最新人教版九年级上册数学测试卷初中九年级数学圆测试题及答案(两套题)

合集下载

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)

人教版九年级数学上册 圆 几何综合单元测试卷(含答案解析)一、初三数学 圆易错题压轴题(难)1.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ;(2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离: (3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长. 【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or 【解析】【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值.(2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解.【详解】(1)如图1:连接OB 、OC.∵BC=AO∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D 是BC 的中点∴∠BOD=1302BOC ∠=︒ ∵OA=OC∴OAC OCA ∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:AD=227AO OD+=(3)①如图3.圆O与圆D相内切时:连接OB、OC,过O点作OF⊥AE∵BC是直径,D是BC的中点∴以BC为直径的圆的圆心为D点由(2)可得:3D的半径为1∴31设AF=x 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+- 解得:331x 4+= ∴AE=3312AF +=②如图4.圆O 与圆D 相外切时:连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点∴以BC 为直径的圆的圆心为D 点由(2)可得:3D 的半径为1∴31在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-解得:331x 4-= ∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.2.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?(3)当⊙O过BC中点时(如图3),求CE长.【答案】(1)ED=EC;(2)成立;(3)3【解析】试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;(2)证法同(1);(3)根据直角三角形的性质结合圆的基本性质求解即可.(1)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(2)连接OD∵DE为⊙O的切线∴∠ODE=90°∴∠CDE+∠ADO=90°∵AB=6,BC=8,AC=10∴∠ABC=90°∴∠A+∠C=90°∵AO=DO∴∠A=∠ADO∴∠CDE=∠C∴ED=EC;(3)CE=3.考点:圆的综合题点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.【答案】(1)见解析;(2)①见解析;②AE=1【解析】【分析】(1)由AB为直径知∠ACB=90°,∠ABC+∠CAB=90°.由∠MAC=∠ABC可证得∠MAC+∠CAB=90°,则结论得证;(2)①证明∠BDE=∠DGF即可.∠BDE=90°﹣∠ABD;∠DGF=∠CGB=90°﹣∠CBD.因为D是弧AC的中点,所以∠ABD=∠CBD.则问题得证;②连接AD、CD,作DH⊥BC,交BC的延长线于H点.证明Rt△ADE≌Rt△CDH,可得AE=CH.根据AB=BH可求出答案.【详解】(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC =∠ABD ,∴∠FDG =∠CGB =∠FGD ,∴FD =FG ;②解:连接AD 、CD ,作DH ⊥BC ,交BC 的延长线于H 点.∵∠DBC =∠ABD ,DH ⊥BC ,DE ⊥AB ,∴DE =DH ,在Rt △BDE 与Rt △BDH 中,DH DE BD BD=⎧⎨=⎩, ∴Rt △BDE ≌Rt △BDH (HL ),∴BE =BH ,∵D 是弧AC 的中点,∴AD =DC ,在Rt △ADE 与Rt △CDH 中,DE DH AD CD =⎧⎨=⎩, ∴Rt △ADE ≌Rt △CDH (HL ).∴AE =CH .∴BE =AB ﹣AE =BC+CH =BH ,即5﹣AE =3+AE ,∴AE =1.【点睛】本题是圆的综合题,考查了切线的判定,圆周角定理,全等三角形的判定与性质,等腰三角形的判定,正确作出辅助线来构造全等三角形是解题的关键.4.如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在y 轴的正半轴上,点A 在x 轴的正半轴上,点C 的坐标为(0,8),将△ABC 沿直线AB 折叠,点C 落在x 轴的负半轴D (−4,0)处.(1)求直线AB 的解析式;(2)点P 从点A 出发以每秒5AB 方向运动,过点P 作PQ ⊥AB ,交x 轴于点Q ,PR ∥AC 交x 轴于点R ,设点P 运动时间为t (秒),线段QR 长为d ,求d 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,点N 是射线AB 上一点,以点N 为圆心,同时经过R 、Q 两点作⊙N ,⊙N 交y 轴于点E ,F .是否存在t ,使得EF =RQ ?若存在,求出t 的值,并求出圆心N 的坐标;若不存在,说明理由.【答案】(1)132y x =-+(2)d =5t (3)故当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2).【解析】 试题分析:(1)由C (0,8),D (-4,0),可求得OC ,OD 的长,然后设OB=a ,则BC=8-a ,在Rt △BOD 中,由勾股定理可得方程:(8-a )2=a 2+42,解此方程即可求得B 的坐标,然后由三角函数的求得点A 的坐标,再利用待定系数法求得直线AB 的解析式;(2)在Rt △AOB 中,由勾股定理可求得AB 的长,继而求得∠BAO 的正切与余弦,由PR//AC 与折叠的性质,易证得RQ=AR ,则可求得d 与t 的函数关系式;(3)首先过点分别作NT ⊥RQ 于T ,NS ⊥EF 于S ,易证得四边形NTOS 是正方形,然后分别从点N 在第二象限与点N 在第一象限去分析求解即可求解;试题解析:(1)∵C (0,8),D (-4,0),∴OC=8,OD=4,设OB=a ,则BC=8-a ,由折叠的性质可得:BD=BC=8-a ,在Rt △BOD 中,∠BOD=90°,DB 2=OB 2+OD 2,则(8-a )2=a 2+42, 解得:a=3,则OB=3,则B (0,3),tan ∠ODB=34OB OD = , 在Rt △AOC 中,∠AOC=90°,tan ∠ACB=34OA OC = , 则OA=6,则A (6,0),设直线AB 的解析式为:y=kx+b ,则60{3k bb+==,解得:1{23kb=-=,故直线AB的解析式为:y=-12x+3;(2)如图所示:在Rt△AOB中,∠AOB=90°,OB=3,OA=6,则22135,tan2OBOB OA BAOOA+=∠==,255OAcos BAOAB∠==,在Rt△PQA中,905APQ AP t∠=︒=,则AQ=10cosAPtBAO=∠,∵PR∥AC,∴∠APR=∠CAB,由折叠的性质得:∠BAO=∠CAB,∴∠BAO=∠APR,∴PR=AR,∵∠RAP+∠PQA=∠APR+∠QPR=90°,∴∠PQA=∠QPR,∴RP=RQ,∴RQ=AR,∴QR=12AQ=5t,即d=5t;(3)过点分别作NT⊥RQ于T,NS⊥EF于S,∵EF=QR,∴NS=NT,∴四边形NTOS是正方形,则TQ=TR=1522QR t=,∴1115151022224NT AT AQ TQ t t t==-=-=()(),分两种情况,若点N 在第二象限,则设N (n ,-n ),点N 在直线132y x =-+ 上, 则132n n -=-+ , 解得:n=-6,故N (-6,6),NT=6,即1564t = , 解得:85t = ; 若点N 在第一象限,设N (N ,N ),可得:132n n =-+ , 解得:n=2,故N (2,2),NT=2, 即1524t =, 解得:t=815∴当 t =85,或815,时,QR =EF ,N (-6,6)或(2,2)。

最新人教版初中数学九年级数学上册第四单元《圆》检测(有答案解析)

最新人教版初中数学九年级数学上册第四单元《圆》检测(有答案解析)
D.∵∠AOC=60°,OC=8
∴扇形OAC的面积为 ,所以D错误,符合题意.
故选:D.
【点睛】
本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.
4.D
解析:D
【分析】
分别根据平行线的判定与性质,以及圆周角定理对各选项进行逐一判断即可.
【详解】
B. ∵ , ,又 , , ,正确;
A. 是 的直径,∴∠AEB=90°,∵ , ,正确;
C. ∵ 所对的圆心角为 , 所对的圆周角为 , ,正确;
D.只有 时,才可证得 ,故不一定正确;
故选D.
【点睛】
∵(x+ )﹣2=x﹣2+ =( ﹣ )2≥0,当且仅当x=1时,等号成立.
∴x+ ≥2,即S≥2,
∴四边形ABCD的面积S的最小值为2.
故选:C.
【点睛】
考查了切线的性质、平行线的判定、矩形的性质和勾股定理,解题关键是作出辅助线.
12.B
解析:B
【分析】
设四个切点分别为E、F、G、H,分别连接切点和圆心,利用切线性质和HL定理可以得到4对全等三角形,进而可得∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8,根据8个角之和为360°即可求解.
11.如图,⊙ 的直径 和 是它的两条切线, 切⊙ 于 ,交 于 ,交 于 ,则四边形 的面积 的最小值为()
A.1B. C.2D.4
12.如图,⊙O是四边形ABCD的内切圆,连接OA、OB、OC、OD.若∠AOB=110°,则∠COD的度数是()

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试题(答案解析)

(常考题)人教版初中数学九年级数学上册第四单元《圆》测试题(答案解析)

