最新第二讲四年级奥数幻方教程文件
小学四年级奥数笔记之幻方
第一讲 幻方【知识要点】在3×3(三行三列)的正方形方格中,既不重复又不遗漏地填上1~9这九个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44×(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44×方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在n×n(n 行n 列)的方格里,既不重复又不遗漏地填上n×n 个连续自然数,(注意这些连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的n 个自然数和均相等,我们把这个相等的和叫做幻和,n 叫做阶,这样排成的数的图形叫做n 阶幻方。
中心方格中这个数叫做这个幻方的中间数。
任意阶数幻方的各行或各列或两条条对角线上所有数的和成为幻和! 幻方的幻和等于 n (n 2 +1) ÷2 。
幻和=总和÷阶数幻积=中间数的3次方。
二、幻方的特征:1、对称性2、轮换性三、幻方的种类:按照纵横各有数字的个数,可以分为:三阶幻方、四阶幻方、五阶幻方、六阶幻方… … 按照纵横数字数量奇偶的不同,可以分为: 1、奇数阶幻方 2、偶数阶幻方(1)单偶数阶幻方,阶数是2的倍数,形如:2n+2 (2)双偶数阶幻方,阶数是4的倍数,形如:2n+4四、幻方的构造方法1、杨辉口诀法(仅仅适用于三阶幻方)早在公元1275年,宋朝的杨辉就对幻方进行了系统的研究。
他称这种图为“纵横图”,他提出了一个构造三阶幻方的秘诀:九子斜排,上下对易,左右相更,四维挺出戴九履一,左三右七,二四为肩,六八为足2、罗伯法适用于奇数阶幻方,适合于连续自然数或者等差数列的奇数阶幻方。
口诀:1居下行正中央,依次斜填切莫忘;下出框时往上写,左出框时往右放;排重便往上格填,左下排重一个样。
3、巴舍法(平移补空法)(适合奇数阶幻方)要点,构造五阶具体操作:(1)画图:构造楼梯(2)按顺序填数(数字按顺序斜排)(3)平移补空:把幻方外的数字平移进幻方——上到下,下到上,左到右,右到左,注意:几阶幻方就平移几个格。
《幻方》教学课件
反射对称法
将奇数阶幻方反射后得到 偶数阶幻方。
递推构造法
通过已知的低阶幻方推导 出高阶幻方,常用的递推 关系有菲波那契数列等。
运用编程语言实现幻方构造
Python实现
使用Python的列表操作 和循环语句实现幻方的构 造。
Java实现
使用Java的数组和循环语 句实现幻方的构造。
C实现
使用C的数组和循环语句 实现幻方的构造。
幻方学习的重要性
幻方是一种具有独特魅力的数学游戏,通过学习可以帮助学生 提高数学兴趣和思维能力。
学习内容回顾
在幻方的学习过程中,学生需要掌握基本的数学原理和方法,如 对称性、组合数学等。
学习收获
通过幻方学习,学生可以提高观察力、逻辑思维和空间想象力等 多方面的能力。
对于幻方研究的展望与建议
深入探究
伪代码描述
给出算法的伪代码描述,以清晰简洁地表达算法 的实现细节。
算法复杂度分析
对算法的时间复杂度和空间复杂度进行分析,说 明算法的效率及可行性。
优化与改进
算法优化
针对现有算法的不足之处,提出相应的优化策略和改进方案,提 高算法的效率和性能。
优化实例
通过具体实例,演示优化后的算法相比原算法的优势和特点。
《幻方》教学课件
2023-11-02
目录
• 幻方简介 • 幻方的基本构造方法 • 幻方的数学原理 • 幻方的计算机实现 • 幻方在实践中的应用 • 总结与展望
01 幻方简介
幻方的定义
幻方是一种将n×n个数字排列成一个正方形,使每行、每列 和对角线上的数字之和均相等,具有神秘色彩的组合图形。
幻方最初由古希腊数学家费尔南德斯发现,被认为是数学与 艺术的完美结合。
精品四年级奥数b第十三章 奇妙的幻方(二)
【热身演练 】
(2) 十月一日是国庆节,请将1-18这十八个数填入 下图中的18个空格内(中间的竖格不要填),使每 一横行和竖行上的数字和相等。
(4b) 第十三章 最奇妙的幻方(二 偶数阶)
小朋友们,今天学习怎样, 知识点掌握了没有?
