2017年全国高考理科数学试题及答案-全国卷194132

合集下载

2017年全国统一高考数学试卷及答案详解(理科-新课标Ⅰ)

2017年全国统一高考数学试卷及答案详解(理科-新课标Ⅰ)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p44.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|=.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017•新课标Ⅰ)已知集合A={x|x<1},B={x|3x<1},则()A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.2.(5分)(2017•新课标Ⅰ)如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.B.C.D.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B3.(5分)(2017•新课标Ⅰ)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.4.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1 B.2 C.4 D.8【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.5.(5分)(2017•新课标Ⅰ)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是()A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D6.(5分)(2017•新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选C.7.(5分)(2017•新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S=×2×(2+4)=6,梯形∴这些梯形的面积之和为6×2=12,故选:B8.(5分)(2017•新课标Ⅰ)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()A.A>1000和n=n+1 B.A>1000和n=n+2C.A≤1000和n=n+1 D.A≤1000和n=n+2【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.9.(5分)(2017•新课标Ⅰ)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向右平移个单位长度,得到函数y=cos2(x﹣)=cos(2x﹣)=sin(2x+)的图象,即曲线C2,故选:D.10.(5分)(2017•新课标Ⅰ)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A.16 B.14 C.12 D.10【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为﹣θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A11.(5分)(2017•新课标Ⅰ)设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.故选:D.12.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440 B.330 C.220 D.110},设b n=+…+=2n﹣1,(n∈N+),【解答】解:设该数列为{a则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|=2.【解答】解:∵向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.故答案为:2.14.(5分)(2017•新课标Ⅰ)设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.15.(5分)(2017•新课标Ⅰ)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.16.(5分)(2017•新课标Ⅰ)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为4cm3.【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)(2017•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S=acsinB=,△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.18.(12分)(2017•新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.19.(12分)(2017•新课标Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)由(1)知尺寸落在(μ﹣3σ,μ+3σ)之外的概率为0.0026,由正态分布知尺寸落在(μ﹣3σ,μ+3σ)之外为小概率事件,因此上述监控生产过程方法合理;(ⅱ)因为用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,且==9.97,s==≈0.212,所以﹣3=9.97﹣3×0.212=9.334,+3=9.97+3×0.212=10.606,所以9.22∉(﹣3+3)=(9.334,10.606),因此需要对当天的生产过程进行检查,剔除(﹣3+3)之外的数据9.22,则剩下的数据估计μ==10.02,将剔除掉9.22后剩下的15个数据,利用方差的计算公式代入计算可知σ2≈0.008,所以σ≈0.09.20.(12分)(2017•新课标Ⅰ)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2=,则=====﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).21.(12分)(2017•新课标Ⅰ)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x ﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=()+(a﹣2)×﹣ln<0,∴1﹣﹣ln<0,即ln+﹣1>0,设t=,则g(t)=lnt+t﹣1,(t>0),求导g′(t)=+1,由g(1)=0,∴t=>1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x+)(e x﹣),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x+)(e x﹣)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1﹣﹣ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1﹣﹣ln>0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1﹣﹣ln<0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(﹣1),则f(n0)=(a+a﹣2)﹣n0>﹣n0>﹣n0>0,由ln(﹣1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).[选修4-4,坐标系与参数方程]22.(10分)(2017•新课标Ⅰ)在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.【解答】解:(1)曲线C的参数方程为(θ为参数),化为标准方程是:+y2=1;a=﹣1时,直线l的参数方程化为一般方程是:x+4y﹣3=0;联立方程,解得或,所以椭圆C和直线l的交点为(3,0)和(﹣,).(2)l的参数方程(t为参数)化为一般方程是:x+4y﹣a﹣4=0,椭圆C上的任一点P可以表示成P(3cosθ,sinθ),θ∈[0,2π),所以点P到直线l的距离d为:d==,φ满足tanφ=,又d的最大值d max=,所以|5sin(θ+φ)﹣a﹣4|的最大值为17,得:5﹣a﹣4=17或﹣5﹣a﹣4=﹣17,即a=﹣16或a=8.[选修4-5:不等式选讲]23.(2017•新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.【解答】解:(1)当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x=的二次函数,g(x)=|x+1|+|x﹣1|=,当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x=,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1,];当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2.当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2.综上所述,f(x)≥g(x)的解集为[﹣1,];(2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需,解得﹣1≤a≤1,故a的取值范围是[﹣1,1].。

2017年数学真题及解析_2017年全国统一高考数学试卷(理科)(新课标ⅰ)

2017年数学真题及解析_2017年全国统一高考数学试卷(理科)(新课标ⅰ)

2017年全国统一高考数学试卷(理科)(新课标I)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)巳知集合A=(x∣x<l},B=(x∣3×<l},则()A.A∩B={x∣x<0}B.AUB=RC.AUB={x∣x>l}D.AEB=02.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()BCA.ɪB.ɪC.ɪD.—48243.(5分)设有下面四个命题Pi:若复数Z满足1∈R,则z∈R;ZP2:若复数Z满足z2∈R,则z∈R;P3:若复数Zl,Z2满足Z1Z2任R,则ZI=&P4:若复数z∈R,则三WR.其中的真命题为()A.Pl,p3B.Pl,p4C.P2,P3D.P2,P44.(5分)记Sn为等差数列{a tl}的前n项和.若a4+a5=24,S6=48,则{a∏}的公差为()A.1B.2C.4D.85.(5分)函数f(x)在(-8,+8)单调递减,且为奇函数.若f(I)=-1,则满足-l≤f(X-2)≤1的X的取值范围是()A.[-2,2]B.[-1,1]C.[0,4]D.[1,3]6.(5分)(1+工)(l+x)6展开式中χ2的系数为()2XA.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在A.A>1000和n=n+lB.A>1000和n=n+2C.A≤1000和n=n+lD.A≤1000和n=n+29.(5分)已知曲线Ci:y=cosx,C2:y=sin(2x+22L),则下面结论正确的是()3A.把Cl上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移2L个单位长度,得到曲线C26B.把Cl上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移2L个单位长度,得到曲线C212C.把Cl上各点的横坐标缩短到原来的【倍,纵坐标不变,再把得到的曲线向右2平移2L个单位长度,得到曲线C26D.把Cl上各点的横坐标缩短到原来的【倍,纵坐标不变,再把得到的曲线向左2平移2L个单位长度,得到曲线C21210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线∣ι,I2,直线Ii与C交于A、B两点,直线∣2与C交于D、E两点,则AB∣+∣DE∣的最小值为()A.16B.14C.12D.1011.(5分)设x、y、Z为正数,且2x=3y=5z,贝U()A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1, 2,4,8,16,其中第一项是2。

2017年全国二卷理科数学高考真题及详解(全word版)

2017年全国二卷理科数学高考真题及详解(全word版)

