单晶制备方法综述概要
单晶制备方法范文

单晶制备方法范文单晶制备是一种重要的晶体制备方法,用于制备高纯度、大尺寸和高质量的单晶材料。
本文将介绍几种常见的单晶制备方法。
1.熔融法熔融法是制备单晶材料最常用的方法之一、该方法首先将原料粉末加入坩埚中,通过加热坩埚使其熔化。
然后,将熔融体缓慢冷却,使其中的原子或分子有足够的时间重新排列成为有序的晶体结构。
最后,通过剖析、切割或溶解等方法得到单晶。
2.水热法水热法是通过在高温高压的水环境中进行晶体生长的方法。
该方法通常使用混合溶液,将试样和溶剂一起装入高压釜中。
随着温度升高和压力增加,试样溶解,晶体逐渐从溶液中生长。
通过控制温度、压力和溶液成分,可以实现单晶的生长。
3.气相输运法气相输运法是通过在高温气氛中使试样在晶界和界面扩散的方法。
首先,将原料制成粉末,然后将粉末放入烧结体中,在高温下加热。
粉末在高温气氛中扩散,形成晶体生长的条件。
最终得到单晶。
4.化学气相沉积法化学气相沉积法是通过在合适的气氛中,使气态反应物沉积到衬底表面上形成单晶的方法。
该方法通常使用低温和大气压或低气压条件下进行。
通常先将衬底加热到合适的温度,然后通过输送反应气体,使气体中的原子或分子在衬底表面沉积,并逐渐形成单晶。
5.溶液法溶液法是通过在适当的溶剂中将试样溶解并逐渐冷却结晶得到单晶的方法。
溶解试样后,通过逐渐控制溶液的温度和溶剂挥发的速度,使溶液中的试样逐渐结晶为单晶。
溶液法适用于生长一些不易用其他方法制备的化合物单晶。
总结单晶制备方法相对复杂,需要仔细选择适合的方法和条件。
除了以上几种常见的方法外,还有其他一些专用的单晶制备方法,例如激光熔融法、分子束外延法等。
单晶制备方法的选择要考虑材料的物化性质、成本和实际需求等因素。
单晶的制备对于材料科学研究和器件制造都具有重要的意义。
单晶制备方法综述

单晶制备方法综述单晶是指物质中具有高度有序排列的晶体,具有优异的物理、化学和电学性能。
单晶制备是实现高性能材料研制和工业应用的重要一环。
本文将综述几种常见的单晶制备方法。
1.液相生长法:液相生长法是最常见的单晶制备方法之一、它基于溶剂中溶解度随温度变化的规律,利用溶剂中存在过饱和度来实现晶体生长。
在溶液中加入适量的晶种或原料,通过恒温、搅拌等条件控制溶液中的过饱和度,使得晶体在液相中逐渐生长。
液相生长法具有适用范围广、成本低廉、晶体尺寸可控等优点,被广泛应用于多种单晶材料的制备。
2.熔体法:熔体法是通过将材料加热至高温使其熔化,然后再进行快速冷却来制备单晶。
熔体法适用于熔点较高的材料,如金属和铁电材料等。
具体实施时,将原料加热至熔点以上,然后迅速冷却至晶体生长温度,通过控制冷却速率和成核条件等参数,使得材料在熔体状态下形成单晶。
熔体法制备的单晶具有高纯度、低缺陷密度等特点。
3.化学气相沉积法(CVD):化学气相沉积法是将气体、液体或固体混合物送入反应器中,通过化学反应生成气体中的原子或离子,然后在合适的衬底上生长晶体。
CVD法的主要控制参数包括反应原料、反应条件和衬底选择等,通过优化这些参数可以得到高质量的晶体。
CVD法适用于制备半导体晶体、薄膜和光纤等材料。
4.硅热法:硅热法是指通过将石英管内的硅砂与待制备材料在高温下反应,生成有机金属气体,通过扩散至冷却区域后与基片上的晶种接触形成晶体。
硅热法制备的单晶一般适用于高温超导材料、稀土金属等。
5.水热法:水热法是指在高温高压的水热条件下,利用溶液中溶质的溶解度、晶种和反应物之间的反应动力学及溶质活度等热力学因素来实现晶体生长。
水热法适用于很多无机非金属单晶材料的制备,如氧化物、硅酸盐等。
水热法可以自主调控晶体形貌和尺寸等物理性能。
综上所述,单晶制备方法涵盖了液相生长法、熔体法、化学气相沉积法、硅热法和水热法等多种方法。
不同的方法适用于不同的材料,通过合理选择和控制制备条件,可以得到高质量、尺寸可控的单晶材料,应用于各个领域的研究和应用。
单晶材料的制备方法介绍