一、选择题1.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 2.如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .30°C .36°D .60°3.如图,AB 是半圆O 的直径,20BAC =︒∠,则D ∠的度数是( )A .70°B .100°C .110°D .120° 4.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 5.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A 433B .327C 233D .1676.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( )A .13cmB .12cmC .11cmD .10cm 7.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π 8.如图,在⊙O 中,AB 是直径,弦AC=5,∠BAC=∠D .则AB 的长为( )A .5B .10C .52D .102 9.已知O 的半径为4,点P 在O 外,OP 的长可能是( )A .2B .3C .4D .5 10.如图,PA 、PB 、CD 是O 的切线,切点分别是A 、B 、E ,CD 分别交PA 、PB 于C 、D 两点,若60APB ∠=︒,则COD ∠的度数( )A .50°B .60°C .70°D .75° 11.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70° 12.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518π 二、填空题13.已知ABC 的周长为30,面积为20,其内角平分线交于点O ,则点O 到边BC 的距离为________.14.如图,AB 、AC 、BD 是O 的切线,P 、C 、D 为切点,如果8AB =,5AC =,则BD 的长为_______.15.如图,点A ,B ,C 在O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=________︒.16.如图,⊙O 是ABC 的外接圆,64A ∠=︒,则OBC ∠=______°.17.如图,点C ,D 是半圈O 的三等分点,直径43AB =.连结AC 交半径OD 于E ,则阴影部分的面积是_______.18.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.19.如图,已知AD 为半圆形O 的直径,点B ,C 在半圆形上,AB BC =,30BAC ∠=︒,8AD =,则AC 的长为________.20.如图,AB 是O 的直径,CD AB ⊥于E ,24CD =,8BE =,则AB =__________.三、解答题21.如图,在矩形ABCD 中,4AB =,6BC =.E 为CD 边上的一个动点(不与C 、D 重合),⊙O 是BCE 的外接圆.(1)若2CE =,⊙O 交AD 于点F 、G .求FG 的长度;(2)若CE 的长度为m ,⊙O 与AD 的位置关系随着m 的值变化而变化,试探索⊙O 与AD 的位置关系及对应的m 的取值范围.22.如图,已知圆内接四边形ABDC 中,∠BAC =60°,AB =AC ,AD 为它的对角线. 求证:AD =BD+CD .23.如图,已知在△ABC 中,∠A =90°.(1)作∠ABC 的角平分线交AC 于点P ,以点P 为圆心,PA 长为半径作⊙P ,则⊙P 与BC 的位置关系是 .(2)在(1)的条件下,若AB=3,BC=5,求⊙P 的面积.24.如图,四边形ABCD 为菱形,且120BAD ∠=,以AD 为直径作O ,与CD 交于点P .请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)(1)在图1中,过点O 作AB 边的平行线OE ;(2)在图2中,过点C 作AB 边上的高CF .25.如图,在ABC 中,45C ∠=︒,以AB 为直径的O 经过BC 的中点D . (1)求证:AC 是O 的切线;(2)取AD 的中点E ,连接OE ,延长OE 交AC 于点F ,若2EF =,求O 的半径.26.图①、图②均为 4×4 的正方形网格,线段 AB 、BC 的端点均在格点上,按要求在图①、图②中作图并计算其面积.(1)在图①中画一个四边形 ABCD ,点D 在格点上,使四边形 ABCD 有一组对角相等,并求=四边形ABCD S .(2)在图②中画一个四边形 ABCE ,点E 在格点上,使四边形 ABCE 有一组对角互补,并求ABCE S =四边形 .【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据切线的性质得到OB ⊥AB ,OC ⊥AC ,求出∠BOC ,分点P 在优弧BC 上、点P 在劣弧BC 上两种情况,根据圆周角定理、圆内接四边形的性质计算即可.【详解】解:∵AB 、AC 是⊙O 的切线,∴OB ⊥AB ,OC ⊥AC ,∴∠OBA =90°,∠OCA =90°∵∠A =50°,∴∠BOC =360°﹣90°﹣90°﹣50°=130°,如图,当点P 在优弧BPC 上时,∠BPC =12∠BOC =65°, 当点P ′在劣弧BC 上时,∠BP ′C =180°﹣65°=115°,故选:C .【点睛】本题考查的是切线的性质、圆周角定理、圆内接四边形的性质,掌握圆的切线垂直于经过切点的半径及圆周角定理是解题的关键.2.C解析:C【分析】根据圆周角定理求出∠AOB ,根据等腰三角形的性质求出∠ABO=∠BAO ,根据三角形内角和定理求出即可.【详解】解:∵∠ACB =54°,∴圆心角∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°, 故选:C .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB 的度数是解此题的关键. 3.C解析:C【分析】先根据圆周角定理可得90ACB ∠=︒,再根据直角三角形的性质可得70B ∠=︒,然后根据圆内接四边形的性质即可得.【详解】AB 是半圆O 的直径,90ACB ∴∠=︒,20BAC ∠=︒,9070B BAC ∴∠=︒-∠=︒, 又四边形ABCD 是圆O 内接四边形,180110D B ∴∠=︒-∠=︒,故选:C .【点睛】本题考查了圆周角定理、直角三角形的性质、圆内接四边形的性质,熟练掌握圆周角定理是解题关键.4.C解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =,∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM +=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.5.B解析:B【分析】过C 作CF ⊥AB 于F ,根据垂径定理得出AD=2AF ,根据勾股定理求BC ,根据三角形面积公式求出CF ,根据勾股定理求出AF 即可.【详解】过C 作CF ⊥AB 于F ,∵CF⊥AB,CF过圆心C,∴AD=2AF.∵△ABC中,∠ACB是直角,AC=4,AB=7,∴由勾股定理得:22227433AB AC-=-=由三角形的面积公式得:AC×BC=AB×CF,即33=7CF,∴433在△AFC中,由勾股定理得:222243316477 AC CF⎛⎫-=-=⎪⎪⎝⎭,∴AD=2AF=327.故选:B.【点睛】本题考查了勾股定理,垂径定理,三角形的面积等知识点的应用,关键是求出AF的长.6.B解析:B【分析】先根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到12•2π•5•OA=65π,可求出OA=13,然后利用勾股定理计算圆锥的高.【详解】解:根据题意得12•2π•5•OA=65π,解得:OA=13,所以圆锥的高2213512.故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.C解析:C【分析】首先证明△OCD 是等边三角形,求出OC=OD=CO=3cm ,再根据S 阴影=S 扇形OAB -S 扇形OCD ,求解即可.【详解】解:如图,连结CD .∵OC=OD ,∠O=60°,∴△OCD 是等边三角形,∴OC=OD=CO=3cm ,∴OA=OC+AC=15cm ,∴OB=OA=15cm ,∴S 阴影=S 扇形OAB -S 扇形OCD =226015603360360ππ⋅⋅⋅⋅-=236cm π. 故选C .【点睛】本题考查了扇形的面积,等边三角形的性质与判定等知识.扇形的面积=2360n r π︒. 8.C解析:C【分析】根据圆周角定理得出∠D=∠B ,得出△ABC 是等腰直角三角形,进而解答即可.【详解】∵AC=AC ,∴∠D=∠B ,∵∠BAC=∠D ,∴∠B=∠BAC ,∴△ABC 是等腰三角形,∵AB 是直径,∴△ABC 是等腰直角三角形,∵AC=5,∴AB=52故选:C .【点睛】本题考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理的应用,关键是根据圆周角定理得出∠D=∠B .9.D解析:D【分析】根据题意可以求得OP 的取值范围,从而可以解答本题.【详解】解:∵O 的半径为4,点P 在⊙O 外,∴OP >4,故选:D .【点睛】本题考查点和圆的位置关系,解答本题的关键是明确题意,求出OP 的取值范围. 10.B解析:B【分析】连接AO ,BO ,OE 由切线的性质可得90PAO PBO ︒∠=∠=,结合已知条件和四边形的内角和为360°可求出AOB 的度数,再由切线长定理即可求出COD 的度数.【详解】如图,连接AO ,BO ,OE ,∵PA 、PB 是O 的切线,∴∠PAO =∠PBO =90∘,∵60APB ∠=︒,∴36029060120AOB ∠=︒-⨯︒-︒=︒,∵PA 、PB 、CD 是⊙O 的切线,∴∠ACO =∠ECO ,∠DBO =∠DEO ,∴∠AOC =∠EOC ,∠EOD =∠BOD , ∴1602COD COE EOD AOB ∠=∠+∠=∠=︒, 故选B.【点睛】本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.11.D解析:D【分析】连结BC ,则由已知可以求得∠BCD 与∠CBD 的度数,最后由三角形的内角和定理可以得到∠D 的度数.【详解】解:如图,连结BC ,则由弦切角定理可知:∠ABC=∠ACE=35°,∵DB 与⊙O 相切,∴∠CBD=90°-∠ABC=90°-35°=55°,∵AB 是⊙的直径,∴∠ACB=90°,∴∠BCD=180°-∠ACE-∠90°=55°,∴∠D=180°-∠BCD-∠CBD=70°,故选D .【点睛】本题考查圆的应用,灵活运用直线与圆相切的性质求解是解题关键.12.C解析:C【分析】先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键.二、填空题13.【分析】过O 作OD ⊥BC 于DOE ⊥AB 于EOF ⊥AC 于F 连接OAOBOC 根据三角形的内心和角平分线的性质得出OE=OD=OF 再根据三角形的面积公式求出即可【详解】如图过O 作OD ⊥BC 于DOE ⊥AB 于解析:4 3【分析】过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,根据三角形的内心和角平分线的性质得出OE=OD=OF,再根据三角形的面积公式求出即可.【详解】如图,过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F,连接OA、OB、OC,∵O是△ABC内角平分线的交点,∴OE=OF=OD,∵△ABC的面积是20,∴S△AOB+S△BOC+S△AOC=20,∴111AB OE BC OD222⨯⨯+⨯⨯+×AC×OF=20,∴(AB+BC+AC)×OD=40,∵△ABC的周长为30,∴AB+BC+AC=30,∴OD=404303=,∴即O到BC的距离是43,故答案为:43.【点睛】本题考查了三角形的内心,角平分线的性质和三角形的面积等知识点,能求出OD=OE=OF 是解此题的关键.14.【分析】由于ABACBD是⊙O的切线则AC=APBP=BD求出BP的长即可求出BD的长【详解】解:∵ACAP为⊙O的切线∴AC=AP∵BPBD为⊙O的切线∴BP=BD∴BD=PB=AB-AP=8-5解析:3【分析】由于AB、AC、BD是⊙O的切线,则AC=AP,BP=BD,求出BP的长即可求出BD的长.【详解】解:∵AC、AP为⊙O的切线,∴AC=AP,∵BP、BD为⊙O的切线,∴BP=BD,∴BD=PB=AB-AP=8-5=3.故答案为:3.【点睛】本题考查了切线长定理,两次运用切线长定理并利用等式的性质是解题的关键.15.120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC 为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.16.26【分析】先利用圆周角定理得到∠BOC=2∠A=128°然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数【详解】解:∵∠A=64°∴∠BOC=2∠A=128°∵OB=OC∴∠OBC=∠解析:26【分析】先利用圆周角定理得到∠BOC=2∠A=128°,然后根据等腰三角形的性质和三角形内角和定理计算∠OBC的度数.【详解】解:∵∠A=64°,∴∠BOC=2∠A=128°,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC=12(180°-128°)=26°.故答案为26.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17.【分析】连接OC由点CD是半圆O的三等分点得到根据垂径定理得到OD⊥AC∠DOC=60°求得OE=CE=3根据扇形和三角形的面积公式即可得到结论【详解】解:连接OC∵点CD是半圆O的三等分点∴∴OD解析:33 2π-【分析】连接OC,由点C,D是半圆O的三等分点,得到AD CD CB==,根据垂径定理得到OD⊥AC,∠DOC=60°,求得OE=3,CE=3,根据扇形和三角形的面积公式即可得到结论.【详解】解:连接OC,∵点C,D是半圆O的三等分点,∴AD CD CB ==,∴OD ⊥AC ,∠DOC=60°,∴∠OCE=30°, ∵AB =∴∴CE=3,∴S阴影=S 扇形COD -S △OCE =2601236022ππ⋅⋅-⨯=-.故答案为:22π-. 【点睛】本题考查了扇形的面积的计算,垂径定理,含30°角的直角三角形的性质,正确的识别图形是解题的关键. 18.120【分析】根据三角形的内心是三角形角平分线的交点结合公式求出即可【详解】解:为的内心故答案是:120【点睛】注意此题中的结论:若是内心则熟记公式可简化计算解析:120【分析】 根据三角形的内心是三角形角平分线的交点,结合公式1902BOC A ∠=+∠︒求出即可. 【详解】解:60A ∠=︒,O 为ABC ∆的内心, 1190906012022BOC A , 故答案是:120.【点睛】注意此题中的结论:若O 是内心,则1902BOC A ∠=+∠︒.熟记公式可简化计算. 19.【分析】连接CD 由已知可以得到∠B=120°所以∠D=60°然后在Rt △ACD 中计算AC 即可【详解】解:如图所示连接CD ∵∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4∴AC解析:【分析】连接CD ,由已知可以得到∠B=120°,所以∠D=60°,然后在Rt △ACD 中计算AC 即可.【详解】解:如图所示,连接CD∵AB BC =,30BAC ∠=︒∴∠B=120°∴∠D=60°∵AD 为直径∴∠ACD=90°∴CD=4 ∴AC=43【点睛】本题主要考查圆的内接四边形对角性质,掌握直径所对的圆周角是90°和圆的内接四边形对角互补是解题的关键.20.【分析】连接OD 设的半径为r 则OE=r-8再根据勾股定理求出r 最后根据直径和半径的关系即可解答【详解】解:如图:设的半径为r 则OE=r-8∵AB ⊥CD 于E 且CD=24∴DE=CD=12在Rt △ODE解析:26【分析】连接OD ,设O 的半径为r ,则OE=r-8,再根据勾股定理求出r ,最后根据直径和半径的关系即可解答. 【详解】解:如图:设O 的半径为r ,则OE=r-8,∵AB ⊥CD 于E ,且CD=24,∴DE=12CD=12, 在Rt △ODE 中,OD=r ,OE=r-8,DE=12,∴OE 2+DE 2=OD 2,∴(r-8)2+122=r 2,解得r=13∴AB=2r=26.故答案为26.【点睛】本题主要考查了垂径定理,正确作出辅助线、构造出直角三角形是解答本题的关键.三、解答题21.(1)2FG =;(2)当704m <<时,⊙O 与AD 相离;当74m =时,⊙O 与AD 相切;当744m <<时,⊙O 与AD 相交 【分析】(1)过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG .在Rt BCE ∆中,利用勾股定理求出BE ,再在Rt OMG ∆中求出MG 即可解决问题.(2)如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .求出相切时,m 的值即可判断.【详解】解:(1)解:过点O 作OM FG ⊥于点M ,延长MO 交BC 于点N ,连接OG ,四边形ABCD 是矩形,90C D ∴∠=∠=︒,BE ∴是O 的直径.90C D DMN ∠=∠=∠=︒,∴四边形MNCD 是矩形,MN BC ∴⊥,4MN CD AB ===,BN CN ∴=.OB OE =,ON ∴是BCE ∆的中位线,112ON CE ∴==, 413OM ∴=-=,在Rt BCE ∆中,22210+=BE BC CE1102OG BE ∴==, 在Rt OMG ∆中,221-=MG OG OM ,22FG MG ∴==.(2)解:如图1中,当O 与AD 相切于点M 时,连接OM 并反向延长交BC 于点N .由(1)易得1122==ON CE m ,142==-OB OM m ,3BN =, 在Rt BON ∆中,222+=ON BN OB ,即22211()3(4)22m m +=-, 解得74m =, ∴当704m <<时,O 与AD 相离, 当74m =时,O 与AD 相切, 当744m <<时,O 与AD 相交. 【点睛】本题考查直线与圆的位置关系,矩形的性质,垂径定理,三角形的外心等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.见解析.【分析】连接BC ,证明∠ADB =∠ADC =60°,在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,证明△BDE 、△CDF 为正三角形,再证明∠AEB =∠CFA =120°,∠EAB =∠FCA ,证明△ABE ≌△CAF ,可得AE =CF ,从而可得结论.【详解】解:连接BC , ∠BAC =60°,AB =AC ,∴ △ABC 为等边三角形,∴ ∠ABC =∠ACB =60°,,,AC AC AB AB ==∴ ∠ADC =∠ABC 60,=︒ ∠ADB =∠ACB 60,=︒在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,∴△BDE 、△CDF 为等边三角形,∴∠DEB =∠DFC =60°,,,DE BD CF DC ==∴∠AEB =∠CFA =120°,又∠FAC+∠FCA =∠DFC =60°、∠FAC+∠EAB =∠BAC =60°,∴∠EAB =∠FCA ,在△ABE 和△CAF 中,∵EAB FCA AEB CFA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS ),∴AE =CF ,∴AD =DE+AE =BD+FC =BD+CD .【点睛】本题考查的是等边三角形的性质与判定,全等三角形的判定与性质,圆周角定理,掌握以上知识是解题的关键.23.(1)相切;(2)94π 【分析】(1)先利用角平分线的性质得到点P 到BC 的距离等于PA ,然后根据直线与圆的位置关系进行判断.(2)由全等三角形的性质,先求出CD=2,由勾股定理求出AC=4,再利用勾股定理求出PD 的长度即可.【详解】解:(1)作PD ⊥BC ,交BC 于点D ,如图:∵PB 平分∠ABC ,∴点P 到BC 的距离等于PA ,∴PA=PD ,∴BC 为⊙P 的切线.故答案为:相切.(2)由(1)可知,易得△ABP ≌△DBP ,∴BD=AB=3,∴CD=5-3=2,∵在直角△ABC 中,由勾股定理,得 22534AC =-=,设PA PD r ==,∴4PC r =-,在直角△PDC 中,由勾股定理,则()22242r r -=+, 解得:32r =, ∴圆的面积为:223924S r πππ==•=(). 【点睛】 本题考查了圆的定义,勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的进行解题.24.(1)见解析;(2)见解析【分析】(1)连接BD 、AC 交于点E ,连接OE ;(2)连接BD ,则点P 和BD 与O 的交点的延长线与AB 的交点即为F 点.【详解】(1)如图所示,∵四边形ABCD 是菱形,∴E 是BD 中点,∵O 是DA 中点,∴//OE AB ;(2)如图所示,∵120BAD ∠=,∴60ADC ∠=︒,∵AD CD =,∴ACD △是等边三角形,∵AD 是直径,∴90APD ∠=︒,即AP DC ⊥,∴P 是CD 中点,通过如图所示找到的点F 是AB 的中点,∵ABC 也是等边三角形,∴CF AB ⊥.【点睛】本题考查作图,解题的关键是要熟悉各种几何的性质,比如:等边三角形的性质,中位线的性质,菱形的性质,圆的性质.25.(1)见解析;(2)22+ 【分析】(1)连接AD ,先由圆周角定理得∠ADB =90°,则AD ⊥BC ,再由线段垂直平分线的性质得AB =AC ,则∠B =∠C =45°,求得∠BAC =90°,即可得出结论;(2)作EH ⊥OF 交AF 于H ,则EH 是⊙O 的切线,先由垂径定理得OE ⊥AD ,AG =DG ,再证出△EFH 是等腰直角三角形,得EH =EF =2,则FH =2EF =2,然后由切线长定理得AH =EH =2,则AF =AH +FH =2+2,最后由等腰直角三角形的性质得OA =AF =2+2即可.【详解】(1)证明:连接AD ,如图所示:∵AB 是⊙O 的直径,∴∠ADB =90°,OA 是⊙O 的半径,∴AD ⊥BC ,∵D 是BC 的中点,∴AB =AC ,∴∠B =∠C =45°,∴∠BAC =180°−45°−45°=90°,∴AC ⊥OA ,∴AC 是⊙O 的切线;(2)解:作EH ⊥OF 交AF 于H ,如图所示:则EH 是⊙O 的切线,∵E是AD的中点,∴OE⊥AD,AG=DG,∵AD⊥BC,∴OF∥BC,∴∠EFH=∠C=45°,∵EH⊥OF,∴△EFH是等腰直角三角形,∴EH=EF2FH2EF=2,∵AC是⊙O的切线,∴AH=EH2∴AF=AH+FH2+2,由(1)得:∠BAC=90°,∴△AOF是等腰直角三角形,∴OA=AF2+2,即⊙O2+2.【点睛】本题考查了切线的判定与性质、圆周角定理、垂径定理、线段垂直平分线的性质、等腰三角形的判定与性质等知识;熟练掌握切线的判定与性质、垂径定理和圆周角定理是解题的关键.26.(1)图见详解,6 ;(2)图见详解,4.5【分析】(1)过C画AB的平行线,过A画BC的平行线,两线交于一点D,根据平行四边形的判定定理可得四边形ABCD是平行四边形,由平行四边形的性质可知∠CBA=∠CDA,然后用用割补法求出面积即可;(2)根据图中正方形网格和∠B的特点,作出∠E与∠B互补,然后用割补法求面积即可.【详解】解:(1)如图,S四边形ABCD=3×4-122⨯×2-222⨯-112⨯=6;(2)如图,S四边形ABCE=3×3-122⨯×2-222⨯-112⨯=92.【点睛】此题主要考查了应用设计作图,首先要理解题意,弄清问题中对所作图形的要求,然后利用割补法求面积.。