2017年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答题前,考生先将自己的XX 、XX 填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签 字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写 的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.=++i1i 3A .i 21+B .i 21-C .i 2+D .i 2-2.设集合{}4 2 1,,=A ,{}042=+-=m x x B ,若{}1=B A ,则=B A .{}3 1-, B. .{}0 1, C .{}3 1, D .{}5 1, 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?〞意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏 D .9盏4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .π90 B .π63 C .π42 D .π365.设y x 、满足约束条件⎪⎩⎪⎨⎧≥+≥+-≤-+,,,0303320332y y x y x 则y x z +=2的最小值是A .15-B .9-C .1D .96.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有A .12种B .18种C .24种D .36种理科数学试题第1页〔共4页〕7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8.执行右面的程序框图,如果输入的1-=a ,则输出的=S A .2B .3C .4D .59.若双曲线)00(1:2222>>=-b a by a x C ,的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为A .2B .3C .2D .33210.已知直三棱柱111C B A ABC -中, 120=∠ABC , 2=AB , 11==CC BC , 则异面直线1AB 与1BC 所成角的余弦值为A .23 B .515 C .510 D .33 11.若2-=x 是函数12)1()(--+=x e ax x x f 的极值点,则)(x f 的极小值为A .1-B .32--eC .35-eD .112.已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则)(PC PB PA +⋅的最小值是A .2-B .23-C .34- D .1-二、填空题:本题共4小题,每小题5分,共20分。

最新2017年全国统一高考数学试卷及参考答案(理科)(全国新课标III)

最新2017年全国统一高考数学试卷及参考答案(理科)(全国新课标III)

2017年全国统一高考数学试卷(理科)(全国新课标III)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B. C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{an }的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A. B. C. D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。