单晶材料的制备方法介绍单晶材料,指的是具有完全单一晶体结构的材料,其晶粒呈现为整体性完整的晶体。
这种材料的制备方法包括单晶增长法、气相转化法和物理气相沉积法等。
下面将对这些方法进行详细的介绍。
(一)单晶增长法单晶增长法是目前制备单晶材料最常用的方法之一、其主要原理是通过液相或气相中的原料溶液或气体在晶体表面上沉积,并利用材料的热和质量迁移,使晶体逐渐增长,最终形成单晶。
1.液相法液相法是一种常见的制备单晶材料的方法。
其主要过程包括晶种的培养、溶液配制、溶解和淬火等步骤。
首先,选择一个适合的晶种,在高温下使晶种与溶液接触,晶种逐渐增大。
然后,配制溶液,将材料溶解于溶剂中,形成适合生长晶体的溶液。
接下来,将晶种放入溶液中,通过控制温度和溶液浓度等参数,晶体逐渐从溶液中生长出来。
最后,取出晶体并进行淬火处理,使其冷却到室温。
2.气相法气相法是一种通过蒸发气体使晶体逐渐生长的方法。
其主要过程包括晶种选择、反应气体制备、晶种遗忘和生长阶段等步骤。
首先,选择一个合适的晶种,将其放入反应器中。
然后,制备反应气体,根据晶体材料的要求选择适当的气体进行气相反应。
接下来,将反应气体通过外部加热的方式在晶体表面进行蒸发,晶体逐渐生长。
最后,取出晶体并进行后续处理。
(二)气相转化法气相转化法是一种通过气体中的化学反应在晶体表面上形成单晶的方法。
其主要过程包括原料选择、反应条件控制、晶体生长和后续处理等步骤。
首先,选择适合的原料,在高温高压下使其在气氛中发生化学反应。
然后,通过控制反应条件,使得反应物在晶体表面发生转化反应,逐渐形成单晶。
接下来,将晶体取出并进行后续处理,例如清洗和退火等。
(三)物理气相沉积法物理气相沉积法是一种利用物理沉积技术制备单晶材料的方法。
其主要过程包括蒸发源制备、蒸发和沉积等步骤。
首先,制备一个蒸发源,将所需材料放入蒸发源中。
然后,通过加热蒸发源,使其产生气态物质。
接下来,将气态物质从蒸发源中输送到晶体表面,通过沉积在晶体表面上,逐渐形成单晶。
单晶制备方法

直拉法制单晶硅和区熔法晶体生长第一节概述多晶硅是单质硅的一种形态。
熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。
多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。
例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。
在化学活性方面,两者的差异极小。
多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。
多晶硅由很多单晶组成的,杂乱无章的。
单晶硅原子的排列都是有规律的,周期性的,有方向性。
当前生长单晶主要有两种技术:其中采用直拉法生长硅单晶的约占80%,其他由区溶法生长硅单晶。
采用直拉法生长的硅单晶主要用于生产低功率的集成电路元件。
例如:DRAM,SRAM,ASIC电路。
采用区熔法生长的硅单晶,因具有电阻率均匀、氧含量低、金属污染低的特性,故主要用于生产高反压、大功率电子元件。
例如:电力整流器,晶闸管、可关断门极晶闸管(GTO)、功率场效应管、绝缘门极型晶体管(IGBT)、功率集成电路(PIC)等电子元件。
在超高压大功率送变电设备、交通运输用的大功率电力牵引、UPS电源、高频开关电源、高频感应加热及节能灯用高频逆变式电子镇流器等方面具有广泛的应用。
直拉法比用区溶法更容易生长获得较高氧含量(12`14mg/kg)和大直径的硅单晶棒。
根据现有工艺水平,采用直拉法已可生产6`18in (150`450mm)的大直径硅单晶棒。
而采用区溶法虽说已能生长出最大直径是200mm的硅单晶棒,但其主流产品却仍然还是直径100`200mm的硅单晶。
区熔法生长硅单晶能够得到最佳质量的硅单晶,但成本较高。
若要得到最高效率的太阳能电池就要用此类硅片,制作高效率的聚光太阳能电池业常用此种硅片。
单晶材料制备方法介绍

单晶材料制备方法介绍单晶材料是指具有完全一致的晶体结构的材料,即在整个样品中只存在单一的晶体方向。
单晶材料具有优异的物理、化学、电子、光学等性能,被广泛应用于多个领域,如电子器件、光学元件、能源材料等。
单晶材料的制备方法主要包括凝固法、气相法以及液相法。
1.凝固法凝固法是制备大尺寸、高质量单晶材料的主要方法之一、常用的凝固法有慢凝固法、快凝固法、定向凝固法和浮区法等。
其中,慢凝固法通过缓慢控制合金温度降低,使晶体在凝固过程中缓慢生长,从而获得质量较高的单晶材料。
而快凝固法则是通过快速降温,迫使晶体在短时间内形成,适用于那些高温下易于分解的材料。
定向凝固法则通过控制凝固过程中的温度梯度和晶体生长方向,使晶体逐渐生长并满足特定的晶体取向要求。
浮区法是在材料晶体表面加热、熔化的同时,通过拉伸和旋转晶体生长方向,从而制备出单晶材料。
2.气相法气相法是单晶材料制备中的重要方法之一,包括气相转化法、化学气相沉积法和物理气相沉积法。
气相转化法是指将气体中的单质或化合物通过化学反应转化为单晶材料。
化学气相沉积法则通过在气体流中加入各种反应物,通过化学反应沉积形成单晶材料。
物理气相沉积法是在真空或惰性气氛中通过热蒸发或溅射的方式沉积单晶材料,该方法制备的单晶材料通常具有高纯度和良好的微观结构。
3.液相法液相法是指通过溶液中的各种物质反应生成单晶材料。
常用的液相法有溶胶凝胶法、溶液扩散法和气体溶剂法。
溶胶凝胶法是将适当物质溶液加热、干燥,使溶液中的物质逐渐沉淀,并形成固体凝胶。
再通过热处理,使凝胶转变为单晶材料。
溶液扩散法是将适当物质溶解在溶剂中,通过扩散使得溶液中的物质结晶生长成单晶材料。
气体溶剂法则是将气体作为溶剂,通过高温高压的条件,使溶液中的物质转变为单晶材料。
除了以上几种常见的单晶材料制备方法,近年来还出现了一些新的制备技术,如熔融法、生长法等。
这些方法利用高温高压或者特殊气氛下,通过熔融或生长的方式制备单晶材料。
单晶硅制备方法范文

