幂函数的图象及性质

合集下载

幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法

幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法

幂函数•冥函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数。

幂函数的解析式:y=xα幂函数的图像:•幂函数图像的性质:所有幂函数在(0,+∞)上都有定义.①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,表示过点(1,1)且平行于x轴的直线(除去点(0,1)) 。

幂函数图象的其他性质:(1)图象的对称性:把幂函数的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。

幂函数的单调性和奇偶性:对于幂函数(a∈R).(1)单调性当a>0时,函数在第一象限内是增函数;当a<0时,函数在第一象限内是减函数.(2)奇偶性①当a为整数时,若a为偶数,则是偶函数;若a为奇数,则是奇函数。

②当n为分数,即(p,q互素,p,q∈Z)时,若分母q为奇数,则分子p为奇数时,为奇函数;分子p为偶数时,为偶函数,若分母q为偶数,则为非奇非偶函数.。

高一数学必修一幂函数及其图象和性质知识点总结

高一数学必修一幂函数及其图象和性质知识点总结

1 3.3幂函数
一、幂函数定义及解析式特点
1.定义:一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数。

2.解析式特点:①系数为1;②底为自变量;③指数为常数。

3.幂函数的指数除了可以取整数外,还可以取其他实数。

二、幂函数的图象
1.幂函数主要以11,2,3,,12
α=-为代表,来研究掌握0α<,01α<<,1α>时的大致图象和图象的性质。

2.同一坐标系中画出1232
,,,y x y x y x y x ====和1y x -=的图象,如下图:
三、幂函数图象特点
1.根据幂函数y x α=的图象可得到以下结论: (1)幂函数在()0,+∞都有定义,且都过()1,1点,不一定过()0,0点。

(2)幂函数都过第一象限,不过第四象限;
(3)当0α>时,在第一象限都是增函数;当0α<时在第一象限都是减函数。

2.(1)当0α<时,幂函数在第一象限是减函数,且和1y x
=在第一象限的图象 大致相同;
(2)当0α>时,函数在第一象限是增函数,且在第一象限的大致图象的特点 可细分为两种情况:
①01α<<时,幂函数的图象在第一象限“趴着增”,且在()0,1内,图象在直 线y x =的上方增,在()1,+∞图象在直线y x =的下方增。

②1α>时,幂函数的图象在第一象限“竖着增”,且在()0,1内,图象在直线。

高中数学常见幂函数、二次函数、三次函数的图象及其性质

高中数学常见幂函数、二次函数、三次函数的图象及其性质
(2)当 时, 在 上单调递增,所以函数 的最大值为 ,最小值为 ;
(3)当 时, 在 上单调递减,在 上单调递增,所以函数 的最大值为 或 ,最小值为 .
(1)当 时, 在 上单调递增,所以函数 的最大值为 ,最小值为 ;
(2)当 时, 在 上单调递减,所以函数 的最大值为 ,最小值为 ;
(3)当 时, 在 上单调递增,在 上单调递减,所以函数 的最大值为 ,最小值为 或 .
单调增区间为: 和 ;
单调减区间为:
在R上单调递增
单调增区间为:
单调减区间为: 和
在R上单调递减
三次函数的图象和性质
定 义
我们把形如 的函数,称为三次函数.
导 数
判别式
我们把 叫做三次函数的导函数 的判别式.
极值点
当 时,导函数 有两个零点,原函数 有两个极值点,不妨记为 、 ,且 .
拐 点
令三次函数 的二阶导数 ,即 ,解得 ,我们把点 叫做三次函数的拐点.
图 象
定义域
R
值 域
R
对称中心
单调性
高中常见幂函数的图象和性质
定义
形如 的函数(其中 是常数, 是自变量)称为二次函数.
常见的五种幂函数图象
性质
(1)当幂指数 为奇数时,幂函数为奇函数;当幂指数 为偶数时,幂函数为偶函数.
(2)当 时,幂函数的图象都过 、 点,且在 上单调递增;
(3)当 时,幂函数的图象都过 点,不过 点,且在 上单调递减;
(4)在直线 的右侧,幂指数 越大,图象越高.
幂函数
定义域
单调增区间
单调减区间





