高等数学课程教学基本要求
(完整版)《高等数学》课程教学大纲
《高等数学》课程教学大纲授课专业:通信工程专业学时:136学时学分:8学分开课学期:第1、第2学期适用对象:通信工程专业学生一、课程性质与任务本课程是理、工类专业的专业基础课,通过本课程的学习,要使学生掌握微积分学的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
要通过各个教学环节逐步培养学生的抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生的熟练运算能力和综合运用所学知识去分析解决问题的能力。
二、课程教学的基本要求通过本课程的学习,学生基本了解微积分学的基础理论;充分理解微积分学的背景思想及数学思想。
掌握微积分学的基本方法、手段、技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学的思想方法解决应用问题。
三、课程教学内容高等数学(上)第一章函数、极限与连续(10学时)第二章导数和微分(12学时)第三章微分中值定理与导数的应用(12学时)第四章函数的积分(16学时)第五章定积分的应用(8学时)第六章无穷级数(10学时)高等数学(下)第七章向量与空间解析几何(6学时)第八章多元函数微分学(14学时)第九章多元函数微分学的应用(10学时)第十章多元函数积分学(I)(16学时)第十一章多元函数积分学(II)(10学时)第十二章常微分方程(12学时)四、教学重点、难点重点:极限的概念与性质;函数连续性的概念与性质;闭区间上连续函数的性质;微分中值定理与应用;用导数研究函数的性质;不定积分、定积分的计算;微积分学基本定理;正项级数敛散性的判定;幂级数的收敛定理;二元函数全微分的概念及性质;计算多元复合函数的偏导数与微分;隐函数定理及应用;重积分、曲线积分与曲面积分的计算;曲线积分与路径的无关性。
难点:极限的概念与理论;微分中值定理的应用;一元函数的泰勒定理;二元函数的极限;计算多元复合函数的偏导数与微分;对坐标的曲面积分的概念及计算;高斯公式;斯托克斯公式。
课程教学大纲(高等数学一)
《高等数学一》课程教学大纲一、课程基本信息课程名称:高等数学一英文名称:Advanced Mathematics 1课程性质:专业基础课周学时/学分:5/4适用专业:使用教材:《高等数学》由济大学数学系编,高等数学同济第七版是普通高等教育“十二五”GJJ规划教材,在第6版基础上作了进一步修订。
二、课程简介《高等数学》是高等学校中经济类和理工类专业必修的重要基础理论课。
高等数学是高校不可或缺的一门基础课,为学生学习专业课奠定了基础,对对培养学生严密的思维能力和创新能力起着不可替代的作用。
旨在通过高等数学得学习,进行逻辑思维能力的训练,为其他课程奠定一个坚实的基础。
三、教学基本要求将社会主义核心价值观贯穿始终,使学生树立正确的价值观,培养学生敬业、精益、专注、创新、追求卓越的工匠精神;培养学生将实际问题转化为数学问题以及所学知识去解决实际问题的能力,力求使学生在原有初等数学的基础上,学习与掌握高等数学的思想与方法,并能用高等数学的思想与方法去分析、解决实际问题,让数学成为学生解决实际问题的工具,更好的服务于学生后续专业课程的学习与素质的全面提高,培养面向基层、面向生产、面向管理与服务的一线高技能应用型人才;理解函数极限、连续、导数、微分、不定积分和定积分的概念;熟练掌握函数的极限、导数、积分的计算;能对函数进行连续性的判断,会求最值、切线、平面图形的面积以及旋转体的体积等;在教学过程中结合学校“三考一创”特色,着重对学生考研知识框架内进行学习与指导。