单晶硅制备方法范文单晶硅是一种高纯度硅的制备方法,也是制造半导体材料、太阳能电池等重要原料的关键步骤之一、下面将详细介绍单晶硅的制备方法。
首先,单晶硅的制备主要有两种方法,分别是气相法和液相法。
一、气相法气相法是制备单晶硅最常用的方法之一1.CVD法(化学气相沉积)化学气相沉积法是通过在高温下,将硅源和载气引入反应器内,使其在催化剂的作用下反应生成单晶硅。
该方法通过控制反应温度、气氛和反应时间等因素,可制备出高纯度、高结晶度的单晶硅。
2.FZ法(浮区法)FZ法是通过在高温下,将硅源放置于石英坩埚中,然后通过加热和旋转坩埚,使熔融的硅缓慢冷却结晶,形成单晶硅。
该方法主要用于制备直径较大的单晶硅,适用于大规模生产。
3.CZ法(凝固法)CZ法是将固态硅源加热熔化,然后将拇指粗的单晶硅晶棒浸入熔融硅液中,通过控制晶体与熔液的温度差和晶体被提拉出的速度,使硅的熔点下部分硅液结晶生成单晶硅。
CZ法制备的单晶硅质量较高,且适用于制备大尺寸和高纯度的单晶硅。
二、液相法液相法是另一种常用的单晶硅制备方法。
1. Bridgman法Bridgman法利用均匀加热的高压石英管,在管中形成一定温度梯度,在高浓度硅溶液中降低温度,使硅溶液凝固并结晶成单晶硅。
通过改变温度梯度的形状和大小,可以控制单晶硅生长的速度和质量。
2. Czochralski法Czochralski法是将硅原料放入铂坩埚中,加热熔化后降低温度,同时在混合气氛下控制坩埚和晶体的旋转速度,使熔融硅逐渐凝固晶化。
通过控制温度、晶体径向和融合下降速度等参数,可以制备出优质的单晶硅。
总结起来,制备单晶硅的气相法主要有CVD法、FZ法和CZ法,而液相法包括Bridgman法和Czochralski法。
这些方法在实际应用中根据需要来选择,以达到要求的纯度、尺寸和结晶度等指标。
随着技术的不断发展,单晶硅的制备方法也在不断改进和完善,以满足不同领域对高质量单晶硅的需求。
单晶材料的制备方法介绍

单晶材料的制备方法介绍1. Czochralski法(CZ法):CZ法是制备单晶材料最常用的方法之一、该方法适用于硅、锗等半导体材料的制备。
首先,将纯度较高的多晶材料放入石英坩埚中,加热至熔融状态。
然后,悬挂一根称为“种子”的单晶材料,在熔融液与种子的接触面上形成一层新的单晶材料。
接着,将种子缓慢提升,使新生长的单晶材料通过熔液与种子的接触面向上生长。
最终,可以获得一颗完整的单晶材料。
2.化学气相输送法(CVD法):CVD法适用于制备金属、氧化物、氮化物等材料的单晶。
该方法需要使用金属有机化合物或氯化物等作为前体物质,以气体状态输送到反应室中。
在反应室中,前体物质被加热分解,产生含有金属元素或其化合物的气体。
随后,这些气体在合适的温度和压力下与基底反应,形成单晶生长。
3. 溶剂热法(Solvothermal法):溶剂热法适用于制备氧化物、硫化物、硒化物等材料的单晶。
首先,在一个封闭的反应容器中,将反应物溶解在有机溶剂或水溶液中。
然后,将反应容器加热到合适的温度和压力,通过溶剂的溶解度变化促进物质的结晶。
最终,在反应容器中可以得到单晶材料。
4. 浸渍法(Dip Coating法):浸渍法适用于制备薄膜的单晶材料。
首先,将基底材料浸入含有单晶前体物质的溶液中。
然后,缓慢提取基底材料,使溶液中的单晶前体物质逐渐沉积在基底上形成薄膜。
这个过程可以重复进行多次,以增加薄膜的厚度。
最后,通过热处理等方法使薄膜结晶,形成单晶材料。
5. 悬浮法(Floating Zone法):悬浮法适用于制备高熔点材料的单晶。
首先,将反应材料加热至熔融状态。
然后,使用高温电子束或激光束加热材料,在熔液中形成一个高温区域。
在高温区域内,材料逐渐凝固并形成单晶。
通过慢慢移动高温区域,可以得到一颗完整的单晶材料。
以上是几种常用的单晶材料制备方法的简要介绍。
在实际制备过程中,需要结合具体的材料和要求来选择适合的方法,并对工艺参数进行优化,以获得高质量的单晶材料。
单晶材料制备方法介绍

单晶材料制备方法介绍单晶材料是指具有完整晶体结构、没有晶界和晶粒边界的材料。
由于其具有优异的物理性质和机械性能,在许多领域有广泛的应用,如半导体器件、激光器、光学元件等。
在本文中,我将介绍几种常见的单晶材料制备方法。
1.凝固法凝固法是制备单晶材料的一种常见方法。
该方法利用熔融态的原料,通过控制温度、冷却速率和压力等参数来使其逐渐凝固成为单晶体。
其中,熔融法包括拉出法、差熔法等,液相法包括浮区法、溶液法等。
凝固法制备的单晶材料具有较高的品质和纯度。
2.气相沉积法气相沉积法是一种通过气相反应沉积的方法。
通常使用气态前驱物在高温下与衬底进行反应,生成单晶薄膜或块状单晶。
其中,化学气相沉积(CVD)是一种常见的气相沉积方法,利用化学反应来沉积单晶材料。
此外,还有物理气相沉积(PVD)等方法。
3.熔融法熔融法是一种通过高温将原料熔化,然后逐渐冷却形成单晶体的方法。
在熔融法中,原料通常在一定比例下混合,然后通过高温熔化,形成溶液,利用溶液的过饱和度来生长单晶体。
熔融法广泛应用于金属单晶的制备。
4.悬浮法悬浮法是指将微小的晶体悬浮在溶液中,通过沉淀或者沉降的方式来生长单晶。
悬浮法是一种相对简单而且成本较低的制备方法,适用于一些较难溶解的材料。
5.熔剥法熔剥法是一种将单晶材料分割为较薄的片状的方法。
这种方法通过将样品在高温下先熔化,再迅速冷却,使其凝固成为较薄的单晶片。
熔剥法是一种能够制备较大面积单晶片的有效方法。
总的来说,单晶材料制备方法多种多样,不同的材料可以选择适合的方法进行制备。
随着技术的不断发展,新的制备方法也不断涌现,为单晶材料的制备提供了更多的选择。
相信随着科学技术的进步,单晶材料的制备方法将会越来越多样化和精细化。
单晶材料及其制备