(4b) 第十三章 最奇妙的幻方(二 偶数阶)
例2、将1-9这九个数字填在下图的圆圈内,要求每条边上 数字相加之和相等,并且和最小。
1
6 8
4 9
25
73
(4b) 第十三章 最奇妙的幻方(二 偶数阶)
【热身演练 】
(1) 将1-9这九个数字填在下图的圆圈内,要求每条边
上数字相加之和相等,并且最大。
(4b) 第十三章 最奇妙的幻方(二 偶数阶)
【技巧感悟 】
例3、将3-10这八个数字填在下图的圆圈内,使每条边 上三个圆圈内数字之和相等。
3
7
8
10
6
5
9
4
(4b) 第十三章 最奇妙的幻方(二 偶数阶)
【热身演练 】
(4) 将1-9这9个数字填入下图的圆圈内,使每条直线上
的数字和相等,并且四边形顶点上的数字和也相等。
(4b) 第十三章 最奇妙的幻方(二 偶数阶)
12 6 7 9
9 6 7 12
8 10 11 5
5 10 11 8
13 3 2 16
13 2 3 16
图3
图4
我们通过仔细观察,发现对角线上的数字其实都不动,其他数字的变
化规律是:中心对称交换,如下图。
32
8
5
12
9
15 14
按顺序排列的方阵中
变化规律
14 15
四年级奥数数阵与幻方
数阵问题知识要点:一般地来讲在解决数阵图的问题上,我们应先观察好数阵图,找出“公用数”的位置,求出“公用数”是解决数阵问题的关键。
在数阵图中横行有,竖行也有的数,我们把它叫做“公用数”。
如果题中给你的数的个数是奇数个,而“公用数”仅一个,而这个“公用数”又是中心数,这样的数阵图称为辐射型数阵图。
在解决这类数阵图时,就是先找出公用数,每边均剩下两个数,实际上就是在奇数个数中找到和相等的几对数,找的办法有三种,即:去头、去尾、去中间,而数阵图中的“公用数”就是这列数中的头、尾、中间任意一个数。
还有一种数阵图,题中给你的已知数的个数为偶数个,“公用数”不再是一个,而是多个。
这样的数阵图称为封闭型数阵图,在解决此类数阵图时,应分三步走:l、先求出题中给出已知数的总和,2、再求出数阵图中的和,3、用图中和减去已知数的和即为“公用数”的总和。
例题分析:一.辐射型数阵:例1.将2~8这7个数分别填在下图中的圆圈内,使每条线段上三个圆圈内数的和相等.例2.把1~9这9个数字,分别填入下图的各圆圈内,使每条线上5个数的和相等.例3.将1~9这九个数字填在”七一”内,使每一横行,每一竖列的数字的和都是13.二.封闭型数阵:例4.将1~6六个数填入图中的圆圈中,要求四条直线上的数字之和都等于10,那么a是多少?例5. 如果将—11这11个自然数填入左下图的圆圈中,使每个菱形上的四个数之和都等于24,那么A等于多少?例6.把10~80八个整十数填入下图的○中,使每个圆上五个数的和为210。
例7.把10~15这6个数字分别填放图中的各个圆圈内,使每边上的三个圆圈内数之和相等。
例8. 图中五个正方形和12个圆圈,将1—12填入圆圈中,使每个正方形四角上圆圈中的数字之和都等于K,那么K等于几?例9. 图中的大三角形被分割成九个小三角形将1—9填入小三角形中,使每条边上的五个小三角形的数字之和都相等,那么这个和的最小值是多少?最大值是多少?例10.图中有10个小三角形和4个大三角形,将1~10填入每个小三角形,使每个大三角形内的数字之和都等于25。
小学奥数:5-1-4-2 幻方(二).学生版
1.会用罗伯法填奇数阶幻方2.了解偶数阶幻方相关知识点3.深入学习三阶幻方一、幻方起源也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.二、幻方定义幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216三、解决这幻方常用的方法⑴适用于所有奇数阶幻方的填法有罗伯法.口诀是:一居上行正中央,后数依次右上连.上出框时往下填,右出框时往左填.排重便在下格填,右上排重一个样.⑵适用于三阶幻方的三大法则有:①求幻和:所有数的和÷行数(或列数)②求中心数:我们把幻方中对角线交点的数叫“中心数”,中心数=幻和÷3.③角上的数=与它不同行、不同列、不同对角线的两数和÷2.四、数独数独简介:(日语:数独すうどく)是一种源自18世纪末的瑞士,后在美国发展、并在日本得以发扬光大的数学智力拼图游戏。
小四奥数(幻方和数阵)
1、用“罗伯法”编制一个五阶幻方。
2、在下图的空格里填上合适的数,使横、竖、斜行中三个数的和都是27.
3、在下图的七个圆圈里分别填上1-7,使每条直线上的三个数的和都相等。
4、把1-9这九个数分别填入下图“七一”图案的格子里,使每一横行、每一竖行的数的和都是13.
5、将1-8八个数分别填入下图中,是每条边上三个数的和等于12.
数阵问题的题型主要有三种:(1)辐射型;(2)封闭型;(3)综合型。幻方和数阵图的填写不能只采取试的办法,而要根据题目的要求,所给的数字的特征进行合理的分析思考,并在计算的基础上,先在计算的基础上,先填写关键位置的数,再填其他位置的数。
二、典型例题
例1将1-9九个数字填在右图内九个方格里,每格填一个数字,使每一横行、每一纵行和两条对角线上三个数之和相等。
这幅图用现在的数字表示,即为1-9这九个数字,填在九个格子里,每一纵列、每一横行以及两条对角线上的三个数字之和都是15(见上图)。我国古代数学家称它为“纵横图”或“九宫图”,国外称它为“魔方”、“幻方”或“中国方阵”。
幻方曾使不少的爱好者入迷,目前世界上最大的幻方——“1256阶泛对角幻方”就是1990年11月22日无锡以为中学教师发明,这个数字方阵方阵纵、横排成1256行,任何一条线以及对角线各数和都是990693236.
将1-7七个数字分别填入图中的七个圆圈内,使每条线上三个圆圈内的数的和相等。
想一想:从(1+2+3+、、、+7-x)除以3,商是整数而没有余数时,该怎样思考?
变式3-1把3-9这七个数填入下图中的圆圈内,使每条线段上三个圆圈内的数的和相等。
例4把1-10十个数填入下图中的小圆中,使每个大圆上六个数的和是30.
