20162017人教版七年级数学上册期末测试题及答案精选4套
人教版七年级数学上学期期末考试卷附答案
2017人教版七年级数学上学期期末考试卷(附答案) 说明:本试卷共4页,满分120分,考试时间100分钟.注意事项:1.选择题、填空题和解答题都在答题卡上作答,不能答在本试卷上.2.作图(含辅助线)或画表,用铅笔(如2B 铅笔)进行画线、绘图、要求痕迹清晰.第Ⅰ卷 选择题(共30分)一.选择题(10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上)1.34的绝对值是(? ) A .-34 B .34 C .43 D .34± 2.下列四个数中最小的数是(??) A .-310B .-3C .0D .53.用科学计数法表示2017000,正确的是(?? )A .2017×310B .×510C .×610??D .×7104.下列简单几何体中,属于柱体的个数是( )A .5B .4C .3D .25.计算43+(-77)+27+(-43)的结果是( ) A .50 B .-104 C .-50 D .104 6.下列各式成立的是(??) A .4334⨯= B .3662=- C .91313=⎪⎭⎫ ⎝⎛ D .161412=⎪⎭⎫ ⎝⎛- 7.下列每组单项式是同类项的是(? ) A .xy 2与yx 31- B .y 2x 3与2x 2y - C .x 21-与xy 2- D .xy 与yz 8.下列调查中,适合用普查的是( ) A .中央电视台春节联欢晚会的收视率 B .一批电视机的寿命 C .全国中学生的节水意识 D .某班每一位同学的体育达标情况 9.过某个多边形一个顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是 A .五边形 B .六边形 C .七边形 D .八边形 10.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n 个“口”字需要用棋子 第一个“口” 第二个“口” 第三个“口”A .(4n-4)枚B .4n 枚C .(4n+4)枚D .2n 枚第Ⅱ卷 非选择题(共70分)二、填空题(本大题6小题,每小题4分,共24分.把答案填在答题卡上) 三、11.计算()[]3116÷+-的结果为 . 12.如图是一个正方体纸盒的展开图,正方体的各面标有数字1、2、3、-3、A 、B ,相对面上的两个数互为相反数,则A= .第12题图13.某场电影成人票25元/张,卖出m 张,学生票15元/张,卖出n 张,共得票款 元14.把角度化为秒的形式,则05.5= .15.在一次全市的数学监测中,某6名学生的成绩与全市学生的平均分80的差分别为5、-2、8、 11、5、-6,则这6名学生的平均成绩为 分。
【最新】2016-2017学年新人教版七年级上学期期末考试数学试卷及答案
)
2
1 B 、8 C 、 1
A、 6
8
D 、3 2
7. 某商品进价 a 元,商店将价格提高 30%作零售价销售, 在销售旺季过后, 商店以 8 折(即
售价的 80%)的价格开展促销活动,这时一件商品的售价为(
)
A.a 元; B.0.8a
元
C.1.04a
元;
D.0.92a 元
8.已知:如图,点 C 是线段 AB的中点,点 D 是线段 BC的中点, AB=20cm,那么线段 AD
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
1.- 2016 的相反数是(
)
A.
1
2016
1
B.
2016
C . 6102
D . 2016
2.有理数 ( 1)2 , ( 1)3 , 12 ,
)
A、 2n 1 3n 2
B
、 2n 2 1 n
C 、 2n 1 3n 2
11. 下列图形 ( 如图所示 ) 经过折叠不能围成正方体的是 (
D
、
2n
2
1
n
)
2016— 2017 学年第一学期期末 七年级数学试卷
(分值: 120 分 )
一、选择题 ( 每题 3 分,共 36 分)
题号 1 2 3 4 5 6 7 8 9 10 11 12
C. ax=-ay D.3-ax=3-ay
6、现规定一种新运算“ * ”:a* b= a b ,如 3*2= 32 =9,则( 1 ) *3= (
(完整版)人教版七年级数学上册期末试卷及答案
(完整版)人教版七年级数学上册期末试卷及答案一、选择题1.已知max{}2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,max {}{}22,,max 9,9,9x x x ==81.当max {}21,,2x x x =时,则x 的值为( ) A .14-B .116C .14D .122.根据等式的性质,下列变形正确的是( )A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3bD .若23a b=,则2a =3b 3.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( ) A .1 B .2 C .3 D .4 4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,35.下列四个式子:9,327-,3-,(3)--,化简后结果为3-的是( ) A .9B .327-C .3-D .(3)--6.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5927.某班30位同学,在绿色护植活动中共种树72棵,已知女生每人种2棵,男生每人种3棵,设女生有x 人,则可列方程( ) A .23(30)72x x +-= B .32(30)72x x +-= C .23(72)30x x +-=D .32(72)30x x +-=8.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π9.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .2B .2﹣1C .2+1D .1 10.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣711.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则AM 的长( ) A .7cm B .3cmC .3cm 或 7cmD .7cm 或 9cm12.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB13.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 14.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+15.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④二、填空题16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.把53°30′用度表示为_____. 19.36.35︒=__________.(用度、分、秒表示)20.若3750'A ∠=︒,则A ∠的补角的度数为__________. 21.﹣30×(1223-+45)=_____. 22.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.23.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).24.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.25.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.26.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.27.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.28.用“>”或“<”填空:13_____35;223-_____﹣3.29.用度、分、秒表示24.29°=_____.30.材料:一般地,n 个相同因数a 相乘n a a a a⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.三、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ; (2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.33.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.34.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.35.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)36.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.37.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 38.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 利用max{}2,,x x x 的定义分情况讨论即可求解.【详解】 解:当max {}21,,2x x x =时,x ≥0 x 12,解得:x =14x >x >x 2,符合题意;②x 2=12,解得:x =2x >x 2,不合题意;③x =12x >x 2,不合题意;故只有x =14时,max }21,2x x =. 故选:C . 【点睛】此题主要考查了新定义,正确理解题意分类讨论是解题关键.2.C解析:C 【解析】 【分析】利用等式的性质对每个式子进行变形即可找出答案. 【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C . 【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式.3.B解析:B 【解析】 【分析】根据线段中点的性质,可得AC 的长. 【详解】解:由线段中点的性质,得 AC =12AB =2. 故选B .【点睛】本题考查了两点间的距离,利用了线段中点的性质.4.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.5.B解析:B 【解析】 【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案. 【详解】解:,故排除A;=3-,选项B 正确; C. 3-=3,故排除C; D. (3)--=3,故排除D. 故选B. 【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.6.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x+,当相加数为208时x为1,当相加数为480时x为18,相加数为496时x为19,相加数为592时x为25,由数字卡片可知,x为19时,不满足条件.故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.7.A解析:A【解析】【分析】设女生x人,男生就有(30-x)人,再表示出男、女生各种树的棵数,根据题中等量关系式:男生种树棵数+女生种树棵数=72棵,列方程解答即可.【详解】设女生x人,∵共有学生30名,∴男生有(30-x)名,∵女生每人种2棵,男生每人种3棵,∴女生种树2x棵,男生植树3(30-x)棵,∵共种树72棵,∴2x+3(30-x)=72,故选:A.【点睛】本题考查一元一次方程的应用,正确找准数量间的相等关系是解题关键.8.D解析:D【解析】【分析】根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.【详解】∵AB a,C、D分别是AB、BC的中点,∴AC=BC=12AB=12a,BD=CD=12BC=14a,∴AD=AC+BD=34 a,∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94aπ,故选:D.【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.9.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B两点表示的数分别是2﹣1和2,∴A,B两点之间的距离是:2﹣(2﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.10.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.11.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM 是线段AC 的中点,∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm .故选C .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.12.D解析:D【解析】A. ∵∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;B. ∵∠AOB =2∠BOC =∠AOC +∠BOC ,∴∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;C. ∵∠AOC =12∠AOB , ∴∠AOB =2∠AOC =∠AOC +∠BOC ,∴∠AOC =∠BOC ,∴OC 平分∠AOB ,即OC 是∠AOB 的角平分线,正确,故本选项错误;D. ∵∠AOC +∠BOC =∠AOB ,∴假如∠AOC =30°,∠BOC =40°,∠AOB =70°,符合上式,但是OC 不是∠AOB 的角平分线,故本选项正确.故选D.点睛: 本题考查了角平分线的定义,注意:角平分线的表示方法,①OC 是∠AOB 的角平分线,②∠AOC =∠BOC ,③∠AOB =2∠BOC (或2∠AOC ),④∠AOC (或∠BOC )=12∠AOB . 13.A解析:A【解析】【分析】根据等式的基本性质对各项进行判断后即可解答.【详解】选项A ,由360x -=变形可得36x =,选项A 正确;选项B ,由 533x x +=-变形可得42x =-,选项B 错误;选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A.【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键. 14.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】 方程212134x x -+=-两边同时乘12得:4(21)123(2)x x -=-+ 故选:D .【点睛】 本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.15.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B .二、填空题16.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.17.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,解析:83n -【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n 个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n ,∴第n 个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.19.