二次函数的图象和性质

第二章-4.2-简单幂函数的图象和性质高中数学必修第一册北师大版

第二章-4.2-简单幂函数的图象和性质高中数学必修第一册北师大版
第二章 函数
§4 函数的奇偶性与简单的幂函数
4.2 简单幂函数的图象和性质
教材帮|必备知识解读
知识点1 幂函数的概念
例1-1 在函数 = −4 , = 3 2 , = 2 + 2, = 1中,幂函数的个数为( B
A.0
B.1
C.2
D.3
【解析】函数 = −4 为幂函数;
函数 = 3 2 中 2 的系数不是1,所以它不是幂函数;
的增大而减小;
当 = −3时,2 − 2 − 3 = 12, = 12 是幂函数,但不满足当 ∈ 0, +∞ 时,
随的增大而减小,故舍去.
∴ 实数的值为2.
【学会了吗|变式题】
2.(2024·广东省汕头市期末)已知函数 = 2 − 2 − 2 ⋅ −2 是幂函数,且在
故A正确;
幂函数 = 的图象只在第一象限内和原点,故B不正确;
当 > 0时, > 0,所以幂函数的图象不可能在第四象限,故C不正确;
幂函数 = 与 = 3 的图象的交点为 −1, −1 , 0,0 , 1,1 ,共三个,故D不正确.
方法帮|关键能力构建
题型1 幂函数的定义域和值域
0, +∞ 上单调递增,则实数 =( C
A.−1
B.−1或3
)
C.3
D.2
【解析】由题意知,2 − 2 − 2 = 1,即 + 1 − 3 = 0,
解得 = −1或 = 3,
∴ 当 = −1时, − 2 = −3,则 = −3 在 0, +∞ 上单调递减,不合题意;
当 = 3时, − 2 = 1,则 = 在 0, +∞ 上单调递增,符合题意,∴ = 3,

2.3 幂函数图像与性质

2.3 幂函数图像与性质
y 0.2x
(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
幂函数的图象及性质
对于幂函数,我们只讨论 =1,2,3,1 , 2
-1时的情形。
五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
2、在第一象限内, k >0,在
4
6 k <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、k为奇数时,幂函数为奇函数,
k为偶数时,幂函数为偶函数.
-3
-4
4、幂函数图像不过第四象限。
例3
若m
4
1 2
23 4
3 4… 27 64 …
3 2…
1
y=x 2
x
函数 y x3 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
1
函数 y x 2 的图像
定义域:[0,)
值 域:[0,)
奇偶性:非奇非偶函数
单调性:在[0,)上是增函数
4
3
2
1
(1,1)
-6

2、定义域与k的值有关系.
例1、下列函数中,哪几个函
数是幂函数? 答案:(1)(4)
(1)y = 1
x2
(3)y=2x
(2)y=2x2
(4)y=
1 x
(5) y=x2 +2

幂函数的图象及性质

幂函数的图象及性质

幂函数一、定义幂函数的概念:一般地,函数叫做幂函数,其中是自变量,注意:幂函数的解析式是幂的形式,幂的底数是自变量,指数是常数。

二、研究一类函数的一般路径注意:我们先从实际案例中,写出一系列函数的解析式,从中找到某一类函数的概念,再通过函数的解析式,求出函数的定义域,接着画出函数的图像,可以使用描点法画图,同时利用函数的性质来简化画图的过程,最后利用函数的解析式和图像,来研究函数的值域、单调性、奇偶性和其他性质。

三、六个幂函数的图像及性质1、六个幂函数2、幂函数的图像-2-10123-21123定义域:R 值域:R单调性:在R 上单调递增,增函数奇偶性:奇函数严禁复制-2-1012341149定义域:R 值域:单调性:在上单调递减,减函数,在上单调递增,增函数奇偶性:偶函数-2-10123-8-11827定义域:R 值域:R单调性:在R 上单调递增,增函数奇偶性:奇函数严禁复制124 012定义域:值域:单调性:在上单调递增,增函数奇偶性:非奇非偶函数严禁复制-2122定义域:值域:单调性:在上单调递减,减函数奇偶性:奇函数-2124定义域:值域:单调性:在上单调递减严禁复制奇偶性:偶函数从以上函数分析中,我们得到了6个幂函数的图像总结:6个幂函数具有的共同性质和不同性质1、函数的图像都经过。

2、函数在区间上单调递增,是增函数。

函数和严禁复制在区间上单调递减,是减函数。

在区间上单调递增,是增函数。

和在是单调递减,是减函数。

3、函数、和是奇函数,函数和是偶函数,函数是非奇非偶函数。

4、函数的图像经过原点,函数和的图像不经过原点。

5、已知幂函数,当时,函数在区间上单调递增,当时,函数在区间上单调递减。

四、题型1、幂函数的概念例题1已知幂函数f(x)过点,则f(9)的值为()(解析)设幂函数,因为过点,所以,解得a=,所以f(9)=。

例题2已知函数f(x)=为幂函数,则f()+f()=()(解析)因为函数f(x)=为幂函数,所以m-1=1,解得m=2,所以f(x)=,又因为函数f(x)为奇函数,有f()+f()=0。