五、考核方式和成绩评定方法1、考核方式:闭卷考2、成绩评定方法:平时、期中、期末成绩分别为20%、20%、60%(平时成绩由作业成绩、课堂讨论成绩、考勤成绩构成)六、教学内容提要第一章函数1、教学目的:1.理解函数、复合函数、分段函数、基本初等函数、初等函数的概念。
2.了解几类特殊的函数。
3.掌握函数的表示方法及求函数的定义域和函数值的方法。
4.了解函数的奇偶性、单调性、周期性和有界性。
高等数学课程标准 教育部
高等数学课程标准教育部高等数学课程是高等教育的核心课程之一,其课程标准由教育部制定,旨在确保学生掌握必要的数学知识和技能,为后续的专业课程学习和终身发展打下坚实的基础。
以下是一份高等数学课程标准的简要介绍:1. 课程性质:高等数学是高等教育的一门必修基础课程,具有高度的抽象性、严谨的逻辑性和广泛的应用性。
通过本课程的学习,学生将掌握数学的基本概念、基本理论和基本方法,培养数学思维和解决问题的能力。
2. 课程目标:高等数学课程的目标是培养学生的数学素养和运用数学解决问题的能力,为后续的专业课程学习和科学研究打下基础。
具体目标包括:掌握高等数学的基本概念、定理和公式;学会运用数学方法分析问题、解决问题;培养学生的数学思维、创新能力和团队协作精神。
3. 课程内容:高等数学课程的主要内容包括极限理论、微积分学、空间解析几何、线性代数、常微分方程等。
学生需要掌握这些内容的基本概念、原理和方法,能够运用所学知识解决实际问题。
4. 课程实施:高等数学课程的实施应注重理论与实践相结合,采用多种教学方法和手段,激发学生的学习兴趣和积极性。
具体措施包括:采用启发式、讨论式教学方法,引导学生主动思考;利用多媒体技术辅助教学,提高教学效果;开展数学实验、数学建模等活动,培养学生的实践能力。
5. 课程评价:高等数学课程的评价应注重学生的实际应用能力和思维能力的评价,采用多种评价方式和方法,全面反映学生的学习状况和水平。
具体评价方式包括:平时成绩、期中考试、期末考试等。
评价内容应涵盖知识掌握、能力培养和素质提升等多个方面。
总之,高等数学课程标准旨在培养学生的数学素养和解决问题的能力,为学生后续的专业课程学习和科学研究打下坚实的基础。
在实施过程中,应注重理论与实践相结合,采用多种教学方法和手段,激发学生的学习兴趣和积极性。
同时,应注重学生的实际应用能力和思维能力的评价,采用多种评价方式和方法,全面反映学生的学习状况和水平。
《高等数学》 课程教学大纲
二、课程基本内容和要求
1. 函数、极限、连续
教学内容
(1) 函数概念、性质、基本初等函数图象的性质,复合函数,初等函数,建立函数关系举例。
(2) 函数极限的概念,极限的四则运算,两个重要极限,无穷小量与无穷大量概念及性质,无穷小的比较
(3) 函数的连续性,初等函数的连续性,间断点,闭区间上连续函数的性质
制定人:朱铭扬
审核人:高 枫
(2)偏导数概念,多元复合函数与隐函数的微分法
(3)全微分及其应用
(4)多元函数的极值和最值
教学要求
(1) 理解多元函数的基本概念,其定义域及图象特点,知道二元函数的极限、连续性等概念,知道有界闭区域上连续函数的性质。
(2) 理解偏导数,熟练地计算函数的一阶偏导数,熟练掌握复合函数的求导法则,会求隐函数的偏导数。
《高等数学》 课程教学大纲
总学时:128 学分:8
一、课程性质、任务和目的
高等数学是大学专科工学和理学专业一门必修的重要公共基础课,通过本课程的学习着重使学生理解极限的思想方法,掌握微积分学、级数、微分方程等内容,并通过各教学内容的有机结合,培养学生的逻辑思维能力和比较熟练的运算能力,为学生学习后继课程和解决实际问题提供必不可少的数学基础知识及常用数学方法。
(2)直角坐标系与极坐标系下二重积分的计算
(3)二重积分在几何上的应用:曲顶柱体体积计算
教学要求
(1) 理解二重积分概念及几何意义,知道其性质
(2) 掌握直角坐标系下二重积分的计算,会利用极坐标系计算二重积分。