单晶材料及其制备摘要:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶整个晶格是连续的,具有重要的工业应用。
本文主要对单晶材料制备的几种常见的方法进行介绍。
关键词:单晶材料制备1.单晶材料单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶是由结构基元(原子,原子团,离子),在三维空间内按长程有序排列而成的固态物质。
如水晶,金刚石,宝石等。
单向有序排列决定了它具有以下特征:均匀性、各向异性、自限性、对称性、最小内能和最大稳定性。
单晶材料是一种应用日益广泛的新材料,由单独的一个晶体组成,其衍射花样为规则的点阵。
2.单晶材料的制备单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。
首先将结晶的物质通过熔化或溶解方式转变成熔体或溶液。
再控制其热力学条件生成晶相,并让其长大。
随着晶体生长学科理论和实践的快速发展,晶体生长手段也日新月异。
单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。
2.1熔体生长法制备单晶从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。
从熔体中生长晶体的方法主要有焰熔法、提拉法和区域熔炼法。
2.1.1焰熔法[2]2.1.1.1基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
2.1.1.2合成过程振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。
此方法主要用于制备宝石等晶体。
2.1.2提拉法[2]提拉法是从熔体中生长晶体常用的方法。
mof 单晶制备

mof 单晶制备MOF(金属有机骨架材料)是一类由金属离子或簇与有机配体相互连接形成的晶体结构化合物。
其独特的结构及性质使其在催化、气体吸附、分离膜等领域具有广泛的应用前景。
本文将重点探讨MOF 单晶的制备方法及其相关研究进展。
MOF单晶的制备方法主要包括溶剂热法、气相法和水热法等。
其中,溶剂热法是一种常用的制备方法。
该方法将金属盐和有机配体溶解在适当的溶剂中,并通过控制反应温度、时间和pH值等条件,使其在溶液中缓慢结晶形成单晶。
溶剂热法制备的MOF单晶具有较高的结晶度和较大的晶格尺寸,适用于后续的物理、化学性质研究。
除了溶剂热法,气相法也是一种常用的MOF单晶制备方法。
该方法通过将金属盐和有机配体蒸发在惰性气体氛围中,使其在气相中发生反应生成MOF单晶。
气相法制备的MOF单晶具有较高的纯度和较好的晶体形貌,适用于X射线单晶衍射等结构表征。
水热法是一种简单易行的MOF单晶制备方法。
该方法将金属盐和有机配体溶解在适当的溶剂中,并在高温高压条件下进行反应。
水热法制备的MOF单晶具有较高的结晶度和较大的晶格尺寸,适用于催化、气体吸附等应用研究。
近年来,随着MOF材料研究的深入,研究人员不断探索新的MOF 单晶制备方法。
例如,超声波辅助法、微波辅助法和电化学合成法等。
这些新的制备方法具有高效、快速和可控性等优点,有望进一步提高MOF单晶的制备效率和品质。
研究人员还通过改变金属离子和有机配体的组合方式,设计合成了各种形貌和结构的MOF单晶。
例如,中空球形、片状、纳米棒状等。
这些不同形貌的MOF单晶具有不同的物理、化学性质,可应用于催化、传感、光电器件等领域。
MOF单晶的制备是MOF材料研究的基础和关键。
各种制备方法的发展和改进,以及新型MOF单晶的设计合成,为MOF材料的应用开辟了新的可能性。
随着对MOF单晶制备机制和性能的深入研究,相信MOF材料将在能源、环境等领域发挥更重要的作用。
单晶的概念

单晶的概念1. 什么是单晶?单晶是指晶体中仅有一个完整、连续、无缺陷的晶格结构的晶体。
在单晶体中,原子、离子或分子按照规则有序地排列,形成一个连续的晶体结构。
与之相对的是多晶材料,多晶材料由许多小晶粒组成,每个小晶粒都有自己的晶格方向。
单晶的晶格结构使其具有一些特殊的物理和化学性质,因此在许多领域都有广泛的应用,特别是在电子、光学、材料科学和能源领域。
2. 单晶的制备方法单晶的制备方法多种多样,下面介绍几种常见的制备方法:2.1 拉长法拉长法是一种常见的制备单晶的方法。
它是通过在高温下将熔融材料逐渐降温,使其形成固态的单晶体。
在这个过程中,要控制温度的降低速率和单晶生长方向,这样才能得到完整且一致的单晶。
2.2 浇注法浇注法也是一种常见的制备单晶的方法。
它是通过将熔融材料直接倒入预先准备好的模具中,在适当的温度和压力下,使其形成固态的单晶体。
2.3 化学气相沉积法化学气相沉积法是一种通过气相反应来制备单晶的方法。
它是将气相的原子、离子或分子输送到基板表面,通过反应形成固态的单晶体。
这种方法具有高纯度、较大尺寸以及控制生长参数的优点。
3. 单晶的应用单晶的特殊性质使其在多个领域有着广泛的应用。
以下列举了一些常见的应用领域:3.1 电子器件单晶在电子器件中有着重要的应用,例如半导体晶体管、集成电路等。
由于单晶具有较高的电导率、较低的电阻率以及较好的晶体结构,使其成为电子器件制造中的重要材料。
3.2 光学器件单晶在光学器件中也有广泛的应用,例如激光器、光学透镜等。
单晶具有优异的光学性质,如高透过率、低散射等,使其成为光学器件中的理想材料。
3.3 能源领域单晶在能源领域也有重要的应用,例如太阳能电池、燃料电池等。
单晶具有较高的光电转换效率、电化学活性等特点,可以提高能源转换和存储效率。
3.4 材料科学单晶在材料科学中的应用也十分广泛,例如用于合金的研究、材料的表面改性等。
单晶的特殊晶格结构使其成为探索材料性质和改善材料性能的重要工具。
单晶制备手段