3幂函数图象及其性质

3幂函数图象及其性质

幂函数的图像与性质一: 核心梳理、茅塞顿开1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a nn =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)mnaa m n N n *=>∈>、且;②正数的负分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质①a r a s =a r+s (a>0,r 、s ∈Q);②(a r )s =a rs (a>0,r 、s ∈Q); ③(ab)r =a r b s (a>0,b>0,r ∈Q);.n 为奇数 n 为偶数例2 (1)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;(2)化简:5332332323323134)2(248aa a a ab aaab b ba a ⋅⋅⨯-÷++--变式:(2007执信A )化简下列各式(其中各字母均为正数):(1);)(65312121132b a ba b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a(3)100.256371.5()86-⨯-+(三)幂函数 1、幂函数的定义形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。

例题、(1). 下列函数中不是幂函数的是( )A.y = B .3y x = C .2y x = D .1y x -=答案:C例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x :(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数;简解:(1)2m =或1m =-(2)1m =-(3)45m =-(4)25m =-(5)1m =- 变式训练:已知函数()()2223m m f x m m x--=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲线。

第15讲 幂函数及其性质

第15讲 幂函数及其性质

第15讲幂函数及其性质【知识点梳理】(1)幂函数的定义:一般地,()a y x a R =∈(a 为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数.(2)幂函数的特征:同时满足一下三个条件才是幂函数①a x 的系数为1;②a x 的底数是自变量;③指数为常数.(3)幂函数的图象和性质常见的幂函数图像及性质:(4对幂函数性质的综合考查,主要体现为单调性、奇偶性,处理时要以常见的具体幂函数的图象和性质1.幂函数的单调性:在区间(0,)+∞上,当0α>时,y x α=是增函数;当0α<时,y x α=是减函数.2.幂函数的奇偶性:令qpα=(其中,p q 互质,*,,1p q N p ∈>).(1)若p 为奇数,则q py x =的奇偶性取决于q 是奇数还是偶数.当q 是奇数时,q py x =是奇函数;当q 是偶数时,q py x =是偶函数.(2)若p 为偶数,则q 必是奇数,此时qpy x =既不是奇函数,也不是偶函数.1.幂函数的凸性1.上凸函数、下凸函数的定义:设函数(x)f 在[,]a b 上有定义,若对[,]a b 中任意不同两点121212()(),,()22x x f x f x x x f ++≥都成立,则称()f x 在[,]a b 上是上凸的函数,即上凸函数.设函数()f x 在[,]a b 上有定义,若对[,]a b 中任意不同两点121212()(),,()22x x f x f x x x f ++≤都成立,则称()f x 在[,]a b 上是下凸的函数,即下凸函数.这个定义从几何形式上看就是:在函数()f x 的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的上方,那么这个函数就是上凸函数;如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是下凸函数.根据函数图象判断,一般开口向下的二次函数是上凸函数,开口向上的二次函数是下凸函数.2.幂函数的凸性(1)幂函数,(0,)y x x α=∈+∞,在1α>时,函数是下凸函数;(2)幂函数y x α=,(0,)x ∈+∞,在01α<<时,函数是上凸函数;(3)幂函数,(0,)y x x α=∈+∞,在0α<时,函数是下凸函数.【典型例题】题型一幂函数的概念【例1】在函数21y x=,22y x =,2y x x =+,1y =中,幂函数的个数为()A .0B .1C .2D .3【例2】已知()21212223m y m m x n -=+-⋅+-是幂函数,求m 、n 的值.【题型专练】1.现有下列函数:①3y x =;②12xy ⎛⎫= ⎪⎝⎭;③24y x =;④51y x =+;⑤()21y x =-;⑥y x =;⑦(1)x y a a =>,其中幂函数的个数为()A .1B .2C .3D .42.已知函数()()()2211 nn f x n n xn Z -+=--∈为幂函数,则()2f =___.3.已知y =(m 2+2m -2)22m x-+2n -3是幂函数,求m ,n 的值.