2017高考全国3卷理科数学试题与答案

2017高考全国3卷理科数学试题与答案

2017年普通高等学校招生全国统一考试(全国)理科数学(试题及答案解析)一、选择题:(本题共12小题,每小题 5分,共 60分)1.已知集合 A ( x, y) x 2 y 2 1 , B( x, y) y x ,则 AB 中元素的个数为()A . 3B . 2C . 1D . 0【答案】 B221 上所有点的集合, B 表示直线 yx 上所有点的集合,【解析】 A 表示圆 x y 故 A B 表示两直线与圆的交点,由图可知交点的个数为2,即 A B 元素的个数为2,故选 B.2.设复数 z 满足 (1 i) z 2i ,则 z ()1 B .2 C . 2D . 2A .22【答案】 C2i 2i 1 i 2i 2 122 ,故选 C.【解析】由题, z1 i 1 ii 1 ,则 z 121 i23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年 1 月至2016 年 12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在 7,8 月份D .各年 1 月至 6 月的月接待游客量相对 7 月至 12 月,波动性更小,变化比较平稳【答案】 A【解析】由题图可知, 2014年8月到 9月的月接待游客量在减少,则 A 选项错误,故选 A.4. ( x y)(2 x y)5 的展开式中 x 3 y 3 的系数为()A .B .C . 40D . 80【答案】 C【解析】由二项式定理可得,原式展开中含x 3 y3的项为x 22 x 23y 33240x 333 3C 5y C 5 2xyy,则 x y 的系数为 40,故选 C.225x ,且与椭圆5.已知双曲线C :x2y 2 1( a 0 , b 0 )的一条渐近线方程为 yx 2 y 2ab21 有公共焦点.则 C 的方程为()123A . x 2 y 2 1B . x 2 y 21C . x 2 y 21D . x 2 y 218104 55443【答案】 B【解析】 ∵双曲线的一条渐近线方程为y5 x ,则 b5 ① 又∵ 椭圆x 2y 22 a21 与双曲线有公共焦点,易知 c 3 ,则 a 2b 2 c29 ②123x2y2由①② 解得 a 2,b5 ,则双曲线 C 的方程为1,故选 B.456.设函数 f ( x)πcos(x) ,则下列结论错误的是()38πA . f (x) 的一个周期为2πB . y f ( x) 的图像关于直线 x对称3C . f ( xπ π ) 的一个零点为 xD . f (x) 在 ( , π) 单调递减【答案】 D 62【解析】函数 fx cos xπ的图象可由 y cosx 向左平移π个单位得到,3 3 如图可知, f x在 π, π 上先递减后递增, D 选项错误,故选 D.2y- Ox67.执行右图的程序框图,为使输出S 的值小于 91,则输入的正整数N的最小值为() A . 5 B .4 C .3 D . 2【答案】 D【解析】程序运行过程如下表所示:SM t 初始状态 0 100 1 第1次循环结束 100 10 2 第2次循环结束 90 1 3此时 S 90 91 首次满足条件,程序需在 t 3 时跳出循环,即 N2 为满足条件的最小值,故选 D.8.已知圆柱的高为 1,它的两个底面的圆周在直径为 2的同一个球的球面上,则该圆柱的体积为()A .πB .3π ππ4C .D .【答案】 B241 2【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径23 , r122则圆柱体体积 Vπ 23πrh,故选 B.49.等差数列 a n 的首项为 1,公差不为 0.若 a 2 , a 3 , a 6 成等比数列,则a n前 6项的和为()A . 24B . 3C . 3D . 8【答案】 A【解析】 ∵ a n为等差数列,且 a 2 , a 3 , a 6 成等比数列,设公差为 d .则 a 32 a 2 a 6 ,即 a 12d 2a 1 d a 15d又∵ a 1 1 ,代入上式可得 d 2 2d 0又∵ d 0 ,则 d 2∴ S 66a 1 6 5 d 1 6 6 5 224 ,故选 A.2 222xya b 0A 1A 2A 1 A 210.已知椭圆 C : a 2 b 21( )的左、右顶点分别为, ,且以线段 为直径的圆与直线 bx ay 2ab 0 相切,则 C 的离心率为()A .6B .3C .21 33D .33【答案】 A【解析】 ∵ 以 A 1 A 2 为直径为圆与直线 bx ay2ab 0 相切,∴圆心到直线距离d 等于半径,∴ d2aba22又∵ a0,b0 ,则上式可化简为 a 2 3b 2 ∵ b 2 a 2c 2,可得 a 23 a2c2,即 c22a 23∴ ec 6,故选Aa311.已知函数 f ( x) x 2 2xa(e x 1e x 1 ) 有唯一零点,则a()1 1 1A . 2B . 3C . 2D . 1【答案】 C【解析】由条件,f ( x) 22xx 1e x 1x a(e) ,得:f (2x) (2 x) 2 2(2x) a(e 2 x 1e (2 x ) 1 )x 2 4 x 4 42x a(e 1 x e x 1 )22 x x 1e x 1x a(e ) ∴ f (2x) f (x) ,即 x 1 为 f (x) 的对称轴,由题意, f (x) 有唯一零点,∴ f ( x) 的零点只能为 x 1 ,即 f (1) 12 2 1 a(e 1 1e 1 1) 0 ,解得 a 1.212.在矩形 ABCD 中, AB 1, AD2 ,动点 P 在以点 C 为圆心且与 BD 相切的圆上.若APABAD ,则的最大值为()yA . 3B . 2 2P gC . 5D . 2BC【答案】 A【解析】由题意,画出右图.设 BD 与 C 切于点 E ,连接 CE .E以 A 为原点, AD 为 x 轴正半轴,xA(O)DAB 为y轴正半轴建立直角坐标系,则 C 点坐标为 (2,1) . ∵|CD| 1,|BC | 2.22.∴BD 1 25 ∵ BD 切 C 于点 E .∴CE ⊥BD .∴ CE 是 Rt △ BCD 中斜边 BD 上的高 .1 |BC| |CD|2 S △ BCD 22 2 2|EC ||BD | 5 5|BD |5即 C 的半径为 25 .5∵P 在 C 上.∴ P 点的轨迹方程为 ( x 2)2( y 1)245 .设 P 点坐标(x 0, y 0),可以设出 P 点坐标满足的参数方程如下:2x 0 2 5 cos 2y 0 15 sin而 AP (x 0 , y 0 ) , AB (0,1) , AD (2,0) .∵ AP AB AD (0,1) (2,0) (2 , )∴115,y 01 2 5 sin .x 05cos52两式相加得:1 2 5sin15cos552( 2 5 )2 ( 5 )2 sin( )5 5 2 sin( ) ≤ 3(其中 sin5, cos2 5 )55当且仅当π2 k π, kZ 时,取得最大值 3.2二、填空题:(本题共4小题,每小题 5分,共 20分)x y ≥ 0,13.若 x , y 满足约束条件xy 2 ≤ 0, 则 z 3x 4 y 的最小值为 ________.y ≥ 0,【答案】 1【解析】由题,画出可行域如图:目标函数为 z 3 x 4 y ,则直线 3 zz 值越小.yx 纵截距越大, 由图可知: z 在 A 1,1 4 4处取最小值,故 z min 3 1 4 1 1 .x y 2 0yA(1,1)B x(2,0)x y 014.设等比数列 a n满足 a 1 a 21 , a 1 a 33 ,则 a4 ________.【答案】 8【解析】a n 为等比数列,设公比为 q .a 1 a 2 1a 1 a 1 q 1 ① a 1 a 33 ,即 a 1 a 1 q 2 3 ② , 显然 q 1, a 1 0 ,②得 1 q3 ,即 q2 ,代入 ① 式可得 a 1 1 ,①a 4 a 1q 3 138 .2f (x)x 1,x ≤ 0, f ( x1115.设函数 2x , x 0,则满足 f (x))的 x 的取值范围是 ________.2【答案】1 ,4【解析】fxx 1,x ≤ 0, f x f x1 1 1 1 f x2 x , x 02,即 f x2由图象变换可画出yf x1 与 y1 fx的图象如下:2yyf (x 1)2( 1,1)4 4x1 122y 1 f (x)由图可知,满足 f x1 1 1 f x 的解为,.2416. a , b 为空间中两条互相垂直的直线,等腰直角三角形 ABC 的直角边 AC 所在直线与a ,b 都垂直,斜边①当直线 AB 与 a 成②当直线 AB 与 a 成AB 以直线 AC 为旋转轴旋转,有下列结论: 60 角时, AB 与 b 成 30 角;60 角时, AB 与 b 成 60 角;③直线 AB 与 a 所成角的最小值为45 ; ④直线 AB 与 a 所成角的最大值为60 .其中正确的是 ________(填写所有正确结论的编号)【答案】 ②③【解析】由题意知, a 、 b 、AC 三条直线两两相互垂直,画出图 形如图 .不妨设图中所示正方体边长为 1,故|AC| 1, AB2,斜边 AB 以直线 AC 为旋转轴旋转,则A 点保持不变,B 点的运动轨迹是以C 为圆心, 1为半径的圆 .以 C 为坐标原点,以 CD 为 x 轴正方向, CB 为 y 轴正方向,CA 为 z 轴正方向建立空间直角坐标系.则 D(1,0,0) , A(0,0,1) ,直线 a 的方向单位向量 a(0,1,0) , | a | 1 .B 点起始坐标为 (0,1,0) ,直线 b 的方向单位向量 b (1,0,0) , | b | 1 .设 B 点在运动过程中的坐标B (cos ,sin,0) , 其中 为 BC 与CD 的夹角, [0,2 π) . 那么 AB '在运动过程中的向量 AB ( cos, sin ,1) , | AB | 2 .设 AB 与 a 所成夹角为[0, π] ,2则cos 故设AB( cos , sin ,1) (0,1,0)2| sin| [0,2] .a AB22π π[ ,] ,所以③正确,④错误.4 2与 b 所成夹角为π[0, ],2AB bcosb AB(cos,sin,1) (1,0,0) .b AB2| cos |2当AB与 a 夹角为60π时,即3,sin2cos 2 cos 2 12 .∵ cos2sin 2322 1,∴ | cos| 2 .2∴ cos2| cos| 1 .22π∵[0, ]. 2π∴=,此时AB与b夹角为60.3∴② 正确,①错误.三、解答题:(共70分.第 17-20题为必考题,每个试题考生都必须作答.