单晶制备手段单晶制备是指在晶体生长过程中,得到一个完整的单一晶体的工艺过程。
单晶是指晶体结构完整、无缺陷、没有晶界和孪晶的晶体。
在材料科学、凝聚态物理、固态化学等领域中,单晶制备是获取高质量晶体的关键步骤,对于材料的性能和应用具有重要影响。
单晶制备的手段可以分为物化法、化学气相沉积法、液相法和固相法等。
1. 物化法:物化法的主要原理是通过物理和化学相变,控制溶质从溶液中结晶而得到单一晶体。
常见的物化法有溶液深冷法、溶液慢蒸发法和溶液恒温法。
溶液深冷法是通过迅速冷却过饱和溶液,使其结晶速率增大,从而得到单晶。
它的优点是操作简单,适用于很多种材料,但通常得到的单晶尺寸较小。
溶液慢蒸发法是将溶液在恒温恒湿的环境中长时间保持慢速蒸发,溶质逐渐过饱和,形成稳定的结晶核,最终得到单晶。
它的优点是可以得到较大尺寸的单晶,但晶体生长速度较慢。
溶液恒温法是通过将溶液恒温保持在某一温度下,实现过饱和,溶质在合适的条件下结晶并长大,最终得到单晶。
它成本较低且易于控制,适合制备很多材料的单晶。
2. 化学气相沉积法:化学气相沉积法是通过气体在一定温度和压力下经化学反应沉积在基底上,从而得到单晶。
常见的化学气相沉积法有金属有机化学气相沉积法(MOCVD)和物理气相沉积法(PVD)。
MOCVD是一种利用金属有机化合物和气体反应生成纯金属的方法,通过控制反应条件和沉积速度,可以得到单晶薄膜或外延层。
PVD是利用蒸发、溅射等物理手段,在真空中沉积材料到基底上,从而得到单晶薄膜或外延层。
它具有制备单晶薄膜和外延层的优势,但成本较高。
3. 液相法:液相法是通过在高温下将固体溶于熔融物质或高温溶液中,然后缓慢冷却使其结晶,从而得到单晶。
常见的液相法有浮区法、Bridgman法和Czochralski法。
浮区法是将材料的粉末或块状材料放在熔融溶液中,通过控制温度梯度和材料的溶解与结晶平衡来实现单晶的获得。
Bridgman法是通过将熔融材料注入石英制的坩埚中,通过升温或降温控制熔融区域在坩埚内逐渐平移,从而实现材料的凝固形成单晶。
单晶制备方法综述

单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶整个晶格是连续的,具有重要的工业应用。
因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。
本文主要对单晶材料制备的几种常见的方法进行介绍和总结。
单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。
单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。
一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。
从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。
二者速率的差异在10-1000倍。
从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。
1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳也法。
1.1 基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。
此方法主要用于制备宝石等晶体。
2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。
单晶(尖晶石)的制备、提取方法

单晶(尖晶石)的制备、提取方法嘿,朋友们!今天咱就来唠唠单晶(尖晶石)的那些事儿。
你知道吗,单晶尖晶石就像是大自然藏起来的宝贝,要想把它弄到手,可得下一番功夫呢!先来说说制备吧。
就好像做饭一样,得有合适的材料和方法。
一般呢,常用的有固相反应法。
想象一下,各种化学成分就像不同的食材,把它们放在一起,在合适的温度和条件下,让它们慢慢融合、反应,逐渐就形成了我们想要的单晶尖晶石啦。
这过程可不简单,温度不能太高也不能太低,就像烤蛋糕,火候得掌握好,不然可就前功尽弃咯!还有熔盐法,就像是给这些化学成分创造了一个特殊的“温泉浴场”,让它们在里面舒舒服服地发生变化,最终长成漂亮的单晶尖晶石。
那提取呢,这就好比从一堆沙子里找出金子。
有时候,尖晶石会藏在矿石里面,我们得想办法把它分离出来。
这可不是随便敲敲打打就行的,得有技巧和耐心。
可能需要经过破碎、筛选、浮选等一系列操作,就像过五关斩六将似的,每一步都不能马虎。
破碎的时候不能太大力,不然会把尖晶石给弄坏了呀;筛选的时候得仔细,不能把好东西给漏了;浮选就更得小心了,得让尖晶石乖乖地浮起来,跟其他杂质分开。
你说这制备和提取单晶尖晶石容易吗?当然不容易啦!这可是需要专业知识和经验的呀。
而且这过程中还可能会遇到各种问题呢,比如反应不完全啦,提取纯度不高啦。
但咱可不能因为这点困难就放弃呀,毕竟那漂亮的单晶尖晶石在向我们招手呢!咱再想想,要是没有这些复杂的制备和提取方法,我们怎么能看到那些美丽的尖晶石饰品呢?那些在阳光下闪闪发光的宝石,可都是经过了这么多努力才来到我们面前的呀。
所以说呀,每一颗单晶尖晶石都来之不易,都值得我们好好珍惜呢!朋友们,这下你们对单晶尖晶石的制备和提取方法是不是有了更清楚的认识啦?可别小看了这小小的尖晶石,它背后的故事可多着呢!以后再看到尖晶石,是不是会多一份敬意呀?哈哈!。
列出从熔体制备单晶、非晶的常用方法