题型二:幂函数的三要素【例1】幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为()A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩⎭C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭【例2】已知幂函数()22333mm y m m x--=-+的图象不过原点,则实数m 的取值可以为()A .5B .1C .2D .4【题型专练】1.若函数()f x 是幂函数,满足(4)8(2)f f =,则1(1)3f f ⎛⎫+= ⎪⎝⎭_________.2.已知幂函数()f x 的图象经过点22,2⎛⎫⎪ ⎪⎝⎭,则()4f 的值为___.3.设α∈11,132⎧⎫-⎨⎬⎩⎭,,,则使函数y =x α的定义域为R 的所有α的值为()A .1,3B .-1,1C .-1,3D .-1,1,3题型三:幂函数的性质【例1】幂函数()()2231mm f x m m x+-=--在x ∈(0,+∞)上是减函数,则m =()A .﹣1B .2C .﹣1或2D .1【例2】幂函数2225()(5)m m f x m m x +-=+-在区间(0,)+∞上单调递增,则(3)f =()A .27B .9C .19D .127【例3】已知幂函数()f x 的图象经过点()9,3,则()A .函数()f x 为增函数B .函数()f x 为偶函数C .当4x ≥时,()2f x ≥D .当210x x >>时,()()121222f x f x x x f ++⎛⎫< ⎪⎝⎭【例4】已知幂函数()()231mf x m m x =--在其定义域内不单调,则实数m =()A .23-B .1C .23D .1-【例5】若幂函数()()223,p p f x qx q R p Z -++=∈∈在()0,∞+上是增函数,且在定义域上是偶函数,则p q +=()A .0B .1C .2D .3【题型专练】1.若幂函数()()215m f x m m x -=+-在()0,∞+上单调递减,则m =()A .3-或2B .2C .3-D .2-2.已知幂函数()()()224210,m m f x m x ∞-+=-+在上单调递增,则m =()A .0B .13-C .103-或D .106-或3.已知幂函数()y f x =的图象过点24⎛ ⎝⎭,则下列关于()f x 说法正确的是()A .奇函数B .偶函数C .在(0,)+∞单调递减D .定义域为[0,)+∞4.已知幂函数()223()pp f x x p N --*=∈的图像关于y 轴对称,且在()0+∞,上是减函数,实数a 满足()()233133pp aa -<+,则a 的取值范围是_____.5.写出一个具有性质①②③的函数()f x =______.①()f x 定义域为{}0x x ≠;②()f x 在(),0∞-单调递增;③()()()f ab f a f b =⋅.题型四:幂函数的图象【例1】幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是()A .a b c d >>>B .d b c a >>>C .d c b a>>>D .b c d a>>>【例2】已知幂函数()f x 的图象为曲线C ,有下列四个性质:①()f x 为偶函数;②曲线C 不过原点O ;③曲线C 在第一象限呈上升趋势,④当1≥x 时,()1f x ≥.写出一个同时满足上述四个性质中三个性质的一个函数()f x ___________.【例3】如图所示是函数m ny x =(*N m n ∈、且互质)的图象,则()A .m n 、是奇数且1m n<B .m 是偶数,n 是奇数,且1m n>C .m 是偶数,n 是奇数,且1m n<D .m n 、是偶数,且1m n>【题型专练】1.图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是()A.12,3,1-B .1-,3,12C .12,1-,3D .1-,12,32.幂函数1y x -=,及直线,1,1y x y x ===将直角坐标系第一象限分成八个“卦限:I, II, III,IV, V, VI, VII, VIII (如图所示),那么,而函数13y x -=的图象在第一象限中经过的“卦限”是()A . IV,VIIB . IV,VIIIC . III, VIIID . III, VII3.在同一直角坐标系中,二次函数2y ax bx =+与幂函数(0)ba y x x =>图像的关系可能为()A .B .C .D .题型五:幂函数的综合运用【例1】已知幂函数()()2144m f x m m x +=+-在区间()0,+¥上单调递增.(1)求()f x 的解析式;(2)用定义法证明函数()()()43m g x f x x+=+在区间()0,2上单调递减.【例2】已知幂函数()y f x =经过点14,8⎛⎫⎪⎝⎭.(1)求此幂函数的表达式和定义域;(2)若()()232f a f a +<-,求实数a 的取值范围.【题型专练】1.若幂函数221()(22)m f x m m x +=+-在其定义域上是增函数.(1)求()f x 的解析式;(2)若2(2)(4)f a f a -<-,求a 的取值范围.2.已知幂函数()()22122m f x m m x +=+-在()0,∞+上是增函数(1)求()f x 的解析式(2)若(2)(1)f a f a -<-,求a 的取值范围.3.已知幂函数()()225222k k f x m m x -=-+(k ∈Z )是偶函数,且在()0,∞+上单调递增.(1)求函数()f x 的解析式;(2)若()()212f x f x -<-,求x 的取值范围;(3)若实数a ,b (a ,b +∈R )满足237a b m +=,求3211a b +++的最小值.。