(3) 会利用二重积分计算一些简单曲顶柱体的体积。
重点与难点:二重积分(包括概念、计算与应用);化重积分为累次积分;元素法
《高等数学》课程标准
《高等数学》课程标准《高等数学》是许多学科的基础课程,特别是在数学、物理、工程学、经济学等学科中有着广泛的应用。
这门课程不仅提供了这些学科所需的基本数学工具,而且还锻炼了学生的逻辑思维和问题解决能力。
以下是对《高等数学》课程标准的详细描述。
一、课程目标《高等数学》旨在为学生提供深入理解数学基本概念、原理和方法的工具。
通过本课程的学习,学生应能:1.理解并掌握高等数学的基本概念、原理和算法,包括但不限于微积分、线性代数、概率论和数理统计等。
2.培养学生运用数学工具解决实际问题的能力,包括数据分析、建模、优化和概率决策等。
3.培养学生的逻辑推理和抽象思维能力,包括对问题的表述、分解、推导和总结等。
4.通过团队协作和讨论,提高学生的沟通技巧和批判性思维。
二、课程内容《高等数学》主要包括以下四个部分:1.微积分:包括极限、导数、微分、不定积分、定积分和微分方程等。
2.线性代数:包括行列式、矩阵、向量空间、线性变换和特征值等。
3.概率论:包括随机变量、概率分布、期望、方差、协方差和相关系数等。
4.数理统计:包括抽样分布、参数估计、假设检验和方差分析等。
三、课程安排《高等数学》课程应按照以下时间表进行安排:1.第一学期:微积分(1-16周),每周4小时,共64课时;2.第二学期:线性代数(17-32周),每周4小时,共64课时;3.第三学期:概率论(33-48周),每周4小时,共64课时;4.第四学期:数理统计(49-64周),每周4小时,共64课时。
四、教学方法本课程的教学方法应注重实践性和互动性。
具体方法包括:1.课堂讲解:由教师主导,详细讲解课程内容,突出重点和难点。
2.实例分析:通过分析具体的数学实例,让学生理解和掌握数学原理的应用。
3.学生自主学习:鼓励学生通过自主学习,完成作业和阅读指定参考书籍,以培养学生的独立思考能力和解决问题的能力。
4.小组讨论:鼓励学生分组讨论,提高学生之间的合作与交流能力。
高等数学教学大纲(2024年版)
高等数学教学大纲(2024年版)1. 引言本教学大纲旨在为高等数学课程提供清晰、详细的指导,确保教学内容的系统性和连贯性,帮助学生掌握高等数学的核心概念和方法,培养其分析和解决问题的能力。
本大纲适用于我国高等教育阶段理科、工科、经济管理类等专业的本科生。
2. 教学目标通过本课程的研究,学生应达到以下目标:1. 掌握高等数学的基本概念、理论和方法。
2. 能够运用高等数学知识解决实际问题。
3. 培养逻辑思维、创新能力和团队合作精神。
4. 提高数学素养,为后续专业课程和研究生阶段的研究打下坚实基础。
3. 教学内容高等数学教学内容主要包括以下几个部分:3.1 极限与连续1. 极限的概念与性质2. 极限的计算方法3. 无穷小与无穷大4. 函数的连续性5. 极限与连续在实际问题中的应用3.2 导数与微分1. 导数的概念与性质2. 导数的计算方法3. 高阶导数4. 隐函数求导与参数方程求导5. 微分学在实际问题中的应用3.3 积分与面积1. 不定积分与定积分的概念与性质2. 积分计算方法3. 换元积分与分部积分4. 定积分的应用5. 面积与体积的计算3.4 微分方程1. 微分方程的基本概念与分类2. 一阶微分方程的解法3. 高阶微分方程的解法4. 常微分方程的应用5. 线性微分方程与非线性微分方程3.5 级数1. 数项级数的概念与性质2. 收敛性与发散性判断3. 幂级数与泰勒公式4. 傅里叶级数5. 级数在实际问题中的应用3.6 向量与空间解析几何1. 向量的概念与运算2. 空间解析几何的基本概念3. 线性空间与线性变换4. 向量空间的应用5. 坐标变换与几何变换3.7 线性代数1. 矩阵的概念与运算2. 线性方程组3. 特征值与特征向量4. 二次型5. 线性代数在实际问题中的应用4. 教学方法与手段1. 采用讲授、讨论、自学相结合的教学方法,引导学生主动探究、积极思考。