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.20.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.21.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45) =﹣30×12+(﹣30)×(23-)+(﹣30)×45 =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.22.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键23.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32=x(x+2y)(x-2y).4x xy当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入24.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.25.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】解:,设,,若点C在线段AB上,则,点O为AB的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 26.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x 的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x 的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.27.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.28.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:< >【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】 解:13<35;223->﹣3. 故答案为:<、>.【点睛】 此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.29.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″. 故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.30.2【解析】根据定义可得:因为,所以,故答案为:2.解析:2【解析】根据定义可得:因为239=,所以3log 92=,故答案为:2.三、压轴题31.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 32.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.33.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D 是数轴上点A 、B 的“5节点”, ∴AC+BC=5, ∵AB=4,∴C 在点A 的左侧或在点A 的右侧,设点D 表示的数为x ,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D 表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E 在BA 延长线上时,∵不能满足BE=12AE , ∴该情况不符合题意,舍去; ②当点E 在线段AB 上时,可以满足BE=12AE ,如下图,n=AE+BE=AB=4;③当点E 在AB 延长线上时,∵BE=12AE , ∴BE=AB=4,∴点E 表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n 节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.34.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.35.(1)25- ,35 (2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x 秒,表示出P ,Q 的运动路程,利用路程和等于AB 长即可解题;(3)根据点Q 达到A 点时,点P ,Q 停止运动求出运动时间即可解题;(4)根据第三问点P 运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25- ,35(2)设运动时间为x 秒13x 2x 2535+=+解得 x 4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P 运动了6个来回后,又运动了30个单位长度,∵25305-+=,。
2016-2017学年最新人教版七年级数学第一学期期末试卷和答案
2016-2017学年七年级数学第一学期期末试卷一、数与式1.的相反数是()A.3 B.C.D.﹣32.化简:﹣(﹣3)=.3.﹣5的绝对值是.4.|﹣|=.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣36.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需元.7.当x=﹣1时,代数式(x﹣1)2的值为.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.二、方程与不等式11.3与﹣4的大小关系是.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.213.数a、b在数轴上对应点的位置如图所示,则①a0,②b0,③a b(填“>”、“<”或“=”)14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□16.解方程(1)15+x=50;(2)2x﹣3=11.17.下列图案中,不是轴对称图形的是()A.B.C.D.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B ()、C()、D().20.长方形的周长为12cm,长是宽的2倍,则长为cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是;(2)体重正常比体重偏重的职工多占%;(3)体重偏轻的职工有人.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是%.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高℃.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?参考答案与试题解析一、数与式1.的相反数是()A.3 B.C.D.﹣3【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:的相反数是﹣,故选:C.2.化简:﹣(﹣3)=3.【考点】相反数.【分析】根据相反数的性质,负负为正化简求解即可.【解答】解:本题是求﹣3的相反数,根据概念(﹣3的相反数)+(﹣3)=0,则﹣3的相反数是3.故化简后为3.3.﹣5的绝对值是5.【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.4.|﹣|=.【考点】绝对值.【分析】当a是负有理数时,a的绝对值是它的相反数﹣a.【解答】解:|﹣|=.故答案为:.5.数轴上的点A到原点的距离是6,则点A表示的数为()A.6或﹣6 B.6 C.﹣6 D.3或﹣3【考点】数轴;绝对值.【分析】与原点距离为6的点有两个,分别在原点的左边和右边,左边用减法,右边用加法计算即可.【解答】解:当点A在原点左边时,为0﹣6=﹣6;点A在原点右边时为6﹣0=6.故选A.6.龙眼的单价为a元/千克,香蕉的单价为b元/千克,买2千克龙眼和3千克香蕉共需2a+3b 元.【考点】列代数式.【分析】用买2千克龙眼的钱数加上3千克香蕉的钱数即可.【解答】解:买2千克龙眼和3千克香蕉共需(2a+3b)元;故答案为:2a+3b.7.当x=﹣1时,代数式(x﹣1)2的值为4.【考点】代数式求值.【分析】将x的代入,然后先算括号内的减法,再算乘方即可.【解答】解:当x=﹣1时,原式=(﹣1﹣1)2=(﹣2)2=4.故答案为:4.8.已知a﹣b=1,则代数式2a﹣2b﹣3的值是﹣1.【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故答案为:﹣1.二、计算(直接写出结果)9.(1)﹣2+1=(2)﹣5﹣7=(3)16﹣(﹣4)=(4)﹣+(﹣)=(5)5.6﹣(﹣3.8)=(6)(﹣)×(﹣2)=(7)72÷(﹣8)=(8)﹣(﹣)2=(9)(﹣1)2015﹣(﹣1)2014=【考点】有理数的混合运算.【分析】(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式利用同号两数相加的法则计算即可得到结果;(5)原式利用减法法则变形,计算即可得到结果;(6)原式利用同号两数相乘的法则计算即可得到结果;(7)原式利用异号两数相除的法则计算即可得到结果;(8)原式利用乘方的意义计算即可得到结果;(9)原式利用乘方的意义计算即可得到结果.【解答】解:(1)原式=﹣(2﹣1)=﹣1;(2)原式=(﹣5)+(﹣7)=﹣12;(3)原式=16+4=20;(4)原式=﹣(+)=﹣1;(5)原式=5.6+3.8=9.4;(6)原式=1;(7)原式=﹣9;(8)原式=﹣;(9)原式=﹣1﹣1=﹣2.10.计算:(1)﹣5+(﹣0.25)+14﹣(﹣);(2)(+﹣1)×(﹣12);(3)1÷(﹣)×(﹣4);(4)2﹣60÷(﹣2)3×(﹣)﹣1.【考点】有理数的混合运算.【分析】(1)先去括号,然后合并同类项即可解答本题;(2)根据乘法分配律可以解答本题;(3)根据有理数的乘除法法则可以解答本题;(4)根据有理数的乘除法法则和幂的乘方,负整数指数幂可以解答本题.【解答】解;(1)﹣5+(﹣0.25)+14﹣(﹣)=﹣5﹣0.25+14+0.25=9;(2)(+﹣1)×(﹣12)==﹣9﹣10+12=﹣7;(3)1÷(﹣)×(﹣4)==;(4)2﹣60÷(﹣2)3×(﹣)﹣1=2﹣60÷(﹣8)×(﹣5)=2﹣=﹣.二、方程与不等式11.3与﹣4的大小关系是>.【考点】有理数大小比较.【分析】根据正数大于负数,即可解答.【解答】解:∵正数大于负数,∴3>﹣4,故答案为:>.12.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.2【考点】实数大小比较.【分析】根据实数比较大小的法则进行比较即可.【解答】解:∵﹣1<0,1>0,2>0,∴可排除B、C、D,∵﹣2<0,|﹣2|>|﹣1|,∴﹣2<﹣1.故选A.13.数a、b在数轴上对应点的位置如图所示,则①a<0,②b>0,③a<b(填“>”、“<”或“=”)【考点】数轴.【分析】数轴上右边表示的数总大于左边表示的数.原点左边的数为负数,原点右边的数为正数.【解答】解:根据题意得,a<0,b>0,a<b.故答案为:<,>,<.14.若代数式3x﹣2的值为7,则x等于()A.﹣2 B.﹣3 C.3 D.1【考点】解一元一次方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:3x﹣2=7,移项合并得:3x=9,解得:x=3,故选C九、根据等式的性质在○里填运算符号,在□里填数15.(1)x﹣18=60x﹣18+18=60○□x=□(2)x+21=54x+21﹣21=54○□x=□(3)x=105x×3=105○□x=□(4)4x=484x+4=48○□x=□【考点】解一元一次方程.【分析】根据解方程的方法可以求得各个方程的解,从而可以解答本题.【解答】解:(1)x﹣18=60x﹣18+18=60+18x=78;(2)x+21=54x+21﹣21=54﹣21x=33;(3)x=315;(4)4x=484x÷4=48÷4x=12;故答案为:(1)+,18,78;(2)﹣,21,33;(3)×,3,315;(4)÷,4,12.16.解方程(1)15+x=50;(2)2x﹣3=11.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项即可;(2)先移项,再合并同类项,把x的系数化为1即可.【解答】解:(1)移项得,x=50﹣15,合并同类项得,x=35;(2)移项得,2x=11+3,合并同类项得,2x=14,x的系数化为1得,x=7.17.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.18.如图是小华画的正方形风筝图案,他要在对角线AB的右下方再画一个三角形,使得新的风筝图案成为以AB所在直线为对称轴的轴对称图形,则此对称图形为()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故选:C.19.如图,若四边形ABCD的顶点A可表示为A(3,8),则顶点B、C、D可以表示为B (7,8)、C(9,3)、D(3,4).【考点】坐标与图形性质.【分析】由坐标与图形性质容易得出结果.【解答】解:根据题意得:B(7,8),C(9,3),D(3,4);故答案为:7,8;9,3;3,4.20.长方形的周长为12cm,长是宽的2倍,则长为4cm.【考点】一元一次方程的应用.【分析】设长方形的宽是xcm.根据周长,得长方形的长与宽的和是6cm,即可列方程求解.【解答】解:设长方形的宽是xcm.根据题意得:x+2x=6,解得:x=2.则2x=4.答:长方形的长是4cm.21.如图,把边长为(a+2)的正方形纸片剪出一个边长为a的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为2,则长方形的面积是()A.2(2a+2)B.2a+4 C.4a+8 D.2(a+4)【考点】完全平方公式的几何背景.【分析】根据图形可以求得拼成的长方形的另一边长,从而可以求得拼成的长方形的面积.【解答】解:由图可得,拼成的长方形一边长为2,它的另一边长为:a+2+a=2a+2,则拼成的长方形的面积是:(2a+2)×2=2(2a+2),故选A.统计与概率22.某公司对350名职工进行了体重调查,如图是调查结果的统计图,请根据统计图提供的信息,回答下列问题:(1)体重正常的职工占的百分比是54%;(2)体重正常比体重偏重的职工多占16%;(3)体重偏轻的职工有28人.【考点】扇形统计图.【分析】(1)由图直接可得;(2)将体重正常与体重偏重的百分比相减可得;(3)先根据三者百分比之和等于1求得体重偏轻的百分比,再用其百分比乘以总人数350即可.【解答】解:(1)由图可知,体重正常的职工占的百分比是54%,故答案为:54%;(2)体重正常比体重偏重的职工多占54%﹣38%=16%,故答案为:16;(3)∵体重偏轻的职工占的百分比是1﹣54%﹣38%=8%,∴体重偏轻的职工有350×8%=28(人),故答案为:28.23.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球5只,若从袋中任取一个球,则(1)摸出白球的可能性大于摸出红球的可能性(填“大于”、“小于”或“等于”);(2)摸出白球的可能性是62.5%.【考点】可能性的大小.【分析】(1)哪种球的只数多哪种球的可能性就大;(2)用白球的只数除以所有球的总只数即可;【解答】解:(1)∵红球有3只,白球有5只,∴白球的只数大于红球的只数,∴摸出白球的可能性大,故答案为:大于;(2)∵红球3只,白球5只,∴摸到白球的可能性为=62.5%,故答案为:62.5.综合与实践24.某市今年1月份某天的最高气温为5℃,最低气温为﹣1℃,则该市这天的最高气温比最低气温高6℃.【考点】有理数的减法.【分析】根据有理数的减法,即可解答.【解答】解:5﹣(﹣1)=5+1=6(℃),故答案为:6.25.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元【考点】一元一次方程的应用.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.26.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重﹣0.5千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?【考点】正数和负数.【分析】(1)根据绝对值的意义,绝对值越小越接近标准,可得答案;(2)根据有理数的加法运算,可得答案;(3)根据单价乘以数量等于总价,可得答案.【解答】解:(1)∵|﹣3|>|﹣2.5|>|﹣2|=|2|>|1.5|>|1|>|﹣0.5|,∴﹣0.5的最接近标准.故答案为:﹣0.5千克;(2)由题意,得1.5+(﹣3)+2+(﹣0.5)+1+(﹣2)+(﹣2)+(﹣2.5)=﹣5.5(千克).答:与标准重量比较,8筐白菜总计不足5.5千克;(3)由题意,得(25×8﹣5.5)×2.6=194.5×2.6=505.7(元).答:出售这8筐白菜可卖505.7元.2016年10月24日。