幂函数图像及性质PPT课件

幂函数图像及性质PPT课件

上述问题中涉及的函数,都是形如
y=xa的函数。
.
3
从而我们归纳出幂函数的一般概念:
一般地,形如 yx(R) 的函数
称为幂函数,其中 x 为自变量,α为
常数.
注意与指数函数的区别: ● 幂函数——底数是自变量、指数是常数。 ● 指数函数——指数是自变量、底数是常数。
.
4
例1 判断下列函数哪几个是幂函数?
证明:任取x1,x2∈ [0,+∞),且x1<x2,则
f (x1) f (x2 ) x1 x2
(
x1
x2 )( x1
x2 )
x1 x2
x1 x2 x1 x2
因 为 x 1 x 2 0 , x 1x 2 0 ,
除了作差,还 有没有其它方
法呢?
所 以 f(x 1 )f(x 2 ),即 幂 函 数 f(x )x 在 [0 , )上 是 增 函 数 .
例3.比较下列各组数的大小:
< 1
1
(1)1.32 ____1.42
解后反思 两个数比较
> (2)0.26 1_____0.27 1
大小,何时 用幂函数模
2
(3)3.9 3
2
__<___3.85
型,何时用 指数函数模 型?
> 2
3
(4)(2.4)5____(1.8)5
.
11
例4 证明幂函数f (x) x 在[0,+∞)上是增函数.

非奇 非偶
{y|y≠0}

单调性
增 x∈[0,+∞)时增 x∈(-∞,0]时减


定点
(1,1) (0,0)

幂函数图象及其性质

幂函数图象及其性质

1.7
,∴ 1 1.52
1
1.7 2
( 2 ) ∵ y x3 在 R 上 是 增 函 数 , 1.2 1.25 , ∴
(1.2)3 (1.25)3
( 3 ) ∵ y x1 在 (0,) 上 是 减 函 数 , 5.25 5.26 , ∴
Where there is a will,there is a way.
幂函数 y=xα 有下列性质:(1)单调性:当 α
>0 时,函数在(0,+∞)上单调递增;当 α<0
时,函数在(0,+∞)上单调递减.(2)奇偶性:幂
函数中既有奇函数,又有偶函数,也有非奇非偶
函数,可以用函数奇偶性的定义进行判断.

3.已知幂函数
y
( xm2 2m3
mZ
)的图象与
x
轴、
y 轴都无交点,且关于原点对称,求 m 的值.
B.y x3
C.y 2x
D.y x1
答案:C
例 2.已知函数 f x m2 m 1 x5m3 ,当 m 为何值时, f x: (1)是幂函数;(2)是幂函数,且是 0, 上的 增函数;(3)是正比例函数;(4)是反比例函数;
(5)是二次函数;
简解:(1)m 2 或 m 1(2)m 1(3)m 4(4)m 2
幂函数图象及其性质
幂函数图象及其性质
幂函数的图像与性质
1、幂函数的定义 形如 y=xα(a∈R)的函数称为幂函数,其中 x
是自变量,α为常数
注:幂函数与指数函数有本质区别在于自变量的
位置不同,幂函数的自变量在底数位置,而指数
函数的自变量在指数位置。
例题、(1). 下列函数中不是幂函数的是( )
A.y x

幂函数图像与性质

幂函数图像与性质
∵2.5<2.7∴ 2.5-2/5>2.7-2/5
例 1.证明幂 f(x函 ) 数 x在 [0, )上是增 . 函
证 : 任 x 1 明 ,x 2 [ 取 0 , ) 且 , x 1 x 2 , 则
f(x1)f(x2)x1x2
(
x1
x2)( x1 x1 x2
x2)
x1 x2 x1 x2
如果α<0,则幂函数
α<0
在(0,+∞)上为减函数。
练习:利用单调性判断下列各值的大小。
(1)5.20.8 与 5.30.8 ((23)) 0.20.-32 与 0.3-20.3
2.5 5 与 2.7 5
解:(1)y= x0.8在(0,∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 <
5.3(02.8)y=x0.3在(0,∞)内是增函

∵(30).y2=<x0-.23/5∴在0(.02,0∞.3)内<0是.3减0.3函数
单调性:
在{x x 0}上是奇函数
在(0,)上是减函数
在(,0)上是减函数
x y=x3
y=x1/2
… -2 -1 0 … - -1 0 … 8/ / 0
y 8 6 4
2
-3 -2 -1 0 1 -2 -4 -6 -8
12 18 12 y= x3
23 4
3 4… 27 64 …
3 2…
1
y=x 2
增函数
在(0,+∞) 上是增函数
在( -∞,0), (0, +∞)上 是减函数
公共点
(1,1)
y x2
(-2,4)
y x3
4