2. 使用多媒体课件、板书等多种教学手段,提高教学效果和学生的研究兴趣。
高等数学课程内容及基本要求
高等数学课程内容及基本要求高等数学是高等学校理工科专业重要的基础理论课。
通过本课程的学习,使学生系统的获得一元函数微积分、向量与空间解析几何、多元函数微积分、常微分方程与无穷级数的基本概念、基本理论、基本运算和分析方法,为学习物理、电工、电子等课程和以后扩大数学学问面,打好基础。
在课堂讲授的同时,辅以课堂练习与探讨,引导学生仔细阅读教材,独立完成作业,逐步培育学生的抽象思维、逻辑推理、空间想象、分析解决实际问题的实力,驾驭学习方法,培育自学实力。
高等数学是全校公共基础课,对于我校各工科专业,高等数学在高校本科教化阶段显得尤为重要,有着举足轻重的作用。
该课程不但是学习复变函数、概率统计、积分变换等课程的必修课,而且为学习工科专业课程奠定必要的数学基础。
课程内容及基本要求(一)函数、极限与连续(20学时)内容:函数概念、初等函数,数列极限、函数极限,无穷大与无穷小,极限存在准则、无穷小的比较,函数的连续性、闭区间上连续函数的性质。
基本要求1.深刻理解函数的定义,回球函数的定义域,会用函数对应法则求函数值与复合函数,了解初等函数的构成,会建立简洁应用问题的函数关系,了解隐函数与反函数的概念,了解函数的有界性、单调性、奇偶性和周期性。
2.理解数列极限的定义和几何意义,知道收敛数列有界性和保号性,驾驭极限的四则运算法则及复合运算法则,会用极限存在的两个准则:夹逼准则与单调有界准则。
3.理解函数极限、左右极限定义,驾驭两个重要极限,知道函数极限存在与左右极限的关系,知道极限存在时函数的有界性、保号性,驾驭极限运算法则,驾驭利用两个重要极限求极限的方法。
4.理解无穷小、无穷大、高阶无穷小和等价无穷小的概念,会用等价无穷小求极限。
5.理解函数在一点连续和在一个区间上连续的概念,会辨别函数间断点的类型,了解闭区间上连续函数的性质(有界、最值、介值、零点)并会应用这些性质。
重点:极限概念,极限的四则运算法则,利用两个重要极限求极限,函数的连续性。
《高等数学》教学大纲
《高等数学》教学大纲一、课程基本信息课程名称:高等数学课程类别:公共基础课课程学分:_____课程总学时:_____授课对象:_____先修课程:_____二、课程性质与任务高等数学是高等院校各专业学生必修的一门重要基础理论课,它不仅为学生学习后续课程和解决实际问题提供了必不可少的数学基础知识和数学方法,而且在培养学生的创新思维能力、逻辑推理能力、空间想象能力以及分析问题和解决问题的能力等方面都起着重要的作用。
本课程的主要任务是使学生掌握高等数学的基本概念、基本理论和基本方法,培养学生运用数学知识解决实际问题的能力,为学生学习后续课程以及今后从事科学研究和实际工作打下坚实的数学基础。
三、课程教学目标1、知识目标使学生掌握函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程等方面的基本概念、基本理论和基本方法。
了解数学建模的基本思想和方法,能够运用所学的数学知识建立简单的数学模型,并求解实际问题。
2、能力目标培养学生的逻辑推理能力、抽象思维能力和空间想象能力。
提高学生的运算能力和综合运用所学知识分析问题、解决问题的能力。
培养学生的创新意识和创新能力。
3、素质目标培养学生的科学态度和严谨的治学精神。
提高学生的数学素养和文化素质。
培养学生的团队合作精神和沟通能力。
四、课程教学内容与要求(一)函数、极限与连续1、函数理解函数的概念,掌握函数的表示方法。
了解函数的单调性、奇偶性、周期性和有界性。
