分析在斜面上的分运动情况.研究曲线运动必须首先确定分运动,然后根据“途径”处理.典型例题4——关于小船过河的一系列问题一艘小船在200m宽的河中横渡到对岸,已知水流速度是2m/s,小船在静水中的速度是4m/s,求:①当船头始终正对着对岸时,小船多长时间到达对岸,小船实际运行了多远?②如果小船的路径要与河岸垂直,应如何行驶?消耗的时间是多少?③如果小船要用最短时间过河,应如何?船行最短时间为多少?【分析与解答】①在解答本题的时候可由此提问:船头始终正对河岸代表什么含义.(①题的答案:50秒,下游100米)②路径与河岸垂直——船的实际运动——船的合运动(在两个分运动的中间,并与河岸垂直)(②题的答案:与上游河岸成60°,57.7s)③分析本题,可以得到求t最小的方法:1、河宽一定,要想使时间最少应使垂直河岸方向的分速度最大,即正对河岸航行,则.2、或者由三个式子一一分析.一定,又有最小值,即河宽,便可以求出渡河最短时间.(③题的答案:50s)典型例题5——关于拉船分运动的分解判断在高处拉低处小船时,通常在河岸上通过滑轮用钢绳拴船,若拉绳的速度为4m/s,当拴船的绳与水平方向成60°时,船的速度是多少?(8m/s)【分析与解答】:在分析船的运动时,我们发现船的运动产生了两个运动效果:绳子在不断缩短;而且绳子与河岸的夹角不断减小,所以我们可以将船的运动——实际运动——合运动分解成沿绳子方向的运动和垂直绳子方向所做的圆周运动,因此可以将船的运动分为:1、船沿水平方向前进——此方向为合运动,求合速度v.2、小船的运动可以看成为沿绳子缩短方向的运动和垂直绳子方向做圆周运动的合运动.所以根据题意,船的速度大小与绳子的运行速度之间的关系是:典型例题6——关于汽车通过不同曲面的问题分析一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有:,解得桥面的支持力大小为根据牛顿第三定律,汽车对桥面最低点的压力大小是N.(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有,解得桥面的支持力大小为根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N.(3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有,解得:汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力.典型例题7——细绳牵引物体做圆周运动的系列问题一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.【分析与解答】(1)小球通过圆周最高点时,受到的重力必须全部作为向心力,否则重力G 中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运。
高中物理 曲线运动 典型例题(含答案)【经典】
第四章 曲线运动第一讲:曲线运动条件和运动特点、运动的合成与分解考点一:运动的合成与分解 1、(多选)质量为m =2 kg 的物体在光滑的水平面上运动,在水平面上建立xOy 坐标系,t =0时物体位于坐标系的原点O.物体在x 轴和y 轴方向的分速度vx 、vy 随时间t 变化的图线如图甲、乙所示.则( ). A .t =0时,物体速度的大小为3 m/s 答案 ADB .t =8 s 时,物体速度的大小为4 m/sC .t =8 s 时,物体速度的方向与x 轴正向夹角为37°D .t =8 s 时,物体的位置坐标为(24 m,16 m)2.(多选)在一光滑水平面内建立平面直角坐标系,一物体从t =0时刻起,由坐标原点O(0,0)开始运动,其沿x 轴和y 轴方向运动的速度—时间图象如图甲、乙所示,下列说法中正确的是( ).答案 AD A .前2 s 内物体沿x 轴做匀加速直线运动B .后2 s 内物体继续做匀加速直线运动,但加速度沿y 轴方向C .4 s 末物体坐标为(4 m,4 m)D .4 s 末物体坐标为(6 m,2 m) 3.(单选)如图,从广州飞往上海的波音737航班上午10点到达上海浦东机场,若飞机在降落过程中的水平分速度为60 m/s ,竖直分速度为6 m/s ,已知飞机在水平方向做加速度大小等于2 m/s2的匀减速直线运动,在竖直方向做加速度大小等于0.2 m/s2的匀减速直线运动,则飞机落地之前( ).答案 D A .飞机的运动轨迹为曲线B .经20 s 飞机水平方向的分速度与竖直方向的分速度大小相等C .在第20 s 内,飞机在水平方向的分位移与竖直方向的分位移大小相等D .飞机在第20 s 内,水平方向的平均速度为21 m/s4、(多选)质量为0.2 kg 的物体在水平面上运动,它的两个正交分速度图线分别如图甲、乙所示,由图可知( )A .最初4 s 内物体的位移为8 2 m 答案 ACB .从开始至6 s 末物体都做曲线运动C .最初4 s 内物体做曲线运动,接下来的2 s 内物体做直线运动D .最初4 s 内物体做直线运动,接下来的2 s 内物体做曲线运动 5、(单选)各种大型的货运站中少不了旋臂式起重机,如图所示,该起重机的旋臂保持不动,可沿旋臂“行走”的天车有两个功能,一是吊着货物沿竖直方向运动,二是吊着货物沿旋臂水平运动.现天车吊着货物正在沿水平方向向右匀速行驶,同时又启动天车上的起吊电动机,使货物沿竖直方向做匀减速运动.此时,我们站在地面上观察到货物运动的轨迹可能是下图中的( ). 答案 D6.汽车静止时,车内的人从矩形车窗ABCD 看到窗外雨滴的运动方向如图图线①所示.在汽车从静止开始匀加速启动阶段的t 1、t 2两个时刻,看到雨滴的运动方向分别如图线②③所示.E 是AB 的中点.则( ) A .t2=2t 1 B .t 2=2t 1 C .t 2=5t 1D .t 2=3t 1 答案 A解析 静止时,雨滴相对于地面做的是竖直向下的直线运动,设雨滴的速度为v0,汽车匀加速运动后,在t1时刻,看到的雨滴的运动方向如图线②,设这时汽车的速度为v1,这时雨滴水平方向相对于汽车的速度大小为v1,方向向左,在t2时刻,设汽车的速度为v2,则雨滴的运动方向如图线③,雨滴水平方向相对于汽车速度大小为v2,方向水平向左,根据几何关系,v1OA =v0AB ,v2OA =v012AB ,得v2=2v1,汽车做匀加速运动,则由v =at 可知,t2=2t1,A 项正确.7.一物体在光滑水平面上运动,它在x 方向和y 方向上的两个分运动的速度—时间图象如图所示. (1)判断物体的运动性质;(2)计算物体的初速度大小;(3)计算物体在前3 s 内和前6 s 内的位移大小.答案 (1)匀变速曲线运动 (2)50 m/s (3)3013m 180 m8.如图所示,为一次洪灾中,德国联邦国防军的直升机在小城洛伊宝根运送砂袋.该直升机A 用长度足够长的悬索(重力可忽略不计)系住一质量m =50 kg 的砂袋B ,直升机A 和砂袋B 以v0=10 m/s 的速度一起沿水平方向匀速运动,某时刻开始将砂袋放下,在5 s 时间内,B 在竖直方向上移动的距离以y =t2(单位:m)的规律变化,取g =10 m/s2.求在5 s 末砂袋B 的速度大小及位移大小.答案 10 2 m/s 25 5 m9、如图所示,在竖直平面内的xOy 坐标系中,Oy 竖直向上,Ox 水平向右.设平面内存在沿x 轴正方向的恒定风力.一小球从坐标原点沿Oy 方向竖直向上抛出,初速度为v0=4 m/s ,不计空气阻力,到达最高点的位置如图中M 点所示(坐标格为正方形,g =10 m/s2)求:(1)小球在M 点的速度v1;(2)在图中定性画出小球的运动轨迹并标出小球落回x 轴时的位置N ; (3)小球到达N 点的速度v2的大小.答案 (1)6 m/s (2)见解析图 (3)410 m/s解析 (1)设正方形的边长为x0. 竖直方向做竖直上抛运动,有v0=gt1,2x0=v02t1水平方向做匀加速直线运动,有3x0=v12t1. 解得v1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t1到x 轴,水平方向做初速度为零的匀加速直线运动,所以回到x 轴时落到x =12处,位置N 的坐标为(12,0).(3)到N 点时竖直分速度大小为v0=4 m/s 水平分速度vx =a 水平tN =2v1=12 m/s , 故v2=v 20+v 2x =410 m/s.考点二:绳(杆)端速度分解模型(结合受力和机械能守恒)1、如图所示,人用绳子通过定滑轮以不变的速度0v 拉水平面上的物体A ,当绳与水平方向成θ角时,求物体A 的速度。
高中物理曲线运动金典例题及练习
第五章曲线运动第一节曲线运动例1:如下图是抛出的铅球运动轨迹的示意图(把铅球看成质点).画出铅球沿这条曲线运动时在A.B.C.D.E各点的速度方向,及铅球在各点的受力方向(空气阻力不计).分析与解答:曲线运动中物体在某一点的速度方向是在曲线的这一点的切线方向,答案如下所示,在运动过程中,物体只受重力,方向竖直向下.思考:①铅球为什么做曲线运动?②由A至B,铅球速度大小如何变化?C至D 呢?例2:某质点在恒力F作用下,F从A点沿下图中曲线运动到B点,到达B点后,质点受到的力大小仍为F,但方向相反,则它从B点开始的运动轨迹可能是图中的哪条曲线?()A.曲线a B.直线bC.曲线c D.三条曲线均有可能分析与解答:物体在A点的速度方向沿A点的切线方向,物体在恒力F作用下沿曲线AB运动时,F必有垂直速度的分量,即F应指向轨迹弯曲的一侧.物体在B点时的速度沿B点的切线方向,物体在恒力F作用下沿曲线A运动到B时,若撤去此力F,则物体必沿b的方向做匀速直线运动;若使F 反向,则运动轨迹应弯向F方向所指的一侧,即沿曲线a运动;若物体受力不变,则沿曲线c运动.以上分析可知,在曲线运动中,物体的运动轨迹总是弯向合力方向所指的一侧.正确答案:A 例3:下列说法正确的是()A.两匀速直线运动的合运动的轨迹必是直线B.两匀变速直线运动的合运动的轨迹必是直线C.一个匀变速直线运动和一个匀速直线运动的合运动的轨迹一定是曲线D.两个初速度为零的匀变速直线运动的合运动的轨迹一定是直线解:物体做曲线运动的条件是所受的合外力方向与初速度方向不在一条直线上,而物体所受合外力方向与初速度方向在一条直线上,则做直线运动.物体做匀速直线运动时,合外力为零,两个匀速直线运动合成时,合外力仍为零,物体仍做匀速直线运动,A正确.物体做匀变速直线运动时,受到的力是恒力,两个匀变速直线运动合成时合外力也是恒力,若合外力与合初速度方向不在一条直线上时,合运动的轨迹就是曲线,B错.当两个分运动在一条直线上时,即合力与合初速度在一条直线上,合运动的轨迹仍是一条直线,C错.两个初速度为零的匀变速直线运动合成时,合外力是一恒力,由于合初速度为零,所以一定沿合力方向运动,其轨迹一定是一条直线,D正确.所以选A.D.例4:某曲线滑梯如图是所示,试标出人从滑梯上滑下时在A.B.C.D各点的速度方向.选题目的:考查曲线运动速度方向的判断.解析:曲线运动中速度的方向是时刻改变的,质点在某一点的速度的方向是在曲线的这一点的切线方向.所以,人从滑梯上滑下时,经过A.B.C.D 点的速度方向如图所示.例5:关于曲线运动,下列说法正确的是()A.曲线运动是一种变速运动B.做曲线运动的物体合外力一定不为零C.做曲线运动的物体所受的合外力一定是变化的D.曲线运动不可能是一种匀变速运动选题目的:考查曲线运动概念的理解.解析:当运动物体所受合外力的方向跟它的速度方向不在同一直线上时,物体就做曲线运动,曲线运动中速度的方向是时刻改变的,所以曲线运动是一种变速运动,曲线运动具有加速度,由F ma知合外力不为零,选项A.B 正确,决定物体做曲12线运动的因素是合外力与速度方向不在同一直线上,而不是恒力或变力.若合外力变化,则是变加速运动,若合外力不变,则是匀变速运动.所以,选项C .D 错误本题正确的答案是A .B练习题一.选择题1.关于曲线运动,下述说法中正确的是() A .任何曲线运动都是变速运动 B .任何变速运动都是曲线运动C .曲线运动经过某点处的速度在该点的切线方向上,因而方向是变化的D .曲线运动经过某点处的速度方向与加速度方向相同2.一物体在力1F .2F .3F .…n F 共同作用下做匀速直线运动,若突然撤去2F 后,则该物体() A .可能做曲线运动B .不可能继续做直线运动C .必沿2F 方向做匀加速直线运动D .必沿2F 反方向做匀减速直线运动 3.下列关于曲线运动的说法中正确的是() A .可以是匀速率运动 B .一定是变速运动 C .可以是匀变速运动 D .加速度可能恒为零 4.下列说法中正确的是()A .物体在恒力作用不可能做曲线运动B .物体在变力作用下有可能做曲线运动C .做曲线运动的物体,其速度方向与合外力方向不在同一直线上D .物体在变力作用下不可能做直线运动5.关于物体做曲线运动的条件,下述说法正确的是()A .物体在恒力作用下不可能做曲线运动B .物体在变力作用下一定做曲线运动C .合力的方向与物体速度的方向既不相同.也不相反时,物体一定做曲线运动D .做曲线运动的物体所受到的力的方向一定是变化的6.物体受到几个恒定外力的作用而做匀速直线运动,如果撤掉其中一个力,保持其他力不变,它可能做 ()①匀速直线运动 ②匀加速直线运动 ③匀减速直线运动 ④曲线运动正确的说法是A .