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8―4πB.16―4πC.32―4πD.32―8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A.B.C.D.6.如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )A.2π3―32B.2π3―3C.π3―32D.π37.如图,⊙O是正△ABC的外接圆,△DOE是顶角为120°的等腰三角形,点O与圆心重合,点D,E 分别在圆弧上,若⊙O的半径是6,则图中阴影部分的面积是( )A.4πB.12π―9 3C.12π―923D.24π―9 38.如图,在正方形ABCD中,点E,F分别是边BC和CD上的动点(不与端点重合),∠EAF=45°,AF、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43―1B.3+5C.1+25D.35―110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC= x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2―AC2=0.52―0.42=0.3m,∴CD=OD―OC=0.5―0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°―∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG―S梯形OEDF―S扇形BOF=6×23―12×(2+4)×23―60π⋅42360=63―83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(―2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,{∠HAM=∠CMOMC=MA∠OCM=∠AMH∴△AMH≌△MCO(ASA),故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,{∠CMO=∠MPECM=PM∠MCO=∠PME∴△MCO≌△PME(ASA)∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(―1,―3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24―t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2―C F2=x2―(24―t)2,在Rt△BFO中,B F2=B O2―O F2=242―t2,于是有:x2―(24―t)2=242―t2,整理得,t=―148x2+24,∴y=―124x 2+2x+96=―124(x―24)2+120,当x=24时,y max=120。

人教版九年级数学上册初中圆测试题及答案(两套题)(含知识点)

人教版九年级数学上册初中圆测试题及答案(两套题)(含知识点)

圆基础知识+两套题附参考答案与圆有关的位置关系1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆内 ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d > r ,②d = r ,③d < r.2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d < r ,②d = r ,③d > r.3.圆与圆的位置关系共有五种:① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R-r ,②d = R-r ,③ R-r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

与圆有关的计算1.圆的周长为 2πr ,1°的圆心角所对的弧长为 180rπ ,n °的圆心角所对的弧长为 180rn π ,弧长公式为180r n lπ=n 为圆心角的度数上为圆半径) .2. 圆的面积为 πr 2,1°的圆心角所在的扇形面积为 3602r π ,n °的圆心角所在的扇形面积为S= 360n 2R π⨯ = rl 21(n 为圆心角的度数,R 为圆的半径). 3.圆柱的侧面积公式:S= 2 πr l (其中r 为 底面圆 的半径 ,l 为 圆柱 的高.)4. 圆锥的侧面积公式:S=πr l (其中r 为 底面 的半径 ,l 为 母线 的长.) 圆锥的侧面积与底面积之和称为圆锥的全面积A 组一、选择题(每小题3分,共45分)1.在△ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )。

人教版数学九年级上册《圆》单元综合测试题(含答案)