数学【春季精英课程】第3册PC第02讲幻方教师版
第二讲 幻方一、在n 阶幻方中,其每一行、每一列、两条对角线上的数字之和都相等,这个和称为幻和。
对于n 行或者n 列,其和为幻和乘以n ,也等于所有n ²个数的和;用1、2、……、n ²这n ²个数构造n 阶幻方,其幻和为2212(1)2n n n n ++++=……; 二、对于n 阶幻方,当n 分别为奇数或偶数时,幻方有一个明显的不同,即奇数阶幻方有一个中心方格,而偶数阶幻方则没有;奇数阶幻方这个中心方格上的数称为中心数。
中心数等于幻方中所有n ²个数的平均数,也等于任意一行、一列、一条对角线中n 个数的平均数,也等于任意两个关于中心对称的空格中的数的平均数;用1、2、……、n ²这n ²个数构造n 阶幻方,其中心数为212n +。
三、在3阶幻方中,2222a i b h c g d f e ++++====,2f h a +=、2d h c +=、2b f g +=、2b di +=。
ihgf e d c b a1、掌握幻方的基本结构特点,会用“罗伯法”构造简单的幻方;2、训练学员的比较思想.恒等思想.代换思想和重叠思想;3、培养学员的空间图形感.图形美感与内在的数学学习兴趣。
请将2009、2010、2011、2012、2013、2014、2015、2016、2017这9个自然数填入图中的空格内,使每行、每列、两条对角线上的3个数之和相等。
(只要构造出一种)200920102011201220132014201520162017201620092014201520132011201220172010201420152010201720132009201620112012201020172012201120132015201420092016201620112012201720132009201420152010201020152014200920132017201220112016201420092016201120132015201020172012201220172010201520132011201620092014【解析】方法一:第一步——求幻和:幻和为(2009+2010+2011+2012+2013+2014+2015+2016+2017)÷3=6039; 第二步——求中心数:中心数为6039÷3=2013;第三步——确定4个角上的数:用尝试法,可推出4个角上的数只能为偶数;第四步——求出幻方:根据幻和求出各边中点的数,求出1个基本解;以基本解为基础,可通过旋转或镜像变换得到其它各解,共8解。
四年级《神奇幻方》奥数教案
讲解重点:明白中心数的填法。
师:根据我们以前学过的知识在解决这类问题时,你们会从哪里着手呢?生:中间数!师:没错,根据我们以前学过的知识我们知道中间数放在正中央,谁来说一说,你还记得怎么放吗?生:5放在正中央,第二个、第四个、第六个、第八个放在四个顶点处,而后就可以根据这些数安排好其他的数字。
师:真棒!你肯定是一位上课特别认真的孩子,说得没错,不过老师今天会用另外两种不同的方法来解决这个问题,你们想不想知道老师用的是哪一种方法呢?生:想!师:我们先分析横行,你们知道一横行三数字之和是多少吗?生:15。
1到9的数字和是45,那么因为每个横行的数字和是相等的,因此,只要用45÷3=15。
师:非常正确!我们知道了三个数字相加的和是15,那么,在这九个数字之中,你能找到几种,三个数字相加是15的式子?和小组的伙伴们试一试,看看哪一组找的最快!生:我们找到了9+5+1、9+4+2、8+6+1、8+5+2、8+4+3、7+6+2、7+5+3、6+5+4,这八种可能。
师:只有这八种吗?还有没有其他的?可别漏了啊。
生:……师:看样子就只有这些可能了,你们觉得老师把这些式子列出来干什么呢?生:将式子中的数字对应的填入格子中。
师:你们觉得,应该怎么将数字对应的填入格子中呢?你们发现了什么?生1:在这些式子中,5出现的次数最多,有4次。
生2:2、4、6、8出现了3次!师:同学们已经找到最关键的一点了,我们观察完式子,再看看这个方格,你能发现什么?生:正中间的数字一共用了4次,四个顶点上的数字用了3次……师:听到这位同学说出了的数字,你们想到了什么?生:算式中5出现了4次,九方格正中央的方格中的的数字用了4次,可以确定,正中央应该填上5,而四个顶点上的数用了3次,正好2、4、6、8这四个数被用了3次,可以确定顶点上的方格应该填2、4、6、8。
这样每一师:同学们都掌握了吗,我们来试下练习一吧。
练习1:(5分)将数字3~11这九个数分别填入下图方格中,不能重复,使每行、每列以及两条对角线上的三个自然数之和相等。
【免费下载】第二讲四年级奥数幻方
幻方是一种广为流传的数学游戏,据说早在大禹治水时就发现过。
幻方的特点是:由自然数构成n×n正方形阵列,称为n阶幻方,每一行、每一列、两对角线上的数之和相等。
法国人罗伯总结出了构造奇数阶连续自然数幻方的简单易行的方法“罗伯法” (也叫“萝卜”法)。
三阶幻方解法“萝卜”法一居上行正中央依次填在右上角上出框时下边填右出框时左边放斜出框时下边放(出角重复一个样)排重便在下格填“萝卜”法适用于所有”奇数阶”幻方(真牛),比如9阶(了解)4758698011223344557687991122334446677881021324354567771820314253556661719304152636576162729405162647552628395061727441536384960717331425幻方的其它概念: 中心数和黄金三角的规律只适用于3阶幻方1.中心数: 中心数为对称两边数的和除以2 (比如(8+2)/2=5)2.黄金三角: 黄金三角顶点的数为两腰之和除以2(比如(7+9)/2=8)练习在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.解析30被分为3行,那么10为中间的数,所以两个方格的正中间均为10,那么第一个正方形一条对角线上的数为8,10,12,接着一行可填15,10,5;需注意15和8相邻,那么剩下的只要相加为30即可.同理,第二个正方形一条对角线上的数为14,10,6,接着一行可填15,10,5;需注意15和6相邻,那么剩下的只要相加为30即可.解答解:如图:。
小学奥数教程(最完美)
目录第一讲奇妙的幻方 (3)练习卷 (9)第二讲可能性的大小(游戏与对策) (10)练习卷 (12)第三讲图形的面积(一) (13)第四讲认识分数 (17)练习卷 (21)第五讲行程中的相遇(相遇问题) (22)练习卷 (26)第六讲公因数与公倍数 (27)综合演练 (31)第一讲幻方(第一课时)【知识概述】在一个n×n的正方形方格中,填入一些连续的数字,使得所有的横、竖、斜列所加之和都相等,这样的正方形方格叫做幻方。
幻方一般分为奇数幻方和偶数幻方。
(n 是几就表示为几阶幻方)。
本讲,我们将来学习这方面的知识。
例题讲学例1在一个3×3的表格内,填入1-9九个数,(不能重复,不能遗漏),使得3个横列、3个竖列和2个斜列所加之和都相等。