①②③B .②③C .②③④D .②④ 7.某质点做曲线运动时()A .在某一点的速度方向是该点曲线的切线方向B .在任意时间内位移的大小总是大于路程C .在任意时刻质点受到的合外力不可能为零D .速度的方向与合外力的方向必不在一条直线上8.某物体在一足够大的光滑平面上向东运动,当它受到一个向南的恒定外力作用时,物体运动将是()A .曲线运动,但加速度方向不变.大小不变,是匀变速运动B .直线运动且是匀变速直线运动C .曲线运动,但加速度方向改变,大小不变,是非匀变速曲线运动D .曲线运动,加速度大小和方向均改变,是非匀变速曲线运动9.一个质点受两个互成锐角的力1F 和2F 作用,由静止开始运动,若运动中保持二力方向不变,但1F 突然增大到1F F +∆,2F 则保持不变,质点此后() A .一定做匀变速曲线运动B .在相等的时间内速度的变化一定相等C .可能做匀速直线运动D .可能做变加速曲线运动 参考答案: 二.填空题1.物体做曲线运动的条件是必须具有________,同时受到______________的作用.2.在砂轮上磨刀具,从刀具与砂轮接触处因摩擦而脱落的炽热的微粒,由于______,它们以被刚脱离时具有的速度做______运动. 3.某人骑自行车以恒定速率通过一段水平弯路.是______________________力使自行车的速度方向发生改变.4.一个物体在一对平衡力作用下运动.若将其中一个力保持大小不变而方向转过90︒(另一个力不变).物体将做__________________运动.周末练习1.请思考:欲使抛出手后的石子做直线运动,应如何抛出?欲使抛出手后的石子做曲线运动,应如何抛出?2.如图,一质点由A至B做曲线运动,试画出图中A.a.b.c.B各点的速度方向.3.如图,一质点以恒定的速率绕圆周轨道一周用30s的时间,该质点运动半周,速度方向改变多少度?该质点每运动5s,速度方向改变多少度?画出从A点开始每隔5s时速度矢量的示意图.探究活动观察并思考,现实生活中物体做曲线运动的实例,并分析物体所受合外力的情况与各点速度的关系.第二节运动的合成与分解例1:一艘小船在200m宽的河中横渡到对岸,已知水流速度是2m/s,小船在静水中的速度是4m /s,求:①当船头始终正对着对岸时,小船多长时间到达对岸,小船实际运行了多远?②如果小船的路径要与河岸垂直,应如何行驶?消耗的时间是多少?③如果小船要用最短时间过河,应如何?船行最短时间为多少?简答:①在解答本题的时候可由此提问:船头始终正对河岸代表什么含义.(①题的答案:50秒,下游100米)②路径与河岸垂直——船的实际运动——船的合运动(在两个分运动的中间,并与河岸垂直)(②题的答案:与上游河岸成60°,57.7s)③分析本题,可以得到求t最小的方法:1.河宽一定,要想使时间最少应使垂直河岸方向的分速度最大,即正对河岸航行,则minstv=静水.2.或者由ss st t tv v v===静水合水静合三个式子一一分析.v静一定,s静又有最小值,即河宽,便可以求出渡河最短时间.(③题的答案:50s)例2:在高处拉低处小船时,通常在河岸上通过滑轮用钢绳拴船,若拉绳的速度为4m/s,当拴船的绳与水平方向成60°时,船的速度是多少?答案:8m/s(提示:在分析船的运动时,我们发现船的运动产生了两个运动效果:绳子在不断缩短;而且绳子与河岸的夹角不断减小,所以我们可以将船的运动——实际运动——合运动分解成沿绳子方向的运动和垂直绳子方向所做的圆周运动)1.船沿水平方向前进——此方向为合运动,求合速度v.2.小船的运动可以看成为沿绳子缩短方向的运动和垂直绳子方向做圆周运动的合运动.例3:某人站在电动扶梯上不动,扶梯正常运行,人经时间1t由一楼升到二楼,如果自动扶梯不动,人从一楼沿扶梯走到二楼所用的时间为2t,现在扶梯正常运行,人也保持原来的速率沿扶梯向上走,则人从一楼到二楼所用的时间是多少?选题目的:考查运动的合成理解及应用.解析:设一层楼的高度为h,扶梯上升速度为1v,人相对扶梯的速度为2v,由题意知11hvt=22hvt=当扶梯以1v正常向上运行,人仍以2v在扶梯上行走时,设人对地的进度为v,由运动的合成与分解可知:12v v v=+所以,人从一楼到二楼所用的时间为121212t th hth hv t tt t===++34例4:如图所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳进度大小为1v ,当船头的绳索与水平面夹角为θ时,船的速度多大?选题目的:考查运动速度的分解的掌握. 解析:我们所研究的运动合成问题,都是同一物体同时参与的两个分运动的合成总是,而物体相对于给定参照物(一般为地面)的实际运动是合运动,实际运动的方向就是合运动的方向,本例中,船的实际运动是水平运动,它产生的实际效果可以A 点为例说明:一是A 点沿绳的收缩方向的运动,二是A 点绕O 点沿顺时针方向的转动,所以,船的实际速度v 可分解为船沿绳方向的进度1v 和垂直于绳的速度2v ,如图所示.由图可知:1cos v v θ=说明:不论是力的分解还是速度的分解,都要按照它的实际效果进行.本例中,若将拉绳的速度分解为水平方向和竖直方向的分速度,就没有实际意义了 ,因为船并不存在竖直方向上的分运动. 例5:物体受到四个恒力作用而做匀速直线运动,如果突然撤掉其中的一个力,它可能做( )A .匀速直线运动B .匀加速直线运动C .匀减速直线运动D .曲线运动选题目的:考查外力变化与物体运动状态的变化关系.解析:原来物体受到四个恒力作用而做匀速直线运动,所受合外力为零,现撤去其中的一个力1F ,则剩余三个力的合力1F '与1F 等大反向,物体一定做变速运动,A 错,若1F '与速度同向,则物体做匀加速直线运动;若1F '与速度反向,则物体做匀减速直线运动;若1F '与速度的方向不在同一直线上,则物体做曲线运动,所以选项B .C .D 正确.练习题一.选择题1.关于运动合成的说法中正确的是()A .两个匀速运动的合运动可能是直线运动B .两个匀速直线运动的合运动一定不是直线运动C .一个匀速运动与一个匀变速运动的合运动有可能是直线运动D .两个分运动的时间一定与它们合运动的时间相等2.当船速大于水速时,关于渡船的说法中正确的是()A .船头方向斜向上游,渡河时间最短B .船头方向垂直河岸,渡河时间最短C .当水速变大时,渡河的最短时间变长D .当水速变大时,渡河的最短时间变短 3.对于竖直上抛物体运动的描述,下面哪几句话是正确的?()A .竖直上抛物体的运动可以看做是向上的匀速直线运动和向下的自由落体运动的合成B .当向上的匀速直线分运动的速度小于自由落体分运动的速度时,合速度方向向下,物体向下运动.当两个分运动的速度大小相等时,合速度为零,物体不再向上运动,达到最高点C .当向上的匀速分运动的位移还大于自由落体分运动的位移时,合位移向上,物体在抛出点上面.当两个分位移大小相等,合位移为零,物体回到抛出点D .当向上的匀速分运动的速度小于自由落体分运动的速度时,物体就在抛出点的下面 4.用跨过定滑轮的绳把湖中小船拉靠岸,如图所示,已知拉绳的速度v 保持不变,则船速()A .保持不变B .逐渐增大C .逐渐减小D .先增大后减小5.关于运动的合成与分解有以下说法,其中正确的是()A .两个直线运动的合位移一定比分位移大B .运动的合成与分解都遵循平行四边形定则C .两个分运动总是同时进行着的D .某个分运动的规律不会因另一个分运动而改变6.两个互成θ(0180θ︒<<︒)角的初速不为零的匀加速直线运动,其合运动可能是() A .匀变速曲线运动B .匀变速直线运动C .非匀变速曲线运动D .非匀变速直线运动 7.一船在静水中的速度为6m/s ,要横渡流速为8m/s5的河,下面说法正确的是() A .船不能渡过此河 B .船能行驶到正对岸C .若河宽60m ,过河的最少时间为10sD .船在最短时间内过河,船对岸的速度为6m/s 8.关于运动的合成,下列说法中正确的是() A .合运动的速度一定比每一个分运动的速度都大B .合运动的速度可能比每一个分运动的速度都小C .合运动的时间一定比每一个分运动的时间都长D .两个分运动的时间一定与它们合运动的时间相等9.河边有M .N 两个码头,一艘轮船的航行速度恒为1v ,水流速度恒为2v ,若轮船在静水中航行2MN 的时间是t ,则()A .轮船在M .N 之间往返一次的时间大于tB .轮船在M .N 之间往返一次的时间小于tC .若2v 越小,往返一次的时间越短D .若2v 越小,往返一次的时间越长 二.填空题1.船从A 点出发过河,船头方向保持与河岸垂直,经300s 船到对岸,偏向下游600m ,若船头方向斜向上游与岸成37︒角,经500s 到达对岸,偏向上游1000m ,船速为________.水速为________.河的宽度为________?2.小船在静水中的航行速度是1v ,河水的流速是2v .当小船的船头垂直于河岸横渡宽度一定的河流时,小船的合运动速度v =_______.船的实际航线与河岸所成角度α=_________,若预定渡河时间是船行至河中时,水的流速突然加倍,即222v v '=,则这种情况下,小船实际渡河时间t '与预定的渡河时间t 相比较,t '__________t (填:>.<.=) 3.雨点以8m/s 的速度竖直下落,雨中步行的人感到雨点与竖直方向成30︒角迎面打来,那么人行走的速度大小是_________.三.计算题1.划速为1v 的船在水速为2v 的河中顺流行驶,某时刻船上一只气袋落水,若船又行驶了ts 后才发现且立即返回寻找(略去调转船头所用的时间),需再经多少时间才能找到气袋?2.玻璃生产线上,宽9m 的成型玻璃板以2m/s 的速度连续不断地向前行进,在切割工序处,金刚钻的割刀速度为10m/s ,为了使割下的玻璃板都成规定尺寸的矩形,金刚钻割刀的轨道应如何控制?切割一次的时间是多长?3.有一小船正在横渡一条宽为30m 的河流,在正对岸下游40m 处有一危险水域.假若水流速度为5m/s ,为了使小船在危险水域之前到达对岸.那么,小船相对于静水的最小速度为多少?周末练习1.关于运动的合成与分解的说法中,正确的是( )A .合运动的位移为分运动的位移的矢量和.B .合运动的速度一定比其中一个分速度大.C .合运动的时间为分运动时间之和.D .合运动的时间与各分运动时间相等. 2.下雨时,雨点竖直下落到地面,速度约10m /s .若在地面上放一横截面积为80cm 2.高10cm 的圆柱形量筒,经30min ,筒内接得雨水高2cm .现因风的影响,雨水下落时偏斜30°,求风速及雨滴实际落地时的速度?若用同样的量筒接雨水与无风所用时间相同,则所接雨水高为多少?3.一个小孩坐在匀速行驶的车上,手中拿着小石块,将手伸向窗外后松手,站在地面上的人看到小石块的运动轨迹什么?(可实际观察此过程,然后分析原因)4.一条河宽400m ,水流的速度为0.25m /s ,船相对静水的速度0.5m /s .(1)要想渡河的时间最短,船应向什么方向开出?渡河的最短时间是多少?此时船沿河岸方向漂移多远?(2)要使渡河的距离最短,船应向什么方向开出?(3)船渡河的时间与水流速度有关吗?探究活动研究方法:要求学生自己阅读本章节最后两段及习题中最后一道题,然后找出研究方法.(图像方法)互相交流:满足什么条件可以得出这个结论——怎样得出这个结论.总结:对学生的研究过程给予评价,最后提出若两个分运动都是匀加速运动,其运动轨迹如何?两个分运动都是初速度为零的匀加速运动,其运动轨迹又是如何?6第三节 平抛物体的运动例1:飞机在离地面720m 的高度,以70m /s 的速度水平飞行,为了使飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标的水平距离多远的地方投弹?不计空气阻力g 取210m/s解:设水平距离为x .子弹飞行的时间:2y t g=水平距离002840m yx v t v g=== 例2:在平直轨道上以20.5/m s 的加速度匀加速行驶的火车上,相继下落两个物体下落的高度都是2.45m .间隔时间为1s .两物体落地点的间隔是2.6m ,则当第一个物体下落时火车的速度是多大?(g 取210/m s )分析:如图所示.第一个物体下落以0v 的速度作平抛运动,水平位移0s ,火车加速到下落第二个物体时,已行驶距离1s .第二个物体以1v 的速度作平抛运动水平位移2s .两物体落地点的间隔是2.6m .解:由位置关系得 1202.6s s s =+-物体平抛运动的时间 20.7ht s g'== 00021002000.710.252()(0.5)0.7s v t v s v t at v s v at t v '===+=+'=+⋅=+⨯由以上三式可得201sin 22sin 2/L gt L t gv m sαα=== 点评:解本题时,作出各物体运动情况的草图对帮助分析题意十分重要.先后作平抛运动的物体因下落高度相同,所以运动的时间相同,但下落的时间不同于火车加速度运动的时间,不要混淆. 例3:光滑斜面倾角为θ,长为L ,上端一小球沿斜面水平方向以速度0v 抛出(如图所示),小球滑到底端时,水平方向位移多大?解:小球运动是合运动,小球在水平方向作匀速直线运动,有0s v t = ① 沿斜面向下是做初速度为零的匀加速直线运动,有212L at =② 根据牛顿第二定律列方程sin mg ma θ= ③ 由①,②,③式解得022sin L Ls v v a g θ== 说明:中学阶段研究的曲线运动一定是两维空间(即平面上的)情况,因此,该题首先分析在斜面上的分运动情况.