掌握基本初等函数的性质和图形,了解初等函数的概念。
2、极限理解数列极限和函数极限的概念。
掌握极限的性质和运算法则,会求数列和函数的极限。
了解无穷小量和无穷大量的概念,掌握无穷小量的性质和比较方法。
3、连续理解函数连续的概念,掌握函数在一点连续的充要条件。
了解函数的间断点及其类型,会判断函数的间断点。
掌握初等函数的连续性,会利用连续性求函数的极限。
(二)一元函数微分学1、导数与微分理解导数的概念,掌握导数的几何意义和物理意义。
《高等数学A》课程教学大纲
《高等数学A》课程教学大纲(216学时,12学分) 点击下载点击下载一、课程的性质、目的和任务高等数学A是理科(非数学)本科各专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。
通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学;5、无穷级数(包括傅立叶级数);6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。
在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。
二、总学时与学分本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。
三、课程教学基本要求及基本内容说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。
高等数学A(一)一、函数、极限、连续、1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。
2. 理解复合函数和反函数的概念。
3. 熟悉基本初等函数的性质及其图形。
4. 会建立简单实际问题中的函数关系式。
5. 理解极限的概念,掌握极限四则运算法则及换元法则。
6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。
7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。
会用两个重要极限求极限。
8. 理解无穷小、无穷大、以及无穷小的阶的概念。
会用等价无穷小求极限。
9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。
10. 了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。
《高等数学》课程标准
《高等数学》课程标准一、课程简介高等数学是高等教育中的一门重要基础课程,它涉及到数学分析、线性代数、概率统计等多个领域,是培养学生数学思维和解决问题能力的重要手段。
本课程旨在通过系统的教学,使学生掌握高等数学的基本概念、基本理论和基本方法,提高学生的数学素养和思维能力,为后续课程的学习和实际问题的解决打下坚实的基础。
二、课程目标1. 知识目标:学生能够掌握高等数学的基本概念、基本理论和基本方法,包括函数、极限、微积分、线性代数、概率统计等。
2. 能力目标:学生能够运用高等数学知识解决实际问题,培养数学思维和逻辑推理能力,提高分析问题和解决问题的能力。
3. 素质目标:学生能够树立正确的数学观念,培养数学素养和数学精神,提高独立思考和创新能力,为今后的学习和工作奠定基础。
三、教学内容与要求1. 教学内容:本课程主要包括函数、极限、微积分、线性代数、概率统计、数理逻辑、数学建模等基本内容。
2. 要求:学生应该熟练掌握高等数学的基本概念、基本理论和基本方法,能够运用所学知识解决实际问题,培养数学思维和逻辑推理能力。
同时,学生还应该注重数学思想和方法的学习,提高分析问题和解决问题的能力。