人教版数学九年级上册《圆》单元综合测试题(含答案)
解:∵⊙O的半径为3,圆心O到直线L的距离为2,
∵3>2,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选A.
考点:直线与圆的位置关系.
3.下列说法正确的是( )
A.三点确定一个圆
B.度数相等的弧是等弧
C.三角形内心到三边的距离相等
D.垂直于半径的直线是圆的切线
【答案】C
【解析】
【分析】
利用确定圆的条件,等弧的概念,切线的判定,角平分线的性质进行判断即可.
(1)AC与BD的交点是圆O的圆心;
(2)AF与DE的交点是圆O的圆心;
(3) ;
(4)DE>DG,
A.0B.1C.2D.3
10.如图,网格中的小正方形边长都是1,则以O为圆心,OA为半径的弧 和弦AB所围成的弓形面积等于( )
A. ﹣4B. 2π﹣4C. 4π﹣4D. π﹣4
二、填空题
11.如果圆锥 母线为4cm,底面半径为3cm,那么这个圆锥的侧面积为______.
【详解】A为线段OB的中点,当OB=8cm时,得OA= OB=4,
∵r=5,
∴d<r,
∴点A与⊙O的位置关系是点A在圆O内,
故选A.
【点睛】考查点与圆的位置关系,解题的关键是记住:当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.
9.如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法,其中正确说法的个数是( )
12.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A( ,0),直线y=kx-2k+3与⊙O交于B、C两点,则弦BC的长的最小值为_______.
【答案】8
【解析】
【分析】

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

九年级圆测试题附参考答案一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD<∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知的面积为,若点到直线的距离为,则直线与的位置关系是( )A .相交B .相切C .相离D .无法确定2.如图,四个边长为1的小正方形拼成一个大正方形, A 、B 是小正方形顶点,O 的半径为1,P 是O 上的点,且位于右上方的小正方形内,则APB ∠等于 ( ) A .30︒ B .45︒ C .60︒ D .90︒3.四边形ABCD 为⊙O 的内接四边形,若∠BCD=110°,则∠BAD 为( )A .140︒B .110︒C .90︒D .70︒ 4.若有两圆相交于两点,且圆心距离为13公分,则下列哪一选项中的长度可能为此两圆的半径( )A .25公分,40公分B .20公分,30公分C .1公分,10公分D .5公分,7公分5.如图已知扇形的半径为6cm ,圆心角的度数为,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为( )A .B .C .D .O 29cm πO l cm πl OAAOB 12024πcm 26πcm 29πcm 212πcm OBA6cm120°6.如图,在直角梯形中,,,且,是的直径,则直线与的位置关系为( )A .相离B .相切C .相交D .无法确定7.如图,AB 是O 的在直径,弦CD AB ⊥于点E ,若8CD =,3OE =,则O 的直径为( )A .5B .6C .8D .108.如图,35BAC ∠=︒,40CED ∠=︒,则BOD ∠的度数是( )A .75︒B .80︒C .150︒D .135︒9.如图,在中,,,,经过点且与边相切的动圆与、分别相交于点、,则线段长度的最小值是( ) A .B .C .D .8ABCD AD BC ∥90C ∠=︒AB AD BC >+AB OCDOBACABC △15AB =12AC =9BC =C AB CB CA E F EF 51236515210.如图,六边形是正六边形,曲线……叫做“正六边形的渐开线”,其中,,,,,,……的圆心依次按点循环,其弧长分别记为,….当时,2021l 等于( )A .20212πB .20213πC .20214πD .20216π二 、填空题(本大题共5小题,每小题3分,共15分)11.如图,与相切于点,线段与弦垂直于点,,,则切线 .12.如图,在以AB 为直径的半圆O 中,C 点是它的中点,若2AC =,则ABC ∆的面积是13.某盏路灯照射的空间可以看成如图所示的圆锥,它的高=8米,底面半径=6米,则圆锥的侧面积是 平方米(结果保留π).ABCDEF 1234567FK K K K K K K 1FK 12K K 23K K 34K K 45K K 56K K A B C D E F ,,,,,123456l l l l l l ,,,,,1AB =K 7K 6K 5K 4K 3K 2K 1FE D CB A AB O ⊙B OA BCD 60AOB ∠=︒4cm BC =AB =cmCBAO OB14.如图,BAC ∠所对的(图中BC )的度数为120︒,O 的半径为5,则弦BC的长为15.如图,多边形ABDEC 是由边长为2的等边三角形和正方形BDEC 组成,O 过A 、D 、E 三点,则O 的半径等于 .三 、解答题(本大题共7小题,共55分)16.如图,半圆的直径10AB =,点C 在半圆上,6BC =.(1)求弦AC 的长;(2)若P 为AB 的中点,PE AB ⊥交AC 于点E ,求PE 的长.17.如图,有一个圆和两个正六边形,.的6个顶点都在圆周上,的BAAPEC BAO 1T 2T 1T 2T6条边都和圆相切(我们称分别为圆的内接正六边形和外切正六边形).(1)设的边长分别为圆的半径为,求及的值; (2)求正六边形的面积比的值.18.如图是某城市一个主题雕塑的平面示意图,它由置放于地面l 上两个半径均为2米的半圆与半径为4米的构成.点分别是两个半圆的圆心,分别与两个半圆相切于点长为8米.求的长.19.在Rt ABC ∆中,90C ∠=︒,12cm AC =,16cm BC =,以点C 为圆心,r 为半径的圆和AB 有怎样的位置关系?为什么? (1)9cm r =;(2)10cm r =;(3)9.6cm r =.20.如图,四边形内接于,是的直径,,垂足为,平分.(1)求证:是的切线;(2)若,求的长.O 12T T ,O 12T T ,a b ,O r :r a :r b 12T T ,12:S SA B C 、A E F BC 、、EF CBF E A DCBAABCD O BD O AE CD ⊥E DA BDE ∠AE O 301cm DBC DE ∠==,BD21.如图,已知AB 是O 的弦,半径20,120,OA cm AOB =∠=︒求AOB ∆的面积.22.如图1,O 中AB 是直径,C 是O 上一点,45ABC ∠=︒,等腰直角三角形DCE中DCE ∠是直角,点D 在线段AC 上. (1)证明:B C E 、、三点共线;(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN ; (3)将DCE △绕点C 逆时针旋转α(090α︒<<︒)后,记为11D CE △(图2),若1M 是线段1BE 的中点,1N 是线段1AD的中点,111M N =是否成立?若是,请证明;若不是,说明理由.1人教版九年级上册数学《圆》单元测试卷答案解析一 、选择题1.C;【点评】本题主要考查对直线与圆的位置关系的理解和掌握,解此题的关键是知道当时相离;当 时相切;当 时相交.2.B;考察同弧所对的圆周角是圆心角的一半.9045AOB APB ∠=︒∴∠=︒3.D4.B;设两圆半径分别为和,圆心距为,∵两圆相交与两点, ∴, ∵,∴根据选项知,半径为20公分和30公分的两圆符合条件,故选. 【解析】首先根据题意知,两圆相交,可知两圆圆心距大于两圆半径之差,小于两圆半径之和,结合选项得出正确答案.【点评】本题主要考查圆与圆的位置关系的知识点,解答本题的关键是根据圆心距和两圆半径之间的关系进行着手解答,本题比较简单. 5.D;【解析】此题考查的是扇形的面积公式:2360n R S π=︒,把题中的已知条件带入求解即可. 6.C作于.∵,,, ∴, 又, ∴. ∴. 又, ∴, r d <r d =r d >R r d R r d R r -<<+13d =B OE CD ⊥E AD BC ∥90C ∠=︒OE CD ⊥AD OE BC ∥∥OA OB =DE CE =2AD BCOE +=AB AD BC >+2ABOE <即圆心到直线的距离小于圆的半径,则直线和圆相交.7.D;重点是构造直角三角形,连接OC ,∵弦CD AB ⊥,142CE CD ∴==,由勾股定理得5OC ==, 10AB ∴=8.D;35BAC ∠=︒,40CED ∠=︒.BC ∴所对圆心角为70︒.CD 所对的圆心角为80︒.∴150BOD ∠=︒ .【解析】考查同弧所对圆周角是圆心角的一半. 9.B;取中点,作于点点,连接,当连接,根据三边关系∵,当三点共线时,直径取得最小值,∴10.B;16011=1803L ⋅=ππ 26022=1803L ⋅=ππ36033=1803L ⋅=ππ46044=1803L ⋅=ππBAEF O OG AB ⊥G CO CG COG △CG CO OG <+C O G 、、EF 365AC BC EF AB ⋅==按照这种规律可以得到:=3n n L π∴20216020212021=1803L ⋅=ππ 【解析】利用弧长公式,分别计算出……的长,寻找其中的规律,确定2021l 的长.二 、填空题11.412.2;90ACB ∴∠=︒,1, 2.2ABC AC BC AC BC S ∆=∴==∴=⨯2⨯2=2【解析】考查直径所对圆周角为90︒, 13..【解析】根据勾股定理求得,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法,求得答案即可. 【答案】∵米,米,∴米, ∴圆锥的底面周长=米, ∴(平方米)【点评】本题考查了圆锥的有关计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.;连结OB OC 、,过O 作OD BC ⊥于D .BAC ∠所对的BC 的度数为120︒,120BOC ∴∠=︒.180120,302OB OC OBD ︒-︒=∴∠==︒. 又5,OB =∴在Rt OBD ∆中,cos 530522BD OB OBD coc =∠=⨯︒=⨯=由垂径定理得弦222BC BD ==⨯= 15.2;【解析】连接OA 、OD 、OB ,作OM BD ⊥于M ,设OM 的长为x ,根据22OD OA =,123L L L ,,60πBO 12S lr =8AO =6OB =10AB =2612ππ⨯⨯=11=12106022S lr ππ=⨯⨯=扇形(2212x x +=-+;解得,x =2OA =三 、解答题16.⑴∵AB 是直径,C 在半圆上,∴90ACB ∠=︒,∵106AB BC ==,,∴8AC =. ⑵ ∵PE AB ⊥,∴90APE ∠=︒, ∵PAE CAB ∠=∠,∴APE ACB ∆∆∽, ∴AP PEAC BC=,即110286PE ⨯=, ∴154PE =. 17.(1)连接圆心和的6个顶点可得6个全等的正三角形.所以;连接圆心和相邻的两个顶点,得以圆半径为高的正三角形, 所以;(2),所以.【解析】(1)根据圆内接正六边形的半径等于它的边长,则; 在由圆的半径和正六边形的半边以及正六边形的半径组成的直角三角形中,根据锐角三角函数即可求得其比值;(2)根据相似多边形的面积比是相似比的平方.由(1)可以求得其相似比,再进一步求得其面积比.【点评】计算正多边形中的有关量的时候,可以构造到由正多边形的半径、边心距、半边组成的直角三角形中,根据锐角三角函数进行计算.注意:相AO 1T :1:1r a =O 2T O :2r b =12:T T 2()212::3:4S S a b ==:1:1r a =似多边形的面积比即是其相似比的平方.18.∵分别与两个半圆相切于点、,点分别是三个圆的圆心, ∴米,米,米. 则在和中,,, ∴. 故,则(米). 【解析】由各圆的半径可得到,.则由两边对应成比例,且夹角相等得到.故.则可求得的值.【点评】本题主要考查了圆与圆的位置关系以及相似三角形的判定和性质. 19.(1)当9cm r =时,AB 与O ⊙相离;(2)当10cm r =时,AB 与O ⊙相交;(3)当9.6cm r =时,AB 与O ⊙相切. 【解析】过C 作CD AB ⊥于D , 则1122ABC S AC BC AB CD ∆=⋅=⋅. ∵12cm AC =,16cm BC =,90C ∠=︒,∴20(cm)AB ==, ∴1112162022CD ⨯⨯=⨯⨯. ∴9.6(cm)CD =.(1)当9cm r =时,CD r >,∴AB 与O ⊙相离; (2)当10cm r =时,CD r <,∴AB 与O ⊙相交; (3)当9.6cm r =时,CD r =,∴AB 与O ⊙相切.20.(1)证明:连接,∵平分,∴.∵,∴.∴.∴.∵,∴, ∴. ∴是的切线.(2)∵是直径,∴.A E F ABC 、、4AE AF ==2BE CF ==6AB AC ==AEF △ABC △EAF BAC ∠=∠4263AE AF AB AC ===AEF ABC △∽△EF AE BC AB =216833AE EF BC AB =⋅=⨯=4AE AF ==26BE CF AB AC ====,AEF ABC △∽△EF AE BC AB=EF OA DA BDE ∠BDA EDA ∠=∠OA OD =ODA OAD ∠=∠OAD EDA ∠=∠OA CE ∥AE DE ⊥90AED ∠=︒90OAE DEA ∠=∠=︒AE OA ⊥AE O BD 90BCD BAD ∠=∠=︒∵,∴.∵平分,∴∴.在中,,,∴.在中,,,∴.∵的长时,∴的长是.21.解:作OC AB⊥于点C,则有1,602AC CB AOC AOB=∠=∠=︒.在Rt AOC∆中,20OA cm=,所以,10AC OC cm==,所以21)2AOBS AB OC cm∆==分析:作OC AB⊥于C,则1,2AOBAC BC AB OCS∆==.22.(1)证明:∵AB是直径,∴90BCA∠=︒,而等腰直角三角形DCE中DCE∠是直角,∴9090180BCA DCE∠+∠=︒+︒=︒,∴B C E、、三点共线;(2)连接BD,AE,ON,延长BD交AE于F,如图,30DBC∠=︒60BDC∠=︒120BDE∠=︒DA BDE∠60BDA EDA∠=∠=︒30ABD EAD∠=∠=︒Rt AED△90AED∠=︒30EAD∠=︒2AD DE=Rt ABD△90BAD∠=︒30ABD∠=︒24BD AD DE== DE1cm BD4cm1∵CB CA CD CE ==,∴Rt BCD Rt ACE ≌△△, ∴BD AE =,EBD CAE ∠=∠,∴90CAE ADF CBD BDC ∠+∠=∠+∠=︒,即BD AE ⊥,又∵M 是线段BE 的中点,N 是线段AD 的中点,而O 为AB 的中点,∴1122ON BD OM AE ON BD AE OM ==,,∥,∥; ∴ON OM ON OM =⊥,,即ONM △为等腰直角三角形, ∴MN ; (3)成立.理由如下:和(2)一样,易证得11Rt BCD Rt ACE ≌△△,同里可证11BD AE ⊥,11ON M △为等腰直角三角形,从而有111M N =.【解析】(1)根据直径所对的圆周角为直角得到90BCA ∠=︒,DCE ∠是直角,即可得到9090180BCA DCE ∠+∠=︒+︒=︒;(2)连接BD AE ON ,,,延长BD 交AE 于F ,先证明Rt BCD Rt ACE ≌△△,得到BD AE =,EBD CAE ∠=∠,则90CAE ADF CBD BDC ∠+∠=∠+∠=︒,即BD AE ⊥,再利用三角形的中位线的性质得到12ON BD =,12OM AE =,ON BD ∥,AE OM ∥,于是有ON OM =,ON OM ⊥,即ONM △为等腰直角三角形,即可得到结论;(3)证明的方法和(2)一样.【点评】本题考查了直径所对的圆周角为直角和三角形中位线的性质;也考查了三角形全等的判定与性质、等腰直角三角形的性质以及旋转的性质.。