人教版 2016-2017学年七年级上册初一数学期末考试卷及答案
人教版 2016-2017学年七年级上册初一数学期末考试卷及答案2016-2017学年度第一学期期末数学试题七年级数学一、选择题(共20分)1.零不属于()A。
正数集合 B。
有理数集合 C。
整数集合 D。
非正有理数集合2.已知下列各数-8,2.1,3,0,-2.5,10,-1中,其中非负数的个数是()A。
2个 B。
3个 C。
4个 D。
5个3.下列各组数中,互为相反数的是()A。
|3|和-3 B。
|1|和-3 C。
|3|和3 D。
|1|和14.甲、乙、丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高()A。
10米 B。
25米 C。
35米 D。
5米5.质检员抽查某零件的质量,超过规定尺寸的记为正数,不足规定尺寸的记为负数,结果第一个.13mm,第二个-0.12mm,第三个0.15mm,第四个0.11mm,则质量最好的零件是()A。
第一个 B。
第二个 C。
第三个 D。
第四个6.绝对值相等的两数在数轴上对应两点的距离为8,则这两个数为()A。
±8 B。
0和-8 C。
0和8 D。
4和-47.下列判断正确的是()A。
比正数小的数一定是负数 B。
零是最小的有理数 C。
有最大的负整数和最小的正整数 D。
一个有理数所对应的点离开原点越远,则它越大8.一个数的平方仍然得这个数,则此数是()A。
0 B。
±1 C。
±1和0 D。
1和-19.圆柱的侧面展开图是()A。
圆形 B。
扇形 C。
三角形 D。
四边形10.下列说法正确的是()A。
两点之间的距离是两点间的线段;B。
同一平面内,过一点有且只有一条直线与已知直线平行;C。
同一平面内,过一点有且只有一条直线与已知直线垂直;D。
与同一条直线垂直的两条直线也垂直。
二、填空(共24分)1.六棱柱有 8 个顶点,12 个面。
2.如果运进72吨记作+72吨,那么运出56吨记作-56吨。
3.任意写出5个正数,5个负数,并且分别填入所属集合里,正数集合{1.2.3.4.5},负数集合{-1.-2.-3.-4.-5}。
(完整版)人教版七年级数学上册期末试卷及答案
(完整版)人教版七年级数学上册期末试卷及答案一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间()A.30分钟B.35分钟C.42011分钟D.36011分钟2.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A.208B.480C.496D.5923.若多项式229x mx++是完全平方式,则常数m的值为()A.3 B.-3 C.±3 D.+64.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A.①④B.②③C.③D.④5.下列各数中,有理数是( )A2B.πC.3.14 D376.下列等式的变形中,正确的有()①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A.1个B.2个C.3个D.4个7.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离8.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( )A .2B .4C .﹣2D .﹣4 9.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨.A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯ 10.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD 等于( )A .15°B .25°C .35°D .45°11.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯12.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟 B .42分钟 C .44分钟 D .46分钟二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.14.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.15.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.16.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.17.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.18.数字9 600 000用科学记数法表示为 .19.﹣225ab π是_____次单项式,系数是_____.20.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.21.若523m x y +与2n x y 的和仍为单项式,则n m =__________.22.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.23.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________.(2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.27.问题:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?探究:要研究上面的问题,我们不妨先从最简单的情形入手,进而找到一般性规律.探究一:将边长为2的正三角形的三条边分别二等分,连接各边中点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图①,连接边长为2的正三角形三条边的中点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,共有个;边长为2的正三角形一共有1个.探究二:将边长为3的正三角形的三条边分别三等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?如图②,连接边长为3的正三角形三条边的对应三等分点,从上往下看:边长为1的正三角形,第一层有1个,第二层有3个,第三层有5个,共有个;边长为2的正三角形共有个.探究三:将边长为4的正三角形的三条边分别四等分(图③),连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)结论:将边长为的正三角形的三条边分别等分,连接各边对应的等分点,则该三角形中边长为1的正三角形和边长为2的正三角形分别有多少个?(仿照上述方法,写出探究过程)应用:将一个边长为25的正三角形的三条边分别25等分,连接各边对应的等分点,则该三角形中边长为1的正三角形有______个和边长为2的正三角形有______个.28.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
(完整版)人教版七年级数学上册期末试卷及答案doc
(完整版)人教版七年级数学上册期末试卷及答案doc一、选择题1.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟 D .36011分钟 2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.下列判断正确的是( )A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数.4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .55.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a - 6.计算(3)(5)-++的结果是( )A .-8B .8C .2D .-27.将图中的叶子平移后,可以得到的图案是()A.B.C.D.8.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()4a b c﹣23…A.4 B.3 C.0 D.﹣29.96.已知a<0,-1<b<0,则a,ab,ab2之间的大小关系是()A.a>ab>ab2 B.ab>ab2>a C.ab>a>ab2 D.ab<a<ab210.下列变形不正确的是()A.若x=y,则x+3=y+3 B.若x=y,则x﹣3=y﹣3C.若x=y,则﹣3x=﹣3y D.若x2=y2,则x=y11.按如图所示图形中的虚线折叠可以围成一个棱柱的是()A.B.C.D.12.如图,能判定直线a∥b的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠413.某服装店销售某新款羽绒服,标价为300元,若按标价的八折销售,仍可款利60元.设这款服装的进价为x 元,根据题意可列方程为( )A .300-0.2x =60B .300-0.8x =60C .300×0.2-x =60D .300×0.8-x =6014.下列调查中,调查方式选择正确的是( )A .为了了解1 000个灯泡的使用寿命,选择全面调查B .为了了解某公园全年的游客流量, 选择抽样调查C .为了了解生产的一批炮弹的杀伤半径,选择全面调查D .为了了解一批袋装食品是否含有防腐剂,选择全面调查15.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .2二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.17. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.18.计算:()222a -=____;()2323x x ⋅-=_____.19.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.20.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.21.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为________.22.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.23.五边形从某一个顶点出发可以引_____条对角线.24.化简:2x+1﹣(x+1)=_____.25.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.26.材料:一般地,n 个相同因数a 相乘n a a a a ⋅⋅⋅个:记为n a . 如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=);如45625=,此时4叫做以5为底的625的对数,记为5log 625(即5log 6254=),那么3log 9=_________.27.单项式()26a bc -的系数为______,次数为______. 28.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.29.若-3x 2m+6y 3与2x 4y n 是同类项,则m+n=______.30.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题31.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB =22,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)出数轴上点B 表示的数 ;点P 表示的数 (用含t 的代数式表示)(2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.33.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.34.如图,以长方形OBCD 的顶点O 为坐标原点建立平面直角坐标系,B 点坐标为(0,a ),C 点坐标为(c ,b ),且a 、b 、C 满足6a ++|2b+12|+(c ﹣4)2=0.(1)求B 、C 两点的坐标;(2)动点P 从点O 出发,沿O→B→C 的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t 秒,DC 上有一点M (4,﹣3),用含t 的式子表示三角形OPM 的面积;(3)当t 为何值时,三角形OPM 的面积是长方形OBCD 面积的13?直接写出此时点P 的坐标.35.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.36.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。
人教版七年级上册数学期末考试试卷附答案
人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
人教版2016-2017年七年级上册数学期末考试试卷及答案【精选两套】
……6 分 ……8 分 所以原方程组的解为
x = 100
……8 分
y =- 40
18.(1)100 (2)500×25%×89.6%=112(株) 统计图如图所示:
……1 分 ……2 分 ……4 分
135 (3)1 号果树幼苗成活率为 ×100% = 90%
150
85 2 号果树幼苗成活率为 ×100% = 85%
位:m),解答下列问题:
2014-2015 年度第一学期期末考试七 年 级 数 学 模 拟 试 卷
(1)写出用含 x 、 y 的代数式表示地面总面积;
(2)已知客厅面积比卫生间面积多 21m2,且地面总面积是卫生间面积的 15 倍,铺 1m2 地砖的平均费用为
80 元,求铺地砖的总费用为多少元?(10 分)
18.某生态示范园要对 1 号、2 号、3 号、4 号四个品种共 500 株果树幼苗进行成活实验,从中选出成活率
高的品种进行推广,通过实验得知,3 号果树幼苗成活率为 89.6%,把实验数据绘制成下列两幅统计图(部
分信息未给出).