列出从熔体制备单晶、非晶的常用方法
制备单晶和非晶材料的常用方法:
1. 单晶制备方法:
- Czochralski法:在熔体中通过拉制来制备单晶。
- 化学气相转化法:使用化学气相沉积的方法生长单晶。
- 浮区法:通过将熔体中的单晶隔离来制备单晶。
- Bridgman法:通过控制熔体的温度梯度来制备单晶。
- 溶液法:通过在溶液中溶解物质,然后逐渐降低温度来制备单晶。
2. 非晶制备方法:
- 快速凝固:将熔体迅速冷却,使其失去结晶的时间,从而形成非
晶态。
- 物理气相沉积:使用物理气相沉积的方法制备非晶材料。
- 溶液法:通过在溶液中形成非晶态材料来制备非晶材料。
- 激光熔化法:使用激光照射熔化材料,然后快速冷却来制备非晶
材料。
- 喷雾冷却法:将熔体喷雾成微小颗粒,然后迅速冷却,形成非晶态。
请注意,以上列举的方法可能只是其中一部分常见的制备方法。
不同
材料可能需要不同的制备方法,具体的方法选择应根据所需材料的特
性和实验条件进行合理选择。
单晶材料制备讲解

(3)坩埚继续移动,移出高温 区的熔体形成晶体,进入高温区 的料锭熔化形成熔体。
(4)坩埚的另一端移出高温区 后生长结束。
现代材料制备技术
液相-固相平衡之浮区法
(1)将多晶料棒紧靠籽晶。 (2)射频感应加热,使多
晶料棒靠近籽晶一端形成一 个ห้องสมุดไป่ตู้化区,并使籽晶微熔, 熔化区靠表面张力支持而不 流淌。 (3)同速向下移动多晶料 棒和晶体,相当于熔化区向 上移动,单晶逐渐长大,而 料棒不断缩短,直至多晶料 棒全部转变为单晶体。
现代材料制备技术
1.2 单晶制备方法
(1)固相-固相平衡的晶体生长。 主要包括:
a.应变退火法 b.烧结生长 c.同素异构转变
现代材料制备技术
1.2 单晶制备方法
(2)液相-固相平衡的晶体生长(单组分)。 主要包括: a.定向凝固法 b.籽晶法 c.引上法 d.区域熔化法。
现代材料制备技术
的坩埚。在少数情况下,使用像碳化物甚至单晶氟化物这 样的坩埚材料。
现代材料制备技术
现代材料制备技术
液相-固相平衡之提拉法
提拉法又称邱克拉斯基法。这种方法是熔体法中 应用最广泛的方法。
现代材料制备技术
提拉法的原理
(1)要生长的结晶物质材料在坩埚中熔化而不分解,不与周围环境 起反应。
(2)籽晶预热后旋转着下降与熔体液面接触,同时旋转籽晶,这一 方面是为了获得热对称性,另一方面也搅拌了熔体。待籽晶微熔后再 缓慢向上提拉。
单晶材料的制备
现代材料制备技术
一.概述
随着现代科学的发展,在材料科学研究领域 中单晶体材料占着很重要的地位。由于多晶体含 有晶粒间界,人们利用多晶体来研究材料性能时 在很多情况下得到的不是材料本身的性能而是晶 界的性能。有的性能必须用单晶来进行研究。其 中一个著名的例子是半导体的电导率,这一性质 特别具有杂质敏感性,杂质容易偏析在晶界上。 为了在半导体中测定与电导率有关的性质,几乎 总是需要单晶体。晶界和所伴随的空穴常常引起 光散射,因此在光学研究中通常采用单晶体。在 金属物理领域内,要研究晶界对性能的影响,人 们往往也需要金属单晶。
第四五讲 单晶硅制备汇总

但是如果已经拉制过单晶的旧籽晶就不能随便使用了,例 如,重掺单晶的籽晶就不能回头再拉制轻掺单晶了。拉制 过不同型号的旧籽晶也不要混用。重掺籽晶最好另加标识, 严防误用。
4、 装料
装料基本步骤
底部铺碎料
大块料铺一层
用边角或小块料填缝
装一些大一点的料
最上面的料和坩埚 点接触,防止挂边
严禁出现大块料 挤坩埚情况
选定与生产产品相同型号、晶向的籽晶,把它固定在籽晶 轴上。
排气管
单晶炉在拉制单晶时,炉体是处 在一个高温真空的环境中。由于 工艺的需要,Ar气体会被输入炉 内,排气管就是将Ar气体导出。
底部防漏盘
底部防漏盘是为了防止当发生坩 埚破裂的意外情况时,熔融的多 晶硅溶液不会直接漏到炉底,对 单晶炉造成损坏。
石墨坩埚
单个三瓣埚
三瓣埚组合后
和 埚
单 个 三 瓣
下炉室形成减压气氛 保持系统。 ➢机械运动:
通过提拉头和坩埚运动系统提供晶转、 晶升、埚转、埚升系统。 ➢自动控制系统
通过相机测径、测温孔测温、自动柜 控制组成单晶拉制自动控制系统。
4.1.3基本设备
cz法的基本设备有:炉体、晶体及坩埚的升降和传动部分、电器控制部 分和气体控制部分,此外还有热场的配置。
坩埚
单晶炉中所使用的坩埚,由石英坩 埚和石墨坩埚两种。石英坩埚放置 在石墨坩埚中,多晶硅原料放置在 石英坩埚中。
导流筒
导流筒主要是用来隔断热场内部 和外部,使外部的温度大大小于 内部,从而起到加快单晶拉速的 作用,同时也起到导流的作用。
单晶生长方法介绍