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷

新人教版初三九年级上册数学第二十四章圆知识点及练习题(附答案)试卷并且可以用于解决一些圆的问题。

在圆O中,圆心角∠XXX和∠AEB相等,则弦AB和DE相等,弦BC和BD相等,弦AC和AD相等,且弦心距相等。

七、切线与切点1、切线定义:过圆上一点的直线称为圆的切线;2、切点定义:圆上与切线相切的点称为切点;3、定理:切线垂直于半径,切点在切线上,且切点到圆心的距离等于半径长。

在圆O中,点A在圆上,线段AB是圆O上的一条切线,点B是切点,且AB垂直于半径OA,AB上的点与圆心O的距离等于半径OA的长度。

参考答案:一、圆的概念集合形式的概念:圆是到定点的距离等于定长的点的集合。

圆的外部是到定点的距离大于定长的点的集合,圆的内部是到定点的距离小于定长的点的集合。

轨迹形式的概念:圆是到定点的距离等于定长的点的轨迹,以定点为圆心,定长为半径的圆。

垂直平分线是到线段两端距离相等的点的轨迹,角的平分线是到角两边距离相等的点的轨迹,到直线的距离相等的点的轨迹是平行于这条直线且到这条直线的距离等于定长的两条直线,到两条平行线距离相等的点的轨迹是平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系点在圆内的距离小于半径,点在圆上的距离等于半径,点在圆外的距离大于半径。

三、直线与圆的位置关系直线与圆相离的距离大于半径,直线与圆相切的距离等于半径,直线与圆相交的距离小于半径。

四、圆与圆的位置关系圆与圆外离的距离大于两圆半径之和,圆与圆外切的距离等于两圆半径之和,圆与圆相交的距离在两圆半径之差和之和之间,圆与圆内切的距离等于两圆半径之差,圆与圆内含的距离小于两圆半径之差。

五、垂径定理垂径定理是指垂直于弦的直径平分弦且平分弦所对的弧。

推论1包括平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧,弦的垂直平分线经过圆心并且平分弦所对的两条弧,平分弦所对的一条弧的直径垂直平分弦并且平分弦所对的另一条弧。

六、圆心角定理圆心角定理是指同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。

人教版九年级上册数学《圆》单元检测题(带答案)

人教版九年级上册数学《圆》单元检测题(带答案)
∴AB= cm,
∴S阴影=S扇形AOB﹣S△AOB= ﹣ × × =( ﹣ )cm2.
故选A.
【点睛】本题主要考查垂径定理以及圆周角定理,求不规则图形的面积一般采用割补法.
7.已知圆锥的底面半径为 ,母线长为 ,则圆锥的侧面积是()
A. B. C. D.
【答案】D
【解析】
【分析】
由圆锥的侧面积公式求解即可.
【详解】设扇形 半径为r,
则 =12π,解得r=6,
∴l= =4π.
故选A.
【点睛】本题主要考查扇形弧长、面积公式,需熟记.
4.如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.AB=8cm,∠D=40°,那么AM的值和∠C的度数分别是()
A.3cm和30°B.3cm和40°50°D.4cm和60°
A.25cmB.30cmC.50cmD.60cm
9.如图,直线 经过 的圆心,与 相交于 、 两点,点 在 上,且 度.点 是直线 上的一个动点(与点 不重合),直线 交 于 ,则使 的点 共有()
A. 1个B. 2个C. 3个D. 4个
10.如图,在以AB为直径的半圆O中,C是它的中点,若AC=2,则△ABC的面积是()
故选B.
11.如图,将圆沿 折叠后,圆弧恰好经过圆心,则 等于()
A. B. C. D.
【答案】C
【解析】
【分析】
连接OA、OB,将圆折叠后O点与E点重合,连接OE交AB于点D,由已知条件可得OD= OE= AO,从而可以求出∠OAD=30°,进而求出∠AOD的度数,最后计算出∠AOB的度数即可.
【详解】连接OA、OB,将圆折叠后O点与E点重合,连接OE交AB于点D,
21.一圆柱形排水管的截面如图所示,已知排水管的半径为 ,水面宽 为 .由于天气干燥,水管水面下降,此时排水管水面宽变为 ,求水面下降的高度.

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷(含答案)

人教版九年级上册数学《圆》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知与的半径分别为和3,若两圆相交,则两圆的圆心距满足( )A .B .C .D .2.已知圆内一点到圆周上的点的最大距离是7,最小距离是5,则该圆的半径是( )A .2B .6C .12D .73.如图,AB 为O 的直径,CD 为弦, AB CD ⊥,如果70BOC ∠=︒,那么A ∠的大小为( )A . 070B . 035C . 030D .20︒4.在同圆中,CD 的度数小于180︒,且2AB CD =,那么弦AB 和弦CD 的大小关系为( )A .AB CD > B .AB CD =C .AB CD < D .无法确定5.如图,四边形ABCD 是圆内接四边形,E 是BC 延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )A .115︒B .105︒C .100︒D .95︒ 6.Rt ABC ∆中,90C ∠=︒,3cm AC =,4cm BC =,给出下列三个结论: ①以点C 为圆心,3 cm 长为半径的圆与AB 相离;②以点C 为圆心,4cm 长为半径的圆与AB 相切;③以点C 为圆心,5cm 长为半径的圆与AB 相交.上述结论中正确的个数是1O 2O 2m 5m =1m =5m >15m <<EDC BA( )A .0个B .l 个C .2个D .3个7.在中,,,.把绕点顺时针旋转后,得到,如图所示,则点所走过的路径长为( )A .B .cmC .cmD .cm8.如图,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则ABE 面积的最小值是A .2B .1C .D .9.在圆柱形油槽内装有一些油.截面如图所示,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽度为8分米,圆柱形油槽直径MN 为( ) A .6分米 B .8分米 C .10 分米 D .12 分米10.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC=5,CD=3,AB=4,则⊙O 的直径等于( )Rt ABC △90C ∠=︒4BC cm =3AC cm =ABC △A 90︒11AB C △B 54π52π5π△22-2A.B. C. D .7 二 、填空题(本大题共5小题,每小题3分,共15分)11.已知1O ⊙与2O ⊙半径的长是方程27120x x -+=的两根,且1212O O =,则1O ⊙与2O ⊙的位置关系是___________.12.在Rt △ABC 中,∠C=90°,AC=3,BC=4,将△ABC 绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是 .13.如图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.14.如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为 cm 2.(结果保留π)15.已知正六边形的边心距为,则它的周长是 .三 、解答题(本大题共7小题,共55分)16.如图,以等腰ABC ∆中的腰AB 为直径作O ,交BC 于点D .过点D 作DE AC ⊥,垂足为E .(1)求证:DE 为O 的切线;B(2)若O 的半径为5,60BAC ∠=︒,求DE 的长.17.如图⊙O 半径为2,弦BD =,A 为弧BD 的中点,E 为弦AC 的中点,且在BD上。