可以怎样填?【和为15】【思路分析】这样的3×3幻方,在填写时有一定的规律和口诀:二、四为肩,六、八为足,左七右三,戴九履一,五为中央。
【注:戴指头,履指脚。
】试试填一填吧!幻方(第二课时)知识概述:上一讲中,我们讲述了如何填写3×3的幻方,其实在幻方的知识世界里,像3×3、5×5、7×7……像这样幻方,称之为奇数幻方,这一讲我们将来学习如何填写五阶幻方。
例题:在一个5×5的方格中,填入1-25这25个数字,使5个横列、5个竖列、2个斜列所加之和都相等。
先试试看!看样子,要想顺利填写好这么多的表格,还真的不容易,没有口诀真的不行,下面这个口诀要记牢:一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。
你能按顺序继续写下去吗?试试看吧!幻方(第三课时)根据上讲中的方法,把口诀运用到所有的奇数幻方中,可以继续填写七阶幻方、九阶幻方、十一阶幻方……,本讲,我们继续试着填写七阶幻方和九阶幻方。
【思路点拨】再来重温一下口诀吧!一居首行正中央,依次斜向右上方,右出框时左边写,上出框时下边放,双出占位写下方。
小学四年级奥数下册简单的幻方及其他数阵图教案
小学四年级奥数下册简单的幻方及其他数阵图教案简单的幻方及其他数阵图教案有关幻方问题的研究在我国已流传了两千多年,它是具有独特形式的填数字问题.宋朝的杨辉将幻方命名为“纵横图.”并探索出一些解答幻方问题的方法.随着历史的进展,许多人对幻方做了进一步的研究,创造了许多绚丽多彩的幻方. 据传说在夏禹时代,洛水中出现过一只神龟,背上有图有文,后人称它为“洛书”.洛书所表示的幻方是在3×3的方格子里(即三行三列),按一定的要求填上1~9这九个数,使每行、每列、及二条对角线上各自三数之和均相等,这样的3×3的数阵阵列称为三阶幻方. 一般地说,在n×n(n行n列)的方格里,既不重复又不遗漏地填上n2个连续的自然数(一般从1开始,也可不从1开始)每个数占一格,并使排在任一行、任一列和两条对角线上的n个自然数的和都相等,这样的数表叫做n阶幻方.这个和叫做幻和,n叫做阶. 杨辉在《续古摘奇算法》中,总结洛书幻方构造方法时写到:“九子排列,上、下对易,左右相更,四维挺出.”现用下图对这四句话进行解释.九子排列上、下对易左右相更四维挺出怎样构造幻方呢?一般方法是先求幻和,再求中间位置的数,最后根据奇、偶情况试填其他方格内的数.分析为了便于叙述,先用字母表示图中要填写的数字.如上右图所示.解答这个题目,可以分三步解决:①先求出每行、每列三个数的和是多少?②再求中间位置的数是多少?此题是求E=?③最后试填其他方格里的数.∵A+B+C+D+E+F+G+H+I=1+2+3+4+5+6+7+8+9=45.∴A+B+C=D+E+F=G+H+I=15.∴B+E+H=A+E+I=C+E+G=15.∴A+B+C+D+E+F+G+H+I+3E=(A+E+I)(B+E+H)+(C+E+G)+(D+E+F)=15X4.45+3E=603E=15E=5.这样,正中央格中的数一定是5.由于在同一条直线的三个数之和是15,因此若某格中的数是奇数,那么与这个数在同一条直线上的另两个数的奇偶性相同.因此,四个角上的数A、C、G、I必为偶数.(否则,若A为奇数,则I为奇数.此时若B为奇数,则其余所有格亦为奇数;若B为偶数,则其余所有格亦为偶数.无论哪种情形,都与1至9中有5个奇数,4个偶数这一事实矛盾.)因此,B、D、F、H为奇数.我们不妨认为A=2(否则,可把3×3方格绕中心块旋转即能做到这一点).此时I=8.此时有两种选择:C=4或G=4.因而,G=6或C=6.其他格的数随之而定.因此,如果把经过中心块旋转而能完全重合的两种填数法视作一种的话,一共只有两种不同的填数法:A=2,C=4或A=Z,G=4(2,4被确定位置后,其他数的位置随之而定).解:按照上面的分析,我们可以得到两个解(还有另外6个可以由这两个解经过绕中心块旋转而得到,请大家自己完成).下面我们就来介绍一些简单的幻方.例1 将1~9这九个数,填入下左图中的方格中,使每行、每列、两条对角线上三个数字的和都相等.网络搜集整理,仅供参考。
4年级奥数培优讲义-6-幻方和数阵图-难版
精品资料之奥数培优讲义适用:华杯、希望、年级:四年级科目:小学奥数内容:奥数培优教程(资料来源于学校内部,供各位老师学习交流使用,欢迎大家下载参考)传说在五千年前,大禹治水的时代,人们在黄河中发现一只大龟,龟背上有一些奇怪的图案,经过破译,人们将龟背上的神奇的图案译成了如下图这样的数阵图,也称做幻方。
幻方和数阵是我国文化遗产之一,早在公元前4世纪就有“河图”、“洛书”的传说与记载。
到了宋朝,杨辉对幻方已有较详细的记述,并探索出一些编制方法。
明朝程大位、清朝张潮等人,创制了绚丽多彩的幻方与数阵图式,其中九宫图是最简单的三阶幻方。
将三阶幻方推广,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,通常被称为“数阵图”。
幻方是特殊的数阵图。
大约在15世纪初,幻方传到国外,引起了欧洲很多数学家的兴趣,发现许多新成果。
人们发现幻方不仅仅是一种数字游戏,而且与实验方案的设计及一些高深数学分支有关,幻方已成为数阵图中最重要的课题,是数学研究中的一个重要分支。
数阵图大致分三种:封闭型数阵图、开放型数阵图和复合型数阵图。
幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。
这个相等的和叫“幻和”。
要求在n 行n 列的方格里,既不重复又不遗漏地填上n ×n 个连续的自然数。
这些自然数所组成的一列数有极强的规律性,按顺序排列后,每一项都比它前面的一项大1,即它们构成了差相等的数列,是等差数列。
因此在解答这类问题时,常用的知识有:1.等差数列的求和公式总和=(首项+末项)×项数÷2知识梳理2.数字的奇偶性奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数可简记为:同性为偶,异性为奇(注:同性是同奇或同偶,异性是指一奇一偶)。
数阵图【例1】★如图所示,在三个圆圈中各填入一个自然数,使每条线段两端的两个数之和均为奇数。
请问这样的填法存在吗?如不存在,请说明理由;如存在,请写出一种填法。
小学奥数讲义4年级-6-幻方和数阵图-难版
传说在五千年前,大禹治水的时代,人们在黄河中发现一只大龟,龟背上有一些奇怪的图案,经过破译,人们将龟背上的神奇的图案译成了如下图这样的数阵图,也称做幻方。
幻方和数阵是我国文化遗产之一,早在公元前4世纪就有“河图”、“洛书”的传说与记载。
到了宋朝,杨辉对幻方已有较详细的记述,并探索出一些编制方法。
明朝程大位、清朝张潮等人,创制了绚丽多彩的幻方与数阵图式,其中九宫图是最简单的三阶幻方。
将三阶幻方推广,结合某些几何图形,把一些数字填入图形的某种位置上,并使数字满足一定的约束条件,这类问题,通常被称为“数阵图”。
幻方是特殊的数阵图。
大约在15世纪初,幻方传到国外,引起了欧洲很多数学家的兴趣,发现许多新成果。
人们发现幻方不仅仅是一种数字游戏,而且与实验方案的设计及一些高深数学分支有关,幻方已成为数阵图中最重要的课题,是数学研究中的一个重要分支。
数阵图大致分三种:封闭型数阵图、开放型数阵图和复合型数阵图。
幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。
这个相等的和叫“幻和”。
要求在n 行n 列的方格里,既不重复又不遗漏地填上n ×n 个连续的自然数。
这些自然数所组成的一列数有极强的规律性,按顺序排列后,每一项都比它前面的一项大1,即它们构成了差相等的数列,是等差数列。
因此在解答这类问题时,常用的知识有: 1.等差数列的求和公式总和=(首项+末项)×项数÷2 2.数字的奇偶性 奇数±奇数=偶数 偶数±偶数=偶数知识梳理奇数±偶数=奇数可简记为:同性为偶,异性为奇(注:同性是同奇或同偶,异性是指一奇一偶)。
数阵图【例1】★如图所示,在三个圆圈中各填入一个自然数,使每条线段两端的两个数之和均为奇数。
请问这样的填法存在吗?如不存在,请说明理由;如存在,请写出一种填法。
【解析】不存在,设所填的数分别是a ,b ,c ,如图所示。
假设 a+b=奇数. a+c=奇数, b+c=奇数, 左边=2(a+b+c),是偶数,右边=三个奇数相加,是奇数, 偶效≠奇数。
人教版四年级下册数学奥数——魔力幻方(课件)
实践与应用
【练习1】 P98 用1,3,5,7,9,11,13,15,17这九个奇数构成一个三阶幻方。
【例2】把3,4,5,6,7,8,9,10,11九个数填入图中的方格内,使每一行、 每一列和每条对角线上的数的和都相等。
填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题, 也是一类比较常见的填数问题。这里,和同学们讨论一些数阵的填法。
解答数阵问题通常用两种方法:一是待定数法,二是试验法。 待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这
些字母(或符号)应具备的条件,为解答数阵问题提供方向。 试验法就是根据题中所给条件选准突破口,确定填数的可能范围。把分析推理和
【分析与解答】 三阶幻方九个数中存在4个未知数,看似无从下手,那么能否从题干中找到 突破口呢?从第一行和第三列可以轻松推断出A的值,从而可以依次求出B, C,D的值。 我来解答:从第一行和第三列可知A+12+D=D+20+11, 那么A+12=20+11,4=19。对角线上三个数的和为19+15+11=45。 那么B=45-19-16=10,C=45-12-15=18,D=45-19-12=14。
小结与提示 解答三阶幻方问题,要充分抓往题干中隐藏的已知条件,作为解题的突破口。
实践与应用
【练习4】 P102 在下图中的A、B、C、D处填上活当的数,使下图成为一个三阶幻方。
【例5】将1,2,3,5,6,7这六个数填入下图中,使每行中三个数的和相等,同时使每列中两个数
四年级数学奥数培优讲义-专题16幻方(含解析)
专题16幻方1.在如图的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。
A 是 、B 是 。
C 是 。
2.在如方格中,每行每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 。
13B 4A13.在如图方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次 ,B 应该是 。
4.在图中的方格中,每行、每列都有1一4这四个数,并且每个数在每行、每列都只出现一次 B 是 。
5.在如图所示的方格中,每行、每列都有1~4这四个数,并且每个数在每行、每列都只出现一次。
23B4A2A应该是 ,B应该是 。
6.小游戏:如图,九宫格中左上角为“开”,其余8格分别写着下一步的移动方法,就按照这格上的指示要求移动(如“左2”,即左移2格;“下1”,即下移1格);如果要把每一格都跳一遍(不重复),则第一次要放在第 列第 行的那一格。
7.如图的方格中,每行、每列都有1~4这四个数,且每个数在每行、每列都只出现一次.A是 ,B 是 .A.1B.2C.38.如图,在5×5的正方形方格中,排列着数字1、2、3、4、5,在每列中也恰好出现一次。
则写着X的空格中的数应当是 。
9.如表方格中每行、每列都有1~4这4个数,并且每个数在每行、每列都只出现一次。
想一想,A应该是 B应该是 。
322A13B10.在如图的方格里,每行、每列都有1~4这四个数,并且每个数在每行、每列都只能出现一次 。
11.在如图的方格中,每行、每列都有1﹣4这四个数,并且每个数在每行每列都只出现一次 ,C 是 .12.在如图的方格中,每行每列都有1~4这四个数,并且每个数在每行每列都只出现一次 ,B 是 .13.如图是一种精简版的“数独”游戏,每行每列都只有1~4这四个自然数,并且每个数在每行、每列都只出现一次 。
14.在右面的方格中,每行、每列都有1~4这4个数,并且每个数在每行、每列都出现一次。
B应该是 ,A应该是 。
奥数讲座(4年级-下)(14讲)
四年级奥数讲座(二)目录第一讲乘法原理第二讲加法原理第三讲排列第四讲组合第五讲排列组合第六讲排列组合的综合应用第七讲行程问题第八讲数学游戏第九讲有趣的数阵图(一)第十讲有趣的数阵图(二)第十一讲简单的幻方及其他数阵图第十二讲数字综合题选讲第十三讲三角形的等积变形第十四讲简单的统筹规化问题第一讲乘法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:注意到 3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么,完成这件事一共有N=m1×m2×…×mn种不同的方法.这就是乘法原理.例1某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?分析某人买饭要分两步完成,即先买一种主食,再买一种副食(或先买副食后买主食).其中,买主食有3种不同的方法,买副食有5种不同的方法.故可以由乘法原理解决.解:由乘法原理,主食和副食各买一种共有3×5=15种不同的方法.补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?分析甲虫要从A点沿线段爬到B点,必经过C点,所以,完成这段路分两步,即由A到C,再由C到B.而由A到C有三种走法,由C到B也有三种走法,所以,由乘法原理便可得到结论.解:这只甲虫从A到B共有3×3=9种不同的走法.例3书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?分析要做的事情是从外语、语文书中各取一本.完成它要分两步:即先取一本外语书(有6种取法),再取一本语文书(有4种取法).(或先取语文书,再取外语书.)所以,用乘法原理解决.解:从架上各取一本共有6×4=24种不同的取法.例4王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?分析三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的报名方法.满足乘法原理的条件,可由乘法原理解决.