第22, 23题为选考题,考生根据要求作答)(一)必考题:共60分.17.( 12分)ABC 的内角A,B,C的对边分别为a,b,c,已知sin A 3 cos A 0 ,a 2 7 ,b 2.( 1)求 c;( 2)设D为 BC 边上一点,且AD AC ,求△ ABD 的面积.【解析】(1)由 sin A 3 cos A0 得2sin A π0 ,3即 A πkπk Z ,又A0, π,3∴ A ππ,得A2π33.1由余弦定理222.又∵a 27, b 2,cosAa b c 2 bc cos A代入并整理22得 c25 ,故c 4 .1(2)∵ AC2, BC27, AB 4 ,2 2 22 7 .由余弦定理 cosCab c2ab 7∵ AC AD ,即 △ACD 为直角三角形,则 ACCD cosC ,得 CD 7 .由勾股定理 AD CD 223 .AC 又 A2π DAB2π π π,则32 ,36 S △ ABD1AD AB sinπ3 .2618.( 12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4元,售价每瓶 6元,未售出的酸奶降价处理, 以每瓶 2元的价格当天全部处理完. 根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为 500 瓶;如果最高气温位于区间 20 ,25 ,需求量为 300瓶;如果最高气温低于 20,需求量为 200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 10 ,1515 ,2020 ,25 25 ,3030 ,3535 ,40天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.( 1)求六月份这种酸奶一天的需求量 X (单位:瓶)的分布列; ( 2)设六月份一天销售这种酸奶的利润为 Y (单位:元).当六月份这种酸奶一天的进货量 n (单位:瓶)为多少时, Y 的数学期望达到最大值?【解析】 ⑴易知需求量 x 可取 200,300,500P X 2 16 1200 3 530 P X 36 2300 3 530 P X 25 7 4 2500 3 .30 5则分布列为:X 200 300 500P122555⑵① 当 n ≤ 200 时: Y n 6 4 2n ,此时 Y max 400 ,当 n 200 时取到 .②当 2004 2n 1 2 n 200 2 n ≤ 300 时: Y 2005 58 800 2n 6n 800n5 55此时 Y max 520 ,当 n 300 时取到 .③当 300n ≤ 500 时,Y1200 2n200223002n 30022n 25553200 2n5此时 Y 520.④当 n ≥ 500 时,易知 Y 一定小于 ③ 的情况 .综上所述:当 n 300 时, Y 取到最大值为 520 .19.(12分)如图,四面体 ABCD 中,△ABC 形.?ABD ?CBD ,AB= BD.(1)证明:平面 ACD ^ 平面 ABC ;(2)过 AC 的平面交BD于点E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分.求二面角D- AE- C的余弦值.是正三角形,△ACD 是直角三角DECB【解析】⑴取 AC 中点为 O ,连接 BO , DO ;A DABC 为等边三角形∴ BO AC E∴ AB BC CAB BCOBD BD ABDCBD .B ABDDBC∴ AD CD ,即ACD 为等腰直角三角形,ADC A为直角又 O 为底边 AC 中点∴DO AC令 AB a ,则 AB AC BC BD a易得:OD 2, OB3 a a22222∴ OD OB BD由勾股定理的逆定理可得DOB2即OD OBOD ACOD OB z AC OBO OD平面 ABC D AC平面 ABCOB平面 ABC又∵OD 平面ADC平面 ADC C E由面面垂直的判定定理可得平面 ABC ⑵由题意可知V D ACE V B ACE即B , D 到平面ACE的距离相等即E为 BD中点以 O 为原点, OA 为x轴正方向,OB 为y轴正方向, OD 为 z 轴正方向,设 AC a ,建立空间直角坐标系,则O 0,0,0 , Aa a3,0,0 , D 0,0,,B 0,a,0222OB yAx3 a,E 0, a,44a3a a a a易得: AE,a,, AD,0, , OA,0,0244222设平面 AED的法向量为 n1,平面 AEC 的法向量为n2,AE n 1 03,1, 3则n 1 ,解得 n 1 ADAE n 2 0 0,1, 3OA n 2,解得 n 2若二面角 D AE C 为,易知为锐角,则 cosn 1 n 27n 1 n 272lC于 A ,B 两点,圆 M 是以2012分)已知抛物线 C : y = 2x2 0)的直线 交 .(,过点( , 线段 AB 为直径的圆.( 1)证明:坐标原点 O 在圆 M 上;( 2)设圆 M 过点 P ( 4, - 2 ),求直线 l 与圆 M 的方程.【解析】 ⑴显然,当直线斜率为 0 时,直线与抛物线交于一点,不符合题意.设 l : x my 2 , A( x 1 , y 1 ) , B( x 2 , y 2 ) , 联立:y 22 x得 y 22my 40 ,x my24 m216 恒大于 0 , y 1 y 22m , y 1 y 24 .uuruuurOA OBx 1 x 2 y 1 y 2(my 1 2)( my 2 2)(m 2 1)y 1 y 2 2m( y 1 y 2 ) 4 uur uuur 4( m 2 1) 2 m(2 m) 4∴ OA OB ,即O 在圆 M 上.uuur uur⑵若圆 M 过点 P ,则 AP BP(x 1 4)( x 2 4) ( y 1 2)( y 2 2) 0(my 1 2)( my 2 2) ( y 1 2)( y 2 2) 0(m 2 1)y 1 y 2 (2 m 2)( y 1y 2 ) 8 02m 10 解得 m 1或 1化简得 2m21①当 m时, l : 2xy4 0 圆心为 Q(x 0 , y 0 ) ,2y 0y 1y 2 1, x 01y 0 29 ,22249 22半径 r|OQ |142则圆 M : ( x 9 )2 ( y 1 )2 854 2 16②当 m 1 时, l : x y 2 0 圆心为 Q(x 0 , y 0 ) ,y 0 y 1 y 2 1 , x 0 y 0 2 3 , 2半径 r|OQ |32 12则圆 M : ( x 3)2 ( y 1)21021.( 12分)已知函数 f (x)x 1 a ln x .( 1)若 f (x) ≥ 0 ,求 a 的值;( 2)设 m 为整数,且对于任意正整数 n , (1 + 1 1 1m ,求 m 的最)(1 + 2 ) 鬃?(1 n ) <2 2 2小值.【解析】 ⑴ f (x) x 1 a ln x , x 0则 f ( x)1 a xa,且 f (1) 0当 a ≤ 0 x x上单调增, 所以 0x 1时, f x 0 , f x 在 0 , 时, f x0 ,不满足题意;当 a 0 时,当 0 x a 时, f (x) 0 ,则 f (x) 在 (0, a) 上单调递减;当 x a 时, f ( x) 0 ,则 f (x) 在 (a,) 上单调递增.①若 a 1 , f (x) 在 (a,1) 上单调递增 ∴ 当 x (a,1) 时 f ( x) f (1) 0 矛盾 ②若 a 1 , f (x) 在 (1,a) 上单调递减 ∴ 当 x (1,a) 时 f ( x)f (1) 0 矛盾③若 a1 , f ( x) 在 (0,1) 上单调递减, 在 (1,) 上单调递增 ∴ f (x) ≥ f (1)0 满足题意综上所述 a 1 .⑵ 当 a 1 时 f ( x) x 1 ln x ≥ 0 即 ln x ≤ x 1则有 ln( x 1) ≤ x 当且仅当 x0 时等号成立∴ ln(11 1 , kN *k)k22一方面: ln(11 ) ln(11 ... ln(11 1 1 ...1 1 ,2 2 )n )22n 1n 122222即 (111 1e .)(122 )...(12 n)2另一方面: (11 11 (1 1 1 )(1 1 1352)(1 2 )...(1 2 n ) )(1 2 2 3 ) 642 2 2 2 当 n ≥3 时, (1 1 1 1 (2,e))(1 2 2 )...(12 n )2 ∵ m *(1 1 1 1 m ,N , )(1 2 )...(1 2 n )2 2∴ m 的最小值为 3 .22. [选修 4-4:坐标系与参数方程 ] ( 10分)在直角坐标系 xOy 中,直线 l的参数方程为x t ,( t 为参数),直线l的参数方程ykt,xm,为m( m 为参数),设 l 与 l 的交点为 P ,当 k 变化时, P 的轨迹为曲线 C .y,k( 1)写出 C 的普通方程:( 2)以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 设 l : cos( nis ) ,M 为 l 与 C 的交点,求 M 的极径.【解析】 ⑴将参数方程转化为一般方程l 1 : y k x 2⋯⋯ ① l 2 : y1 x2 ⋯⋯ ②k① ② 消 k 可得: x 2y 24即 P 的轨迹方程为 x 2 y 2 4 ; ⑵将参数方程转化为一般方程l 3 : x y 2 0⋯⋯ ③联立曲线 C 和 l 3x y2x2y24x3 22解得2y2x cos5 由sin 解得y即 M 的极半径是 5 .23. [选修 4-5:不等式选讲 ](10分)已知函数 f ( x) | x | | x | .( 1)求不等式 f ( x) 的解集;( 2)若不等式 f ( x) x x m 的解集非空,求 m 的取值范围.3, x ≤ 1【解析】 ⑴ f x| x1| | x2| 可等价为 f x2x 1, 1x 2 .由 f x ≥ 1 可得:3,x ≥ 2①当 x ≤ 1 时显然不满足题意; ②当 1 x 2时, 2x 1≥1 ,解得 x ≥1 ;③当 x ≥ 2 时, f x 3 ≥ 1 恒成立 .综上, f x1的解集为 x | x ≥ 1 .⑵不等式 f x ≥ x 2x m 等价为 f xx 2x ≥ m ,令 g xf xx 2 x ,则 g x ≥ m 解集非空只需要g xmax ≥ m .x 2 x 3, x ≤ 1而 g xx 2 3 x 1, 1 x 2 .2x 3, x ≥ 2x①当 x ≤ 1 时, gxmaxg13 1 15 ;2②当 1 x 2 时, g xmaxg 333 3 1 5 ;222 4③当 x ≥ 2 时, g x maxg 22 22 3 1 .综上, g xmax5,故 m5 .44。