研究曲线运动必须首先确定分运动,然后根据“途径”处理.例4:将小球以3/m s 的速度水平抛出,它落地时的大小为5/m s ,求小球在空中运动的时间(g 取210/m s )选题目的:考查平抛物体的运动中时间的计算.解析:落地的速度是倾斜的,可分解为水平分速度x v 和竖直分速度y v ,如图所示,由图可知:222y t x v v v =-而水平方向速度不变 03/x v v m s == 则 22534/y v m s =-= 竖直分运动为自由落体运动,则y v gt =7∴ 40.410y v t s g=== 例5:如图中,以9.8/m s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30︒的斜面上,则物体完成这段飞行的时间是( ) A .33s B .233s C .3s D .2s选题目的:考查平抛物体的运动的分解及相关计算.解析:将速度v 分解为水平方向的x v ,则 09.8/x v v m s ==竖直方向为y v ,根据三角知识得30y x v v ctg =︒又y v gt =所以,3x gt v =,得3t s =正确的选项是C . 例6:某一物体以一定的初速度水平抛出,在某1s 内其速度方向与水平方向成37︒变成53︒,则此物体初速度大小是________/m s ,此物体在1s 内下落的高度是________m (g 取210/m s )选题目的:考查平抛物体的运动知识的灵活运用.解析:作出速度矢量图如图所示,其中1v .2v 分别是ts 及(1)t s +时刻的瞬时速度.在这两个时刻,物体在竖直方向的速度大小分别为gt 及(1)g t +,由矢量图可知:037gt v tg =︒ 0(1)53g t v tg +=︒由以上两式解得017.1/v m s = 97t s =物体在这1s 内下落的高度2211(1)22y g t gt ∆=+- 221919(1)()2727g g =+-17.9m =练习题一.选择题1.关于平抛运动,下面的几种说法中正确的是()A .平抛运动是一种不受任何外力作用的运动B .平抛运动是曲线运动,它的速度方向不断改变,不可能是匀变速运动C .平抛运动可以分解为水平方向的匀速直线运动和竖直方向的自由落体运动D .平抛运动物体在空中运动的时间与初速度大小无关,而落地时的水平位移与抛出点的高度有关2.以速度0v 水平抛出一物体,当其竖直分位移与水平分位移大小相等时,此物体的()A .竖直分速度等于水平分速度B .瞬时速度为05vC .运动时间为2v gD .运动的位移大小是202v g3.枪管AB 对准小球C ,A .B .C 在同一水平线上,已知100m BC =.当子弹射出枪口B 时,C 球自由落下.若C 落下20m 时被击中,则子弹离开枪口时的速度为(取2g 10m/s =)A .20m/sB .30m/sC .40m/sD .50m/s 4.一架飞机以150m/s 的速度在高空某一水平面上做匀速直线飞行.相隔1s 先后从飞机上落下M .N 两物体.不计空气阻力,在运动过程中它们的位置关系是( )A .M 在N 前150mB .M 在N 后150mC .M 在N 正下方,保持4.9m 的距离D .M 在N 正下方,距离随时间增大5.决定平抛运动物体飞行时间的因素是( )A .初速度B .抛出时的高度C .抛出时的高度和初速度D .以上均不对6.甲.乙两球位于同一竖直线上的不同位置,甲比乙高出h ,将甲.乙两球以速度1v .2v 沿同一水平方向抛出,不计空气阻力,下列条件中可能使乙球击中甲球的是()A .同时抛出,且12v v <B .甲稍后抛出,且12v v >C .甲较早抛出,且12v v >8D .甲较早抛出,且12v v <7.物体在平抛运动过程中,在相等的时间内下列哪个量是相等的( )A .位移B .加速度C .平均速度D .速度的增量 8.如图所示,在向右匀速行驶的火车中,向后水平抛出一物体,站在地面上的人看来,该物体的运动轨迹可能是图中的( )9.如图所示,相对的两个斜面,倾角分别为37︒和53︒,在顶点把两个小球以同样大小的初速度分别向左.向右水平抛出,小球都落在斜面上.若不计空气阻力,则A .B 两个小球运动时间之比为()A .1:1B .4:3C .16:9D .9:16 10.位于同一地区.同一高度的两个质量不同的物体,一个沿水平方向抛出的同时,另一个自由落下,则它们的运动过程中()A .加速度不同.相同时刻速度不同B .加速度相同.相同时刻速度相同C .加速度不同.相同时刻速度相同D .加速度相同.相同时刻速度不同 二.填空题1.如图所示是一小环做平抛运动的闪光照片的一部分,其中A 、B 、C 是小球在不同时刻在照片上的位置.图中背景方格的边长均为5cm ,如果取2g 10m/s =,则小球的初速度0v =_______m/s .2.如图所示,A 、B 两块竖直放置的薄纸片,子弹m 以水平初速度穿过A 后再穿过B ,在两块纸片上穿的两个洞高度差为h ,A 、B 间距离为L ,则子弹的初速度是_______. 3.如图倾角为θ的斜面长为L ,在顶端A 点水平抛出一石子,它刚好落在这个斜面底端B 点,则抛出石子的初速度0v =_______.三.计算题1.以800m/s 的速度水平射出一粒子弹,分别计算射击水平距离为80m 和400m 的目标时,弹着点与瞄准点的高度差.(2g 10m/s =) 2.如图所示,小球从离地5m h =高.离竖直墙水平距离4m s =处,以08m/s v =的初速度向墙水平抛出.不计空气阻力,则小球碰墙点离地面高度是多少m ?若要使小球不碰到墙,则它的初速度应满足什么条件?(2g 10m/s =)周末练习1.从同一高度以不同的速度同时水平抛出两个质量不同的石子,不计空气阻力,下面说法正确的是:( )A .速度大的先着地.B .质量大的先着地.C .两个石子同时着地.D .题中未给出具体数据,因而无法判断. 2.从0.8m 高的地方用玩具手枪水平射出一颗子弹,初速度是 3.5m /s ,求这颗子弹运动至落地飞行的水平距离.3.平抛物体的初速度是20m /s ,当物体经过的水平距离是40m 时,它的高度下降了多少?速度有多大?4.在水平路上骑摩托车的人,遇到一个壕沟,如图,摩托车的速度至少要有多大,才能越过这个壕沟?( )5.从19.6m 高处水平抛出的物体,落地时速度为25m/s ,求这物体的初速度.探究活动如何测得平抛运动物体的初速度?。
高考物理曲线运动题20套(带答案)含解析
高考物理曲线运动题20 套( 带答案 ) 含分析一、高中物理精讲专题测试曲线运动 1. 如图,圆滑轨道abcd 固定在竖直平面内,ab水平,bcd 为半圆,在b 处与 ab 相切.在直轨道 ab 上放着质量分别为 m A =2kg 、 m B =1kg的物块 A 、 B (均可视为质点),用轻质细绳将A 、B 连结在一同,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左边的圆滑水平川面上停着一质量 M =2kg 、长 L=0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,以后A 向左滑上小车,B 向右滑动且恰巧能冲到圆弧轨道的最高点 d 处.已知 A 与小车之间的动摩擦因数μ知足 0.1 ≤μ≤,0.3g 取 10m/ s 2,求( 1) A 、 B 走开弹簧瞬时的速率 v A 、v B ;( 2)圆弧轨道的半径 R ;(3) A 在小车上滑动过程中产生的热量Q (计算结果可含有μ).【答案】( 1) 4m/s ( 2) 0.32m(3) 当知足0.1 ≤μ <0.2 , Q 1μ; 当知足 0.2 ≤μ≤ 0.3时 =10时, 1mA v121(m A M ) v 222【分析】【剖析】(1)弹簧恢复到自然长度时,依据动量守恒定律和能量守恒定律求解两物体的速度; (2)依据能量守恒定律和牛顿第二定律联合求解圆弧轨道的半径R ;( 3)依据动量守恒定律和能量关系求解恰巧能共速的临界摩擦力因数的值,而后议论求解热量 Q.【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为 v A 、 v B , 由动量守恒定律:0= m A v A m B v B 由能量关系: E P =1m A v A 2 1m B v B 222解得 v A =2m/s ;v B =4m/s(2)设 B 经过 d 点时速度为 v d ,在 d 点:m B g m B v d 2R由机械能守恒定律:1m B v B 2 =1m B v d 2 m B g 2R22解得 R=0.32m(3)设 μ =1μv,由动量守恒定律:时 A 恰巧能滑到小车左端,其共同速度为m A v A =(m A M )v 由能量关系: 1m A gL1m A v A 21m A M v 222解得 μ1=0.2议论:(ⅰ)当知足 0.1 ≤μ <0时.2, A 和小车不共速, A 将从小车左端滑落,产生的热量为Q 1 m A gL 10(J )(ⅱ)当知足0.2 ≤μ≤ 0.A3和小车能共速,产生的热量为时, Q 11m A v 121 m A M v2 ,解得 Q 2=2J222. 一质量 M =0.8kg 的小物块,用长 l=0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m=0.2kg 的粘性小球以速度 v 0=10m/s 水平射向小物块,并与物块粘在一同,小球与小物 块互相作用时间极短能够忽视.不计空气阻力,重力加快度g 取 10m/s 2.求:( 1)小球粘在物块上的瞬时,小球和小物块共同速度的大小; ( 2)小球和小物块摇动过程中,细绳拉力的最大值;( 3)小球和小物块摇动过程中所能达到的最大高度.【答案】( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m 【分析】(1)因为小球与物块互相作用时间极短,因此小球和物块构成的系统动量守恒.mv 0 (Mm)v 共得: v 共 =2.0 m / s(2)小球和物块将以v共开始运动时,轻绳遇到的拉力最大,设最大拉力为F ,F (M m) g ( M m)v 共2L得: F 15N(3)小球和物块将以v 共 为初速度向右摇动,摇动过程中只有重力做功,因此机械能守恒,设它们所能达到的最大高度为h ,依据机械能守恒:( m+M ) gh 1( m M )v 共 22解得 : h 0.2m综上所述本题答案是 : ( 1) v 共 =2.0 m / s ( 2) F=15N (3)h=0.2m点睛 :( 1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. ( 2)对小球和物块协力供给向心力,可求得轻绳遇到的拉力( 3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.3.如下图,在竖直平面内有一绝缘“”型杆放在水平向右的匀强电场中,此中AB、 CD 水平且足够长,圆滑半圆半径为R,质量为 m、电量为 +q 的带电小球穿在杆上,从距 B 点x=5.75R 处以某初速 v0开始向左运动.已知小球运动中电量不变,小球与AB、 CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加快度为g, sin37 =0°.6, cos37 °=0.8.求:(1)若小球初速度 v0=4 gR,则小球运动到半圆上 B 点时遇到的支持力为多大;(2)小球初速度 v0知足什么条件能够运动过 C 点;(3)若小球初速度v=4 gR,初始地点变成x=4R,则小球在杆上静止时经过的行程为多大.【答案】( 1)5.5mg( 2)v04gR (3) 44R【分析】【剖析】【详解】(1)加快到 B 点:-1mgx qEx 1 mv21mv0222在 B 点:N mg m v2R解得 N=5.5mg(2)在物理最高点F:tan qE mg解得α=370;过 F 点的临界条件: v F=0从开始到 F 点:-1mgx qE (x R sin ) mg ( R R cos ) 01mv02 2解得 v0 4 gR可见要过 C 点的条件为:v04gR(3)因为 x=4R<5.75R,从开始到 F 点战胜摩擦力、战胜电场力做功均小于(2)问,到F 点时速度不为零,假定过 C 点后行进 x1速度变成零,在 CD 杆上因为电场力小于摩擦力,小球速度减为零后不会返回,则:-1mgx2 mgx1-qE( x-x1 ) mg 2R 01mv02 2s x R x1解得: s(44)R4.如下图,在竖直平面内有一倾角θ=37°的传递带BC.已知传递带沿顺时针方向运转的速度 v=4 m/s , B、 C两点的距离 L=6 m。
高中物理《曲线运动》典型题精选(含答案)