人教版数学九年级上册《圆》试题及答案

人教版数学九年级上册《圆》试题及答案
23.(12分)已知:如图所示,直线PA交⊙O于A,E两点,PA的垂线DC切⊙O
于点C,过A点作⊙O的直径AB.
(1)求证:AC平分∠DAB;(2)若AC=4,DA=2,求⊙O的直径.(用相似更方便)
答案:
24.(12分)“五一”节,小雯和同学一起到游乐场玩大型摩天轮,?摩天轮的半径为20m,匀速转动一
15.半径相等的圆的内接正三角形,正方形边长之比为()
图4图5图6
6.如图5所示,⊙A的圆心坐标为 (0,4),若⊙A的半径为3,则直线y=x与⊙A?的位置关系是________.
7.如图6所示,O是△ABC的内心,∠BOC=100°,则∠A=______.
8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为________.(用含的式子表示)
24.(1)10.5(2)1×12=4(min).
3
25.解:连结PC、OP交CD于F,延长OP
∵⊙P与扇形OAB的AB相切于点E
∴P延长线必过点E
∵⊙P与扇形OAB的半径OA、OB分别相切于点C、D
∴∠AOP=1∠AOB=30°,∠OCP=90°
2
∴PC1OP OF PF
2
∵OF=OA=15∴PC=PF=5
∵S
扇形=n R2
60 152
75
SPPC2
25
y
360
360
2
∴S阴影75
-25 =25
2
2
26.解:连结OA交BD于点F,连接OB.∵OA在直径上且点
A是BD中点,
∴OA⊥BD,?BF=DF=3.
在Rt△BOF中,由勾股定理得
2
2
2

OF
=OB -BF

(人教版)九年级上册数学《圆》测试题(含答案)

(人教版)九年级上册数学《圆》测试题(含答案)

第二十四章圆整章综合水平测试题一选择题(每小题 3 分,共 30 分)1. 下列命题中,假命题是()A. 两条弧的长度相等,它们是等弧B. 等弧所对的圆周角相等C. 直径所对的圆周角是直角D.一条弧所对的圆心角等于它所对圆周角的 2 倍.2.若圆的一条弦把圆分成度数的比为 1 :3 的两段弧,则劣弧所对的圆周角等于()A .45B。

90C。

135D。

2703.已知正六边形的周长是12a ,则该正六边形的半径是()A 6a B. 4a C. 2a D. 3 a24.如图 1,圆与圆的位置关系是()A. 外离 B 相切 C.相交 D. 内含图1图25.如图 2,A, B, C , D , E的半径都是 1,顺次连结这些圆心得到五边形ABCDE ,则图中的阴影部分面积之和为()A.3C. 25 B. D.226.过O 内一点N的最长弦为6,最短的弦长为4,那么 ON 的长为()A 3 B.2 C. 5 D. 37.若正三角形、正方形、正六边形的周长相等,它们的面积分别是S1 , S2 , S3,则下列关系成立的是()A .S1S2S3,B。

S1S2S3C.S1S2S3D。

S2S3S18.平行四边形的四个顶点在同一个圆上,则该平行四边形一定是(A. 正方形 B 菱形 C.矩形)D. 等腰梯形9.在半径等于5cm的圆内有长为5 3cm 的弦,则此弦所对的圆周角为()A. 120B30或 120 C. 60 D 60或 12010.已知01、O2、O3两两外切,且半径分别为2cm 、 3cm、 10cm,则O1O2O3的形状是()A 锐角三角形 B. 直角三角形 C 钝角三角形 D.等腰直角三角形.二、填空题(每小题 3 分,共 30 分)11.如图 3,已知 AB 为O 的直径, AB CD ,垂足为E,由图你还能知道哪些正确的结论?请把它们一一写出来._____________.图3图4图512.如图 4,AB 是O 的直径,C为圆上一点, A 60 , OD BC , D为垂足,且OD=10,则 AB=_______,BC=_______.13.如图 5,已知O 中,AB BC ,且 AB : AMC 3: 4 ,则AOC______.14.如图 6,在条件 : ①COA AOD60 ;②AC=AD=OA;③点E分别是AO、CD的中点;④ OA CD ,且ACO 60 中,能推出四边形OCAD是菱形的条件有_______个 .图6图715.为了改善市区人民的生活环境 , 某市建设污水管网工程 , 某圆柱型水管的直径为100cm ,截面如图7 所示 , 若管内的污水的面宽AB 60cm ,则污水的最大深度为______.16.O 的直径为 11cm ,圆心到一直线的距离为 5cm,那么这条直线和圆的位置关系是_______;若圆心到一直线的距离为 5.5cm,那么这条直线和圆的位置关系是_______;17.若两圆相切 ,圆心距为8cm ,其中一个圆的半径为12cm,则另一个圆的半径为 _____.18.正五边形的一个中心角的度数是 ________,19.已知O1和o2的半径分别为 2 和 3,如果它们既不相交又不相切,那么它们的圆心距 d 的取值范围是________.20 已知在同一平面内圆锥两母线在顶点处最大的夹角为60 ,母线长为8,则圆锥的侧面积为 ______.三 .解答题(共60 分)21.( 6 分)如图8,已知ABC 中, C 90 ,AC=3,BC=4,已点C为圆心作 C ,半径为 r .当 r 取什么值时点(1)、B在C外?, A(2)当r取什么值时 ,点 A 在C内,点B在 C 外?图 822.( 6 分)如图9,两个同心圆,作一直线交大圆于A、 B,交小圆于C、 D, AC 与 BD 有何关系?请说明理由.图 923(. 6 分)如图 10,PA、PB 是O的两条切线, A 、B 是切点,AC 是O的直径,BAC35 ,求 P的度数.图 1024.( 8 分)如图11,P 是O 的直径AB上的一点,PC AB ,PC交O 于C,OCP的平分线交O 于D,当点P 在半径OA(不包括O 点和A点)上移动时,试探究AD与 BD的大小关系.图 1125( 8 分) .如图 12,O 的半径OA=5,点C是弦AB上的一点,且 OC AB ,OC=BC.求 AB 的长.图 1226(. 8 分)如图 13,O 的直径AB和弦CD相交于点E,已知AE=1,EB=5,DEB 60 ,求 CD 的长.图 1327.( 8 分)现有边长为a的正方形花布,问怎样剪裁,才能得到一个面积最大的正八边形花布来做一个形状为正八边形的风筝?(10分)如图14,已知一底面半径为r ,母线长为3r的圆锥,在地面圆周上有一蚂蚁位28于 A 点,它从 A 点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径的长 .图 14.备用题1.如图 1,交于点 E,你认为ABC 中,AB=AC,BD是ABC 的平分线,A、B、D三点的圆与AD=CE 吗?如果不能,请举反例;如果AD=CE ,请说明理由.BC相图1图22.如图 2,在直角梯形 ABCD 中, AB ∥ CD ,以 AD 为直径的圆切 BC 于 E,谅解 OB、OC,试探究 OB 与 OC 有何位置关系?参考答案一 .1A2A3C4A5B6C7B8C9D10B二 .11.CE=DE,AC AD,BC BD ;12.40, 203;13. 144;14. 4;15. 90;16.相交、相切;17. 4cm或16cm; 18.72 ;19. d5或0 d 1;20.32 .三 .21,r 3 , 3 r 4 ;所以22.AC=BD.AE-CE=BE-DE理由:作 OE,即 AC=BD.AB 于E,(如图1)由垂径定理得AE=BE , CE=DE ,(图1)图 223. 因为BAC35 ,所以 AOB18035 2 110,因为 PA、PB 是O的切线,所以PAO PBO 90 ,所以P360PAO PBOAOB = 70 .24.AD BD.理由如图2,延长CP 交O 于E,延长CO 交O 于F,因为PCD FCD,所以DE DF因为直径AB CE ,所以AE AC因为AOC BOF ,所以AC BF,所以AE BF,所以AE DE BF DF,即AD BD.25. 因为OC AB ,所以AC=BC,又OC=BC ,所以OC=AC=BC设OC=AC=BC=x ,在Rt AOC 中,x2x252解得 x 52 ,所以AB 2 x5 2 . 226.作OF CD 于F,(如图3)则CF=EF,连结DO ,在 Rt OEF 中,OEF DEB60,EOF30OE=OA-AE=1 AB2AE312, EF1 OE2122 1,所以OF OE 2EF 222123所以DF OD 2OF 2323 6 ,所以CD 2DF 2 6 .图 3图 4图 527.如图 4,将正方形花布的四个角各截去一个全等的直角三角形,设DF=GC= x,则 EF2x,因为, EF=FG ,所以2x a 2x,解得x2 2 a2因此,应从正方形花布的四个角各截去一个全等的直角边为22a 的等腰直角三2角形 .28.圆锥的侧面展开图如图 5 所示,则线段AA 的长为最短路径设扇形的圆心角为n ,则2r n 3r,解得 n 120 180作 OC AA,AOC60,AOC 30 ,因为 OA3r , 所以 OC 3r ,由勾股定理求得 AC33r ,22所以 AA 3 3r ,即蚂蚁从 A 点出发沿圆锥面爬行一周后又回到原出发点的最短路径长为 3 3r .备用题 .1.连结 DE ,(如图 6)因为 BD 是ABC 的平分线,所以ABD EBD ,所以因为 AB=AC ,所以ABC C ,因为CDE ABC所以C CDE ,所以CE=DE,所以AD=CE.AD=DE,图6如图72.连结 OE,(如图 7)由切线性质及切线长定理可得:Rt AOB Rt EOB ,R t C O D R t C O所以AOB EOB , COD COE所以BOE1AOD1COE180 90 22即BOC90 ,所以OB OC .。

人教版九年级数学上册《圆》试卷(含答案)

人教版九年级数学上册《圆》试卷(含答案)