(word完整版)2017全国三卷理科数学高考真题及答案,推荐文档

(word完整版)2017全国三卷理科数学高考真题及答案,推荐文档

2017年普通高等学校招生全国统一考试(新课标山)理科数学、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1 •已知集合A= (x, y)| x2y21,B= (x, y)l y X,贝y A l B中兀素的个数为A . 3B. 2C. 1 D. 02 .设复数z满足(1+i)z=2i, 则1z 1=1A . 一2B. 2C. 2 D. 23•某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A •月接待游客量逐月增加B .年接待游客量逐年增加C •各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4. ( x+ y )(2 x - y )5的展开式中x3 y 3的系数为A . -80B. -4C. 40D. 805.已知双曲线2 2x y C :C : 2 .2a b1(a > 0,b > 0)的一条渐近线方程为y x,且与椭圆22 2話二1有公共焦点,则C的方程为体积为3 nnnA . nB .C .D .—4 2 49.等差数列a n 的首项为1,公差不为0 .若a 2, a 3, a 6成等比数列,则a n 前6项的和A . -24B . -3C . 3D . 82 2x y10 .已知椭圆 C :二 2 1 , ( a>b>0)的左、右顶点分别为 A 1, A 2,且以线段 A 1A 2为a b直径的圆与直线 bx ay 2ab 0相切,则C 的离心率为.3-1A .BC .D .33 3 32 2xy ’A .12 2x y ’ B .12x C.—52 x D.— 42y- i 36.设函数则下列结论错A • f(x)的一个周期为-2 B . y=f(x)的图像关于直线 8x=- 3对称C . f(x+n 的一个零点为x=—6D . f(x)在(一,n 单调递减22的同一个球的球面上,则该圆柱的N 的最小值为11 .已知函数f(x)2x 2x a(ex1e % 1)有唯一零点,则 a=11 1A .B.-C.-D . 1232uur12.在矩形ABC D中,AB=1 ,AD=2,动点P 在以点 C 为圆心且与 BD 相切的圆上.若APuuu uuurAB +AD , 则 +的最大值为A . 3B . 2 2C . 5D . 2二、 填空题:本题共 4小题,每小题5分,共20分。

2017年全国高考理科数学(全国一卷)试题及答案

2017年全国高考理科数学(全国一卷)试题及答案

2017年普通高等学校招生全国统一考试理科数学满分150分。

考试用时120分钟。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|1{|31}xA x xB x =<=<,,则 A . B .C .D .2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14B .8πC .12D .4π3.设有下面四个命题:若复数满足,则; :若复数满足,则;:若复数满足,则;:若复数,则.其中的真命题为 A .B .C .D .4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .85.函数在单调递减,且为奇函数.若,则满足的的取值范围是 A .B .C .D .6.展开式中的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16{|0}AB x x =<A B =R {|1}A B x x =>A B =∅1p z 1z ∈R z ∈R 2p z 2z ∈R z ∈R 3p 12,z z 12z z ∈R 12z z =4p z ∈R z ∈R 13,p p 14,p p 23,p p 24,p p n S {}n a n 4524a a +=648S ={}n a ()f x (,)-∞+∞(11)f =-21()1x f --≤≤x [2,2]-[1,1]-[0,4][1,3]621(1)(1)x x++2x8.右面程序框图是为了求出满足321000n n->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是 A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线2C D .把1C 上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z<<π6π1212π612π1212.几位大学生响应国家的创业号召,开发了一款应用软件。

2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2017 年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12 小题,每小题5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B 中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z 满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5 分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014 年1 月至2016 年12 月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 月D.各年1 月至6 月的月接待游客量相对于7 月至12 月,波动性更小,变化比较平稳4.(5 分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5 分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1 有公共焦点,则C 的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1 6.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A.5 B.4 C.3 D.28.(5 分)已知圆柱的高为1,它的两个底面的圆周在直径为2 的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5 分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6 成等比数列,则{a n}前6 项的和为()A.﹣24 B.﹣3 C.3 D.810.(5 分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2 为直径的圆与直线bx﹣ay+2ab=0 相切,则C 的离心率为()A.B.C.D.11.(5 分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5 分)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若=λ+μ,则λ+μ 的最大值为()A.3 B.2C.D.2二、填空题:本题共4 小题,每小题5 分,共20 分。

2017年普通高等学校招生全国统一考试理科数学试卷与答案

2017年普通高等学校招生全国统一考试理科数学试卷与答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则{|0}A B x x =<I A B =R U {|1}A B x x =>U A B =∅I 如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是14π812π4设有下面四个命题1:p 若复数z 满足1z ∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R .其中的真命题为13,p p 14,p p 23,p p 24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,48S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3] 6.621(1)(1)x x++展开式中2x 的系数为 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入 >1000和n =n +1 >1000和n =n +2≤和n =n +1≤和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin(2x +2π3),则下面结正确的是 A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π12个单位长度,得到曲线C 210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16B.14C.12D.1011.设xyz为正数,且235x y z==,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是26,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是二、填空题:本题共4小题,每小题5分,共20分。

2017年高考真题——理科数学(全国卷Ⅰ)高清扫描版含答案

2017年高考真题——理科数学(全国卷Ⅰ)高清扫描版含答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.A 2.B 3.B 4.C 5.D 6.C7.B 8.D9.D10.A11.D12.A二、填空题13. 14.5- 15 16.三、解答题 17.解:(1)由题设得 21sin 23sin =a ac B A,即 1sin 23sin =a c B A .由正弦定理得 1sin sin sin 23sin =AC B A. 故2sin sin 3B C =.(2)由题设及(1)得 1cos cos sin sin 2B C B C -=-,即1cos()2B C +=-. 所以 2π3B C +=,故π3A =.由题设得21sin 23sin =a bc A A,即 8bc =.由余弦定理得 229b c bc +-=,即2()39b c bc +-=,得 b c +=故ABC △的周长为318.解:(1)由已知90BAP CDP ∠=∠=︒,得⊥AB AP ,CD PD ⊥. 由于//AB CD ,故⊥AB PD ,从而⊥AB 平面PAD . 又⊂AB 平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PF AD ⊥,垂足为F . 由(1)可知,⊥AB 平面PAD ,故⊥A B P F ,可得⊥PF 平面ABCD .以F 为坐标原点,FA 的方向为x 轴正方向,||AB为单位长,建立如图所示的空间直角坐标系-F xyz .由(1)及已知可得A,P,B,(C .所以(PC =,CB =,PA = ,(0,1,0)AB = .设(,,)x y z =n 是平面PCB 的法向量,则0,0,n n ⎧⋅=⎪⎨⋅=⎪⎩ PC CB 即0,0.⎧+=⎪=x y z可取(0,1,n =-.设(,,)x y z =m 是平面PAB 的法向量,则0,0,m m ⎧⋅=⎪⎨⋅=⎪⎩PA AB 即0,0.x y =⎪=⎩可取 (1,0,1)=m . 则cos ,||||⋅==n m n m n m . 所以二面角--A PB C的余弦值为.19.解:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故(16,0.0026) X B . 因此16(1)1(0)10.99740.0408P X P X =-==-≈≥.X 的数学期望为 160.00260.0416=⨯=EX .(2)(ⅰ)如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小. 因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由9.97x =,0.212s ≈,得μ的估计值为ˆ9.97μ=,σ的估计值为ˆ0.212σ=,由样本数据可以看出有一个零件的尺寸在ˆˆˆˆ(3,3)μσμσ-+之外,因此需对当天的生产过程进行检查.剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的平均数为 1(169.979.22)10.0215⨯-=, 因此μ的估计值为10.02.162221160.212169.971591.134ii x==⨯+⨯≈∑,剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据9.22,剩下数据的样本方差为 221(1591.1349.221510.02)0.00815--⨯≈, 因此σ0.09≈.20.解:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点.又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上. 因此 222111314b ab ⎧=⎪⎪⎨⎪+=⎪⎩,, 解得 2241.a b ⎧=⎪⎨=⎪⎩,故C 的方程为2214x y +=.(2)设直线2P A 与直线2P B 的斜率分别为1k ,2k .如果l 与x 轴垂直,设l x t =:,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t,(,t .则121k k +=-,得2t =,不符合题设. 从而可设(1)l y kx m m =+≠:. 将y kx m =+代入2214x y +=得222(41)8440k x kmx m +++-=.由题设可知2216(41)0k m ∆=-+>.设11(,)A x y ,22(,)B x y ,则122841km x x k +=-+,21224441m x x k -=+.而 12121211y y k k x x --+=+121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=.由题设知 121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.即 222448(21)(1)04141m kmk m k k --+⋅+-⋅=++.解得 12m k +=-.当且仅当1m >-时,0∆>,于是12m l y x m +=-+:,即 11(2)2m y x ++=--, 所以l 过定点(2,1)-.21.解:(1)()f x 的定义域为(,)-∞+∞,2()2e (2)e 1x x f x a a '=+--(e 1)(2e 1)x x a =-+.(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(,)-∞+∞单调递减. (ⅱ)若0a >,则由()0f x '=得ln x a =-.当(,ln )x a ∈-∞-时,()0f x '<;当(ln ,)x a ∈-+∞时,()0f x '>.所以()f x 在(,ln )a -∞-单调递减,在(ln ,)a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.① 当1a =时,由于(ln )0f a -=,故()f x 只有一个零点;② 当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点;③ 当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<.又422(2)e (2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln(1)>-n a,则00000000()e(e 2)e 20=+-->->->n n n n fn a a n n n . 由于3ln(1)ln a a->-,因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).22.解:(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由22430,19x y x y +-=⎧⎪⎨+=⎪⎩ 解得 3,0x y =⎧⎨=⎩ 或 21,2524.25x y ⎧=-⎪⎪⎨⎪=⎪⎩从而C 与l 的交点坐标为(3,0),2124(,)2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l 的距离为d =.当 4a -≥时,d.=8a =; 当 4a <-时,d.=16a =-.综上,8a = 或 16a =-.23.解:(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤. ①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1>x 时,①式化为240x x +-≤,从而1<x .所以()()f x g x ≥的解集为{|1x x -≤.(2)当[1,1]x ∈-时,()2g x =.所以()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,所以(1)2f -≥且(1)2f ≥,得11a -≤≤.所以a 的取值范围为[1,1]-.。