高中数学一轮复习课件幂函数的图像和性质

高中数学一轮复习课件幂函数的图像和性质

总结归纳
及时总结归纳学习过程中 的重点和难点,形成自己 的学习笔记和心得体会, 便于回顾和复习。
保持良好作息和心态,积极备战高考
合理安排时间
保证充足的睡眠和合理的饮食, 保持良好的身体状态和精神状态

调整心态
保持积极乐观的心态,相信自己 能够通过努力取得好成绩。遇到 困难时,及时调整情绪,寻求帮
助和支持。
高中数学一轮复习课件 幂函数的图像和性质
汇报人:XXX 2024-01-22
目录
• 幂函数基本概念与性质 • 幂函数图像特征与绘制方法 • 幂函数在解决实际问题中应用 • 幂函数与其他类型函数关系研究 • 高考真题回顾与解题技巧总结 • 复习策略与备考建议
幂函数基本概念与
01
性质
幂函数定义及表达式
加强练习和反思总结是提高解题能力的关键。通过大量的练习可以加深对知识点的 理解和记忆;通过反思总结可以发现自己的不足之处并加以改进。
复习策略与备考建
06

制定个性化复习计划,明确目标
分析自身情况
根据自己的数学基础、学习能力 和时间安排,制定适合自己的复
习计划。
明确复习目标
确定自己在幂函数的图像和性质方 面的学习目标,例如掌握基本概念 、理解图像特征、熟练运用性质等 。
03
幂函数与一次、二次函数的比较
虽然幂函数、一次函数和二次函数在形式上有所不同,但它们之间有着
密切的联系。在解决某些问题时,可以通过转化思想将它们相互转化,
从而简化问题的求解过程。
幂函数与指数、对数函数关系探讨
幂函数与指数函数
指数函数的底数a可以看作是幂函数的指数n,而指数函数的指数x则可以看作是幂函数的 自变量。因此,指数函数和幂函数在形式上具有一定的相似性。

幂函数图像与性质

幂函数图像与性质

幂函数的周期性
幂函数性质:周 期性是指函数在 一定周期内重复
出现的性质。
幂函数周期:幂 函数的周期与其 指数有关,当指 数为正整数时, 幂函数具有周期
性。
周期计算:幂函 数的周期可以通 过将指数除以自 变量来计算,得 到的结果即为函
数的周期。
周期性特点:幂 函数的周期性具 有一些特点,例 如当指数为偶数 时,函数图像关 于y轴对称;当 指数为奇数时, 函数图像关于原
感谢观看
汇报人:XX
左到右下降
幂函数应用: 在数学、物理、 工程等领域有
广泛应用
幂函数定义域和值域
值域:y>0
定义域:x属于R
定义:幂函数f(x)=x^a, 其中a为实数
性质:幂函数图像在第一象 限,随着a的增大,函数图
像从右上至左下逐渐上升
02
幂函数图像
幂函数图像特点
幂函数图像在第 一象限内单调递 增
幂函数图像在第 二象限内单调递 减
幂函数图像在y 轴两侧对称
幂函数图像在x 轴上无交点
幂函数图像与x轴关系
当a>0时,幂函数图像与x轴有交 点
当a=0时,幂函数图像与x轴只有 一个交点
添加标题
添加标题
添加标题
添加标题
当a<0时,幂函数图像与x轴无交 点
幂函数图像与x轴交点的个数和位 置与a的取值有关
幂函数图像与y轴关系
当x>0时,幂函数图像位于 第一象限
04
幂函数的应用
幂函数在数学领域的应用
幂函数在微积分中的应用 幂函数在求解方程中的应用 幂函数在概率论中的应用 幂函数在复数分析中的应用
幂函数在物理领域的应用
力学:描述物体的运动规律,如加速度与速度的关系。 光学:解释光的干涉和衍射现象,如杨氏双缝干涉实验。 电磁学:解释电磁波的传播规律,如无线电信号的传输。 量子力学:描述微观粒子的运动状态,如波函数的形式。

幂函数图像及性质

幂函数图像及性质

幂函数图像及性质一、什么是幂函数在数学中,幂函数是一种形式为 f(x) = x^a 的函数,其中 a 是实数。

当 a = 1 时,幂函数就是我们熟悉的一次函数,而当a > 1 时,幂函数的图像呈现出特定的形状。

二、幂函数的图像特点1. 当 a > 1 时•当 a > 1 时,幂函数的图像呈现出向上凹曲的形状。

•随着 x 的增大,函数值快速增加,增长迅猛。

•函数图像在第一象限,并在原点围绕原点对称。

2. 当 a = 1 时•当 a = 1 时,幂函数就是一次函数,函数图像为一条过原点的直线。

3. 当 0 < a < 1 时•当 0 < a < 1 时,函数的增长趋于缓慢,图像在第一象限被压缩,所占的范围变小。

三、幂函数的性质1. 定义域和值域•对于幂函数 f(x) = x^a,当 a 为奇数时,定义域为实数集,值域也为实数集;当 a 为偶数时,定义域为非负实数集,值域也为非负实数集。