高中物理《曲线运动》典型题精选(高考物理典型题全接触)强烈推荐一、曲线运动条件的理解与应用是高考的重要考查内容,尤其是经常和电、磁学相关情景结合考查.其核心是轨迹、受力与速度方向的相互判定.此题中根据一点的情况判断受力的方向范围较容易,但需要综合多点信息逐个判断受力范围,然后取交集,缩小范围.二、小船渡河问题是运动的合成与分解的重要模型,在近年高考中时而出现求最短时间或最短航程类的小船渡河问题,难度中等.小船过河时实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(在静水中船的运动,运动方向为船头的方向),船的实际运动是合运动.在建立小船渡河模型时首先应明确船速与水速的大小关系,否则容易出现错误.三、牵连速度问题是考查以绳或杆连接的两个或多个连结体之间的速度关联,此类问题的关键是分清分速度与分速度按效果进行分解.在高考中时有考查,可与受力分析和功能关系相结合,难度较大.牵连体速度的分解方法解决牵连体的速度关联问题,其关键是如何分解速度,而分解速度的关键又在于理解什么是合运动.需要明确:(1)合速度方向是物体实际运动方向;(2)分速度方向是沿绳(或杆)方向.根据轻绳(或轻杆)各点速度沿绳(或杆)方向的分量大小相等,即可得到关联体之间的速度关系式.如图甲、乙所示,vcos θ1=v2cos θ2,如图丙所示,v0=v cos θ.1四、轨迹、受力和速度方向的相互判定依据:(1)运动轨迹的切线方向就是速度方向;(2)合外力的方向指向轨迹凹侧;(3)轨迹在合外力方向与速度方向之间.根据以上三条判断依据,结合题目中给出的轨迹、速度方向、受力方向等信息中的两个,就可以进行第三个的判定.五、斜面倾角固定,问题的实质依然是一种几何约束,借助斜面的几何关系构造出相应的位移和速度三角形,再进行求解.从整体的求解思路看,本题从“速度关系”入手逐步确定了“位移关系”,联系两种关系的“桥梁”仍是各分运动的等时性.复习时要熟练掌握典型物理模型和常用二级结论.平抛运动中的两个特殊关系角度关系:速度偏转角的正切值是位移偏转角正切值的2倍,即tan θ=2tan α.中点关系:末速度(任意一点)的反向延长线过该时刻水平位移的中点.六:高考试题常以新颖的生活实际作为背景,以水平面内圆周运动或竖直面内物体的圆周运动为模型,考查考生利用动力学观点解决实际问题的能力,此类题型多为选择题,难度中等偏易.解题的关键是建立正确的物理模型,对物体进行受力分析,找到圆心、轨道平面,列出动力学方程.竖直面内的圆周运动是典型的变速圆周运动,在变速圆周运动中经常出现“刚好”“恰好”“正好”“最大”“最小”“至少”等字眼,这些关键词恰恰说明此题中含有临界条件.高考对圆周运动中临界条件的考查几乎每年都会出现,既有选择题,也有计算题,且经常和电场、磁场背景相结合,要求考生必须理解和掌握.1. (多选)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变2.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103 m/s,某次发射卫星飞经赤道上空时的速度为1.55×103 m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为()A.西偏北方向,1.9×103 m/sB.东偏南方向,1.9×103 m/sC.西偏北方向,2.7×103 m/sD.东偏南方向,2.7×103 m/s3.如图所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物()A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v4.距地面高5 m的水平直轨道上A、B两点相距2 m,在B点用细线悬挂一小球,离地高度为h,如图所示.小车始终以4 m/s的速度沿轨道匀速运动,经过A点时将随车携带的小球由轨道高度自由卸下,小车运动至B点时细线被轧断,最后两球同时落地.不计空气阻力,取重力加速度的大小g=10 m/s2.可求得h等于() A.1.25 m B.2.25 m C.3.75 m D.4.75 m5、有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-16.(多选)关于物体所受合外力的方向,下列说法正确的是()A.物体做速率逐渐增大的直线运动时,其所受合外力的方向一定与速度方向相同B.物体做变速率曲线运动时,其所受合外力的方向一定改变C.物体做变速率圆周运动时,其所受外力的方向一定指向圆心D.物体做匀速率曲线运动时,其所受合外力的方向总是与速度方向垂直7.由消防水龙带的喷嘴喷出水的流量是0.28 m3/min,水离开喷口时的速度大小为16 3 m/s,方向与水平面夹角为60°,在最高处正好到达着火位置,忽略空气阻力,则空中水柱的高度和水量分别是(重力加速度g取10 m/s2)() A.28.8 m,1.12×10-2 m3 B.28.8 m,0.672 m3C.38.4 m,1.29×10-2 m3 D.38.4 m,0.776 m38、如图所示,一质点在一恒力作用下做曲线运动,从M点运动到N点时,质点的速度方向恰好改变了90°.在此过程中,质点的动能()A .不断增大B .不断减小C .先减小后增大D .先增大后减小9、如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA -=OB -.若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为( )A .t 甲<t 乙B .t 甲=t 乙C .t 甲>t 乙D .无法确定10、如图所示,人在岸上拉船,已知船的质量为m ,水的阻力恒为f ,当轻绳与水平面的夹角为θ时,人的速度为v ,人的拉力为F (不计滑轮与绳之间的摩擦),则以下说法正确的是( )A .船的速度为v cos θB .船的速度为v sin θC .船的加速度为F cos θ-f mD .船的加速度为F -f m11.如图所示,光滑水平桌面上,一小球以速度v 向右匀速运动,当它经过靠近桌边的竖直木板的ad 边正前方时,木板开始做自由落体运动.若木板开始运动时,cd 边与桌面相齐,则小球在木板上的正投影轨迹是( )12.2014年7月15日,黄山市休宁县境内普降大到暴雨,该县万余名干部群众投入到抗洪抢险中,如图所示,一条救灾小船位于与安全区的最近距离为70 3 m 的A 点处,从这里向下游70 m 处有一危险区,当时水流速度为2 3m/s,为了使小船避开危险区沿直线到达对岸,小船在静水中的速度大小至少是()A.2 m/s B.3 m/s C.2 3 m/s D.4 3 m/s13.如图所示,开始时A、B间的细绳呈水平状态,现由计算机控制物体A的运动,使其恰好以速度v A沿竖直杆匀速下滑,经细绳通过定滑轮拉动物体B在水平面上运动,则下列v—t图象中,最接近物体B的运动情况的是()14.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点的时间相等.下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在MN间的运动是变加速运动15、有A、B两小球,B的质量为A的两倍.现将它们以相同速率沿同一方向抛出,不计空气阻力.图中①为A的运动轨迹,则B的运动轨迹是()A .①B .②C .③D .④16.取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为( ) A.π6 B.π4 C.π3 D.π1217.在实验操作前应该对实验进行适当的分析.研究平抛运动的实验装置示意如图所示.小球每次都从斜槽的同一位置无初速释放,并从斜槽末端水平飞出.改变水平板的高度,就改变了小球在板上落点的位置,从而可描绘出小球的运动轨迹.某同学设想小球先后3次做平抛,将水平板依次放在如图1、2、3的位置,且1与2的间距等于2与3的间距.若3次实验中小球从抛出点到落点的水平位移依次为x 1、x 2、x 3,机械能的变化量依次为ΔE 1、ΔE 2、ΔE 3,忽略空气阻力的影响,下面分析正确的是( )A .x 2-x 1=x 3-x 2,ΔE 1=ΔE 2=ΔE 3B .x 2-x 1>x 3-x 2,ΔE 1=ΔE 2=ΔE 3C .x 2-x 1>x 3-x 2,ΔE 1<ΔE 2<ΔE 318、(多选)如图所示,相距l 的两小球A 、B 位于同一高度h (l 、h 均为定值),将A 向B 水平抛出的同时,B 自由下落.A 、B 与地面碰撞前后,水平分速度不变,竖直分速度大小不变、方向相反.不计空气阻力及小球与地面碰撞的时间,则( )A .A 、B 在第1次落地前能否相碰,取决于A 的初速度B .A 、B 在第1次落地前若不碰,此后就不会相碰C .A 、B 不可能运动到最高处相碰D .A 、B 一定能相碰19.(多选)如图所示,x 轴在水平地面内,y 轴沿竖直方向.图中画出了从y 轴上沿x 轴正向抛出的3个小球a 、b 和c 的运动轨迹,其中b 和c 是从同一点抛出的,不计空气阻力,则( )A .a 的飞行时间比b 的长B .b 和c 的飞行时间相同C .a 的水平速度比b 的小D .b 的初速度比c 的大20.一带有乒乓球发射机的乒乓球台如图所示,水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )A.L 12g 6h <v <L 1g 6hB.L 14g h <v <(4L 21+L 22)g 6h C.L 12g 6h <v <12(4L 21+L 22)g 6h D.L 14g h <v <12(4L 21+L 22)g 6h21.如图所示为足球球门,球门宽为L.一个球员在球门中心正前方距离球门s 处高高跃起,将足球顶入球门的左下方死角(图中P点).球员顶球点的高度为h,足球做平抛运动(足球可看成质点,忽略空气阻力),则()A.足球位移的大小x=L24+s2B.足球初速度的大小v0=g2h⎝⎛⎭⎪⎫L24+s2C.足球末速度的大小v=g2h⎝⎛⎭⎪⎫L24+s2+4ghD.足球初速度的方向与球门线夹角的正切值tan θ=L 2s22.在真空环境内探测微粒在重力场中能量的简化装置如图所示,P是一个微粒源,能持续水平向右发射质量相同、初速度不同的微粒.高度为h的探测屏AB竖直放置,离P点的水平距离为L,上端A与P点的高度差也为h.(1)若微粒打在探测屏AB的中点,求微粒在空中飞行的时间;(2)求能被屏探测到的微粒的初速度范围;(3)若打在探测屏A、B两点的微粒的动能相等,求L与h的关系.23.如图所示,装甲车在水平地面上以速度v0=20 m/s沿直线前进,车上机枪的枪管水平,距地面高h=1.8 m.在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度v=800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s=90 m后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g=10 m/s2)(1)求装甲车匀减速运动的加速度大小;(2)当L=410 m时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离;(3)若靶上只有一个弹孔,求L的范围.24、如图所示,斜面上a、b、c三点等距,小球从a点正上方O点抛出,做初速为v0的平抛运动,恰落在b点.若小球初速变为v,其落点位于c,则()A.v0<v<2v0B.v=2v0C.2v0<v<3v0 D.v>3v025、(多选)如图所示,轰炸机沿水平方向匀速飞行,到达山坡底端正上方时释放一颗炸弹,并垂直击中山坡上的目标A.已知A点高度为h,山坡倾角为θ,由此可算出()A.轰炸机的飞行高度B.轰炸机的飞行速度C.炸弹的飞行时间D.炸弹投出时的动能26、如图所示,小球从楼梯上以4 m/s的速度水平抛出,所有台阶的高度和宽度均为1 m,g取10 m/s2,小球抛出后首先落到的台阶是()A.3 B.4 C.5 D.627、如图所示,薄半球壳ACB的水平直径为AB,C为最低点,半径为R.一个小球从A点以速度v0水平抛出,不计空气阻力.则下列判断正确的是()A.只要v0足够大,小球可以击中B点B.v0取值不同时,小球落在球壳上的速度方向和水平方向之间的夹角可以相同C.v0取值适当,可以使小球垂直撞击到半球壳上D.无论v0取何值,小球都不可能垂直撞击到半球壳上28、(多选)套圈游戏是一项很受欢迎的群众游戏,要求每次从同一位置水平抛出圆环,套住与圆环前端水平距离为3 m的20 cm 高的竖直细杆,即为获胜.一身高1.4 m儿童从距地面1 m高度,水平抛出圆环,圆环半径为10 cm,要想套住细杆,水平抛出的速度可能为(g=10 m/s2)() A.7.4 m/s B.7.6 m/s C.7.8 m/s D.8.2 m/s29、如图所示是倾角为45°的斜坡,在斜坡底端P点正上方某一位置Q处以速度v0水平向左抛出一个小球A,小球恰好能垂直落在斜坡上,运动时间为t1.若在小球A抛出的同时,小球B从同一点Q处开始自由下落,下落至P点的时间为t2.则A、B两球在空中运动的时间之比t1∶t2等于(不计空气阻力)()A.1∶2 B.1∶ 2 C.1∶3 D.1∶ 330、(多选)如图所示,一演员表演飞刀绝技,由O点先后抛出完全相同的3把飞刀,分别依次垂直打在竖直木板M、N、P三点上.