2017年高考真题——理科数学(全国Ⅲ卷) Word版含解析

2017年高考真题——理科数学(全国Ⅲ卷) Word版含解析

2017年普通高等学校招生全国统一考试(全国)理科数学(试题及答案解析)一、选择题:(本题共12小题,每小题5分,共60分)1.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为()A .3B .2C .1D .0 【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B I 表示两直线与圆的交点,由图可知交点的个数为2,即A B I 元素的个数为2,故选B.2.设复数z 满足(1i)2i z +=,则z =() A .12B 2C 2D .2【答案】C【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z =+ C.3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.2014年 2015年 2016年根据该折线图,下列结论错误的是() A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,故选A.4.5()(2)x y x y +-的展开式中33x y 的系数为()A .-80B .-40C .40D .80 【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.5.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为5y =,且与椭圆221123x y +=有公共焦点.则C 的方程为() A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -=【答案】B【解析】∵双曲线的一条渐近线方程为5y x =,则5b a =又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==② 由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.设函数π()cos()3f x x =+,则下列结论错误的是()A .()f x 的一个周期为2π-B .()y f x =的图像关于直线8π3x =对称 C .()f x π+的一个零点为π6x =D .()f x 在π(,π)2单调递减【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到,如图可知,()f x 在π,π2⎛⎫⎪⎝⎭上先递减后递增,D 选项错误,故选D.π23π53-π36πg x y O 7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为()A .5B .4C .3D .2 【答案】D【解析】程序运行过程如下表所示:S M初始状态0 100 1 第1次循环结束100 10- 2 第2次循环结束90 1 3 此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径221312r ⎛⎫=-= ⎪⎝⎭,则圆柱体体积23ππ4V r h ==,故选B.9.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为()A .24-B .3-C .3D .8 【答案】A【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为. 则2326a a a =⋅,即()()()211125a d a d a d +=++ 又∵11a =,代入上式可得220d d += 又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.已知椭圆2222:1x y C a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为() ABCD .13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离等于半径,∴d a == 又∵0,0a b >>,则上式可化简为223a b =∵222b ac =-,可得()2223a a c =-,即2223c a =∴c e a == A11.已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()A .1-2B .13C .12D .1【答案】C【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有唯一零点, ∴()f x 的零点只能为1x =, 即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.12.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为() A .3 B. CD .2【答案】A【解析】由题意,画出右图.设BD 与C e 切于点E ,连接CE . 以A 为原点,AD 为轴正半轴, AB 为轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴BD = ∵BD 切C e 于点E . ∴CE ⊥BD .∴CE 是Rt BCD △中斜边BD 上的高.12||||22||||||BCD BC CD S EC BD BD ⋅⋅⋅====△即C e. ∵P 在C e 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=. 设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:0021x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩ 而00(,)AP x y =u u u r ,(0,1)AB =u u u r ,(2,0)AD =u u u r. ∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=u u u r u u u r u u u r∴0112x μθ==+,01y λθ==. 两式相加得:112)2sin()3λμθθθϕθϕ+=++=+=++≤(其中sin ϕ=,cos ϕ当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.()A O DxyB P gCE二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,值越小. 由图可知:在()1,1A 处取最小值,故min 31411z =⨯-⨯=-.14.设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________. 【答案】8-【解析】{}n a Q 为等比数列,设公比为.121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②, 显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =, ()3341128a a q ∴==⨯-=-.15.设函数1,0,()2,0,+⎧=⎨>⎩xx x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________. 【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩Q x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:1)2-)由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16.,为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与成60︒角时,AB 与成30︒角; ②当直线AB 与成60︒角时,AB 与成60︒角; ③直线AB 与所成角的最小值为45︒; ④直线AB 与所成角的最大值为60︒.其中正确的是________(填写所有正确结论的编号) 【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1, 故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变, B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD u u u r 为轴正方向,CB u u u r为轴正方向, CA u u u r为轴正方向建立空间直角坐标系. 则(1,0,0)D ,(0,0,1)A ,直线的方向单位向量(0,1,0)a =r ,||1a =r. B 点起始坐标为(0,1,0),直线的方向单位向量(1,0,0)b =r,||1b =r .设B 点在运动过程中的坐标(cos ,sin ,0)B θθ', 其中为B C '与CD 的夹角,[0,2π)θ∈.那么'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--u u u r ,||2AB '=u u u r .设AB 'u u u r 与所成夹角为π[0,]2α∈,则(cos ,sin ,1)(0,1,0)22cos |sin |[0,]a AB θθαθ--⋅==∈'r u u u r. 故ππ[,]42α∈,所以③正确,④错误.设AB 'u u u r 与所成夹角为π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)2|cos |AB bb AB b AB βθθθ'⋅='-⋅='=u u u r r r u u u rr u u u r .当AB 'u u u r 与夹角为60︒时,即π3α=,12sin 2cos 2cos 232πθα====. ∵22cos sin 1θθ+=,∴|cos |θ.∴1cos |cos |2βθ=.∵π[0,]2β∈.∴π=3β,此时AB 'u u u r 与夹角为60︒.∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 0A A =,a =,2b =.(1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 0A A =得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵12,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,4AC BC AB ===,由余弦定理222cos 2a b c C ab +-=∵AC AD ⊥,即ACD △为直角三角形,则cos AC CD C =⋅,得CD =由勾股定理AD =又2π3A =,则2πππ326DAB ∠=-=, 1πsin 26ABDS AD AB =⋅⋅△18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数(1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量(单位:瓶)为多少时,Y 的数学期望达到最大值? 【解析】⑴易知需求量可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯()257425003035P X ++===⨯.⑵①当200n ≤时:,此时max 400Y =,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦ 880026800555n n n -+=+= 此时max 520Y =,当300n =时取到. ③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦ 320025n -=此时520Y <.④当500n ≥时,易知一定小于③的情况. 综上所述:当300n =时,取到最大值为520.19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABD CBD ??,AB BD =.(1)证明:平面ACD ^平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C --的余弦值.【解析】⑴取AC 中点为O ,连接BO ,DO ; ABC ∆Q 为等边三角形 ∴BO AC ⊥ ∴AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆. ∴AD CD =,即ACD ∆为等腰直角三角形,ADC ∠ 为直角又O 为底边AC 中点DA B C ED A BC EO∴DO AC ⊥令AB a =,则AB AC BC BD a ====易得:2OD a =,OB = ∴222OD OB BD +=由勾股定理的逆定理可得2DOB π∠=即OD OB ⊥ OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩I 平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直的判定定理可得ADC ABC ⊥平面平面 ⑵由题意可知V V D ACE B ACE --= 即B ,D 到平面ACE 的距离相等 即E 为BD 中点以O 为原点,OA u u u r 为轴正方向,OB u u u r为轴正方向,OD u u u r为轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫ ⎪⎝⎭,,0B ⎛⎫ ⎪ ⎪⎝⎭,,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,,0,22a a AD ⎛⎫=- ⎪⎝⎭u u u r ,,0,02a OA ⎛⎫= ⎪⎝⎭u u u r 设平面AED 的法向量为1n u u r ,平面AEC 的法向量为2n u u r,则1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u r u u u r u u r,解得1n =u u r 2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u r u u u r u u r,解得(20,1,n =u u r 若二面角D AE C --为,易知为锐角,则1212cos n n n n θ⋅==⋅u u r u u r uu r u u r20.(12分)已知抛物线2:2C y x =,过点(2,0)的直线交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2-),求直线与圆M 的方程.【解析】⑴显然,当直线斜率为时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于,122y y m +=,124y y =-. 1212OA OB x x y y ⋅=+uu r uu u r12(2)(2)my my =++21212(1)2()4m y y m y y =++++24(1)2(2)4m m m =-+++0= ∴OA OB ⊥u u r u u u r,即O 在圆M 上.⑵若圆M 过点P ,则0AP BP ⋅=uu u r uu r1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径||r OQ =则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径||r OQ ==则圆22:(3)(1)10M x y -+-=21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求的值;(2)设m 为整数,且对于任意正整数,2111(1)(1)(1)222nm ++鬃?<,求m 的最小值. 【解析】⑴ ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意; 当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾 ③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立∴11ln(1)22k k+<,*k ∈N 一方面:221111111ln(1)ln(1)...ln(1) (112222222)n n n ++++++<+++=-<,即2111(1)(1)...(1)e 222n +++<.另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=>当3n ≥时,2111(1)(1)...(1)(2,e)222n +++∈∵*m ∈N ,2111(1)(1)...(1)222n m +++<,∴m 的最小值为.22.选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m my k =-2+⎧⎪⎨=⎪⎩(m 为参数),设与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+0,M 为与C 的交点,求M 的极径. 【解析】⑴将参数方程转化为一般方程()1:2l y k x =- ……①()21:2l y x k=+ ……②①②消可得:224x y -=即P 的轨迹方程为224x y -=; ⑵将参数方程转化为一般方程3:0l x y +-= ……③ 联立曲线C和224x y x y ⎧+⎪⎨-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩ 由cos sin x y ρθρθ=⎧⎨=⎩解得ρ即M.23.选修4-5:不等式选讲](10分)已知函数()||||f x x x =+1--2. (1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.【解析】⑴()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得:①当1-x ≤时显然不满足题意;②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥.⑵不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥,令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥.而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max 13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭; ③当2x ≥时,()()2max 22231g x g ==-++=⎡⎤⎣⎦. 综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。