圆 单元检测题一、选择题(每小题3分,共30分)1.若⊙O 的半径为8cm ,点A 到圆心O 的距离为6cm ,那么点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C .点A 在⊙O 外 D .不能确定2.已知⊙O 的半径为5,圆心到直线l 的距离为4,则直线l 与⊙O 的位置关系是( ) A .相交 B .相离 C .相切 D .相交或相切3.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C=50°,∠ABC 的平分线BD 交⊙O 于点D ,则∠BAD 的度数是( )A .45°B .85°C .90°D .95°4.小颖同学在手工制作中,把一个边长为12 cm 的等边三角形纸片贴到一个圆形的纸片上.若三角形的三个顶点恰好都在这个圆上,则圆的半径为( )A .2 3 cmB .4 3 cmC .6 3 cmD .8 3 cm5.如图,⊙O 是Rt△ABC 的外接圆,∠ACB=90°,∠A=25°,过点C 作圆O 的切线,交AB 的延长线于点D ,则∠D 的度数是( )A .25°B .40°C .50°D .65°6.如图,等边△EFG 内接于⊙O,其边长为26,则⊙O 的内接正方形ABCD 的边长为( )A. 6B.563C .4D .5 7.如图,⊙O 的半径为3,四边形ABCD 内接于⊙O,连接OB ,OD.若∠BOD=∠BCD,则BD ︵的长为( )A .π B.32π C .2π D .3π8.如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C=40°,则∠ABD 的度数为( )A .40°B .50°C .80 °D .90°9.半径为R 的圆内接正三角形的面积是( )A .232RB .2R πC .2332RD .2334R 10.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为( )A .10πB .103C .103πD .π二、填空题(每小题4分,共24分)11.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是_____12. 如图,AD 、AE 、CB 都是⊙O 的切线,AD=4,则△ABC 的周长是________.13. 如图,AP 为⊙O 的切线,P 为切点.若∠A=20°,C ,D 为圆周上的两点,且∠PDC =60°,则∠OBC 等于 .14. 已知△ABC 的三边长分别是6,8,10,则△ABC 外接圆的直径是 .15. 如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD= °.16..如图,在△ABC 中,∠ACB =90°,∠ABC =30°,BC =2.将△ABC 绕点C逆时针旋转α角后得到△A′B′C ,当点A 的对应点A' 落在AB 边上时,旋转角α的度数是 度,阴影部分的面积为 .三、解答题(每题6分,共18分)17. 如图,AB 是⊙O 的弦,C ,D 是AB 上的两点,并且AC =BD .求证:OC =OD .18. 如图,AB 是⊙O 的直径,半径OC ⊥AB ,过OC 的中点D 作弦EF ∥AB ,求∠ABE 的度数.19.如图,在⊙O 中,AC ︵=CB ︵,CD⊥OA 于D ,CE⊥OB 于E ,求证:AD =BE.四、解答题(每题7分,共21分)20.如图,在△AOC 中,∠AOC=90°,以点O 为圆心,OA 为半径的圆交AC 于点B ,且OB =BC ,求∠A 的度数.21.如图,C 、D 是半圆O 上的三等分点,直径AB=4,连接AD 、AC ,DE ⊥AB ,垂足为E ,DE 交AC 于点F .(1)求∠AFE 的度数;(2)求阴影部分的面积(结果保留π和根号).22. 已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (﹣1,2)、B (﹣2,1)、C (1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A 1B 1C 1是△ABC 绕点 逆时针旋转 度得到的,B 1的坐标是 ;(2)求出线段AC 旋转过程中所扫过的面积(结果保留π).五.解答题(每题9分,共27分)23.如图,在△ABC 中,∠C =90°,∠A ,∠B 的平分线交于点D ,DE ⊥BC 于点E ,DF ⊥AC 于点F .⑴求证:四边形CFDE是正方形;⑵若AC=3,BC=4,求△ABC的内切圆半径.24.如图,AB是⊙O的直径,E为弦AP上一点,过点E作EC⊥AB于点C,延长CE至点F,连接FP,使∠FPE=∠FEP,CF交⊙O于点D.(1)证明:FP是⊙O的切线;(2)若四边形OBPD是菱形,证明:FD=ED.25.如图,在Rt△ABC中,∠ACB=900,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:点E是边BC的中点;(2)连接CD,若EC=3,BD=62,求CD的长度;(3)若以点O,D,E,C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.圆 单元检测题参考答案AABBB CCBDC11. 20π 12. 8 13.65° 14.10 15.80 16. 60,23π 17. 解:过O 做OM ⊥AB 于M ,利用垂径定理证明.18. 解:如图,连接OE .∵EF ∥AB ,OC ⊥AB ,∴EF ⊥OC .∵点D 是OC 的中点,∴OD =12OC =12OE ,∴∠OED =30°.∵EF ∥AB ,∴∠EOA =30°,∴∠ABE =12∠EOA =15°.19. 证明:连接OC ,∵AC ︵=CB ︵,∴∠AOC=∠BOC.∵CD⊥OA 于D ,CE ⊥OB 于E ,∴∠CDO=∠CEO=90°.在△COD 和△COE 中,⎩⎪⎨⎪⎧∠DOC=∠EOC,∠CDO=∠CEO,CO =CO ,∴△COD≌△COE(AAS).∴OD=OE.∵AO=BO ,∴AD=BE.20. 解:∵OA=OB ,OB =BC ,∴∠A=∠OBA,∠BOC=∠C,又∵∠OBA=∠BOC+∠C,∴∠A=2∠C.∵△AOC 中,∠AOC=90°,∴∠A+∠C=90°,即3∠C=90°.∴∠C=30°,∠A=60°.21. 解:(1)连接OD ,OC ,∵C 、D 是半圆O 上的三等分点, ∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×=π﹣.22. 解:(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是:(1,﹣2),故答案为:C,90,(1,﹣2);(2)线段AC旋转过程中所扫过的面积为以点C为圆心,AC为半径的扇形的面积.∵AC==,∴面积为: =,即线段AC旋转过程中所扫过的面积为.23. 解:⑴过D作DG⊥AB交AB于G点,∵AD是∠BAC的角平分线,∴DF=DG,同理可证DE=DG,∴DE=DF,∵∠C=∠CFD=∠CED=90°,∴四边形CFDE是正方形;⑵∵AC=3,BC=4,∴AB=5,由⑴知AF=AG,BE=BG,∴AF+BE=AB,∵四边CFDE是正方形,∴2CE=AC+CB-AB=2,即CE=1,△ABC的内切圆半径为1.24. 证明:(1)连接OP,∵OP=OA,∴∠A=∠APO.∵EC⊥AB,∴∠A+∠AEC=90°.∵∠FPE=∠FEP,∠FEP=∠AEC,∴∠AEC=∠FPE.∴∠OPA+∠FPA=90°.∴OP⊥PF.∵OP为⊙O的半径,∴FP是⊙O的切线.(2)∵四边形OBPD是菱形,∴PD∥AB,PB=OB.∵OB=OP,∴OP=OB=PB.∴△OPB是等边三角形.∴∠B=∠BOP=60°.∴∠A=30°.∴∠AEC=∠FEP=60°.∴∠FPE=∠FEP=60°.∴△FPE是等边三角形.∵PD∥AB,∴PD⊥EF.∴FD=ED.25、(1)证明:连接DO,∵∠ACB=90°,AC为直径,∴EC为⊙O的切线,又∵ED也为⊙O的切线,∴EC=ED.又∵∠EDO=90°,∴∠BDE+∠ADO=90°,∴∠BDE+∠A=90°,又∵∠B+∠A=90°∴∠BDE=∠B,∴EB=ED.∴EB=EC,即点E是边BC的中点.(2)CD=2 3(3)△ABC是等腰直角三角形. 理由:∵四边形ODEC为正方形,∴∠DOC=∠ACB=90°,即DO∥BC,又∵点E是边BC的中点,∴BC=2OD=AC,∴△ABC是等腰直角三角形.。

人教版九年级数学上册24.1.4圆周角 练习题(含答案)

人教版九年级数学上册24.1.4圆周角 练习题(含答案)

人教版九年级数学上册24.1.4圆周角 练习题(含答案)一、填空题:1.如图1,等边三角形ABC 的三个顶点都在⊙O 上,D 是AC 上任一点(不与A 、C 重合),则∠ADC 的度数是__120o ______.DDCB AO(1) (2) (3)2.如图2,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BC 相交于点E,那么图中有____5_____对相等的角。

3.已知,如图3,∠BAC 的对角∠BAD=100°,则∠BOC=___160____度.4.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=___23____度.BAA(4) (5) (6)5.如图5,AB 是⊙O 的直径, BC BD ,∠A=25°,则∠BOD 的度数为__50o ______.6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O到CD 的距离___.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( A ) A.50° B.100° C.130° D.200°DDCBA(7) (8) (9) (10)8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D是AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个10.如图10,∠AOB=100°,则∠A+∠B等于( )A.100°B.80°C.50°D.40°11.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°12.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°, ∠CBD 的度数是( )A.40°B.50°C.70°D.110°三、解答题:13.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.解:连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm.14.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC的长.解:连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°, ∴AC2+CD2=AD2,即2AC2=36,AC2.B A15.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.15.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,,∴∠COB= ∠DOB.∴BC BD∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.16.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大的圆钢?答案:1.120°2.3 13.160°4.44°5.50°7.A 8.C 9.B 10.C 11.B 12.C13.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD= 4cm.14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD是直径,∴∠ACD=90°, ∴AC2+CD2=AD2,即2AC2=36,AC2. 15.(1)相等.理由如下:连接OD,∵AB⊥CD,AB是直径,,∴∠COB= ∠DOB.∴BC BD∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)∠CP′D+∠COB=180°.理由如下:连接P′P,则∠P′C D=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.。

人教版九年级上册数学圆测试卷(有答案)

人教版九年级上册数学圆测试卷(有答案)

人教版九年级上册数学圆测试卷(有答案)一、单选题(共12题;共24分)1.已知圆锥侧面积为10πcm2,侧面展开图的圆心角为36º,圆锥的母线长为()A. 100cmB. 10cmC. cmD. cm2.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断3.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A. 4B. 6C. 2D. 84.在⊙O中,P是弦AB的中点,CD是过点P的直径,•则下列结论中不正确的是()A. AB⊥CDB. ∠AOB=4∠ACDC. 弧AD=弧BDD. PO=PD5.车轮要做成圆形,实际上就是根据圆的特征()A. 同弧所对的圆周角相等B. 直径是圆中最大的弦C. 圆上各点到圆心的距离相等D. 圆是中心对称图形6.已知⊙O1的半径为3cm,⊙O2的半径为4cm,且圆心距O1O2=5cm,则⊙O1与⊙O2的位置关系是( )A. 外离B. 外切C. 相交D. 内含7.若⊙O1的半径为3,⊙O2的半径为1,且O1O2=4,则⊙O1与⊙O2的位置关系是()A. 内含B. 内切C. 相交D. 外切8.如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为( )A. 45°B. 30°C. 75°D. 60°9.如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A. 40°B. 50°C. 60°D. 70°10.如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PC=4,则两圆组成的圆环的面积是()A. 16πB. 36πC. 52πD. 81π11.已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为()A. B. 1 C. D. a12.边长为1的正六边形的内切圆的半径为( ).A. 2B. 1C.D.二、填空题(共6题;共20分)13.如图,四边形ABCD是平行四边形,其中边AD是⊙O的直径,BC与⊙O相切于点B,若⊙O的周长是12π,则四边形ABCD的面积为________.14.各边相等的圆内接多边形________ 正多边形;各角相等的圆内接多边形________ 正多边形.(填“是”或“不是”)15.到定点A的距离等于3cm的点的轨迹是________ .16.如图,在△ABC中,点I是内心,且∠BIC=124°,则∠A=________度17.如图,在矩形中,是边上一点,连接,将矩形沿翻折,使点落在边上点处,连接.在上取点,以点为圆心,长为半径作⊙与相切于点.若,,给出下列结论:① 是的中点;②⊙的半径是2; ③ ;④ .其中正确的是________.(填序号)18.(2017•聊城)如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为________.三、综合题(共5题;共56分)19.如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ= 时,求的长(结果保留);(3)若△APO的外心在扇形COD的内部,求OC的取值范围.20.如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线;(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.21.如图,四边形ABCD是⊙O的内接四边形,AB=CD.(1)如图(1),求证:AD∥BC;(2)如图(2),点F是AC的中点,弦DG∥AB,交BC于点E,交AC于点M,求证:AE=2DF;(3)在(2)的条件下,若DG平分∠ADC,GE=5 ,tan∠ADF=4 ,求⊙O的半径。

(人教版)九年级上册数学《圆》单元测验题(附解析答案)

(人教版)九年级上册数学《圆》单元测验题(附解析答案)

九年级数学(人教版)上学期《圆》单元试卷内容:24.1 满分:100分一、选择题(本大题共10小题,每小题4分,共40分) 1.⊙O 中,直径AB =a , 弦CD =b,,则a 与b 大小为( B )A .a >bB .a ≥bC .a <bD . a ≤b 2.下列语句中不正确的有( A )①相等的圆心角所对的弧相等; ②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴; ④半圆是弧。