假设不考虑飞刀的转动,并可将其视为质点,已知O、M、N、P四点距离水平地面高度分别为h、4h、3h、2h,以下说法正确的是()A.3把飞刀在击中板时动能相同B.到达M、N、P三点的飞行时间之比为1∶2∶ 3C.到达M、N、P三点时初速度的竖直分量之比为3∶2∶1D.设到达M、N、P三点,抛出飞刀的初速度与水平方向夹角分别为θ1、θ2、θ3,则有θ1>θ2>θ331、如图所示,光滑绝缘的正方形水平桌面边长d=0.48 m,离地高度h=1.25 m.桌面上存在一水平向左的匀强电场(除此之外其余位置均无电场),电场强度E=1×104N/C.在水平桌面上某一位置P处有一质量m=0.01 kg,带电荷量q=1×10-6C的带正电小球以初速度v0=1 m/s向右运动.空气阻力忽略不计,重力加速度g=10 m/s2.求:(1)小球在桌面上运动时加速度的大小和方向;(2)P处距右端桌面多远时,小球从开始运动到最终落地的水平距离最大,并求出该最大水平距离.32、小球P和Q用不可伸长的轻绳悬挂在天花板上,P球的质量大于Q球的质量,悬挂P球的绳比悬挂Q球的绳短.将两球拉起,使两绳均被水平拉直,如图所示.将两球由静止释放.在各自轨迹的最低点,()A.P球的速度一定大于Q球的速度B.P球的动能一定小于Q球的动能C.P球所受绳的拉力一定大于Q球所受绳的拉力D.P球的向心加速度一定小于Q球的向心加速度33、(多选)如图所示为赛车场的一个水平“梨形”赛道,两个弯道分别为半径R=90 m的大圆弧和r=40 m的小圆弧,直道与弯道相切.大、小圆弧圆心O、O′距离L=100m.赛车沿弯道路线行驶时,路面对轮胎的最大径向静摩擦力是赛车重力的 2.25倍.假设赛车在直道上做匀变速直线运动,在弯道上做匀速圆周运动.要使赛车不打滑,绕赛道一圈时间最短(发动机功率足够大,重力加速度g=10 m/s2,π=3.14),则赛车()A.在绕过小圆弧弯道后加速B.在大圆弧弯道上的速率为45 m/sC.在直道上的加速度大小为5.63 m/s2D.通过小圆弧弯道的时间为5.58 s34.如图所示,在竖直平面内,滑道ABC关于B点对称,且A、B、C三点在同一水平线上.若小滑块第一次由A滑到C,所用的时间为t1,第二次由C滑到A,所用的时间为t2,小滑块两次的初速度大小相同且运动过程始终沿着滑道滑行,小滑块与滑道的动摩擦因数恒定,则()A.t1<t2 B.t1=t2C.t1>t2 D.无法比较t1、t2的大小35.未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示,当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是()A.旋转舱的半径越大,转动的角速度就应越大B.旋转舱的半径越大,转动的角速度就应越小C.宇航员质量越大,旋转舱的角速度就应越大D.宇航员质量越大,旋转舱的角速度就应越小36、如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上到转轴距离2.5 m处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g取10 m/s2,则ω的最大值是()A. 5 rad/sB. 3 rad/s C.1.0 rad/s D.0.5 rad/s37、如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mg C.Mg+5mg D.Mg+10mg38.(多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度.下列说法正确的是() A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg39、(多选)公路急转弯处通常是交通事故多发地带.如图所示,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势.在该弯道处()A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小40、如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A.A的速度比B的大B.A与B的向心加速度大小相等C.悬挂A、B的缆绳与竖直方向的夹角相等D.悬挂A的缆绳所受的拉力比悬挂B的小41.某物理小组的同学设计了一个粗测玩具小车通过凹形桥最低点时的速度的实验.所用器材有:玩具小车、压力式托盘秤、凹形桥模拟器(圆弧部分的半径R=0.20 m).完成下列填空:(1)将凹形桥模拟器静置于托盘秤上,如图甲所示,托盘秤的示数为1.00 kg;(2)将玩具小车静置于凹形桥模拟器最低点时,托盘秤的示数如图乙所示,该示数为________ kg;(3)将小车从凹形桥模拟器某一位置释放,小车经过最低点后滑向另一侧.此过程中托盘秤的最大示数为m;多次从同一位置释放小车,记录各次的m值如下表所示:序号1234 5m/kg 1.80 1.75 1.85 1.75 1.90(4)根据以上数据,可求出小车经过凹形桥最低点时对桥的压力为N;小车通过最低点时的速度大小为m/s.(重力加速度大小取9.8 m/s2,计算结果保留2位有效数字)42.如图,在竖直平面内有由14圆弧AB和12圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接.AB弧的半径为R,BC弧的半径为R2.一小球在A点正上方与A相距R4处由静止开始自由下落,经A点沿圆弧轨道运动.(1)求小球在B、A两点的动能之比.(2)通过计算判断小球能否沿轨道运动到C点.43.如图所示,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g.(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车.已知滑块质量m=M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m;②滑块从B到C运动过程中,小车的位移大小s.44、如图所示,半径为R的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合.转台以一定角速度ω匀速旋转,一质量为m的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O点的连线与O、O′之间的夹角θ为60°.重力加速度大小为g.(1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;(2)若ω=(1±k)ω0,且0<k<1,求小物块受到的摩擦力大小和方向.45、过山车是游乐场中常见的设施.如图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0 m、R2=1.4 m.一个质量m =1.0 kg的小球(视为质点),从轨道的左侧A点以v0=12.0 m/s的初速度沿轨道向右运动,A、B间距L1=6.0 m.小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度取g=10 m/s2,计算结果保留小数点后一位数字.试求:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是多少;(3)在满足(2)的条件下,如果要使小球不脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A的距离.46、如图所示,一小球沿螺旋线自外向内运动,已知其通过的弧长s与运动时间t成正比.关于该质点的运动,下列说法正确的是()A.小球运动的线速度越来越大B.小球运动的角速度不变C.小球运动的加速度越来越大D.小球所受的合外力不变47、(多选)质量为m的小球由轻绳a和b分别系于一轻质细杆的A点和B点,如图所示,绳a与水平方向成θ角,绳b在水平方向且长为l,当轻杆绕轴AB以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,则下列说法正确的是()A.a绳的张力不可能为零B.a绳的张力随角速度的增大而增大C.当角速度ω>g cot θl,b绳将出现弹力D.若b绳突然被剪断,则a绳的弹力一定发生变化48、(多选)如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4 m,最低点处有一小球(半径比r小很多),现给小球一水平向右的初速度v0,要使小球不脱离圆轨道运动,v0的大小可能为(g=10 m/s2)()A.2 m/s B.4 m/s C.6 m/s D.8 m/s49.如图所示,水平桌面上有一轻弹簧,左端固定在A点,自然状态时其右端位于B点.水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=0.8 m的圆环剪去了左上角135°的圆弧,MN为其竖直直径,P点到桌面的竖直距离也是R.P点到桌面右侧边缘的距离为2R.用质量m1=0.4 kg的物块a将弹簧压缩到C点,释放后弹簧恢复原长时物块恰停在B点.用同种材料、质量为m2=0.2 kg 的物块b,将弹簧缓慢压缩到C点释放,物块b过B点后其位移与时间的关系为x=6t-2t2(m),物块从D点飞离桌面后由P点沿切线落入圆轨道.取g=10 m/s2,求:(1)B、D间的水平距离;(2)通过计算,判断物块b能否沿圆轨道到达M点;(3)物块b释放后在桌面上运动的过程中克服摩擦力做的功.、。
专题04 曲线运动-2024物理高考真题及模考题分类汇编精编
专题04曲线运动B.线速度大小相等D.角速度大小相等两点转动时属于同轴转动,故角速度大小相等,故C.荷叶c【解析】青蛙做平抛运动,水平方向匀速直线,竖直方向自由落体则有因此水平位移越小,竖直高度越大初速度越小,因此跳到荷叶c上面。
B.初速度相同D.在空中的时间相同C.2k rmC.【答案】AD【解析】小鱼在运动过程中只受重力作用,则小鱼在水平方向上做匀速直线运动,即x v 为定值,则有水平位x v t ,故A 正确,C 错误;21)22Dg h+02h x v g=B.22gSl ghH hhρη⎛++⎝D.2224 gSl gh lHh h ρη⎛+⎝【解析】设水从出水口射出的初速度为0v,取t时间内的水为研究对象,该部分水的质量为B.落地速度与水平方向夹角为10m D.轨迹最高点与落点的高度差为v v()2sin cos sin sin cos g r μθβθβμθ+(1)转椅做匀速圆周运动,设此时轻绳拉力为T ,转椅质量为m ,受力分析可知轻绳拉力沿切线方向的分量与转椅受到地面的滑动摩擦力平衡,沿径向方向的分量提供圆周运动的向心力,故可得sin mg T μα=,沿A B 和垂直A B 竖直向上的分力分别为:sin T T '=后停止。
A、B 均视为质点,取重力加速度210m/s g =。
求:(1)脱离弹簧时A、B 的速度大小A v 和B v ;(2)物块与桌面间的动摩擦因数μ;(3)整个过程中,弹簧释放的弹性势能p E ∆。
【答案】(1)1m/s,1m/s;(2)0.2;(3)0.12J 【解析】(1)对A 物块由平抛运动知识得212h gt =A A x v t=代入数据解得,脱离弹簧时A 的速度大小为A /s1m v =对AB 物块整体由动量守恒定律A A B B m v m v =解得脱离弹簧时B 的速度大小为B 1m/sv =(2)对物块B 由动能定理2B B B B102m gx m v μ-=-代入数据解得,物块与桌面的动摩擦因数为0.2μ=(3)由能量守恒定律22p A A B B A A B B 1122E m v m v m g x m g x μμ∆=++∆+∆其中A B m m =,A Bx x x ∆=∆+∆解得整个过程中,弹簧释放的弹性势能p 0.12JE ∆=一、单选题1.(2024·浙江·二模)随着“第十四届全国冬季运动会”的开展,各类冰雪运动绽放出冬日激情,下列说法正确的是()A.评委给花样滑冰选手评分时可以将运动员看作质点B.滑雪比赛中运动员做空中技巧时,处于失重状态C.22+d lhD.d d【解析】设甲此次奔跑的平均加速度大小为a,当地重力加速度大小为C.小钢球经过光电门时所需向心力为FD.在误差允许的范围内,本实验需要验证小钢球经过光电门时所受合力和所需向心力相等,即小球做圆周运动,设在最低点时(即通过光电门)速度为v,有d vt=t t>D.C.12段做斜抛运动,看成反方向的平抛运动,则有t t=,故C错误;D,联立,解得12B.所受绳子的拉力指向圆周运动的圆心D.所需向心力大小为400NB.排球做平抛运动的时间为d ggd D.排球着地时的速度大小为2gd排球做平抛运动的轨迹在地面上的投影为O E ',显然O F CQ EF EQ '==所以排球在左、右场地运动的时间之比为1∶2,设排球做平抛运动的时间为()2122g t -10dg选项A 正确、B 错误;53gdE =,选项C 错误;20331290gdv gH +=,选项D 错误。
【物理】物理曲线运动题20套(带答案)及解析
(1)星球表面的重力加速度?