(完整word)2017年全国三卷理科数学高考真题及答案解析(可编辑修改)

(完整word)2017年全国三卷理科数学高考真题及答案解析(可编辑修改)

2016年普通高等学校招生全国统一考试理科数学一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合S = ,则S T ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P I (A) [2,3] (B)(- ,2] [3,+)∞U ∞(C) [3,+) (D)(0,2] [3,+)∞U ∞(2)若z=1+2i ,则 41i zz =-(A)1 (B) -1 (C) i (D)-i(3)已知向量 , 则ABC=1(2BA =u u v 1),2BC =u u u v ∠(A)300 (B) 450 (C) 600 (D)1200(4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。

图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。

下面叙述不正确的是(A) 各月的平均最低气温都在00C 以上(B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同(D) 平均气温高于200C 的月份有5个(5)若 ,则 3tan 4α=2cos 2sin 2αα+=(A) (B) (C) 1 (D) 642548251625(6)已知,,,则432a =344b =1325c =(A ) (B )(C )(D )b a c <<a b c <<b c a <<c a b<<(7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n =(A )3(B )4(C )5(D )6(8)在中,,BC 边上的高等于,则 ABC △π4B =13BC cos A =(A (B(C )(D )-- (9)如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为(A )18+(B )54+(C )90(D )81(10) 在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球,若ABBC ,AB =6,BC =8,AA 1=3,则V 的最大值是⊥(A )4π (B )(C )6π 92π(D ) 323π(11)已知O 为坐标原点,F 是椭圆C :的左焦点,A ,B 分别为C 的左,右顶点.P 为C 22221(0)x y a b a b+=>>上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为(A )(B )(C )(D )13122334(12)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意,2k m ≤12,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有(A )18个 (B )16个 (C )14个 (D )12个二、填空题:本大题共3小题,每小题5分(13)若x ,y 满足约束条件 则z=x+y 的最大值为_____________.{x ‒y +1≥0x ‒2y ≪0x +2y ‒2≪0(14)函数的图像可由函数的图像至少向右平移_____________个单位长y =sin x ‒3cos x y =sin x +3cos x 度得到。

2017年全国统一高考数学试卷(理科)(新课标ⅱ)

2017年全国统一高考数学试卷(理科)(新课标ⅱ)