四、教学方法与手段本课程采用多种教学方法和手段,包括课堂讲授、案例分析、小组讨论、实验教学等。
在教学过程中,注重理论与实践相结合,通过案例分析、实验教学等方式,使学生更好地理解和掌握高等数学的基本概念和理论。
同时,注重学生的参与和互动,鼓励学生积极思考、提问和讨论,提高学生的学习积极性和主动性。
五、考核方式与标准本课程的考核方式包括平时成绩和期末考试两部分。
平时成绩包括出勤率、作业完成情况、课堂表现等,占总评成绩的30%;期末考试采用闭卷形式,主要考察学生对高等数学基本概念、理论和方法的掌握情况,占总评成绩的70%。
同时,为了鼓励学生积极思考、创新和实践,我们将根据学生在实验、课程设计等环节的表现给予额外的加分。
六、教材与参考书本课程推荐使用由高等教育出版社出版的高等数学教材,同时推荐以下参考书:1.《高等数学》,高等教育出版社;2.《数学建模》,清华大学出版社;3.《线性代数》,高等教育出版社;4.《概率统计》,北京大学出版社。
《高等数学》教学大纲
《高等数学》教学大纲《高等数学》课程教学大纲一、课程的性质、目的和任务高等数学是工科本科各专业学生的一门必修的重要基础理论课,通过本课程的学习,要使学生获得:1.函数与极限;2.一元函数微积分学;3. 常微分方程;4.向量代数和空间解析几何;5.多元函数微积分学;6.无穷级数(包括傅立叶级数)等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。
在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题的能力。
二、课程教学的基本要求及基本内容说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。
高等数学(上)一、函数、极限、连续1. 理解函数的概念及函数的奇偶性、单调性、周期性和有界性。
2. 理解复合函数和反函数的概念。
3. 熟悉基本初等函数的性质及其图形。
4. 会建立简单实际问题中的函数关系式。
5. 理解极限的概念(对极限的-N、-定义不作高要求),掌握极限四则运算法则及换元法则。
6. 理解极限存在的夹逼准则,了解单调有界准则,掌握运用两个重要极限求极限的方法。
7. 了解无穷小、无穷大以及无穷小的阶的概念。
会用等价无穷小求极限。
8. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。
9. 了解初等函数的连续性和闭区间上连续函数的性质(介值定理和最大、最6. 掌握用定积分表达一些几何量与物理量(如面积、体积、弧长、功等)的方法。
四、常微分方程 1. 了解微分方程、解、阶、通解、初始条件和特解等概念。
2. 掌握变量可分离的方程及一阶线性方程的解法。
会解齐次方程方程,了解用变量代换求方程的思想。
3. 会用降阶法解下列方程:。
4. 理解二阶线性微分方程解的结构。
5. 掌握二阶常系数齐次线性微分方程的解法,并了解高阶常系数齐次线性微分方程的解法。
《高等数学》课程教学大纲
《高等数学》课程教学大纲高等数学课程教学大纲1. 引言高等数学是大学理工类专业中一门重要的基础课程,它为学生提供了深入理解数学概念和方法的机会。
本教学大纲旨在明确高等数学课程的目标、内容和教学方式,以帮助教师和学生在学习过程中更好地掌握知识和技能。
2. 课程目标2.1 知识目标通过本课程的学习,学生应能够:- 掌握高等数学的基本概念、原理和公式;- 理解和运用微积分的基本思想和方法;- 熟悉常微分方程的求解技巧;- 理解多元函数的极限、连续性和偏导数等概念;- 掌握重要的高等数学定理和定理的证明方法。
2.2 技能目标通过本课程的学习,学生应能够:- 运用高等数学知识解决实际问题;- 熟练使用数学工具(如计算器和数学软件)进行计算和绘图;- 能够进行简单的数学推理和证明;- 培养数学建模和问题求解的能力。