(2)细线刚被拉断时,小球抛出的速度多大?
(3)细线所能承受的最大拉力?
【答案】(1)
g星
=
1 4
g0
(2) v0
s 4
2g0 H L
(3) T
1 [1 4
s2 2(H
L)L ]mg0
【解析】
【分析】
【详解】
(1)由万有引力等于向心力可知 G
Mm R2
m
v2 R
G
Mm R2
小球 m2 通过最高点 C 后,做平抛运动,
竖直方向:2R= 1 gt2, 2
水平方向:s=v2′t,
( 2v0 )2 4gR ; 1 k
解得: s ( 2v0 )2 4R 16R2 , 1 k g
由一元二次函数规律可知,当 R
v02 2g(1 k)2
时小 m2 落地点距
B
最远.
8.如图甲所示,轻质弹簧原长为 2L,将弹簧竖直放置在水平地面上,在其顶端将一质量
-1mgx
2mgx1-qE(
x-x1)
mg
2R
0
1 2
mv02
s x R x1 解得: s (44 )R
3.如图所示,水平长直轨道 AB 与半径为 R=0.8m 的光滑 1 竖直圆轨道 BC 相切于 B,BC 4
与半径为 r=0.4m 的光滑 1 竖直圆轨道 CD 相切于 C,质量 m=1kg 的小球静止在 A 点,现用 4
2 球经过圆弧上的 B 点时,轨道对小球的支持力大小 FN 18N ,最后从 C 点水平飞离轨 道,落到水平地面上的 P 点.已知 B 点与地面间的高度 h 3.2m ,小球与 BC 段轨道间的动 摩擦因数 0.2 ,小球运动过程中可视为质点. (不计空气阻力,
物理曲线运动题20套(带答案)及解析
物理曲线运动题20套(带答案)及解析一、高中物理精讲专题测试曲线运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,在光滑的圆锥体顶部用长为的细线悬挂一质量为的小球,因锥体固定在水平面上,其轴线沿竖直方向,母线与轴线之间的夹角为,物体绕轴线在水平面内做匀速圆周运动,小球静止时细线与母线给好平行,已知,重力加速度g 取若北小球运动的角速度,求此时细线对小球的拉力大小。
高考物理曲线运动题20套(带答案)及解析
高考物理曲线运动题20 套( 带答案 ) 及分析一、高中物理精讲专题测试曲线运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA 在 A 点相切. BC 为圆弧轨道的直径.3O 为圆心, OA 和 OB 之间的夹角为α, sin α=,一质量为 m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过C点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.如下图 ,固定的圆滑平台上固定有圆滑的半圆轨道,轨道半径 R=0.6m, 平台上静止搁置着两个滑块 A、B,m A=0.1kg,m B=0.2kg,两滑块间夹有少许炸药 ,平台右边有一带挡板的小车,静止在圆滑的水平川面上.小车质量为M=0.3kg,车面与平台的台面等高 ,小车的上表面的右边固定一根轻弹簧 ,弹簧的自由端在Q 点,小车的上表面左端点 P 与 Q 点之间是粗拙的 ,PQ 间距离为 L 滑块 B 与 PQ 之间的动摩擦因数为μ=0.2,Q 点右边表面是圆滑的.点燃炸药后,A、B 分别瞬时 A 滑块获取向左的速度v =6m/s, 而滑块 B 则冲向小车.两滑块都能够看作质点,A炸药的质量忽视不计 ,爆炸的时间极短 ,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s2.求 :(1)滑块 A 在半圆轨道最高点对轨道的压力;(2)若 L=0.8m, 滑块 B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块 B 既能挤压弹簧 ,又最后没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】( 1) 1N,方向竖直向上(2)E P0.22 J (3)0.675m<L<1.35m【分析】【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:1m A v A21m A v2m A g 2R22在最高点由牛顿第二定律:v2m A g F N m A滑块在半圆轨道最高点遇到的压力为:F N=1NR由牛顿第三定律得:滑块对轨道的压力大小为1N,方向向上(2)爆炸过程由动量守恒定律:m A v A m B v B解得: v B=3m/s滑块 B 冲上小车后将弹簧压缩到最短时,弹簧拥有最大弹性势能,由动量守恒定律可知:m B v B( m B M )v共由能量关系:E P 1m B v B21(m B M )v共2 - m BgL22解得 E P=0.22J(3)滑块最后没有走开小车,滑块和小车拥有共同的末速度,设为u,滑块与小车构成的系统动量守恒,有:m B v B( m B M )v若小车 PQ 之间的距离 L 足够大,则滑块还没与弹簧接触就已经与小车相对静止,设滑块恰巧滑到 Q 点,由能量守恒定律得:m B gL11m B v B21(m B M )v2 22联立解得:L1=1.35m若小车 PQ 之间的距离 L 不是很大,则滑块必定挤压弹簧,因为Q 点右边是圆滑的,滑块必定被弹回到PQ 之间,设滑块恰巧回到小车的左端P 点处,由能量守恒定律得:2 m B gL21m B v B21(m B M )v2 22联立解得:L2=0.675m综上所述,要使滑块既能挤压弹簧,又最后没有走开小车,PQ 之间的距离L 应知足的范围是 0.675m <L< 1.35m3.如下图,质量为M4kg 的平板车P的上表面离地面高h 0.2m,质量为 m 1kg 的小物块 Q (大小不计,可视为质点)位于平板车的左端,系统本来静止在圆滑水平川面上,一不行伸长的轻质细绳长为R 0.9m ,一端悬于Q正上方高为R处,另一端系一质量也为 m 的小球(大小不计,可视为质点)。
典型曲线运动例题详解
1.水平抛出一物,其速度方向由与水平方向成45°角变为60°角所经历的时间为t .求平抛物体的初速度.2.如图所示,A 、B 、C 为平抛物体运动轨迹上的三点,已知A 、B 间与B 、C 间的水平距离均为x ,而竖直方向间的距离分别为y 1、y 2.试根据上述条件求平抛物体的初速度及B 点瞬时速度的大小.3.如图所示,一光滑斜面与竖直方向成α角,一小球有两种方式释放:第一种方式是在A 点以速度v 0平抛落至B 点;第二种方式是在A 点松手后沿斜面自由下滑,求:(1)AB 的长度多大?(2)两种方式到B 点,平抛的运动时间为t 1,下滑的时间为t 2,t 1/t 2等于多少?(3)两种方式到B 点的水平速度之比v 1x /v 2x 和竖直分速度之比v 1y /v 2y 各是多少?1【答案】 213+gt2【答案】 v 0=x ·12y y g -; v B =)42(222121212y y y y x y y g +++-3【答案】 (1)2v 02cos α/gsin 2α (2)cos α (3) αcos 21;αcos 11【解析】 根据题意及平抛运动的特点,可得其速度随时间变化的矢量图,如图所示.由图易知: v y 1=v 0,v y 2=3v 0.由于平抛物体在竖直方向上做自由落体运动,其竖直分速度由v y 1变为v y 2历时t ,所以有: v y 2-v y 1=gt 即:3v 0-v 0=g t所以v 0=21313+=-gt gt .2【解析】 由A 、B 间和B 、C 间水平位移相等知,物体从A 运动到B 和从B 运动到C 的时间相等,设为t .因平抛物体竖直方向为加速度等于g 的匀加速直线运动,所以y 2-y 1=gt 2,所以t =gy y 12-,所以平抛初速度 v 0=tx =x ·12y y g -;物体在B 点的竖直分速度v By =ty y 212+,水平分速度v Bx =v 0=x12y y g -所以v B =22y x v v +=)42(222121212y y y y x y y g +++-3【解析】 (1)由平抛运动规律,得: s AB cos α=21gt 12s AB sin α=v 0t 1解得:s AB =2v 02cos α/g sin 2α. (2)t 1=gs AB αcos 2, t 2=αcos 22g s as AB AB =所以21t t =cos α(3)αsin 2021⋅=ABasv xv x v=ααααsin sin cos 2cos 22200⋅⋅g v g v =αcos 21ααcos cos 2121t g gt yv y v ==αcos 1试题展示1.如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上。
(物理)物理曲线运动练习题20篇含解析
(物理)物理曲线运动练习题20篇含解析一、高中物理精讲专题测试曲线运动1.如图所示,半径R=2.5m的竖直半圆光滑轨道在B点与水平面平滑连接,一个质量m=0.50kg 的小滑块(可视为质点)静止在A点.一瞬时冲量使滑块以一定的初速度从A点开始运动,经B点进入圆轨道,沿圆轨道运动到最高点C,并从C点水平飞出,落在水平面上的D点.经测量,D、B间的距离s1=10m,A、B间的距离s2=15m,滑块与水平面的动摩擦因数 ,重力加速度.求:(1)滑块通过C点时的速度大小;(2)滑块刚进入圆轨道时,在B点轨道对滑块的弹力;(3)滑块在A点受到的瞬时冲量的大小.【答案】(1)(2)45N(3)【解析】【详解】(1)设滑块从C点飞出时的速度为v c,从C点运动到D点时间为t滑块从C点飞出后,做平抛运动,竖直方向:2R=gt2水平方向:s1=v c t解得:v c=10m/s(2)设滑块通过B点时的速度为v B,根据机械能守恒定律mv B2=mv c2+2mgR解得:v B=10m/s设在B点滑块受轨道的压力为N,根据牛顿第二定律:N-mg=m解得:N=45N(3)设滑块从A点开始运动时的速度为v A,根据动能定理;-μmgs2=mv B2-mv A2解得:v A=16.1m/s设滑块在A点受到的冲量大小为I,根据动量定理I=mv A解得:I=8.1kg•m/s;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.2.如图所示,一位宇航员站一斜坡上A 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点B ,斜坡倾角为α,已知该星球的半径为R ,引力常量为G ,求:(1)该星球表面的重力加速度g ; (2)该星球的密度ρ . 【答案】(1)02tan v t α (2)03tan 2v RtGαπ 【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.(1)小球做平抛运动,落在斜面上时有:tanα===所以星球表面的重力加速度为:g=.(2)在星球表面上,根据万有引力等于重力,得:mg=G解得星球的质量为为:M=星球的体积为:V=πR 3. 则星球的密度为:ρ= 整理得:ρ=点晴:解决本题关键为利用斜面上的平抛运动规律:往往利用斜面倾解的正切值进行求得星球表面的重力加速度,再利用mg=G和ρ=求星球的密度.3.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍.【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x =v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.4.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-=从C 点到落地的时间:00.8t s == B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.5.高台滑雪以其惊险刺激而闻名,运动员在空中的飞跃姿势具有很强的观赏性。
高中物理《曲线运动》练习题(附答案解析)
高中物理《曲线运动》练习题(附答案解析)学校:___________姓名:___________班级:___________ 一、单选题1.下列关系式中不是利用物理量之比定义新的物理量的是()A.FEq=B.pEqϕ=C.Fam=D.tθω=2.一船以恒定的速率渡河,水速恒定(小于船速)。
要使船垂直河岸到达对岸,则()A.船应垂直河岸航行B.船的航行方向应偏向上游一侧C.船不可能沿直线到达对岸D.河的宽度一定时,船垂直到对岸的时间是任意的3.如图所示,一杂技演员驾驶摩托车沿半径为R的圆周做线速度大小为v的匀速圆周运动。