制备过程
1、原料合成 制取高纯度的原料块(制备高质量的单晶原料,高纯很重 要)。天平准确称量所需的原料,放入洁净的料罐充分混匀, 等静压成料块。 2、温场设计 温场指温度在空间的分布。生长单晶体很重要的条件就是合 适的温度场。该温度场设计包括轴向温度梯度和径向温度梯 度。轴向温度梯度设计时要求固液界面处有较大的温度梯度, 而以上有较小的温度梯度(防止开裂、应力,并降低位错密 度)。径向温场对称,使籽晶在生长点外其它条件自发成核 的几率为零。 注意:不同单晶温场要求不同,因此,要实验、验证, 具体实验具体设计。
按晶体走向和提拉方法的不同,又可分
自动提拉法--生产单晶、YAG等氧化物单晶
液封提拉法--生产GaAs单晶 导模提拉法--生产宝石、LiNBO3单晶 磁场提拉法--生产硅单晶 微重力法 双坩埚法
主要设备 加热源 温控设备(有梯度)
盛放熔体设备
旋转和提拉设备
气氛控制设备
或者 单晶炉及其配件
丘克拉斯基法生长单晶用设备
1)溶液法-水热法合成石英的装置
高压釜的密封结构采用“自紧式”装置。
自紧式高压釜的密封结构 培养石英的原料放在 高压釜较热的底部,籽晶 悬挂在温度较低的上部, 高压釜内填装一定程度的 溶剂介质。
水热法合成石英的装置
结晶区温度为330—350℃;溶解区温度为 360-380℃ ;压强为0.1-0.16GPa; 矿化剂为1.0-1.2mol/L 浓度的NaOH, 添加剂为LiF、LiNO3或者Li2CO3 。
2)石英的生长机制 高温高压下,石英的生长过程分为:培养基 中石英的溶解、溶解的SiO2向籽晶上生长两个过 程。 而石英的溶解与温度关系密切,符合 Arrhenius方程: lgS = -△H/2.303RT 式中, S—溶解度;△H—溶解热;T—热力学 温度; R—摩尔气体常数,负号表示过程为吸热反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程论文题目单晶材料的制备方法综述学院材料科学与工程学院专业材料学姓名刘聪学号S150********日期2015.11.01成绩单晶材料的制备方法综述前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。
单晶整个晶格是连续的,具有重要的工业应用。
因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。
本文主要对单晶材料制备的几种常见的方法进行介绍和总结。
单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。
单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。
一、从熔体中生长单晶体从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。
从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。
二者速率的差异在10-1000倍。
从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。
1、焰熔法[2]最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。
后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。
因此,这种方法又被称为维尔纳也法。
1.1 基本原理焰熔法是从熔体中生长单晶体的方法。
其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。
1.2 合成装置和过程:维尔纳叶法合成装置振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。
此方法主要用于制备宝石等晶体。
2、提拉法[2]提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
20世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。
它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。
它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。
2.1、提拉法的基本原理提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。
2.2、合成装置和过程提拉法装置首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。
在提拉法制备单晶时,还有几种重要的技术:(1)、晶体直径的自动控制技术:上称重和下称重;(2)、液封提拉技术,用于制备易挥发的物质;(3)、导模技术。
提拉法是从熔体中生长晶体常用的方法。
用此法可以拉出多种晶体,如单晶硅、白钨矿、钇铝榴石和均匀透明的红宝石等。
3、区域熔炼法[3]自1952年发表第一篇关于区域熔化原理的文献以来,到现在已过去了60多年。
区熔法显著的特点是不用坩埚盛装熔融硅,而是在高频电磁场作用下依靠硅的表面张力和电磁力支撑局部熔化的硅液,因此区熔法又称为悬浮区熔法。
区域熔化提纯法的最大优点是其能源消耗比传统方法减少60%以上,最大的缺点是难以达到高纯度的电子级多晶硅的要求。
目前,区域熔化提纯法是最有可能取代传统工艺的太阳能级多晶硅材料的生产方法。