500 株幼苗中各种幼苗所占百分比统计图
各品种细菌成活数统计图 成活数(株)
故可得方程组 2
2
∠AOC +∠AOB = 180°
解得∠AOC=130°,∠AOB=50°
21. 解:设 AB=2 x cm,BC=5 x cm,CD=3 x cm 所以 AD=AB+BC+CD=10 x cm
………………………………4 分 ………………………………6 分
………………………………8 分 ……………………………10 分 ……………………………2 分
】
A. 33
B. 23
(完整版)人教版七年级数学上册期末试卷及答案
(完整版)人教版七年级数学上册期末试卷及答案一、选择题1.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .2.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30B .45︒C .60︒D .75︒3.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .22C .2D .324.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 5.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4 B .﹣4 C .1 D .﹣1 6.下列各数中,绝对值最大的是( ) A .2B .﹣1C .0D .﹣37.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限8.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个B .2个C .3个D .4个9.3的倒数是( ) A .3B .3-C .13D .13-10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( ) A .两点确定一条直线 B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离11.下列计算正确的是( ) A .-1+2=1 B .-1-1=0C .(-1)2=-1D .-12=112.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题13.一个角的余角等于这个角的13,这个角的度数为________. 14.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.15.把53°30′用度表示为_____. 169________17.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.18.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.19.若∠1=35°21′,则∠1的余角是__. 20.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 21.8点30分时刻,钟表上时针与分针所组成的角为_____度. 22.若523m xy +与2n x y 的和仍为单项式,则n m =__________.23.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.24.已知7635a ∠=︒',则a ∠的补角为______°______′.三、解答题25.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使50AOC ∠=︒,将一直角三角板的直角项点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.()1如图2,将图1中的三角板绕点O 逆时针旋转,使边OM 在BOC ∠的内部,且OM 恰好平分BOC ∠.此时BON ∠=__ 度;()2如图3,继续将图2中的三角板绕点O 按逆时针方向旋转,使得ON 在AOC ∠的内部.试探究AOM ∠与NOC ∠之间满足什么等量关系,并说明理由;()3将图1中的三角板绕点O 按每秒5︒的速度沿逆时针方向旋转一周,在旋转的过程中,若第t 秒时,,,OA OC ON 三条射线恰好构成相等的角,则t 的值为__ (直接写出结果). 26.先化简,再求值:()()22326m n mn mn m n +--,其中3m =,2n =-. 27.计算: (1)17+(﹣1.5)﹣(﹣67) (2)32÷(﹣34)+(﹣27)2×2128.某班去商场为书法比赛买奖品,书包每个定价40元,文具盒每个定价8元,商场实行两种优惠方案:①买一个书包送一个文具盒:②按总价的9折付款.若该班需购买书包10个,购买文具盒若干个(不少于10个).(1)当买文具盒40个时,分别计算两种方案应付的费用; (2)当购买文具盒多少个时,两种方案所付的费用相同;(3)如何根据购买文具盒的个数,选择哪种优惠方案的费用比较合算? 29.解方程:()2(-2)-3419(1)x x x -=-30.已知数轴上两点A B 、对应的数分别是6,8-,M N P 、、为数轴上三个动点,点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,点P 从原点出发速度为每秒1个单位.()1若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位? ()2若点M N P 、、同时都向右运动,求多长时间点P 到点,M N 的距离相等?四、压轴题31.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.32.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)33.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______; (2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A.【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.2.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).3.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.4.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.5.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.6.D解析:D 【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D . 考点:D .7.A解析:A 【解析】 【分析】根据平面直角坐标系中点的坐标特征判断即可. 【详解】 ∵5>0,3>0,∴点()5,3M 在第一象限. 故选A. 【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.8.B解析:B 【解析】 ①若5x=3,则x=35, 故本选项错误; ②若a=b ,则-a=-b , 故本选项正确; ③-x-3=0,则-x=3, 故本选项正确; ④若m=n≠0时,则nm=1, 故本选项错误. 故选B.9.C解析:C 【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.11.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解. 【详解】设这个角度的度数为x度,依题意得90-x=解得x=67.5故填【点睛】此题主要考查角度的求解,解题的关键是解析:67.5【解析】【分析】设这个角度的度数为x度,根据题意列出方程即可求解.【详解】设这个角度的度数为x度,依题意得90-x=1 3 x解得x=67.5故填67.5【点睛】此题主要考查角度的求解,解题的关键是熟知补角的性质.14.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x, 因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.15.5°.【解析】根据度分秒之间60进制的关系计算.【详解】解:5330’用度表示为53.5,故答案为:53.5.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以解析:5°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53︒30’用度表示为53.5︒,故答案为:53.5︒.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.16.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】=,3;【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.18.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式19.54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.解析:54°39′.【解析】试题解析:根据定义,∠1的余角度数是90°-35°21′=54°39′.考点:1.余角和补角;2.度分秒的换算.20.42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.21.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.22.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.23.40【解析】【分析】由OA 恰好是COD 的三等分线可得或,旋转角为,求出其度数取最小值即可.【详解】解:因为,OC 、OD 是AOB 的两条三分线,所以 因为OA 恰好是COD 的解析:40【解析】【分析】由OA 恰好是∠COD 的三等分线可得'10AOD ︒∠=或'20AOD ︒∠=,旋转角为'DOD ∠,求出其度数取最小值即可.【详解】解:因为90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,所以30AOD ︒∠=因为OA 恰好是∠COD 的三等分线,所以'10AOD ︒∠=或'20AOD ︒∠=,当'10AOC ︒∠=时,''301040DOD AOD AOD ︒︒︒∠=∠+∠=+=当'20AOD ︒∠=时,''302050DOD AOD AOD ︒︒︒∠=∠+∠=+=,综上所述将∠COD 顺时针最少旋转40︒.故答案为:40︒【点睛】本题考查了角的平分线,熟练掌握角平分线的相关运算是解题的关键.24.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、解答题25.(1)25°;(2)∠AOM-∠N OC=40°,理由详见解析;(3)t 的值为13,34,49或64.【分析】(1)由平角的定义先求出∠BOC的度数,然后由角平分线的定义求出∠BOM的度数,再根据∠BON=∠MON-∠BOM可以求出结果;(2)根据题意得出∠AOM+∠AON=90°①,∠AON+∠NOC=50°②,利用①-②可以得出结果;(3)根据已知条件可知,在第t秒时,三角板转过的角度为5°t,然后按照OA、OC、ON三条射线构成相等的角分四种情况讨论,即可求出t的值.【详解】解:(1)∵∠AOC=50°,∴∠BOC=180°-∠AOC=130°,∵OM平分∠BOC,∴∠BOM=12∠BOC=55°,∴∠BON=90°-∠BOM=25°.故答案为:25;(2)∠AOM与∠NOC之间满足等量关系为:∠AOM-∠N OC=40°,理由如下:∵∠MON=90°,∠AOC=50°,∴∠AOM+∠AON=90°①,∠AON+∠NOC=50°②,∴①-②得,∠AOM-∠NOC=40°.(3)∵三角板绕点O按每秒5°的速度沿逆时针方向旋转,∴第t秒时,三角板转过的角度为5°t,当三角板转到如图①所示时,∠AON=∠CON.∵∠AON=90°+5°t,∠CON=∠BOC+∠BON=130°+90°-5°t=220°-5°t,∴90°+5°t=220°-5°t,即t=13;当三角板转到如图②所示时,∠AOC=∠CON=50°,∵∠CON=∠BOC-∠BON=130°-(5°t-90°)=220°-5°t,∴220°-5°t=50°,即t=34;当三角板转到如图③所示时,∠AON=∠CON=12∠AOC=25°,∵∠CON=∠BON-∠BOC=(5°t-90°)-130°=5°t-220°,∴5°t-220°=25°,当三角板转到如图④所示时,∠AON=∠AOC=50°,∵∠AON=5°t-180°-90°=5°t-270°,∴5°t-270°=50°,即t=64.故t 的值为13,34,49或64.【点睛】本题主要考查角的和、差关系,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.26.24m n ;-72【解析】【分析】由题意先利用整式加减运算法则对式子进行化简,再将3m =,2n =-代入求解即可.【详解】解:()()22326m n mn mn m n +--=22366m n mn mn m n +-+=24m n ;将3m =,2n =-代入得到243(2)72.⨯⨯-=-【点睛】本题考查整式加减运算中的化简求值,利用合并同类项原则对式子先化简再代入计算求值.27.(1)﹣0.5;(2)﹣27【解析】【分析】(1)原式利用减法法则变形,结合后计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=16+77﹣1.5=1﹣1.5=﹣0.5; (2)原式=﹣32×43+449 ×21=﹣2+127=﹣27 . 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.28.(1)第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)当购买文具盒50个时,两种方案所付的费用相同;(3)当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【解析】(1)根据商场实行两种优惠方案分别计算即可;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解方程即可得出结果;(3)由(1)、(2)可得当购买文具盒个数小于50个时,选择方案①比较合算;当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择;当购买文具盒个数大于50个时,选择方案②比较合算.【详解】解:(1)第①种方案应付的费用为:1040(4010)8640⨯+-⨯=(元),第②种方案应付的费用为:(1040408)90%648⨯+⨯⨯=(元);答:第①种方案应付的费用为640元,第②种方案应付的费用648元;(2)设购买文具盒x 个时,两种方案所付的费用相同,由题意得:1040(10)8(10408)90%x x ⨯+-⨯=⨯+⨯,解得:50x =;答:当购买文具盒50个时,两种方案所付的费用相同;(3)由(1)、(2)可得:当购买文具盒个数小于50个时,选择方案①比较合算; 当购买文具盒个数等于50个时,两种方案所付的费用相同,两种方案都可以选择; 当购买文具盒个数大于50个时,选择方案②比较合算.【点睛】本题考查了列一元一次方程解应用题,设出未知数,列出一元一次方程是解题的关键. 29.−10【解析】【分析】分别按照一元一次方程的解法进行即可,即有去分母,去括号,移项,合并同类项,系数化成1.