2017年全国统一高考数学试卷(理科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)=()A.1+2i B.1﹣2i C.2+i D.2﹣i2.(5分)设集合A={1,2,4},B={x|x2﹣4x+m=0}.若A∩B={1},则B=()A.{1,﹣3}B.{1,0}C.{1,3} D.{1,5}3.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏4.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A.90πB.63πC.42πD.36π5.(5分)设x,y满足约束条件,则z=2x+y的最小值是() A.﹣15 B.﹣9 C.1 D.96.(5分)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种7.(5分)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩8.(5分)执行如图的程序框图,如果输入的a=﹣1,则输出的S=()A.2 B.3 C.4 D.59.(5分)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A.2 B. C. D.10.(5分)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.B.C.D.11.(5分)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为()A.﹣1 B.﹣2e﹣3C.5e﹣3 D.112.(5分)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣ C.﹣ D.﹣1三、填空题:本题共4小题,每小题5分,共20分.13.(5分)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则DX=.14.(5分)函数f(x)=sin2x+cosx﹣(x∈[0,])的最大值是.15.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.16.(5分)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y 轴于点N.若M为FN的中点,则|FN|=.三、解答题:共70分.解答应写出文字说明、解答过程或演算步骤.第17~21题为必做题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC面积为2,求b.18.(12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg",估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg 箱产量≥50kg 旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0。

2017年高考理科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案

2017年高考理科数学全国卷(全国ⅠⅡ Ⅲ卷)共三套试卷试题真题含答案
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
9.已知曲线
C1
:
y

cos
x
,
C2
:
y

sin(2x

2 3
)
,则下面结论正确的是
A.把
C1
上各点的横坐标伸长到原来的
2
倍,纵坐标不变,再把得到的曲线向右平移
6
数学试卷 第 2页(共 54页)
个单位长度,得到曲线 C2
B.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 12
交于 A 、 B 两点,直线 l2 与 C 交于 D 、 E 两点,则 | AB | | DE | 的最小值为
A.16
B.14
11.设 x , y , z 为正数,且 2x 3y 5z ,则
C.12
D.10
A. 2x 3y 5z
B. 5z 2x 3y
C. 3y 5z 2x
积之和为
A.10
B.12
C.14
D.16
8.右面程序框图是为了求出满足 3n 2n 1000 的最小偶数 n ,那么在 和 两个空白框中,可以分别填入 A. A 1000 和 n n 1 B. A 1000 和 n n 2 C. A 1000 和 n n 1 D. A 1000 和 n n 2

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标I)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (5分)已知集合A ={x l x<l},B ={x l 3x <1),则(方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为(A. AnB ={x l x<O} B. AUB =R C. AUB ={x l x>l} D. AnB =02. (S 分)如图,正力形ABCD 内的图形米自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关十止方形的中心成中心对称.在止方形内随机取一点,则此点取臼黑色部分的概率是(1 A.一 B.工3.(5分)设有下面四个命题P1:若复数z 满足上ER ,则zER;p2:若复数z 满足z 2ER,则zER;p 3:若复数z1,z 2满足z 迈ER ,则Z1=言;P4:若复数zER ,则玉三R.其中的真命题为(A. P1, p3 A. 1B. P1, P• B. 2 1一2cC. P 2, p3 c. 4 D 于D. P 2, P• 4. (S 分)记Sn 为等差数列{a 点的前n项和.若a 社as =24,S5=48,则{a 点的公差为(D. 8 5. (S分)函数f(x )在(-=,+=)单调递减,且为奇函数.若f(l )=-1,则满足-1,;:;f(x -2),;:;1的x 的取值范围是(\ 勹勹A. 10 8. (S 分)如呾程序柜图是为了求出满足3"-2">1000的最小偶数n,那么在<>和厂/勹曲个空自框中,可以分别埴入(B. 12 A. A>1000和n =n+1c.14 D. 16B. A>lOOO和n =n+2A.[ -2, 2] B.[ -1, 1]C.[O, 4] 6. (5分)(1+专)(l+x) 6展开式中x 2的系数为(D. [1, 3]A. 15B. 20C.30D. 357. (5分)某多面休的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正 C. A�lOOO和n =n+lD.A�lOOO和n =n+29. Cs分)已知曲线Ci:y =cosx, Ci: v =sin (2x+ 2'.JT ),则下面结论正确的是(A.把C1上各点的横坐标伸长到原米的2倍,纵坐标不变,再把得到的曲线向小平移卫_个单位长6 度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移卫_个单位长12 度,得到曲线C 2'.lT C.把C1上各点的横坐标缩短到原米的—倍,纵坐标不变,再把得到的曲线向右平移—-个单位长度,2. 6 第1页(共14页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}|1{|31}xA x xB x =<=<,,则A .{|0}AB x x =< B .A B =RC .{|1}AB x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14B .8π C .12D .4π 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A .10 B .12 C .14D .168.右面程序框图是为了求出满足321000nn->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件。

为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是012,2,再接下来的三项是0122,2,2,依此类推。

求满足如下条件的最小整数:100N N >且该数列的前N 项和为2的整数幂。

那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= .14.设,x y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .15.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。

若60MAN ∠=,则C 的离心率为________。

16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。

D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形。

沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D 、E 、F 重合,得到三棱锥。

当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______。

三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3B C a ==,求△ABC 的周长. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:0.212≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。

若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 21.(12分) 已知函数2()(2)xx f x aea e x =+--(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数).(1)若a =?1,求C 与l 的交点坐标;(2)若C 上的点到l a . 23.[选修4—5:不等式选讲](10分)已知函数2()4,()|1||1|f x x ax g x x x =-++=++- (1)当1a =时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.2017年普通高等学校招生全国统一考试理科数学参考答案一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. A 2.B 3.B 4.C5.D6.C7.B8.D9.D10.A 11.D 12.A二、填空题:本题共4小题,每小题5分,共20分。

13.14.-515 16.3三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得21sin 23sin a ac B A =,即1sin 23sin ac B A=由正弦定理得1sin sin sin 23sin AC B A =故2sin sin 3B C =。

(2)由题设及(1)得1cos cos sin sin 2B C B C -=-,即1cos()2B C +=- 所以23B C π+=,故3A π= 由题设得21sin 23sin a bc A A=,即8bc =由余弦定理得229b c bc +-=,即2()39b c bc +-=,得b c +=故ABC ∆的周长为3+18.(12分)解:(1)由已知90BAP CDP ∠=∠=,得AB AP ⊥,CD PD ⊥由于//AB CD ,故AB PD ⊥, 从而AB ⊥平面PAD 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD (2)在平面PAD 内作PF AD ⊥,垂足为F由(1)可知,AB ⊥平面PAD ,故AB PF ⊥, 可得PF ⊥平面ABCD以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -由(1)及已知可得((0,0,((2222A PBC - 所以2222(,1,),(2,0,0),(,0,),(0,1,0)PC CB PA AB =--==-= 设(,,)n xy z =是平面PCB 的法向量,则0,0n PC n CB ⎧⋅=⎪⎨⋅=⎪⎩即0,220x y z y ⎧-+-=⎪⎨⎪=⎩可取(0,1,n =-设(,,)m xy z =是平面PAB的法向量,则0,0m PA m AB ⎧⋅=⎪⎨⋅=⎪⎩即0,22x z y -=⎨⎪=⎩可取(1,0,1)m =则cos,||||n m n m n m ⋅<>== 所以二面角A PB C --的余弦值为-19.(12分)解:(1)抽取的一个零件的尺寸在(3,3)μσμσ-+之内的概率为0.9974,从而零件的尺寸在(3,3)μσμσ-+之外的概率为0.0026,故~(16,0.0026)X B ,因此X 的数学期望为160.00260.0416EX =⨯=(2)(i )如果生产状态正常,一个零件尺寸在(3,3)μσμσ-+之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(3,3)μσμσ-+之外的零件的概率只有0.0408,发生的概率很小。

相关文档
最新文档