REC公司已在2006年新工厂中开始使用了区域熔化提纯法。
3.1区域熔炼法基本原理浮区熔炼法合成装置在进行区域熔炼过程中,物质的固相和液相在密度差的驱动下,物质会发生输运。
因此,通过区域熔炼可以控制或重新分配存在于原料中的可溶性杂质或相。
利用一个或数个熔区在同一方向上重复通过原料烧结以除去有害杂质;利用区域熔炼过程有效地消除分凝效应,也可将所期望的杂质均匀地掺入到晶体中去,并在一定程度上控制和消除位错、包裹体等结构缺陷。
3.2浮区熔炼法的工艺条件[2]浮区熔炼法的工艺过程是:把原料先烧结或压制成棒状,然后用两个卡盘将两端固定好。
将烧结棒垂直地置入保温管内,旋转并下降烧结棒(或移动加热器)。
烧结棒经过加热区,使材料局部熔化。
熔融区仅靠熔体表面张力支撑。
当烧结棒缓慢离开加热区时,熔体逐渐缓慢冷却并发生重结晶,形成单晶体。
浮区熔炼法通常使用电子束加热和高频线圈加热(或称感应加热)。
电子束加热方式具有熔化体积小、热梯度界限分明、热效率高、提纯效果好等优点,但由于该方法仅能在真空中进行,所以受到很大的限制。
目前感应加热在浮区熔炼法合成晶体中应用最多,它既可在真空中应用,也可在任何惰性氧化或还原气氛中进行。
二、从液体中生长单晶体由两种或两种以上的物质组成的均匀混合物称为溶液,溶液由溶剂和溶质组成。
合成晶体所采用的溶液包括:低温溶液(如水溶液、有机溶液、凝胶溶液等)、高温溶液(即熔盐)与热液等。
从溶液中生长晶体的方法主要有溶胶-凝胶法和水热法。
1、溶胶-凝胶法[4]基本原理:所使用的起始原料(前驱物)一般为金属醇盐,其主要反应步骤都是前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或醇解反应,反应生成物聚集成1nm左右的粒子并组成溶胶,溶胶经蒸发干燥转变为凝胶。
工艺过程:溶胶-凝胶法的工艺过程主要分为溶胶的制备、凝胶化合凝胶的干燥。
溶胶的制备是将金属醇盐或无机盐经过水解、缩合反应形成溶胶,或经过解凝形成溶胶;凝胶化是使具有流动性的溶胶通过进一步缩聚反应形成不能流动的凝胶;凝胶的干燥可分为一般干燥合热处理干燥,主要目的是使凝胶致密化。
2、水热法[5]水热法又称高温溶液法,其中包括温差法、降温法或升温法及等温法。
目前主要采用温差水热结晶,依靠容器内的溶液维持温差对流形成过饱和状态通过缓冲器和加热来调整温差。
早期应用水热法生长做出最大贡献的是美国著名的晶体生长和电子材料专家udise等。
1959年,他和A.A.Ballman实现了ZnO在碱性NaOH,1mol/L水热条件下的生长,得到了重达几克的琥珀色的半形晶体。
1964年,udise等人首次合成了大尺寸优质10~20g的能用作压电转换器的ZnO单晶。
我国上海硅酸盐所氧化锌组在1976年合成出了重60g以上面积6cm2以上的ZnO单晶。
日本也用水热法生长出了优质ZnO单晶,在直径为200mm长度为3m的Pt内衬上生长出的氧化锌晶体呈透明状,尺寸为50×50×15 mm,是迄今为止研究生长出的最大体积单晶。
如图所示。
水热法是生长ZnO的重要方法,但易使ZnO晶体引入金属杂质,还存在生长周期长,危险性高的缺点。
需要控制好碱溶液浓度、溶解区和生长区的温度差、生长区的预饱和、合理的元素掺杂、升温程序、籽晶的腐蚀和营养料的尺寸等工艺,是目前生长ZnO较成熟的方法。
水热法生长的ZnO单晶三、从气相中生长单晶体的方法相生长可分为单组分体系和多组分体系生长两种。
单组分气相生长要求气相具备足够高的蒸气压,利用在高温区汽化升华、在低温区凝结生长的原理进行生长。
但这种方法应用不广,所生长的晶体大多为针状、片状的单晶体。
多组分气相生长一般多用于外延薄膜生长,外延生长是一种晶体浮生在另一种晶体上。
主要用于电子仪器、磁性记忆装置和集成光学等方面的工作元件的生产上。
以下介绍物理气相传输PVT法制备氮化铝单晶[6]。
物理气相传输PVT法是目前生长氮化铝晶体最常用的方法,其基本过程是氮化铝物料在高温下分解升华,然后在低温区结晶形成氮化铝晶体。
使用 PVT法制备氮化铝晶体时,生长温度、温差、氮化铝物料的杂质的含量以及生长过程中氮化铝物料的升华速率对氮化铝晶体的结晶质量和生长速率起重要作用。
实验步骤是: 1、用直筒形钨坩埚,填充氮化铝粉料到坩埚高度的约1/3处,在一个大气压的高纯氮气环境下,将坩埚加热到1900℃,保温2~3h,对氮化铝物料进行提纯烧结;2、待温度降至室温后,取出氮化铝物料,放入圆锥形钨坩埚内,将该氮化铝物料架空在约坩埚1/2高度处,并在坩埚顶部放置带孔的钨片和小钨片,其中坩埚的具体尺寸视氮化铝烧结块的大小而定;3、一个大气压高纯的氮气环境下,将装好氮化铝物料的坩埚加热到1700~2200℃,保温数小时,然后降至室温,完成氮化铝晶体的生长。
经过不断的探索和工艺的改进,最终在钨坩埚盖开孔处获得直径大于为2mm的氮化铝单晶体,单晶体的顶部为六角形,其生长方向为c轴方向。
结语:除了以上介绍的几种方法外,还有很多方法可以制备单晶,但其原理与上述的方法相似。
随着科学的发展和人们对单晶的需求量的增加,单晶制备方法将会更加工业化。
参考文献1、刘晓瑭。
单晶材料及其制备2009.122、人造宝石学。
中国地质大学网络课件。
3、冯瑞华,马廷灿,姜山,黄可。
太阳能级多晶硅制备技术与工艺。
新材料产业.。
2007(5):614、张健泓,陈优生。
溶胶-凝胶法的应用研究。
广东化工。
2008(3):475、张晓丽,安黛宗。
氧化锌晶体的研究进展。
云南化工。
2005,8(3):35-386、武红磊,郑瑞生,孙秀明,罗飞,杨帆,刘文,敬守勇。
人工晶体学报。
2007,2(1):1-4。