若杂技演员和摩托车的总质量为m,其所受向心力大小为()A.mvRB.2mvRC.22mvRD.2mvR4.如图所示,细线一端固定在A点,另一端系着小球。
给小球一个初速度,使小球在水平面内做匀速圆周运动,关于该小球的受力情况,下列说法中正确的是()A.受重力、向心力作用B.受细线拉力、向心力作用C.受重力、细线拉力作用D.受重力、细线拉力和向心力作用5.下列现象或措施中,与离心运动有关的是()A.汽车行驶过程中,乘客要系好安全带B.厢式电梯张贴超载标识C.火车拐弯处设置限速标志D.喝酒莫开车,开车不喝酒6.把地球设想成一个半径为地球半径R=6 400km的拱形桥,如图所示,汽车在最高点时,若恰好对“桥面”压力为0,g=9.8m/s2,则汽车的速度为()A.7.9m/s B.7.9m/h C.7.9km/s D.7.9km/h7.光滑平面上一运动质点以速度v通过原点O,v与x轴正方向成α角(如图所示),与此同时对质点加上沿x轴正方向的恒力Fx和沿y轴正方向的恒力Fy,则()A.因为有Fx,质点一定做曲线运动B.如果Fy>Fx,质点向y轴一侧做曲线运动C.质点不可能做直线运动D.如果Fy<Fx tanα,质点向x轴一侧做曲线运动8.在2022年2月5日北京冬奥会上,我国选手运动员在短道速滑比赛中的最后冲刺阶段如图所示,设甲、乙两运动员在水平冰面上恰好同时到达虚线PQ,然后分别沿半径为r1和r2(r2>r1)的滑道做匀速圆周运动,运动半个圆周后匀加速冲向终点线。
高考物理曲线运动题20套(带答案)含解析
高考物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,在竖直平面内有一倾角θ=37°的传送带BC .已知传送带沿顺时针方向运行的速度v =4 m/s ,B 、C 两点的距离L =6 m 。
一质量m =0.2kg 的滑块(可视为质点)从传送带上端B点的右上方比B点高h=0. 45 m处的A点水平抛出,恰好从B点沿BC方向滑人传送带,滑块与传送带间的动摩擦因数μ=0.5,取重力加速度g=10m/s2 ,sin37°= 0.6,cos 37°=0.8。
曲线运动经典例题
《曲线运动》经典例题1、对于曲线运动,以下说法中正确的选项是()A. 曲线运动必定是变速运动B.变速运动必定是曲线运动C. 曲线运动可能是匀变速运动D.变加快运动必定是曲线运动【分析】曲线运动的速度方向沿曲线的切线方向,必定是变化的,所以曲线运动必定是变速运动。
变速运动可能是速度的方向不变而大小变化,则可能是直线运动。
当物体遇到的协力是大小、方向不变的恒力时,物体做匀变速运动,但力的方向可能与速度方向不在一条直线上,这时物体做匀变速曲线运动。
做变加快运动的物体遇到的协力可能大小不变,但方向一直与速度方向在一条直线上,这时物体做变速直线运动。
2、质点在三个恒力F1、F2、F3的共同作用下保持均衡状态,若忽然撤去质点()A.必定做匀变速运动B.必定做直线运动F1,而保持F2、F3不变,则C.必定做非匀变速运动D.必定做曲线运动【分析】质点在恒力作用下产生恒定的加快度,加快度恒定的运动必定是匀变速运动。
由题意可知,当忽然撤去F1而保持 F2、 F3不变时,质点遇到的协力大小为F1,方向与F1相反,故必定做匀变速运动。
在撤去F1以前,质点保持均衡,有两种可能:一是质点处于静止状态,则撤去F1后,它一定做匀变速直线运动;其二是质点处于匀速直线运动状态,则撤去F1后,质点可能做直线运动(条件是 F1的方向和速度方向在一条直线上),也可能做曲线运动(条件是F1的方向和速度方向不在一条直线上)。
3、对于运动的合成,以下说法中正确的选项是()A.合运动的速度必定比分运动的速度大B.两个匀速直线运动的合运动不必定是匀速直线运动C.两个匀变速直线运动的合运动不必定是匀变速直线运动D.合运动的两个分运动的时间不必定相等【分析】依据速度合成的平行四边形定章可知,合速度的大小是在两分速度的和与两分速度的差之间,故合速度不必定比分速度大。
两个匀速直线运动的合运动必定是匀速直线运动。
两个匀变速直线运动的合运动是不是匀变速直线运动,决定于两初速度的合速度方向能否与合加快度方向在向来线上。
(完整word版)曲线运动练习题及答案
曲线运动试题姓名:_______________班级:_______________考号:_______________一、选择题(每空分,共分)1、一质点做曲线运动,在运动过程中的某一位置,它的速度方向、加速度方向,以及所受合外力的方向的关系是()A.速度、加速度、合外力的方向有可能都相同B.加速度与速度方向一定相同C.加速度与合外力的方向一定相同D.速度方向与合外力方向可能相同,也可能不同2、做曲线运动的物体,在运动过程中,一定变化的物理量是()A.速率 B.速度 C.合外力 D.加速度3、物体受到几个力作用而做匀速直线运动,如果只撤掉其中的一个力,其它力保持不变则A:可能是匀速直线运动 B:一定是匀加速直线运动C:一定匀减速直线运动 D:可能是匀变速曲线运动4、关于运动的性质,以下说法中正确的是A:曲线运动一定是变速运动 B:变速运动一定是曲线运动C:曲线运动一定是变加速运动 D:物体加速度不变的运动一定是直线运动5、一质点在某段时间内做曲线运动,则在这段时间内()A.速度一定不断地改变,加速度也一定不断地改变B.速度一定不断地改变,加速度可以不变C.速度可以不变,加速度一定不断地改变D.速度可以不变,加速度也可以不变6、一辆汽车在水平公路上转弯,沿曲线由M向N行驶,速度逐渐减小,下图中A、B、C、D分别画出了汽车转弯时所受合力F的四种方向,正确的是()7、下列关于曲线运动的说法中,正确的是()A.对于匀速圆周运动的物体,它所受到的向心力是一个恒定不变的力B.平抛运动是变加速曲线运动C.曲线运动的加速度方向可能与速度在同一直线上D.两个直线运动合成后,其合运动可能是曲线运动8、做曲线运动的物体在运动过程中,下列说法正确的是( )A.速度大小一定改变 B.加速度大小一定改变C.速度方向一定改变 D.加速度方向一定改变9、下列说法不正确的是()A.曲线运动可能是匀变速运动B.曲线运动的速度方向一定是时刻变化的C.物体在恒力作用下,可能做曲线运动D.曲线运动的速度的大小一定是时刻变化的10、质点在平面内从P运动到Q,如果用v、a、F表示质点运动过程中的速度、加速度和受到的合外力,下列图示正确的是()11、关于运动的性质,以下说法中正确的是( )A.曲线运动一定是变速运动。
高考物理曲线运动题20套(带答案)含解析
高考物理曲线运动题20套(带答案)含解析一、高中物理精讲专题测试曲线运动1.有一水平放置的圆盘,上面放一劲度系数为k的弹簧,如图所示,弹簧的一端固定于轴O上,另一端系一质量为m的物体A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体A开始滑动?(2)当转速缓慢增大到2ω0时,A仍随圆盘做匀速圆周运动,弹簧的伸长量△x是多少?【答案】(1)glμ(2)34mglkl mgμμ-【解析】【分析】(1)物体A随圆盘转动的过程中,若圆盘转速较小,由静摩擦力提供向心力;当圆盘转速较大时,弹力与摩擦力的合力提供向心力.物体A刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力提供向心力,根据牛顿第二定律求解角速度ω0.(2)当角速度达到2ω0时,由弹力与摩擦力的合力提供向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与静摩擦力的合力提供向心力.(1)当圆盘转速为n0时,A即将开始滑动,此时它所受的最大静摩擦力提供向心力,则有:μmg=mlω02,解得:ω0=g l μ即当ω0=glμA开始滑动.(2)当圆盘转速达到2ω0时,物体受到的最大静摩擦力已不足以提供向心力,需要弹簧的弹力来补充,即:μmg+k△x=mrω12,r=l+△x解得:34mgl xkl mgμμ-V=【点睛】当物体相对于接触物体刚要滑动时,静摩擦力达到最大,这是经常用到的临界条件.本题关键是分析物体的受力情况.2.如图所示,固定的光滑平台上固定有光滑的半圆轨道,轨道半径R =0.6m,平台上静止放置着两个滑块A 、B ,m A =0.1kg,m B =0.2kg,两滑块间夹有少量炸药,平台右侧有一带挡板的小车,静止在光滑的水平地面上.小车质量为M =0.3kg,车面与平台的台面等高,小车的上表面的右侧固定一根轻弹簧,弹簧的自由端在Q 点,小车的上表面左端点P 与Q 点之间是粗糙的,PQ 间距离为L 滑块B 与PQ 之间的动摩擦因数为μ=0.2,Q 点右侧表面是光滑的.点燃炸药后,A 、B 分离瞬间A 滑块获得向左的速度v A =6m/s,而滑块B 则冲向小车.两滑块都可以看作质点,炸药的质量忽略不计,爆炸的时间极短,爆炸后两个物块的速度方向在同一水平直线上,且g=10m/s 2.求:(1)滑块A 在半圆轨道最高点对轨道的压力;(2)若L =0.8m,滑块B 滑上小车后的运动过程中弹簧的最大弹性势能;(3)要使滑块B 既能挤压弹簧,又最终没有滑离小车,则小车上PQ 之间的距离L 应在什么范围内【答案】(1)1N ,方向竖直向上(2)0.22P E J =(3)0.675m <L <1.35m 【解析】 【详解】(1)A 从轨道最低点到轨道最高点由机械能守恒定律得:2211222A A A A m v m v m g R -=⨯ 在最高点由牛顿第二定律:2A N A v m g F m R+=滑块在半圆轨道最高点受到的压力为:F N =1N由牛顿第三定律得:滑块对轨道的压力大小为1N ,方向向上 (2)爆炸过程由动量守恒定律:A AB B m v m v =解得:v B =3m/s滑块B 冲上小车后将弹簧压缩到最短时,弹簧具有最大弹性势能,由动量守恒定律可知:)B B B m v m M v =+共(由能量关系:2211()-22P B B B B E m v m M v m gL μ=-+共 解得E P =0.22J(3)滑块最终没有离开小车,滑块和小车具有共同的末速度,设为u ,滑块与小车组成的系统动量守恒,有:)B B B m v m M v =+(若小车PQ 之间的距离L 足够大,则滑块还没与弹簧接触就已经与小车相对静止, 设滑块恰好滑到Q 点,由能量守恒定律得:22111()22B B B B m gL m v m M v μ=-+联立解得:L 1=1.35m若小车PQ 之间的距离L 不是很大,则滑块必然挤压弹簧,由于Q 点右侧是光滑的,滑块必然被弹回到PQ 之间,设滑块恰好回到小车的左端P 点处,由能量守恒定律得:222112()22B B B B m gL m v m M v μ=-+ 联立解得:L 2=0.675m综上所述,要使滑块既能挤压弹簧,又最终没有离开小车,PQ 之间的距离L 应满足的范围是0.675m <L <1.35m3.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A . h 越高,摩托车对侧壁的压力将越大C . h 越高,摩托车做圆周运动的周期将越大 3、 A 、B 两小球都在水平面上做匀速圆周运动, h 越高,摩托车做圆周运动的线速度将越大 .h 越高,摩托车做圆周运动的向心力将越大 A 球的轨道半径是 B 球的轨道半径的2倍,的转速为l ll '.''J r/min ,则两球的向心加速度之比为:( A . 1 : 1B . 6: 1C . 4: 1D . 2: 14、两个质量相同的小球 a 、b 用长度不等的细线拴在天花板上的同一点并在空中同一水平面内做匀速圆周运动, 所示,则a 、b 两小球具有相同的A. 角速度B •线速度 C •向心力 D •向心加速度5、 关于平抛运动和匀速圆周运动,下列说法中正确的是( )A .平抛运动是匀变速曲线运动B •平抛运动速度随时间的变化是不均匀的C.匀速圆周运动是线速度不变的圆周运动 D •做匀速圆周运动的物体所受外力的合力做功不为零6、 在水平面上转弯的摩托车,如图所示,提供向心力是A .重力和支持力的合力B •静摩擦力C.滑动摩擦力 D •重力、支持力、牵引力的合力7、如图所示,在粗糙水平板上放一个物体,使水平板和物体一起在竖直平面内沿逆时针方向做匀速圆周运动, 水平直径,Cd 为竖直直径,在运动过程中木板始终保持水平,物块相对木板始终静止,则()一、选择题 1、 一石英钟的分针和时针的长度之比为 A .分针和时针转一圈的时间之比为 C .分针和时针转动的角速度之比为2、有一种杂技表演叫“飞车走壁” 1 : 60 2, B 均可看作是匀速转动,则()•分针和时针的针尖转动的线速度之比为•分针和时针转动的周期之比为1: 640 : 112 : 1 ,由杂技演员驾驶摩托车沿圆台形表演台的内侧壁高速行驶, h .