解:由乘法原理,报名的结果共有4×4×4=64种不同的情形.例5由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法,由乘法原理,共可组成3×4×4=48个不相等的三位数.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法,由乘法原理,共有3×3×2=18个没有重复数字的三位数.解:由乘法原理①共可组成3×4×4=48(个)不同的三位数;②共可组成3×3×2=18(个)没有重复数字的三位数.例6由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.解:由1、2、3、4、5、6共可组成3×4×5×3=180个没有重复数字的四位奇数.例7右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.解:由乘法原理,共有16×9×4×1=576种不同的放法.例8现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取,共9种取法,即0、1、2、3、4、5、6、7、8;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.由乘法原理,共有9×4=36种情形,但注意到,要求“至少取一张”而现在包含了一张都不取的这一种情形,应减掉.解:取出的总钱数是9×4-1=35种不同的情形.习题一1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?习题一解答1.3×2×4=24(种).2.1×4×3=12(个).3.90×9=810(个).4.4×4×3×2×1=96(种).5.①8×8×8=512(个);②4×8×8=256(个);③4×7×6=168(个);④1×7×6=42(个);⑤1×3×6=18(个).6.9×10×10×10×10×10=900000(部).第二讲加法原理生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m2种不同做法,…,第k类方法中有mk种不同的做法,则完成这件事共有N=m1+m2+…+mk种不同的方法.这就是加法原理.例1学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?分析在这个问题中,小明选一本书有三类方法.即要么选外语书,要么选科技书,要么选小说.所以,是应用加法原理的问题.解:小明借一本书共有:150+200+100=450(种)不同的选法.例2一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?分析①中,从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法.所以是加法原理的问题.②中,要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题.解:①从两个口袋中任取一个小球共有3+8=11(种),不同的取法.②从两个口袋中各取一个小球共有3×8=24(种)不同的取法.补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析从甲地到丙地共有两大类不同的走法.第一类,由甲地途经乙地到丙地.这时,要分两步走,第一步从甲地到乙地,有4种走法;第二步从乙地到丙地共2种走法,所以由乘法原理,这时共有4×2=8种不同的走法.第二类,由甲地直接到丙地,由条件知,有3种不同的走法.解:由加法原理知,由甲地到丙地共有:4×2+3=11(种)不同的走法.例4如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.解:从A点先经过C到B点共有:1×3=3(种)不同的走法.从A点先经过D到B点共有:2×3=6(种)不同的走法.所以,从A点到B点共有:3+6=9(种)不同的走法.例5有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.第一类,两个数字同为奇数.由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.第二类,两个数字同为偶数,类似第一类的讨论方法,也有3×3=9种不同情形.最后再由加法原理即可求解.解:两个正方体向上的一面同为奇数共有3×3=9(种)不同的情形;两个正方体向上的一面同为偶数共有3×3=9(种)不同的情形.所以,两个正方体向上的一面数字之和为偶数的共有3×3+3×3=18(种)不同的情形.例6从1到500的所有自然数中,不含有数字4的自然数有多少个?分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有1、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数中,小于500并且不含数字4的可以这样考虑:百位上,不含4的有1、2、3、这三种情况.十位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,个位上,不含4的也有九种情况.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理,这时共有3×9×9=243个三位数.由于500也是一个不含4的三位数.所以,1~500中,不含4的三位数共有3×9×9+1=244个.解:在1~500中,不含4的一位数有8个;不含4的两位数有8×9=72个;不含4的三位数有3×9×9+1=244个,由加法原理,在1~500中,共有:8+8×9+3×9×9+1=324(个)不含4的自然数.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个.这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7如下页左图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析观察下页左图,注意到,从A到B要一直向右、向上,那么,经过下页右图中C、D、E、F四点中的某一点的路线一定不再经过其他的点.也就是说从A到B点的路线共分为四类,它们是分别经过C、D、E、F的路线.第一类,经过C的路线,分为两步,从A到C再从C到B,从A到C有2条路可走,从C到B也有两条路可走,由乘法原理,从A经C到B共有2×2=4条不同的路线.第二类,经过D点的路线,分为两步,从A到D有4条路,从D到B有4条路,由乘法原理,从A经D到B共有4×4=16种不同的走法.第三类,经过E点的路线,分为两步,从A到E再从E到B,观察发现.各有一条路.所以,从A经E到B共有1种走法.第四类,经过F点的路线,从A经F到B只有一种走法.最后由加法原理即可求解.解:如上右图,从A到B共有下面的走法:从A经C到B共有2×2=4种走法;从A经D到B共有4×4=16种走法;从A经E到B共有1种走法;从A经F到B共有1种走法.