【详解】去括号得:2x−4−12x+3=9−9x ,移项得:2x−12x+9x=9+4−3,合并同类项得:−x=10,解得:x=−10;【点睛】此题考查解一元一次方程,解题关键在于掌握运算法则.30.(1)5秒;(2)72秒或13秒 【解析】【分析】(1)设经过x 秒点M 与点N 相距54个单位,由点M 从A 点出发速度为每秒2个单位,点N 从点B 出发速度为M 点的3倍,得出2x+6x+14=54求出即可;(2)首先设经过t 秒点P 到点M ,N 的距离相等,得出(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),进而求出即可.【详解】解:(1)设经过x 秒点M 与点N 相距54个单位.依题意可列方程为:2x+6x+14=54,解方程,得x=5.∴经过5秒点M 与点N 相距54个单位.(2)设经过t 秒点P 到点M ,N 的距离相等.(2t+6)-t=(6t-8)-t 或(2t+6)-t=t-(6t-8),t+6=5t-8或t+6=8-5t72t =或13t = ∴经过72秒或13秒点P 到点,M N 的距离相等 【点睛】 此题主要考查了数轴、一元一次方程的应用,根据已知点运动速度得出以及距离之间的关系得出等式是解题关键.四、压轴题31.(1) a =-24,b =-10,c =10;(2) 点P 的对应的数是-443或4;(3) 当Q 点开始运动后第6、21秒时,P 、Q 两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a 、b 、c 的值;(2)分两种情况讨论可求点P 的对应的数;(3)分类讨论:当P 点在Q 点的右侧,且Q 点还没追上P 点时;当P 在Q 点左侧时,且Q 点追上P 点后;当Q 点到达C 点后,当P 点在Q 点左侧时;当Q 点到达C 点后,当P 点在Q 点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a +24|+|b +10|+(c -10)2=0,∴a +24=0,b +10=0,c -10=0,解得:a =-24,b =-10,c =10;(2)-10-(-24)=14,①点P 在AB 之间,AP =14×221+=283, -24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.32.(1)25-,35(2)运动时间为4秒,相遇点表示的数字为27 ;(3)5;(4) 一共相遇了7次.【解析】【分析】(1)根据0+0式的定义即可解题;(2)设运动时间为x秒,表示出P,Q的运动路程,利用路程和等于AB长即可解题;(3)根据点Q达到A点时,点P,Q停止运动求出运动时间即可解题;(4)根据第三问点P运动了6个来回后,又运动了30个单位长度即可解题.【详解】解:(1)25-,35(2)设运动时间为x秒13x2x2535+=+解得x4=352427-⨯=答:运动时间为4秒,相遇点表示的数字为27(3)运动总时间:60÷2=30(秒),13×30÷60=6…30即点P运动了6个来回后,又运动了30个单位长度,∵25305-+=,∴点P所在的位置表示的数为5 .(4)由(3)得:点P运动了6个来回后,又运动了30个单位长度,∴点P和点Q一共相遇了6+1=7次.【点睛】本题考查了一元一次方程的实际应用,数轴的应用,难度较大,熟悉路程,时间,速度之间的关系是解题关键.33.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6xBC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN 的长度不发生变化,理由如下分两种情况:①当点P 在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。
(完整版)人教版七年级数学上册期末试卷及答案
(完整版)人教版七年级数学上册期末试卷及答案一、选择题1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项B .225m n 的系数是2C .单项式﹣x 3yz 的次数是5D .3x 2﹣y +5xy 5是二次三项式2.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.对于方程12132x x+-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+5.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -6.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 7.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 8.单项式﹣6ab 的系数与次数分别为( ) A .6,1B .﹣6,1C .6,2D .﹣6,29.下列方程的变形正确的有( ) A .360x -=,变形为36x = B .533x x +=-,变形为42x =C .2123x -=,变形为232x -= D .21x =,变形为2x = 10.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒ B .75︒ C .115︒ D .95︒ 11.如图的几何体,从上向下看,看到的是( )A .B .C .D .12.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④B .①②③C .②③④D .①③④二、填空题13.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____. 14.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.15.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.16.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:若n =26,则第2019次“C 运算”的结果是_____. 17.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____. 18.因式分解:32x xy -= ▲ .19.如果向东走60m 记为60m +,那么向西走80m 应记为______m. 20.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______.21.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________. 22.观察“田”字中各数之间的关系:则c 的值为____________________. 23.用度、分、秒表示24.29°=_____. 24.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.三、解答题25.如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形. (1)拼成的正方形的面积与边长分别是多少?(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.26.已知线段m、n.(1)尺规作图:作线段AB,满足AB=m+n(保留作图痕迹,不用写作法);(2)在(1)的条件下,点O是AB的中点,点C在线段AB上,且满足AC=m,当m=5,n=3时,求线段OC的长.27.O为数轴的原点,点A、B在数轴上表示的数分别为a、b,且满足(a﹣20)2+|b+10|=0.(1)写出a、b的值;(2)P是A右侧数轴上的一点,M是AP的中点.设P表示的数为x,求点M、B之间的距离;(3)若点C从原点出发以3个单位/秒的速度向点A运动,同时点D从原点出发以2个单位/秒的速度向点B运动,当到达A点或B点后立即以原来的速度向相反的方向运动,直到C点到达B点或D点到达A点时运动停止,求几秒后C、D两点相距5个单位长度?28.直线AB,CD交于点O,将一个三角板的直角顶点放置于点O处,使其两条直角边OE,OF,分别位于OC的两侧.若OC平分∠BOF,OE平分∠COB.(1)求∠BOE的度数;(2)写出图中∠BOE的补角,并说明理由.29.甲乙两站相距450km,一列慢车从甲站开出,每小时行驶65km,一列快车从乙站开出,每小时行驶85km.(1)两车同时开出,相向而行,那么两车行驶多少小时相遇?(2)两车同时开出,同向而行,慢车在前,多少小时快车追上慢车?(3)快车先开30min,两车相向而行,慢车行驶多少小时两车相遇?30.解方程:()-=-x x x2(-2)-3419(1)四、压轴题31.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.32.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.33.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x++-时,可令10x+=和20x-=,分别求得1x=-,2x=(称1-、2分别为|1|x+与|2|x-的零点值).在有理数范围内,零点值1x=-和2x=可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x<-;(2)1-≤2x<;(3)x≥2.从而化简代数式|1||2|x x++-可分为以下3种情况:(1)当1x<-时,原式()()1221x x x=-+--=-+;(2)当1-≤2x<时,原式()()123x x=+--=;(3)当x≥2时,原式()()1221x x x=++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据同类项的定义,单项式和多项式的定义解答. 【详解】A .3d 2bc 与bca 2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.B .225m n的系数是25,故本选项错误.C .单项式﹣x 3yz 的次数是5,故本选项正确.D .3x 2﹣y +5xy 5是六次三项式,故本选项错误. 故选C . 【点睛】本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.2.A解析:A 【解析】 【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形. 【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形, ∴从正面看到的平面图形是,【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.C解析:C 【解析】 【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果. 【详解】解:由图知:∠1+∠2=180°, ∴12(∠1+∠2)=90°, ∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1). 故选:C . 【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.D解析:D 【解析】 【分析】方程两边同乘以6即可求解. 【详解】12132x x+-=, 方程两边同乘以6可得, 2x-6=3(1+2x ). 故选D. 【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.5.B解析:B 【解析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.6.B解析:B 【解析】 【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B. 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.7.B解析:B 【解析】 【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现. 【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意; B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意; C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意; D .为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意; 故选:B . 【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.D【解析】 【分析】直接利用单项式的次数与系数确定方法分析得出答案. 【详解】解:单项式﹣6ab 的系数与次数分别为﹣6,2. 故选:D . 【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.9.A解析:A 【解析】 【分析】根据等式的基本性质对各项进行判断后即可解答. 【详解】选项A ,由360x -=变形可得36x =,选项A 正确; 选项B ,由 533x x +=-变形可得42x =-,选项B 错误; 选项C ,由2123x -=变形可得236x -=,选项C 错误; 选项D ,由21x =,变形为x =12,选项D 错误. 故选A. 【点睛】本题考查了等式的基本性质,熟练运用等式的基本性质对等式进行变形是解决问题的关键.10.B解析:B 【解析】 【分析】由题意直接根据互补两角之和为180°求解即可. 【详解】解:∵∠A=105°,∴∠A 的补角=180°-105°=75°. 故选:B . 【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.11.A解析:A 【解析】 【分析】根据已知图形和空间想象能力,从上面看图形,根据看的图形选出即可.【详解】从上面看是水平方向排列的两列,上一列是二个小正方形,下一列是右侧一个正方形,故A符合题意,故选:A.【点睛】本题考查了简单组合体的三视图的应用,主要培养学生的观察能力和空间想象能力.12.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解. 解析:-2【解析】根据图和题意可得出答案.【详解】解:,A B表示的数互为相反数,AB=,且4则A表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.16.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.18.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x(x﹣y)(x+y).19.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.20.-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a 的最大值,b 的最小值,即可求出所求.【详解】解:459<<,23∴<<,a 2∴=,b 3=,=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.21.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.22.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b =15+a =271,右上角的数字正好是右下角数字减1,所以c =b -1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