下列说法中正确的是( 做匀速圆周运动.如图所示中虚线圆表示摩托车的行驶轨迹,轨迹离地面的高度为 A 的转速为 30 r/min ,B如图ab为A .物块始终受到三个力作用 B. 只有在a 、b 、c 、d 四点,物块受到合外力才指向圆心C . 两轮转动的周期相等D . A 点和B 点的向心加速度相等9、用一根细线一端系一可视为质点的小球,另一端固定在一光滑锥顶上,如图所示,设小球在水平面内作匀速圆周运动的角速度为ω,线的张力为 T ,贝U T 随ω 2变化的图象是(C .从a 到b ,物体所受的摩擦力先减小后增大D.从b 到a ,物块处于失重状态8、如图所示,拖拉机后轮的半径是前轮半径的两倍, 动,则 )A 和B 是前轮和后轮边缘上的点, 若车行进时轮与路面没有滑A . A 点和B 点的线速度大小之比为1 :2 前轮和后轮的角速度之比为 2 :10、如图所示,放于竖直面内的光滑金属细圆环半径为端系于球上,另一端系于圆环最低点,绳的最大拉力为 力作用•则ω可能为()R 质量为m 的带孔小球穿于环上,同时有一长为R 的细绳一2mg.当圆环以角速度 ω绕竖直直径转动时,发现小球受三个PsC . . I :二、计算题11、如图所示,在匀速转动的圆盘上,沿半径方向放置着用轻绳相连的质量分别为2m m 的两个小物体 A, B (均可视为质点),A 离转轴r 1=20cm , B 离转轴r 2=40cm, A B 与圆盘表面之间的动摩擦因数为 0.4 ,重力加速度g=10m∕s ,求:(1) (2) (3) 轻绳上无张力时,圆盘转动的角速度ω的范围?A 、B 与圆盘之间不发生相对滑动时,圆盘转动的角速度 A 、B 与圆盘之间刚好不发生相对滑动时,烧断轻绳,则ω的最大值?A B 将怎样运动?J 如C .B .A .A . 3,13、汽车试车场中有一个检测汽车在极限状态下的车速的试车道,试车道呈锥面(漏斗状),如图所示.车质量m=1t,车道转弯半径R=150m路面倾斜角θ=45 °,路面与车胎的动摩擦因数μ为0.25 ,设路面与车胎的最2大静摩擦力等于滑动摩擦力,( g取10m∕s )求(1)若汽车恰好不受路面摩擦力,则其速度应为多大?(2)汽车在该车道上所能允许的最小车速.14、如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑的水平转动轴上,杆和球在竖直面内转动,已知球B运动到最高点时,球B对杆恰好无作用力•求:(1) 球B在最高点时,杆对A球的作用力大小.(2) 若球B转到最低点时B的速度V B= ,杆对球A和球B的作用力分别是多大?A球对杆的作用力方向如何?15、如图所示,光滑杆AB长为L, B端固定一根劲度系数为k原长为I o的轻弹簧,质量为m的小球套在光滑杆上并与弹簧的上端连接。
OO为过B点的竖直轴,杆与水平面间的夹角始终为θ。
则:(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小的压缩量厶∣1 ;(2)当球随杆一起绕OO轴匀速转动时,弹簧伸长量I 2,求、如图所示,两绳系一质量为0.1kg的小球,两绳的另一端分别固定于轴的A、B两处,上面绳长2m,两绳拉直时与轴的夹角分别为30°和45°,问球的角速度在什么范围内两绳始终有张力? ( g取10m/s2)测试的汽a及小球速度最大时弹簧,求匀速转动的角速度ω;参考答案、选择题1、解:A、D分针的周期为T分=1h,时针的周期为T时=12h ,两者周期之比为T分:T时=1 : 12 ,故A错误,D错误;2K rB、分针的周期为T分=Ih ,时针的周期为T时=12h,两者周期之比为T分: T时=1 :12,由V= 研究得知,分针的线速度是时针的18倍,故B错误;C分针的周期为T分=1h ,时针的周期为T时=12h,两者周期之比为T分: T时=1 :12,由ω= 研究得知,分针的角速度是时针的12倍,故C正确;故选C.2、解:A、摩托车做匀速圆周运动,提供圆周运动的向心力是重力mg和支持力F的合力,作岀力图•设圆台侧壁与πιg竖直方向的夹角为α,侧壁对摩托车的支持力F=匚J :〔不变,则摩托车对侧壁的压力不变•故A错误.2VB、根据牛顿第二定律得F n=m :, h越高,r越大,F n不变,则V越大•故B正确.4K22τC、根据牛顿第二定律得R=m ∙ r, h越高,r越大,F n不变,则T越大•故C正确.D、如图向心力F n=mgcot α, m α不变,向心力大小不变.故D错误.故选:BCmg3、B4、A5、A6、B7、C8、B9、考点:匀速圆周运动;向心力.分析:分析小球的受力,判断小球随圆锥作圆周运动时的向心力的大小,进而分析T随ω2变化的关系,但是要注意的是,当角速度超过某一个值的时候,小球会飘起来,离开圆锥,从而它的受力也会发生变化,T与ω2的关系也就变了.解答:解:设绳长为L,锥面与竖直方向夹角为θ,当ω=0时,小球静止,受重力mg支持力N和绳的拉力T而平衡,T=mgcos θ≠ 0,所以A项、B项都不正确;ω增大时,T增大,N减小,当N=0时,角速度为ω0.当ω V ω0时,由牛顿第二定律得,2TSin θ—Ncos θ=mωLSin θ ,Tcos θ +Nsin θ =mg解得T=nω 2Lsin 2θ +mgcos θ ;当ω> ω0时,小球离开锥子,绳与竖直方向夹角变大,设为β,由牛顿第二定律得2TSin β =mω LSin β ,所以T=mLω2,解得:1:此时小球的动能为:O LCoS θ)2+v y 2]=mgLsi∏θ根据动能定理有: W- mg (L - l ) Sin θ =E<A —可知T- ω 2图线的斜率变大,所以 C 项正确,D 错误.故选:C.点评:本题很好的考查了学生对物体运动过程的分析,在转的慢和快的时候, 物体的受力会变化, 物理量之间的关系也就会变化.10、考点:向心力;牛顿第二定律. 专题:牛顿第二定律在圆周运动中的应用.分析:因为圆环光滑,所以这三个力肯定是重力、 环对球的弹力、绳子的拉力,细绳要产生拉力,绳要处于拉升状态, 根据几何关系及向心力基本格式求岀刚好不受拉力时的角速度, 此角速度为最小角速度,只要大于此角速度就受三个力.解答: 解:因为圆环光滑,所以这三个力肯定是重力、环对球的弹力、绳子的拉力,细绳要产生拉力,绳要处于 拉升状态,根据几何关系可知,此时细绳与竖直方向的夹角为 60°,当圆环旋转时,小球绕竖直轴做圆周运动,向心力由三个力在水平方向的合力提供,其大小为:F=m ω 2r ,根据几何关系,其中r=Rsin60 ° —定,所以当角速度越大时,所需要的向心力越大,绳子拉力越大,所以对应的第一个临界条件是小球在此位置刚好不受拉力, 此时角速度最小,需要的向心力最小,对小球进行受力分析得: F min =2mgsin60 °,即卩 2mgsin60 ° =m ω min 2Rsin60 °解得:ω min=,i.'当绳子拉力达到 2mg 时,此时角速度最大,对小球进行受力分析得: 竖直方向: NSin30 ° -( 2mg ) sin30 ° - mg=0 水平方向: Ncos30° + (2mg cos30 ° =mJ" "ll "''解得:ω max =,;: 故ACD 错误,B 正确; 故选:B.点评:本题主要考查了圆周运动向心力公式的应用以及同学们受力分析的能力, 要求同学们能找岀临界状态并结合几何关系解题,难度适中. 二、计算题11、考点:向心力. 专题:匀速圆周运动专题.分析:(1)当小球的加速度为零时,速度最大,结合平衡求出弹簧的压缩量. (2)根据牛顿第二定律求出小球做匀速转动时距离 B 点的距离,求出此时小球的动能,结合最高点的动能,运用动能定理求岀杆对小球做功的大小. 解答:解:(1)当小球加速度为零时,速度最大,此时受力平衡,则有:mgsin θ =k △ 11,A丿矣 5 B _10 XO- 6解得弹簧的压缩量为: ’'(2)当杆绕OO 轴以角速度ω 0匀速转动时,设小球距离 B 点L 。
,此时有:_ 2I ::'.,II - I -11■小球在最高点 A 离开杆瞬间的动能为:解得:W=-r/:: M> j '答:(1)当杆保持静止状态,在弹簧处于原长时,静止释放小球,小球速度最大时弹簧的压缩量△l 1为0.06m ;5LSi 8+丄2(2)保持ωo不变,小球受轻微扰动后沿杆上滑,到最高点A时其沿杆对其所做的功W为一 ' .-点评:本题考查了动能定理、胡克定律与圆周运动的综合,知道小球做匀速转动时,靠径向的合力提供向心力,由静止释放时,12、考点:向心力.专题:匀速圆周运动专题.分析: (1)由题意可知当细线上没有张力时,B与盘间的静摩擦力没有达到最大静摩擦力,故由静摩擦力充当向心力,由向心力公式可求得角速度;(2)当A、B所受静摩擦力均达到最大静摩擦力时,圆盘的角速度达到最大值ωm,超过ωm时,A、B将相对圆盘滑动.别对两个物体,根据牛顿第二定律和向心力公式列式,即可求得最大角速度.(3)根据离心的知识分析烧断细线后A、B的运动情况.解答:解:(1)当B所需向心力F B≤ F fmaX时,细线上的张力为0,即:mω2r2≤μmg,解得:ω≤即当ω≤ J L :丄L时,细线上不会有张力.(2)当A、B所受静摩擦力均达到最大静摩擦力时,圆盘的角速度达到最大值ωm,超过ωm时,A、B将相对圆盘滑动.细线中的张力为F T.根据牛顿第二定律得:对A: 2 μmg— Fτ=2mω :r 1对B: μmg+Fr=mω』「2,得ω m== L= rad/s .(3)烧断细线时,A做圆周运动所需向心力F A=2mωm r1=0.6mg ,又最大静摩擦力为0.4mg ,则A做离心运动.B此时所需向心力F B=mω∏2r2=0.6mg ,大于它的最大静摩擦力0.4mg ,因此B将做离心运动.答:(1)若细线上没有张力,圆盘转动的角速度ω应满足的条件是ω≤ 3.7 rad/s .(2)欲使A、B与圆盘面间不发生相对滑动,则圆盘转动的最大角速度为 4.0 rad/s .(3)A都做离心运动.点评:对于圆周运动动力学问题,分析受力情况,确定向心力由什么力提供是解题的关键•本题还要抓住物体刚要滑动的临界条件:静摩擦力达到最大值.13、解:(1)汽车恰好不受路面摩擦力时,由重力和支持力的合力提供向心力,根据牛顿第二定律得:Ntan 日=ιr∣-r解得:V= 时:X X .:. -(2)当车道对车的摩擦力沿车道向上且等于最大静摩擦力时,车速最小,根据牛顿第二定律得:加速度为零时速度最大,难度适中.2θ = ~βNSin θ—fcosNCoS θ +fsin θ —mg=0答:(1)若汽车恰好不受路面摩擦力,则其速度应为38.7m∕s ;(2)汽车在该车道上所能允许的最小车速为30m∕s .214、解:V O ITig-ID E(1)球B在最高点时速度为Va ,有■-,得: ',' VE 二因为A B两球的角速度相等,根据(今)2设此时杆对球A的作用力为F A,贝U F A- mg=m …则杆对A球作用力的方向向下,牛顿第三定律得,A球对杆作用力的方向向上.由牛顿第二定律得: 解得:F A=0.3mg答:(1)球B在最高点时,杆对A球的作用力大小为1.5mg . ( 2)若球B转到最低点时B的速度V B= ,杆对球A和球B的作用力分别是0.3mg和3.6mg , A球对杆的作用力方向向上.15、解:(1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有f= μ N≡i∏θ - μ COSθCOS θ + M- sinθψ0×150×¢1-0,25)1+0. 25=30m∕s解得:F A=1.5mg(2)若球B转到最低点时2V E解得:F B=3.6mg解得:v=r ω知,此时球A的速度为:则对B球得:此时A球的速度V,则16、解:当上绳绷紧,下绳恰好伸直但无张力时,小球受力如下图 3il ∖由牛顿第二定律得: mgtan30 ° =m ω 12r ; 又有:r=Lsi n30当下绳绷紧,上绳恰好伸直无张力时,小球受力如下图 由牛顿第二定律得:mgtan45 ° =m ω 22r ;解得:ω 2= y - '.'rad/s ;IIChJ3故当龙rad/s V ω V • - L rad/s 时,两绳始终有张力..:::'1- .:■ ( 1 分)解得•—匕二" (1 分) 小球速度最大时其加速度为零,则 ■■-L ■ -: :/. y Z 2 分、 解得 (1 分) (2)球做圆周运动的半径为 J I. ^-. ■ ■?设弹簧伸长△ 12时,球受力如图所示, 水平方向上有 '^',- -<r ∙「’ : ■■■■ ” 竖直方向上有 - (1分)解得WgSIn ^÷⅛Δ∕2 必二(2分)(2 分)(2 分)解得:t N 世答:球的角速度在 rad/s vωv ..:『ad/s 时,两绳始终有张力.。