所以,从A到B共有:4+16+1+1=22种不同的走法.习题二1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?4.在1~1000的自然数中,一共有多少个数字0?5.在1~500的自然数中,不含数字0和1的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?习题二解答1.3×3+2×4=17(种).2.6+7+15+21+6×7=91(种).提示:拿两本的情况分为2本画报或2本书或一本画报一本书.3.(1)6;(2)10;(3)20;(4)35.4.9+180+3=192(个).5.8+8×8+3×8×8=264(个).6.9+8+7+6+5+4+3+2+1=45(次).第三讲排列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.例如某客轮航行于天津、青岛、大连三个城市之间.问:应准备有多少种不同船票?分析这个问题,可以用枚举法解决,三个城市之间,船票有下面六种设置方式:如果不用枚举法,注意到要准备的船票的种类不仅与所选的两个城市有关,而且与这两个城市作为起点、终点的顺序有关,所以,要考虑共准备多少种不同的船票,就要在三个城市之间每次取出两个,按照起点、终点的顺序排列.首先确定起点站,在三个城市中,任取一个为起点站,共有三种选法.其次确定终点站,每次确定了一个起点站后,只能从剩下的两个城市之中选终点站,共有两种选法.由乘法原理,共需准备:3×2=6种不同的船票.为叙述方便,我们把研究对象(如天津、青岛、大连)看作元素,那么上面的问题就是在三个不同的元素中取出两个,按照一定的顺序排成一列的问题.我们把每一种排法叫做一个排列(如天津——青岛就是一个排列),把所有排列的个数叫做排列数.那么上面的问题就是求排列数的问题.一般地,从n个不同的元素中任取出m个(m≢n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n个不同元素中取出m个(m≢n)元素的所有排列的个数,叫做从上面的问题要计算从3个城市中取出2个城市排成一列的排列数,就是一般地,从n个不同元素中取出m个元素(m≢n)排成一列的问题,可以看成是从n个不同元素中取出m个,排在m个不同的位置上的问题,而第一步:先排第一个位置上的元素,可以从n个元素中任选一个,有n种不同的选法;第二步:排第二个位置上的元素.这时,由于第一个位置已用去了一个元素,只剩下(n-1)个不同的元素可供选择,共有(n-1)种不同的选法;第三步:排第三个位置上的元素,有(n-2)种不同的选法;…第m步:排第m个位置上的元素.由于前面已经排了(m-1)个位置,用去了(m-1)个元素.这样,第m个位置上只能从剩下的[n-(m-1)]=(n-m+1)个元素中选择,有(n-m+1)种不同的选法.由乘法原理知,共有:n(n-1)(n-2)…(n-m+1)种不同的排法,即:这里,m≢n;且等号右边从n开始,后面每个因数比前一个因数小1,共有m个因数相乘.例1解:由排列数公式知:例2有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?分析这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置.我们的问题就是要从五个不同的元素中取三个,排在三个位置的问题.由于信号不仅与旗子的颜色有关,而且与不同旗子所在的位置有关,所以是排列问题,且其中n=5,m=3.解:由排列数公式知,共可组成种不同的信号.补充说明:这个问题也可以用乘法原理来做,一般,乘法原理中与顺序有关的问题常常可以用排列数公式做,用排列数公式解决问题时,可避免一步步地分析考虑,使问题简化.例3用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?分析这是一个从8个元素中取5个元素的排列问题,且知n=8,m=5.解:由排列数公式,共可组成:例4幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法?分析在这个问题中,只要把3把椅子看成是3个位置,而6名小朋友作为6个不同元素,则问题就可以转化成从6个元素中取3个,排在3个不同位置的排列问题.解:由排列数公式,共有:种不同的坐法.例5幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法?分析与例4不同,这次是椅子多而人少,可以考虑把6把椅子看成是6个元素,而把3名小朋友作为3个位置,则问题转化为从6把椅子中选出3把,排在3名小朋友面前的排列问题.解:由排列公式,共有:种不同的坐法.例6有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况?(照相时3人站成一排)分析由于4人中必须有一个人拍照,所以,每张照片只能有3人,可以看成有3个位置由这3人来站.由于要选一人拍照,也就是要从四个人中选3人照相,所以,问题就转化成从四个人中选3人,排在3个位置中的排列问题.要计算的是有多少种排法.解:由排列数公式,共可能有:种不同的拍照情况.例7 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法?分析 4个人到照相馆照相,那么4个人要分坐在四个不同的位置上.所以这是一个从4个元素中选4个,排成一列的问题.这时n=4,m=4.解:由排列数公式知,共有。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幻方是一种广为流传的数学游戏,据说早在大禹治水时就发现过。
幻方的特点是:由自然数构成n×n正方形阵列,称为n阶幻方,每一行、每一列、两对角线上的数之和相等。
法国人罗伯总结出了构造奇数阶连续自然数幻方的简单易行的方法“罗伯法” (也叫“萝卜”法)。
三阶幻方解法
“萝卜”法
一居上行正中央
依次填在右上角
上出框时下边填
右出框时左边放
斜出框时下边放(出角重复一个样)
排重便在下格填
9阶(了解)
47 58 69 80 1 12 23 34 45
57 68 79 9 11 22 33 44 46
67 78 8 10 21 32 43 54 56
77 7 18 20 31 42 53 55 66
6 1
7 19 30 41 52 63 65 76
16 27 29 40 51 62 64 75 5
26 28 39 50 61 72 74 4 15
36 38 49 60 71 73 3 14 25
37 48 59 70 81 2 13 24 35
幻方的其它概念: 中心数和黄金三角的规律只适用于3阶幻方
1.中心数: 中心数为对称两边数的和除以2 (比如(8+2)/2=5)
8 1 6
3 5 7
4 9 2
2.黄金三角: 黄金三角顶点的数为两腰之和除以2(比如(7+9)/2=8)
练习
1.在如图所示的方格内填上合适的数,使每行、每列及对角线上的三数之和等于33.