2. 奇偶性•当 a 为奇数时,幂函数是奇函数,关于原点对称;•当 a 为偶数时,幂函数是偶函数,关于 y 轴对称。

3. 单调性•当 a > 1 时,幂函数是增函数;•当 0 < a < 1 时,幂函数是减函数。

4. 特殊情况•当 a < 0 时,幂函数的图像为反比例函数的图像。

四、实例分析示例 1考虑函数 f(x) = x^2,这是一个以原点为中心向上开口的抛物线图像。

随着 x 的增大,函数值快速增加,形成一个向上凸起的形状。

示例 2当考虑函数 f(x) = x^0.5 时,函数的图像呈现出一个缓慢上升的曲线,范围也变小了,整体呈现出一种被压缩的状态。

五、总结幂函数是数学中非常重要的一类函数,通过本文的讨论,我们了解了幂函数的图像特点和性质。

无论是在理论研究还是实际应用中,对于幂函数的理解都具有重要的意义。

希望本文内容能够帮助读者更深入地理解幂函数及其性质。

幂函数的图象及性质

幂函数的图象及性质
1 5
(5) y 2x 2 (6) y x2 x
x2 (7) y x0 ( x 0) (8) y 1
2 y x , y x , 2.在同一坐标系中作出函数
1 1 y x , y , y x2 x
3
在第一象限的图象,并
总结这五个函数在第一象限的图象特点 和性质。
1.幂函数的定义:
y x(α 是常数,α ∈Q)的 我们把形如:
函数称为幂函数,其中是x自变量

概念辨析:
例1
例2
例3
2 m 2 y ( m 2 m 2 ) x 2n 3 是幂 例 1 :指出下列那些函数是幂函数? 例2 3:已知函数 :已知幂函数f(x)的图象过点(3,27) ,求 1 x m,n的值。 3 函数,求 函数的解析式。 ( 2 ) y x (1) y 0.2 (3) y x ( 4) y
幂函数的图象及性质
学习目标:
1.能根据幂函数的定义判断哪些函数是 幂函数; 2.会求幂函数的解析式;
1 3.根据幂函数 y x, y x , y x , y x ,
2 3
1 2
y x , 的图象,总结幂函数的图象特点
及性质; 4.会比较两个幂的大小。
复习回顾:
* n a a 1.正整数次幂:n N a a
2 3
3 -5
3.幂函数图像在第一象限的分布:
y
α>1
α=1
0<α<1
1 α<0 O 1
α=0
x
4.幂函数图像在第一象限的性质:
幂函数 y x 的性质: 1.α >0时: (1)图象都经过点( 0,0 )和( 1,1 ); (2)图象在区间(0,+∞ ) 上单调递增。

幂函数图像与性质(有的有,有的没有)

幂函数图像与性质(有的有,有的没有)

幂函数的性质与图像1、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 2、函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x =用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出幂函数的性质。

3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)x >0时,幂函数的图象都通过原点,并且在[0, +∞]上,是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. (4)在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数 . y 轴和直线1x =之间,图象由上至下,指数α .:4. 规律总结1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 在[0,+∞]上,y x =、2y x =、3y x =、12y x =是增函数, 在(0,+∞)上, 1y x -=是减函数。