3. 课程内容3.1 函数与极限- 函数的概念与性质- 极限的定义与运算法则- 连续与间断3.2 微积分- 导数与微分- 函数的极值与最值- 曲线的图形与函数的分析- 不定积分与定积分- 微分方程的基本概念与求解方法3.3 多元函数与偏导数- 多元函数的极限与连续性- 偏导数与全微分- 多元函数的极值与最值- 多元函数的泰勒展开4. 教学方式4.1 授课教师通过讲授基本概念、原理和公式,引导学生理解和掌握数学知识。
4.2 讨论与互动教师组织学生进行小组讨论、问题解答和数学实例演练,促进学生之间和教师之间的互动。
4.3 实践与实验教师引导学生进行数学建模和实际问题的求解,通过实践和实验帮助学生巩固和应用所学知识。
4.4 作业与课堂测试教师布置作业和组织课堂测试,帮助学生及时巩固所学知识,并提供反馈和指导。
5. 教材及参考资料- 主教材:《高等数学教程》(或其他适合的教材)- 辅助教材:《高等数学习题集》(或其他适合的教材)- 参考资料:相关数学期刊、学术论文和互联网资源6. 考核方式6.1 平时成绩包括作业、实验报告、课堂表现等6.2 期中考试考察学生对前期知识的掌握和理解能力6.3 期末考试考察学生对所有学习内容的整体掌握和应用能力7. 教学评价通过课程问卷调查、评估反馈和学生学业成绩等多种方式对教学效果进行评价,不断改进教学方法和内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编辑ppt
9
学习重点
1.导数与微分的概念,导数的几何意义。 2.导数与微分的基本公式。 3.导数的计算(四则运算法则、复合函数
求导法则、隐函数的求导法、参数表示 的函数求一阶导 数)。 4.求显函数的二阶导数。
编辑ppt
10
第四章导数的应用
本章导读 对一个函数,如何判定它在某个区间里是上升或
学习目标
1.理解函数的概念,了解分段函数。能熟 练地求函数的定义域和函数值。
2.了解函数的主要性质 (单调性、奇偶 性、周期性和有界性)。
3.熟练掌握六类基本初等函数的解析表达 式、定义域、主要性质和图形。
4.了解复合函数、初等函数的概念。 5.会列简单应用问题的函数关系式。
编辑ppt
3
3.会求较简单的有理分式函数的积分。 学习重点 1.原函数与不定积分的概念及其性质。 2.不定积分的计算方法(直接积分法,第一换元
积分法,第二换元积分法,分部积分法)。
编辑ppt
16
第六章定积分及其应用
本章导读
早在三百多年以前,许多科学家就致力于 研究如何计算由平面曲线围成的区域的 面积和曲线段的弧长,由曲面围成的立 体体积等几何问题,以及如何计算变力 作功,水闸所受压力,变速直线运动的 路程等物理问题。这些问题的解决导致 了积分学的产生。积分学至今仍有着广 泛的用途。
编辑ppt
17
各种
在整体范围内为变化或弯曲的几何物理对象,在 经过分割后的局部范围内可近似地认为是不变 的或直的,这就是积分思想的出发点。
本章分三部分内容:定积分的概念,定积分的计 算,定积分的应用。
在此,首先提醒读者应注意,定积分这个概念与 上一章介绍的不定积分是两个完全不同的概念。 然而在计算定积分时则要借助于求原函数来进 行,因此两者有着密切的关系。
给定一个函数(称之为原函数),求其 导函数。这一章讨论其逆问题:已知导 函数,求原函数。可以发现,求原函数 要比求导函数来得难,要在牢记导数公 式的基础上进行,且经常要用“凑”的 方法。
编辑ppt
15
学习目标
1.理解原函数与不定积分概念,了解不定积分的 性质以及积分与导数(微分)的关系。
2.熟记积分基本公式,熟练掌握第一换元积分法 和分部积分法。掌握第二换元积分法。
学习重点