14 9 10
7 11 15
12 13 8
2.中间值是“12”,请在其他8格填上适当的数据,使9个方格内的数据是9个连续的自然
数的幻方
15 8 13
10 12 14
11 16 9
标准的幻方是每行每列以及对角线上的和为15, 现在
要求为33, 如果在标准幻方的基础上每个数都扩大
6,就可以满足要求: 15+6x3=33
简单:只要在标准的幻方的基础上+7 就OK
3.每一行、列、对角线上的数的和要为30,请补充填写空白处的数
15
13
5
4.求?,要求3列3行还有斜线和一致!
?
89
21
在图(1),(2)的空格中填入不大于15且互不相同的数(其中已填好一个数),使每一横行、每一竖列和对角线上的3个数之和都等于30.
解析30被分为3行,那么10为中间的数,所以两个方格的正中间均为10,那么第一个正方形一条对角线上的数为8,10,12,接着一行可填15,10,5;需注意15和8相邻,那么剩下的只要相加为30即可.
同理,第二个正方形一条对角线上的数为14,10,6,接着一行可填15,10,5;需注意15和6相邻,那么剩下的只要相加为30即可.
解答解:如图:
八下古诗文及翻译
桃花源记作者:陶渊明
晋太元中,武陵人捕鱼为业。
缘溪行,忘路之远近。
忽逢桃花林,夹(jiā)岸数百步,中无杂树,芳草鲜美,落英缤纷。
渔人甚异之。
复前行,欲穷其林。
林尽水源,便得一山,山有小口,仿佛若有光。
便舍(shě)船,从口入。
初极狭,才通人。
复行数十步,豁(huò)然开朗。
土地平旷,屋舍(shè)俨(yǎn)然,有良田美池桑竹之属。
阡(qiān)陌(mò)交通,鸡犬相闻。
其中往来种(zhòng)作,男女衣着(zhuó),悉如外人。
黄发垂髫(tiáo),并怡然自乐。
见渔人,乃大惊,问所从来。
具答之。
便要(yāo)还家,设酒杀鸡作食。
村中闻有此人,咸(xián)来问讯。
自云先世避秦时乱,率妻子邑(yì)人来此绝境,不复出焉,遂与外人间隔。
问今是何世,乃不知有汉,无论魏晋。
此人一一为具言所闻,皆叹惋。
余人各复延至其家,皆出酒食。
停数日,辞去。
此中人语(yù)云:“不足为外人道也。
”
既出,得其船,便扶向路,处处志之。
及郡下,诣(yì)太守,说如此。
太守即遣人随其往,寻向所志,遂迷,不复得路。
南阳刘子骥(jì),高尚士也,闻之,欣然规往。
未果,寻病终。
后遂无问津者。
译文:
东晋太元年间,武陵郡有个人以打渔为生。
一天,他顺着溪水行船,忘记了路程的远近。
忽然遇到一片桃花林,生长在溪水的两岸,长达几百步,中间没有别的树,花草鲜嫩美丽,落花纷纷的散在地上。
渔人对此(眼前的景色)感到十分诧异,继续往前行船,想走到林子的尽头。
桃林的尽头就是溪水的发源地,于是便出现一座山,山上有个小洞口,洞里仿佛有点光亮。
于是他下了船,从洞口进去了。
起初洞口很狭窄,仅容一人通过。
又走了几十步,突然变得开阔明亮了。
(呈现在他眼前的是)一片平坦宽广的土地,一排排整齐的房舍。
还有肥沃的田地、美丽的池沼,桑树竹林之类的。
田间小路交错相通,鸡鸣狗叫到处可以听到。
人们在田野里来来往往耕种劳作,男女的穿戴跟桃花源以外的世人完全一样。
老人和小孩们个个都安适愉快,自得其乐。
村里的人看到渔人,感到非常惊讶,问他是从哪儿来的。
渔人详细地做了回答。
村里有人就邀请他到自己家里去(做客)。
设酒杀鸡做饭来款待他。
村里的人听说来了这么一个人,就都来打听消息。
他们自己说他们的祖先为了躲避秦时的战乱,领着妻子儿女和乡邻来到这个与人世隔绝的地方,不再出去,因而跟外面的人断绝了来往。
他们问渔人现在是什么朝代,他们竟然不知道有过汉朝,更不必说魏晋两朝了。
渔人把自己知道的事一一详尽地告诉了他们,听完以后,他们都感叹惋惜。
其余的人各自又把渔人请到自己家中,都拿出酒饭来款待他。
渔人停留了几天,向村里人告辞离开。
村里的人对他说:“我们这个地方不值得对外面的人说啊!”
渔人出来以后,找到了他的船,就顺着旧路回去,处处都做了标记。
到了郡城,到太守那里去,报告了这番经历。
太守立即派人跟着他去,寻找以前所做的标记,终于迷失了方向,再也找不到通往桃花源的路了。
南阳人刘子骥是个志向高洁的隐士,听到这件事后,高兴地计划前往。
但没有实现,不久因病去世了。
此后就再也没有问桃花源路的人了。