最新人教版2016-2017学年七年级上册期末数学试卷及答案
最新人教版2016-2017学年七年级上册期末数学试卷及答案2016-2017学年七年级(上)期末数学试卷一、选择题1.|-3|的值是()A。
-3 B。
0 C。
3 D。
无法确定2.一条弯曲的公路改为直道,可以缩短路程,其道理用几何知识解释的应是()A。
两点之间线段最短 B。
两点确定一条直线C。
线段可以大小比较 D。
线段有两个端点3.海面上灯塔位于一艘船的XXX的方向上,那么这艘船位于灯塔的()A。
南偏西50° B。
南偏西40° C。
北偏东50° D。
XXX°4.下面四个几何体中,从正面观察得到的平面图形是圆的几何体是()A。
球体 B。
圆锥体 C。
圆柱体 D。
圆台体5.江苏省的面积约为102 600km²,这个数据用科学记数法表示正确的是()A。
1.226×10^4 B。
1.026×10^4 C。
1.026×10^5 D。
1.026×10^66.与算式XXX的运算结果相等的是()A。
33 B。
23 C。
36 D。
387.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是()A。
∠1=∠3 B。
∠1=180°-∠3 C。
∠1=90°+∠3 D。
以上都不对8.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A。
(1+50%)x×80%=x-20 B。
(1+50%)x×80%=x+20C。
(1+50%x)×80%=x-20 D。
(1+50%x)×80%=x+20二、填空题(每题3分,共24分)9.计算:-1-2=______.答:-310.已知|m-2|+|3-n|=0,则-nm=______.答:611.如图,是一个简单的数值运算程序。
当输入x的值为-1时,则输出的数值为______.答:-212.方程2x+1=3和方程2x-a=0的解相同,则a=______.答:113.若(5x+3)与(-2x+9)互为相反数,则x=______.答:3/714.已知∠α的余角等于30°,则∠α的补角=______.答:60°15.按规律填数:1,4,9,16,______,…答:2516.已知∠AOB=50°,∠BOC=30°,则∠AOC=______.答:80°三、解答题(本大题共2小题,每题6分,共12分)17.计算:-14答:-1418.解方程:2x+3=5x-1答:x=2四、解答题(共2小题,每题7分,共14分)19.某剧团为“希望工程”募捐组织了一次义演,共卖出900张票,成人票1张15元,学生票1张8元,共筹款元。
(完整版)人教版七年级数学上册期末试卷及答案
(完整版)人教版七年级数学上册期末试卷及答案一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+ B .33x x =+C .23x =D .3-3x x = 2.﹣3的相反数是( )A .13- B .13 C .3- D .33.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( )A .0.1289×1011B .1.289×1010C .1.289×109D .1289×1074.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b 5.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( ) A .49B .59C .77D .139 6.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查 7.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯ 8.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .1 9.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山 10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .12.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.若523m x y +与2n x y 的和仍为单项式,则n m =__________.16.写出一个比4大的无理数:____________.17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.18.若a 、b 是互为倒数,则2ab ﹣5=_____.19.请先阅读,再计算:因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________. 20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)21.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm . 22.4是_____的算术平方根.23.方程x +5=12(x +3)的解是________. 24.用度、分、秒表示24.29°=_____.三、解答题25.计算:﹣6÷2+11()34-×12+(﹣3)2.26.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.27.小明每隔一小时记录某服装专营店8:00~18:00的客流量(每一时段以200人为标准,超出记为正,不足记为负),如表所示:(1)若服装店每天的营业时间为8:00~18;00,请你估算一周(不休假)的客流量;(单位:人)(精确到百位)(2)若服装店在某天内男女装共卖出135套,据统计,每15名女顾客购买一套女装,每20名男顾客购买一套男装,则这一天卖出男、女服装各多少套?(3)若每套女装的售价为80元,每套男装的售价为120元,则此店一周的营业额约为多少元?28.计算:|﹣2|+(﹣1)2019+19×(﹣3)229.某中学学生步行到郊外旅行,七年级()1班学生组成前队,步行速度为4千米/小时,七()2班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时.()1后队追上前队需要多长时间?()2后队追上前队的时间内,联络员走的路程是多少?()3七年级()1班出发多少小时后两队相距2千米?30.设A=3a2+5ab+3,B=a2﹣ab.(1)化简;A﹣3B.(2)当a、b互为倒数时,求A﹣3B的值.四、压轴题31.如图,已知数轴上有三点A,B,C ,若用AB 表示A,B 两点的距离,AC 表示A ,C 两点的距离,且BC = 2 AB ,点A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点P,Q 分别从A,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到B 的距离与P 到B 的距离相等?(2)若点P ,Q 仍然以(1)中的速度分别从A ,C 两点同时出发向右运动,2 秒后,动点R 从A点出发向左运动,点R 的速度为1个单位长度/秒,点M 为线段PR 的中点,点N为线段RQ的中点,点R运动了x 秒时恰好满足MN +AQ = 25,请直接写出x的值.32.如图,在平面直角坐标系中,点M的坐标为(2,8),点N的坐标为(2,6),将线段MN向右平移4个单位长度得到线段PQ(点P和点Q分别是点M和点N的对应点),连接MP、NQ,点K是线段MP的中点.(1)求点K的坐标;(2)若长方形PMNQ以每秒1个单位长度的速度向正下方运动,(点A、B、C、D、E分别是点M、N、Q、P、K的对应点),当BC与x轴重合时停止运动,连接OA、OE,设运动时间为t秒,请用含t的式子表示三角形OAE的面积S(不要求写出t的取值范围);(3)在(2)的条件下,连接OB、OD,问是否存在某一时刻t,使三角形OBD的面积等于三角形OAE的面积?若存在,请求出t值;若不存在,请说明理由.33.如图,己知数轴上点A表示的数为8,B是数轴上一点,且AB=22.动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】把32x=-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是.【详解】解:A中、把32x=-代入方程得左边等于右边,故A对;B中、把32x=-代入方程得左边不等于右边,故B错;C中、把32x=-代入方程得左边不等于右边,故C错;D中、把32x=-代入方程得左边不等于右边,故D错.故答案为:A.【点睛】本题考查方程的解的知识,解题关键在于把x值分别代入方程进行验证即可.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.B解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.6.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.7.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.B解析:B【解析】【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果.【详解】解:由题意可得,当x=1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.9.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.11.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.12.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150︒【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.15.9【解析】根据与的和仍为单项式,可知与是同类项,所以,解得,所以,故答案为:9.解析:9【解析】根据523m x y +与2n x y 的和仍为单项式,可知523m x y +与2n x y 是同类项,所以52m +=,解得m 3,n 2=-=,所以()239n m =-=,故答案为:9.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.18.-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒解析:-3.【解析】【分析】根据互为倒数的两数之积为1,得到ab=1,再代入运算即可.【详解】解:∵a、b是互为倒数,∴ab=1,∴2ab ﹣5=﹣3.故答案为﹣3.【点睛】本题考查了倒数的性质,掌握并灵活应用倒数的性质是解答本题的关键.19.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 20.>【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.21.5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.【详解】由于C 点的位置不确定,故要分两种情况讨论:当C 点在B 点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C 点的位置不能确定,故要分两种情况考虑AC 的长,注意不要漏解.由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.22.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.23.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.24.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′︒'"解析:241724【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″. 故答案为24°17′24″.【点睛】此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、解答题25.【解析】【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:﹣6÷2+11()34-×12+(﹣3)2=﹣3+11121234⨯-⨯+(﹣3)2 =﹣3+4﹣3+9=7.【点睛】 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.26.(1)每辆小客车能坐20人,每辆大客车能坐45人;(2)①租车方案有三种:方案一:小客车20辆、大客车0辆;方案二:小客车11辆,大客车4辆;方案三:小客车2辆,大客车8辆;②最省钱的是租车方案三,最少租金是4600元.【解析】【分析】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人根据题意可得等量关系:2辆小客车座的人数+1辆大客车座的人数=85人;3辆小客车座的人数+2辆大客车座的人数=150人,根据等量关系列出方程组,再解即可(2)①根据题意可得小客车m 辆运的人数+大客车n 辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金300元,大客车每辆租金500元分别计算出租金即可【详解】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人,据题意;28532150x y x y +=⎧⎨+=⎩, 解得:2045x y =⎧⎨=⎩, 答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:2045400m n +=, ∴8049m n -=,∵m、n为非负整数,∴20mn=⎧⎨=⎩或114mn=⎧⎨=⎩或28mn=⎧⎨=⎩,∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300206000⨯=(元),方案二租金:3001150045300⨯+⨯=(元),方案三租金:300250084600⨯+⨯=(元),∴最省钱的是租车方案三,最少租金是4600元.【点睛】此题考查二元一次方程组的应用和二元一次方程的应用,解题关键在于列出方程27.(1)1.51×104人;(2)这一天卖出男装25套,女装110套.(3) 此店一周的营业额约为82600元.【解析】【分析】(1)通过题目和表格中的数据,可以算出各个时间段的客流量,将各个时间段的客流量相加算出平均数,来估算出一天的客流量,从而估算出一周的客流量.(2)根据问题设出男顾客与女顾客购买服装的套数,再根据一天的客流量可算出问题的答案.(3)根据第二问提供的信息,可以估算出一周的营业额.【详解】(1)根据题目和表格可得8:00~9:00的客流量为:200-21=179(人)10:00~11:00的客流量为:200+33=233(人)12:00~13:00的客流量为:200-12=188(人)14:00~15:00的客流量为:200+21=221(人)16:00~17:00的客流量为:200+54=254(人)这几个时间段的客流量平均数为:(179+233+188+221+254)÷5=1075÷5=215(人)则一天的客流量为:215×(18-8)=215×10=2150(人)故一周的客流量为:2150×7=15050≈15100=1.51×104(人)(2)设这一天卖出女装x套,男装(135-x)套,根据题意得,15x+20(135-x)=2150,解得,x=110,135-x=135-110=25.故这一天卖出男装25套,女装110套.