A .1个 B.2个C .3个 D.4个3.已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的 点有( C ) A .1个B .2个C .3个D .4个4.如图,已知⊙O 的半径为5,弦AB=6,M 是AB 上任意一点,则线段OM 的长可能是( C )A .2.5B .3.5C .4.5D .5.55.如图,,已知AB 是⊙O 的直径,∠BOC=400,那么∠AOE=( B )A.400B. 600C.800D.12006.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则等于( C ) A .60° B .90° C .120° D .150°(第4题) (第5题) (第6题)7.已知⊙O 的半径是5cm ,弦AB ∥CD ,AB =6cm ,CD =8cm ,则AB 与CD 的距离是( C ) A .1 cm B .7 cm C.1 cm 或7 cm D.无法确定_ O_ E_ D_ C_ B_ A8.如图,BD 是⊙O 的直径,圆周角∠A = 30︒,则∠CBD 的度数是( C ) A .30︒B .45︒C .60︒D .80︒9.如图,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC =30º,AD =CD ,则∠DAC 的度数是( A ) A .30ºB .60ºC .45ºD .75º10.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该 半圆的半径为( C )A.(4+ cm B .9 cm C..(第8题) (第9题) (第10题)二、填空题(本大题共4小题,每小题3分,共12分)11.如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 6 cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆基础知识+两套题附参考答案与圆有关的位置关系1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆内 ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d > r ,②d = r ,③d < r.2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d < r ,②d = r ,③d > r.3.圆与圆的位置关系共有五种:① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d 和两圆的半径R 、r (R ≥r )之间的数量关系分别为:①d < R-r ,②d = R-r ,③ R-r < d < R+ r ,④d = R+r ,⑤d > R+r. 4.圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。

与圆有关的计算1.圆的周长为 2πr ,1°的圆心角所对的弧长为 180rπ ,n °的圆心角所对的弧长为 180rn π ,弧长公式为180rn l π=n 为圆心角的度数上为圆半径) .2. 圆的面积为 πr 2,1°的圆心角所在的扇形面积为 3602r π ,n °的圆心角所在的扇形面积为S= 360n2R π⨯ = rl 21(n 为圆心角的度数,R 为圆的半径). 3.圆柱的侧面积公式:S= 2 πr l (其中r 为 底面圆 的半径 ,l 为 圆柱 的高.) 4. 圆锥的侧面积公式:S=πr l (其中r 为 底面 的半径 ,l 为 母线 的长.) 圆锥的侧面积与底面积之和称为圆锥的全面积A 组一、选择题(每小题3分,共45分)1.在△ABC 中,∠C=90°,AB =3cm ,BC =2cm,以点A 为圆心,以2.5cm 为半径作圆,则点C 和⊙A 的位置关系是( )。

A .C 在⊙A 上 B.C 在⊙A 外C .C 在⊙A 内 D.C 在⊙A 位置不能确定。

2.一个点到圆的最大距离为11cm ,最小距离为5cm,则圆的半径为( )。

A .16cm 或6cm B.3cm 或8cm C .3cm D.8cm 3.AB 是⊙O 的弦,∠AOB =80°则弦AB 所对的圆周角是( )。

4.O 是△ABC 的内心,∠BOC 为130°,则∠A 的度数为( )。

A .130° B.60° C .70° D.80°5.如图1,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,已知∠A = 100°,∠C = 30°,则∠DFE 的度数是( )。

A .55° B.60° C .65° D.70°6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A 、B 、C 、D 处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在( )。

A . A 处 B . B 处 C .C 处 D .D 处图1 图27.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )。

A .内含 B.内切 C .相交 D. 外切 8.已知半径为R 和r 的两个圆相外切。

则它的外公切线长为( )。

A .R +r B.R 2+r 2C .R+r D.2Rr 9.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为( )。

A.10π B .12π C.15π D.20π 10.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( )。

A .3B .4C .5D .6 11.下列语句中不正确的有( )。

①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧A .3个 B.2个 C .1个 D.4个 12.先作半径为23的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( )。

A .7)332(B.8)332( C .7)23( D.8)23( 13.如图3,⊿ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切于⊿ABC ,则阴影部分面积为( ) A .12-π B.12-2π C .14-4π D.6-π14.如图4,在△ABC 中,BC =4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB于E ,交 AC 于F ,点P 是⊙A 上的一点,且∠EPF =40°,则图中阴影部分的面积是( )。

A .4-94π B .4-98π C .8-94π D .8-98π15.如图5,圆内接四边形ABCD 的BA 、CD 的延长线交于P ,AC 、BD 交于E ,则图中相似三角形有( )。

A .2对 B.3对 C .4对 D.5对图3 图4 图5二、填空题(每小题3分,共30分)1.两圆相切,圆心距为9 cm,已知其中一圆半径为5 cm,另一圆半径为_____.2.两个同心圆,小圆的切线被大圆截得的部分为6,则两圆围成的环形面积为_________。

3.边长为6的正三角形的外接圆和内切圆的周长分别为_________。

4.同圆的外切正六边形与内接正六边形的面积之比为_________。

5.矩形ABCD中,对角线AC=4,∠ACB=30°,以直线AB为轴旋转一周得到圆柱的表面积是_________。

6.扇形的圆心角度数60°,面积6π,则扇形的周长为_________。

7.圆的半径为4cm,弓形弧的度数为60°,则弓形的面积为_________。

8.在半径为5cm的圆内有两条平行弦,一条弦长为6cm,另一条弦长为8cm,则两条平行弦之间的距离为_________。

9.如图6,△ABC内接于⊙O,AB=AC,∠BOC=100°,MN是过B点而垂直于OB的直线,则∠ABM=________,∠CBN=________;10.如图7,在矩形ABCD中,已知AB=8 cm,将矩形绕点A旋转90°,到达A′B′C′D′的位置,则在转过程中,边CD扫过的(阴影部分)面积S=_________。

图6 图7三、解答下列各题(第9题11分,其余每小题8分,共75分)1.如图,P是⊙O外一点,PAB、PCD分别与⊙O相交于A、B、C、D。

(1)PO平分∠BPD; (2)AB=CD;(3)OE⊥CD,OF⊥AB;(4)OE=OF。

从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。

2.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连结CB,BD 是⊙O的直径,∠D=40°求:∠A O1B、∠ACB和∠CAD的度数。

3.已知:如图20,在△ABC中,∠BAC=120°,AB=AC,BC=43,以A为圆心,2为半径作⊙A,试问:直线BC与⊙A的关系如何?并证明你的结论。

4.如图,ABCD是⊙O的内接四边形,DP∥AC,交BA的延长线于P,求证:AD·DC=PA·BC。

5.如图⊿ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线。

6.如图,已知扇形OACB中,∠AOB=120°,弧AB长为L=4π,⊙O′和弧AB、OA、OB分别相切于点C、D、E,求⊙O的周长。

7.如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积。

8.如图,ΔABC的∠C=Rt∠,BC=4,AC=3,两个外切的等圆⊙O1,⊙O2各与AB,AC,BC 相切于F,H,E,G,求两圆的半径。

9.如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五ABCDO图③图②图①B MP P EE D D BCBCAANMP E D CA⑴求图①中,∠APD 的度数;⑵图②中,∠APD 的度数为___________,图③中,∠APD 的度数为___________; ⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由。

B 组一、选择题(每小题3分,共24分)1.如图,把一个量角器放置在∠BAC 的上面,则∠BAC 的度数是( )(A )30o .(B )60o .(C )15o .(D)20o.O Pyx(第1题) (第2题) (第3题)2.如图,实线部分是半径为9m 的两条等弧组成的游泳池.若每条圆弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( ) (A )12πm .(B )18πm .(C )20πm .(D )24πm .3.如图,P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,若x ,y 都是整数,则这样的点共有( ) (A )4.(B )8.(C )12.(D )16. 4.用一把带有刻度尺的直角尺,(1)可以画出两条平行的直线a 和b ,如图①;(2)可以画出∠AOB 的平分线OP ,如图②;(3)可以检验工件的凹面是否为半圆,如图③;(4)可以量出一个圆的半径,如图④.这四种说法正确的有( )图① 图② 图③ 图④(A )4个.(B )3个.(C )2个.(D )1个.5.如图,这是中央电视台“曲苑杂谈”中的一幅图案,它是一扇形,其中∠AOB 为120o,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为( ) (A )264cm π.(B )2112cm π.(C )2114cm π.(D )2152cm π.(第5题) (第6题) (第7题)6.如图,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场(A )52o .(B )60o .(C )72o .(D )76o.7.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃片应该是( ) (A )第①块.(B )第②块.(C )第③块.(D )第④块.8.已知圆锥的底面半径为1cm ,母线长为3cm ,则其全面积为( ) (A )π.(B )3π.(C )4π.(D )7π. 二、填空题(每小题3分,共18分) 9.某单位拟建的大门示意图如图所示,上部是一段直径为10米的圆弧形,下部是矩形ABCD ,其中AB =3.7米,BC =6米,则弧AD 的中点到BC 的距离是____________米.321321Oy x 1(第9题) (第10题) (第11题)10.如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为_____________cm .11.如图,∠1的正切值等于_____________.12.一个小熊的头像如图所示.图中反映出圆与圆的四种位置关系,但是其中有一种位置关系没有反映出来.请你写出这种位置关系,它是____________.(第12题) (第13题) (第14题)13.如图,U 型池可以看作一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m 的半圆,其边缘AB =CD =20m ,点E 在CD 上,CE =2m ,一滑板爱好者从A 点滑到E 点,则他滑行的最短距离约为______________m .(边缘部分的厚度忽略不计,结果保留整数)14.三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm )如图所示.则三个几何体的体积和为 cm 3.(计算结果保留π)三、解答题(每小题6分,共18分)15.如图,AB 为⊙O 直径,BC 切⊙O 于B ,CO 交⊙O 交于D ,AD 的延长线交BC 于E ,若∠C =25°,求∠A 的度数.16.如图,AB 是OD 的弦,半径OC 、OD 分别交AB 于点E 、F ,且AE =BF ,请你找出线段OE与OF 的数量关系,并给予证明.17.如图,P 为正比例函数x y 23=图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y ). (1)求⊙P 与直线2=x 相切时点P 的坐标;(2)请直接写出⊙P 与直线2=x 相交、相离时x 的取值范围.四、解答题(每小题8分,共24分)18.从卫生纸的包装纸上得到以下资料:两层300格,每格11.4cm×11cm,如图甲.用尺量出整卷卫生纸的半径(R )与纸筒内芯的半径(r ),分别为5.8cm 和2.3cm ,如图乙.那么该两层卫生纸的厚度为多少cm ?(π取3.14,结果精确到0.001cm )图① 图②19.如图,A 是半径为12cm 的⊙O 上的定点,动点P 从A 出发,以2πcm/s 的速度沿圆周逆时针运动,当点P 回到A 地立即停止运动.(1)如果∠POA =90o,求点P 运动的时间;(2)如果点B 是OA 延长线上的一点,AB =OA ,那么当点P 运动的时间为2s 时,判断直线BP 与⊙O 的位置关系,并说明理由.20.如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.(1)用直尺画出该圆弧所在圆的圆心M的位置;(2)若A点的坐标为(0,4),D点的坐标为(7,0),试验证点D是否在经过点A、B、C的抛物线上;(3)在(2)的条件下,求证直线CD是⊙M的切线.五、解答题(每小题8分,共16分)21.如图,图①是一个小朋友玩“滚铁环”的游戏。

相关文档
最新文档