1.函数的概念及其性质(单调性、奇偶性) 2.六类基本初等函数的解析表达式、,定
义域、性质、图形。
编辑ppt
4
第二章 极限与连接
本章导读 本章后面的每一章几乎都涉及求极限的问
题。因此极限是高等数学的基 础 。 一个变量(数列或函数)的极限是多少,有时 可明显看出,有时则不明显,需要按照一定得 法则并使用一些技巧才能求得。这些法则和技 巧需要通过练习才能掌握 。
6.会求曲线的 水平渐近线和垂直渐近线。 7.掌握求解一些简单的实际问题中最大值
和最小值的方法。
编辑ppt
13
学习重点
1.用洛必塔法则求极限。 2.用一阶导数求极值,单调区间。 3.用二阶导数求凹凸区间,拐点。 4.求实际问题的最大值和最小值问题(几
何问题为主)。
编辑ppt
14
第五章不定积分
本章导读 上两章,我们学习了导数的求法,也就是
4.掌握用两个重要极限求一些极限的方法。
5.了解函数连续性的定义,会求函数的连续区间。
6.了解函数间断点的概念,会判别函数间断点的 类型。
7.记住初等函数在其有定义的区间内连续的性质, 知道闭区间上的连续函数的几个性质。
编辑ppt
6
学习重点
1.无穷小量的概念及运算性质; 2.极限的计算方法(四则运算法则、两个
高等数学课程教学基本要求
上冊第一分册
编辑ppt
1
第一章 函数
本章导读 函数是整个高等数学课程所研究的对象,
中学时学过的幂函数、指数函数、对数 函数、三角函数和反三角函数,都是最 基本的函数。 学习这一章实际上是对中学数学有关内 容的复习、总结和提高,从而达到 温故 而知新的效果。
编辑ppt
2
是下降,其图形是凸是凹?在求极限时,经常 遇到0/0型(分子分母都趋于0)和“∞/∞”型 (分子分母都趋于∞),用以往的方法往往需 要一定的技巧,那么有没有简单的方法呢? 利用导数可以方便地解决上述问题。学习本章各 节时一定要认清问题,掌握相应的方法和相应 的求解步骤。
编辑ppt
11
学习目标
1.了解罗尔定理、拉格朗日中值定理的条件和结 论;知道柯西定理的条件和结论。会用拉格朗 日定理证明简单的不等式。
编辑ppt
18
学习目标
1.了解定积分概念及其性质。 2.了解原函数存在定理,知道变上限定积分的概
念,会求变上限定积分的导数。 3.熟练掌握定积分的计算方法,包括牛顿—莱布
重要极限); 3.函数连续性的定义。
编辑ppt
7
第三章 导数与微分
本章导读
本章的基本概念是“导数”,它也是微分 学的最基本的概念,它的物理意义就是 “速度”,或者说“变化率”,它的几 何意义就是曲线的切线的斜率。
除了概念外,本章的重点是如何求一个函 数(主要是初等函数)的导数,这有一 整套基本公式和运算法则,学习时要熟 练地记住和掌握它们。
编辑ppt
8
学习目标
1.理解导数与微分概念,了解导数的几何意义,会求 曲线的切线和法线方程。知道可导与连续的关 系。
2.熟记导数与微分的基本公式,熟练掌握导数与 微分的四则运算法则。
3.熟练掌握复合函数的求导法则。
4.掌握隐函数的求导法,对数求导方法以及用参 数表示的函数求一阶导数的方法。
5.知道一阶微分形式的不变性。
“连续”这个貌似通俗的概念,其数学描 述却不简单。极限不仅能描述“连续”概念, 而且可揭示函数的一些重要性质。
编辑ppt
5
学习目标
1.了解极限的概念,知道数列极限的定义和函数 极限的描述性定义、会求左右极限。
2.了解无穷小量的概念、运算性质及其与无穷大 量的关系,知道无穷小量的比较关系。
3.掌握极限的四则运算法则。
2.掌握用洛必塔法则求“0/0”、“∞/∞”型不定 式极限。
3.了解驻点、极值点、极值、凹凸、拐点等概念。 4.掌握用一阶导数求函数的单调区间、极值与极
值点(包括判别) 的方法 ,了解可导函数极 值存在的必要条件,知道极值点与驻点的区别 与联系。
编辑p括判别)的方 法,会求曲线的拐点。