(3)因为第二问中某一天出售男装25套,女装110套,每套女装的售价为80元,每套男装的售价为120元所以此店一周的营业额约为:[(25×120)+(110×80)]×7=[3000+8800]×7=11800×7=82600(元)故此店一周的营业额约为82600元.【点睛】本题考查正数和负数的加法、解方程组、数据的估算,注意第一问中精确到百位. 28.2【解析】【分析】直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.【详解】 解:原式12199=-+⨯ 11=+2=.【点睛】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.29.(1)后队追上前队需要2小时;(2)联络员走的路程是20千米;(3)七年级()1班出发12小时或2小时或4小时后,两队相距2千米 【解析】【分析】 (1) 设后队追上前队需要x 小时,由后队走的路程=前队先走的路程+前队后来走的路程,列出方程,求解即可;(2)由路程=速度×时间可求联络员走的路程;(3)分三种情况讨论,列出方程求解即可.【详解】()1设后队追上前队需要x 小时,根据题意得:()64x 41-=⨯x 2∴=,答:后队追上前队需要2小时;()210220⨯=千米,答:联络员走的路程是20千米;()3设七年级()1班出发t 小时后,两队相距2千米,当七年级()2班没有出发时,21t 42==, 当七年级()2班出发,但没有追上七年级()1班时,()4t 6t 12=-+,t 2∴=,当七年级()2班追上七年级()1班后,()6t 14t 2-=+,t 4∴=,答:七年级()1班出发12小时或2小时或4小时后,两队相距2千米. 【点睛】本题考查了一元一次方程的应用,分类讨论的思想,找准等量关系,正确列出一元一次方程是解题的关键.30.(1)8ab +3;(2)11【解析】【分析】(1)把A 与B 代入A ﹣3B 中,然后进行化简即可;(2)根据倒数的性质可得ab =1,然后代入计算即可.【详解】解:(1)∵A =3a 2+5ab +3,B =a 2﹣ab ,∴A ﹣3B =3a 2+5ab +3﹣3a 2+3ab =8ab +3;(2)由a ,b 互为倒数,得到ab =1,则A ﹣3B =8+3=11.【点睛】本题考查了整式的化简求值,灵活运用四则运算法则是解答本题的关键. 四、压轴题31.(1)107秒或10秒;(2)1413或11413. 【解析】【分析】(1)由绝对值的非负性可求出a ,c 的值,设点B 对应的数为b ,结合BC = 2 AB ,求出b 的值,当运动时间为t 秒时,分别表示出点P 、点Q 对应的数,根据“Q 到B 的距离与P 到B 的距离相等”列方程求解即可;(2)当点R 运动了x 秒时,分别表示出点P 、点Q 、点R 对应的数为,得出AQ 的长, 由中点的定义表示出点M 、点N 对应的数,求出MN 的长.根据MN +AQ =25列方程,分三种情况讨论即可.【详解】(1)∵|a -20|+|c +10|=0,∴a -20=0,c +10=0,∴a =20,c =﹣10.设点B 对应的数为b .∵BC =2AB ,∴b ﹣(﹣10)=2(20﹣b ).解得:b =10.当运动时间为t 秒时,点P 对应的数为20+2t ,点Q 对应的数为﹣10+5t .∵Q 到B 的距离与P 到B 的距离相等,∴|﹣10+5t ﹣10|=|20+2t ﹣10|,即5t ﹣20=10+2t 或20﹣5t =10+2t ,解得:t =10或t =107. 答:运动了107秒或10秒时,Q 到B 的距离与P 到B 的距离相等.(2)当点R 运动了x 秒时,点P 对应的数为20+2(x +2)=2x +24,点Q 对应的数为﹣10+5(x +2)=5x ,点R 对应的数为20﹣x ,∴AQ =|5x ﹣20|.∵点M 为线段PR 的中点,点N 为线段RQ 的中点,∴点M 对应的数为224202x x ++-=442x +, 点N 对应的数为2052x x -+=2x +10, ∴MN =|442x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.分三种情况讨论:①当0<x <4时,12﹣1.5x +20﹣5x =25,解得:x =1413; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,解得:x =667>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 31141=. 综上所述:x 的值为1413或11413. 【点睛】本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)(4,8)(2)S△OAE=8﹣t(3)2秒或6秒【解析】【分析】(1)根据M和N的坐标和平移的性质可知:MN∥y轴∥PQ,根据K是PM的中点可得K 的坐标;(2)根据三角形面积公式可得三角形OAE的面积S;(3)存在两种情况:①如图2,当点B在OD上方时②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,分别根据三角形OBD的面积等于三角形OAE的面积列方程可得结论.【详解】(1)由题意得:PM=4,∵K是PM的中点,∴MK=2,∵点M的坐标为(2,8),点N的坐标为(2,6),∴MN∥y轴,∴K(4,8);(2)如图1所示,延长DA交y轴于F,则OF⊥AE,F(0,8﹣t),∴OF=8﹣t,∴S△OAE=12OF•AE=12(8﹣t)×2=8﹣t;(3)存在,有两种情况:,①如图2,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,0),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△OBG+S四边形DBGH+S△ODH,=12OG•BG+12(BG+DH)•GH﹣12OH•DH,=12×2(6-t)+12×4(6﹣t+8﹣t)﹣12×6(8﹣t),=10﹣2t,∵S△OBD=S△OAE,∴10﹣2t=8﹣t,t=2;②如图3,当点B在OD上方时,过点B作BG⊥x轴于G,过D作DH⊥x轴于H,则B(2,6﹣t),D(6,8﹣t),∴OG=2,GH=4,BG=6﹣t,DH=8﹣t,OH=6,S△OBD=S△ODH﹣S四边形DBGH﹣S△OBG,=12OH•DH﹣12(BG+DH)•GH﹣12OG•BG,=12×2(8-t)﹣12×4(6﹣t+8﹣t)﹣12×2(6﹣t),=2t﹣10,∵S△OBD=S△OAE,∴2t﹣10=8﹣t,t=6;综上,t的值是2秒或6秒.【点睛】本题考查四边形综合题、矩形的性质、三角形的面积、一元一次方程等知识,解题关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.33.(1)-14,8-4t(2)点P运动11秒时追上点Q(3)103或4(4)线段MN的长度不发生变化,都等于11【解析】【分析】(1)根据AB长度即可求得BO长度,根据t即可求得AP长度,即可解题;(2)点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,根据AC-BC=AB,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.。
2016-2017人教版七年级数学上册期末测试题及答案【精选4套】
A. B. C. D.2016-2017人教版七年级数学上册期末测试题及答案一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示 ( )A .增加14%B .增加6%C .减少6%D .减少26%2.13-的倒数是 ( ) A .3 B .13 C .-3 D . 13-3、如右图是某一立方体的侧面展开图 ,则该立方体是 ( )4、青藏高原是世界上海拔最高的高原,它的面积约为 2 500 000平方千米.将 2 500 000用科学记数法表示为 ( )A.70.2510⨯ B.72.510⨯ C.62.510⨯D.52510⨯5、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个7.在解方程5113--=x x 时,去分母后正确的是 ( )A .5x =15-3(x -1)B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于 ( )A .4x -1B .4x -2C .5x -1D .5x -2 9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2第9题10. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )第10题A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式 14.若x=4是关于x的方程5x-3m=2的解,则m= . 15.多项式223368x kxy y xy --+-不含xy 项,则k = ;nnmn16.如图,点A,B在数轴上对应的实数分别为m,n,则A,B间的距离是.(用含m,n的式子表示)17.已知线段AB=10cm,点D是线段AB的中点,直线AB上有一点C,并且BC=2 cm,则线段DC= .18.钟表在3点30分时,它的时针和分针所成的角是.19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看从左面看从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤.21.计算:(共6分,每小题3分)(1) 3x2+6x+5-4x2+7x-6, (2) 5(3a2b-ab2)—(ab2+3a2b)22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫⎝⎛-(4)121()24234-+-⨯-A Bm0n x23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y —0.7=6.5—1.3y(3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。
(完整word版)20162017人教版七年级数学上册期末测试题及答案精选4套,推荐文档
2016-2017人教版七年级数学上册期末测试题及答案一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示 ( )A .增加14%B .增加6%C .减少6%D .减少26%2.13-的倒数是 ( ) A .3 B .13 C .-3 D . 13-3、如右图是某一立方体的侧面展开图 ,则该立方体是 ( )4、青藏高原是世界上海拔最高的高原,它的面积约为 2 500 000平方千米.将 2 500 000用科学记数法表示为 ( )A.70.2510⨯ B.72.510⨯ C.62.510⨯D.52510⨯5、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个7.在解方程5113--=x x 时,去分母后正确的是 ( ) A. B. C. D.A .5x =15-3(x -1)B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于 ( )A .4x -1B .4x -2C .5x -1D .5x -2 9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2第9题10. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )第10题A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式 14.若x=4是关于x的方程5x-3m=2的解,则m= . 15.多项式223368x kxy y xy --+-不含xy 项,则k = ;nnmn16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n的式子表示)17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = .18.钟表在3点30分时,它的时针和分针所成的角是 .19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看 从左面看 从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤.21.计算:(共6分,每小题3分) (1) 3x 2+6x+5-4x 2+7x -6, (2) 5(3a 2b-ab 2)—(ab 2+3a 2b )22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫⎝⎛-(4)121()24234-+-⨯-A B mnx23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y —0.7=6.5—1.3y(3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。
2016-2017新人教版七年级数学上册期末测试题及答案修正版
2016—2017年七年级上学期期末测试卷(人教版)班级: 姓名: 座位号: 学籍号:一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入括号内)1.2-等于( )A .-2B .12- C .2 D .122.在墙壁上固.定.一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚 3.下列方程为一元一次方程的是( )A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( ) A .)1(--与1 B .(-1)2与1 C .1-与1 D .-12与1 5.下列各组单项式中,为同类项的是( )A .a 3与a 2B .12a 2与2a 2 C .2xy 与2x D .-3与a6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B.90° C .105° D.120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( ) A .69° B.111° C.141° D.159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( )A B C D 第8题图第8题图A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x=2是方程8-2x=ax 的解,则a=_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b=2,那么2a -2b+5=_________.19.已知y 1=x +3,y 2=2-x ,当x=_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.6 2 22 4 2 0 4 8 84 446 (43)共94元23.(本小题满分7分)先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x=21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB=∠COD=90°,OC 平分∠AOB,∠BOD=3∠DOE. 求:∠COE 的度数.27.(本小题满分8分)如图,已知线段AB 和CD 的公共部分BD=13AB=14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为 元.AE DBFC2016—2017数学试题参考答案及评分说明一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B. 二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8.三、解答题(共60分)21.解: =4322.解:这个角的度数是80°23.解:原式 =1212212+--+-x x x =12--x把x=21代入原式: 原式=12--x =1)21(2-- =45-24.解: 83=x .X|k |B| 1 . c|O |m25.解:(1)第一次移动后这个点在数轴上表示的数是3;(2)第二次移动后这个点在数轴上表示的数是4; (3)第五次移动后这个点在数轴上表示的数是7;(4)第n 次移动后这个点在数轴上表示的数是n+2; …………………………5分 (5)54. ………………………………………………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB∴∠BOC =12∠AOB =45°, ………………………………………………………2分∵∠BOD =∠COD-∠BOC =90°-45°=45°, ………………………………4分∠BOD =3∠DOE∴∠DOE =15, ……………………………………………………………………7分 ∴∠COE =∠COD-∠DOE =90°-15°=75° …………………………………8分 27.解:设BD=xcm ,则AB=3xcm ,CD=4xcm ,AC=6xcm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB=1.5xcm ,CF=12CD=2xcm . ……………………………………………3分∴EF =AC -AE -CF=2.5xcm . (4)分∵EF =10cm ,∴2.5x =10,解得:x=4. (6)分∴AB =12cm ,CD=16cm . ……………………………………………………………8分 28.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x+4)元. ………………………1分由题意得:30x+45(x+4)=1755 ……………………………………………3分解得:x=21则x+4=25. ..............................................................................4分答:钢笔的单价为21元,毛笔的单价为25元. (5)分(2)设单价为21元的钢笔为y支,所以单价为25元的毛笔则为(105-y)支. …6分根据题意,得21y+25(105-y)=2447.………………………………………………7分解之得:y=44.5 (不符合题意) . (8)分所以王老师肯定搞错了. ……………………………………………………………9分(3)2或6. ………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z支,签字笔的单价为a元则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为 a、z都是整数,且178+a应被4整除,所以 a为偶数,又因为a为小于10元的整数,所以 a可能为2、4、6、8.当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
2016-2017年新人教版七年级上数学期末试卷有答案
2016-2017学年度第一学期期末质量检测试卷七年级数学(满分 150分, 时间 120 分钟)题号一二三四A 卷总分B 卷总分A+B 总分总分人审核人得分一、选择题。
(下列各题均有四个答案,其中只有一个是正确,共10个小题,每小题 3 分,共30 分)1.﹣6的绝对值是()A .6 B .﹣6 C .±6 D .2.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A .0.109×105 B .1.09×104C .1.09×103D .109×1023.计算﹣32的结果是()A .9 B .﹣9 C .6 D .﹣6w w w .x k b 1.c o m4.如图1是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A .数B .学C .活D .的得分评卷人题号 1 2 3 4 5 6 7 8 9 10选项考点考生所在学校姓名考场考号图15.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是()A .3x+2x 2=5x 3B .2a 2b ﹣a 2b=1C .﹣ab ﹣ab=0D .﹣y 2x+xy 2=07.如图2,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为()A .35°B .45°C .55°D .65°8.下列说法中错误的是()A .的系数是B .0是单项式C .的次数是 1D .﹣x 是一次单项式9.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为()A .88元B .98元C .108元D .118元10.如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M ,N 分别为AB ,BC的中点,那么M ,N 两点之间的距离为()A .5cmB .1cmC .5或1cmD .无法确定二、填空题,(共8个小题,每小题4分,共32分)11.如果零上2℃记作+2℃,那么零下5℃记作℃.12.若3x 2k ﹣3=5是一元一次方程,则k=.13.若2a 2b m 与﹣a n b 3是同类项,则n m =.得分评卷人图214.已知a2+|b+1|=0,那么(a+b)2015的值为.15.一条直线上有n个不同的点,则该直线上共有线段条.16.如图,已知点O在直线AB上,∠1=65°15′,∠2=78°30′,则∠1+∠2=,∠3=.图317.小明与小刚规定了一种新运算△:a△b=3a﹣2b.小明计算出2△5=﹣4,请你帮小刚计算2△(﹣5)=.18.若a,b互为相反数,且都不为零,则(a+b﹣1)(+1)的值为.三、解答题(共38分)19.(每小题5分,共10分)计算(1)(﹣6)2×[﹣+(﹣)](2)0﹣23÷(﹣4)3﹣20.(每小题5分,共10分)解方程(1)4x﹣3=﹣4 (2)(1﹣2x)=(3x+1)21.(8分)化简:3b+5a﹣[﹣(2a﹣4b)﹣( 3b+5a)]22.(10分)某校为了解九年级学生体育测试情况,以九年级(1)班学生的体育测试成绩为样本,按A,B,C,D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)(1)请把条形统计图补充完整;(2)扇形统计图中D级所在的扇形的圆心角度数是多少?(3)若该校九年级有600名学生,请用样本估计体育测试中A级学生人数约为多少人?xkb1B 卷23.(8分)先化简,再求值:2(a 2b+ab 2)﹣2(a 2b ﹣1)﹣ab 2﹣2.其中a=1,b=﹣3.来源学|科|网Z|X|X|K]24.(8分)解方程:.25.(10分)如图,已知点M 是线段AB 的中点,点N 在线段MB 上,MN=AM ,若MN=3cm ,求线段AB 和线段NB 的长.26.(12分)如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC=70°,求∠BOD 的度数;得分评卷人得分评卷人图6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. B. C. D.2016-2017人教版七年级数学上册期末测试题及答案一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示 ( )A .增加14%B .增加6%C .减少6%D .减少26%2.13-的倒数是 ( ) A .3 B .13 C .-3 D . 13-3、如右图是某一立方体的侧面展开图 ,则该立方体是 ( )4、青藏高原是世界上海拔最高的高原,它的面积约为 2 500 000平方千米.将 2 500 000用科学记数法表示为 ( )A.70.2510⨯ B.72.510⨯ C.62.510⨯D.52510⨯5、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个7.在解方程5113--=x x 时,去分母后正确的是 ( )A .5x =15-3(x -1)B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于 ( )A .4x -1B .4x -2C .5x -1D .5x -2 9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2第9题10. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )第10题A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式 14.若x=4是关于x的方程5x-3m=2的解,则m= . 15.多项式223368x kxy y xy --+-不含xy 项,则k = ;nnmn16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = .18.钟表在3点30分时,它的时针和分针所成的角是 .19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看 从左面看 从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤.21.计算:(共6分,每小题3分) (1) 3x 2+6x+5-4x 2+7x -6, (2) 5(3a 2b-ab 2)—(ab 2+3a 2b )22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫⎝⎛-(4)121()24234-+-⨯-A B mnx23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y —0.7=6.5—1.3y(3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。
28.(8分)为了鼓励居民节约用水,某市自来水公司按如下方式对每户月用水量进行计算:当用水量不超过10吨时,每吨的收费标准相同,当用水量超过10吨时,超出10OA B吨的部分每吨的收费标准也相同,下表是小明家1-4月份用水量和交费情况:请根据表格中提供的信息,回答以下问题:(1)若小明家5月份用水量为20吨,则应缴水费多少元?(2)若小明家6月份交纳水费29元,则小明家6月份用水多少吨?初一数学试题答案一、选择题:(共30分,每小题3分)1.C2.C3.D4.C5.B6.B7.A8.B9.A 10.B二、填空题:(共30分,每小题3分)11. 14 12.正方体、球13.四、五14.6 15.216.n-m 17.3cm或7cm 18. 750 17.七20.8三、解答题:(共60分)21.(共6分,每小题3分)(1) -x2+13x-1 (2) 15a2b—6ab222.(共12分,每小题3分)(1)8 (2)-10 (3)250 (4)-223. (共12分,每小题3分)(1)x=3 (2) y=4(1)x=-3/5 (2)x=3/824.(5分)原式=-x2-1 原式=-5/425. (5分)60026.(5分)解:设快马X天可以追上慢马,则240x=150(x+12)X=2027.(7分)∠COE=75°28.(8分)(1)50元(2)13吨206-2017人教版七年级数学上册期末测试题及答案一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰.有一项...是符合题目要求的,请将正确选项的代号填入题后括号内. 1.如果+20%表示增加20%,那么-6%表示( ).A .增加14%B .增加6%C .减少6%D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( )A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -<4. 下面说法中错误的是( ). A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×104 5. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ()A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6. 如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( )A .a <ab <2ab B .a <2ab <abC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( ) A .5x =15-3(x -1) B .x =1-(3 x -1) C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -2b9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2 从正南方向看 从正西方向看 第7题 第8题10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个二、填空题:本大题共10小题,每小题3分,共30分. 11.多项式132223-+--x xy y x x 是_______次_______项式12.三视图都是同一平面图形的几何体有 、 .(写两种即可) 13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.若2320a a --=,则2526a a +-= .15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果 是________________.18.一个角的余角比它的补角的32还少40°,则这个角为 度. 19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售, 售货员最低可以打___________折出售此商品AB mnxnnmn20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。
那么2007,2008,2009,2010这四个数中_____可能是剪出的纸片数三、解答题:本大题共6小题,共50分.解答时应写出文字说明、证明过程或演算步骤. (21~24题,每题8分,共32分) 21.计算:(1)(-10)÷551⨯⎪⎭⎫ ⎝⎛-(2)()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⨯--. 22.解方程:(1)13421+=-x x (2)0.10.20.02x --10.5x += 3. 23.已知:22321A x xy x =+--,21B x xy =-+- (1)求3A +6B 的值;(2)若3A +6B 的值与x 的值无关,求y 的值。
24.已知关于x 的方程3(2)x x a -=-的解比223x a x a +-=的解小52,求a 的值. 25.如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB ,CD 的长.A E CD B F26.某校计划购买20张书柜和一批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张210元,书架每只70元,A 超市的优惠政策为每买一张书柜赠送一只书架,B 超市的优惠政策为所有商品八折。