例1.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x :(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数; 简解:(1)2m =或1m =-(2)1m =-(3)45m =-(4)25m =-(5)1m =- 变式训练:已知函数()()2223m m f x m m x --=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课件6幕函数图象及性质课件编号:AB I -2-3-1.课件名称:幕函数图象及性质•课件运行环境:几何画板4.0以上版本.课件主要功能:配合教科书“ 2.3幕函数”的教学.利用几何画板绘制函数图象的功能,绘制出幕函数的图象,再利用幕函数的图象研究函数的性质.课件制作过程:(1)新建画板窗口.单击【Graph](图表)菜单中的【Define Coordinate System!(建立直角坐标系),建立直角坐标系.选中原点,按Ctrl + K,给原点加注标签A,并用【文本]工具把标签改为O.(2)单击【Graph]菜单的【Plot New Function](绘制函数图象),弹出“NewFunction”函数式编辑器,编辑函数f (x)= x,单击【OK]后画出函数f (x)1, , _ 2 3 —_ 1=x的图象.同法编辑函数g (x)= x,h (x)= x,q(x)=x2和函数r(x)二一的x 图象.选中函数图象,单击【Display](显示)菜单中的【Line Width](线型)中的【Thick](粗线).把上述图象设置成粗线,单击【Display](显示)菜单中的【Color](颜色)的选择各种不同的颜色给每一个函数图象着色,如图1.图1(3)再选中直线f (x) = x,单击【Edit](编辑)菜单,选择【ActionButtons](操作类按钮),单击【Hide/Show](隐藏/显示),此时屏幕上出现【Hide FunctionPlot](隐藏对象)按钮,选择【文本工具】,双击【Hide Function Plot】按钮,出现对话框,将其中的【Label](标签)改为“ f (x)= x”,再单击【确定】•此时,单击“f (x)二x”按钮就会隐藏或显示直线f (x)二x •用同样的方法制作1【Hide Function Plot】按钮g (x)= x2,h(x)=x3,q(x)=x2和r(x)二-,如图x2.(4)单击【File】(文件)菜单的【Document Options】(文档选项)对话框,将【Page Namd (页面名称)改为“画图象”,单击【0K】.(5)单击【File】(文件)菜单的【Document Options】(文档选项)对话框,单击【Add Page](增加页),单击【Blank Pagd (空白页),将页面名称改为“ g 2”(X)= x •(6)单击【Graph】菜单的【Plot New Function】(绘制函数图象),弹出“NewFunction”函数式编辑器,在对话框内依次单击x,A,2,单击【OK】后画出函数g (x)= x2的图象.选中函数g (x)= x2的图象,单击【Con struct】(构造)菜单的【Point On Function Plot】(对象上的点),用【文本工具】给点标签为A,再用【选择工具】选中点A,单击【Measure!(度量)菜单的【CoordinateS I (坐标),屏幕上出现点A的坐标.(7)双击y轴,即将y轴标记为镜面,选中点A,单击【Transform】(变换)菜单的【Reflect](反射),屏幕上出现点A关于y轴的对称点,发现该点也落在曲线g (x)二x2上•选择【文本工具】,将此点的标签记为“ A”再用【选择工具】选中点A,单击【Measure】(度量)菜单的【Coordinates】(坐标),屏幕上出现点A的坐标.(8)为了进一步验证g (x)二x2的图象关于y轴对称,先同时选中点A、A",然后按“Ctrl + L”,画出线段AA,单击【Construct】构造)菜单中的【Midpoint】(线段的中点),用【文本工具】将中点的标签记为点M,单击【Measure (度量)菜单的【Coordinates】(坐标),屏幕上出现点M的坐标.(9)用【选择工具】选中点A,单击【Edit】(编辑)菜单的【Action Buttons】(操作类按钮)中的【Animation】(动画),在对话框(图3)中,单击【确定】.屏幕上出现操作类按钮【Animation Point】(运动点),用【文本工具】将按钮名称【Animation Point】改为【运动点A】.单击【运动点A】按钮,点A在函数g (x)= x2的图象上运动或停止运动,发现点M始终在y轴上运动,如图4.(10)单击【File】(文件)菜单的【Document Options】(文档选项)对话框,单击【Add Page](增加页),单击【Biank Page](空白页),将页面名称改为“ h(x)=x3” .(11)单击【Graph】菜单的【Plot New Function】(绘制函数图象),弹出“New Function”函数式编辑器,在对话框内依次单击x,A,3,单击【OK】后画出函数h(x) =x3的图象.选中函数h(x^x3的图象,单击【Con struct】(构造)菜单的【Point On Function Plot](对象上的点),用【文本工具】给点标签为A,再用【选择工具】选中点A,单击【Measure】(度量)菜单的【Coordinates】(坐标),屏幕上出现点A的坐标.(12)双击原点0,即将原点O标记为对称中心,选中点A,单击【Transform】(变换)菜单的【Rotate](旋转),屏幕上出现对话框(图5),将图5中的“90.0”改为“ 180.0”,再单击【Rotate],此时,屏幕上出现点A关于原点O的对称点,发现该点也落在曲线h(x) =x3上.选择【文本工具】,将此点的标签记为“ A”,再用【选择工具】选中点A,单击【Measurd (度量)菜单的【Coordinates】(坐标),屏幕上出现点A的坐标.(13)为了进一步验证h(x)=x3的图象关于原点O中心对称,先同时选中点A、A,然后按Ctrl + L,画出线段AA ,单击【Con struct】(构造)菜单中的【Midpoint】(线段的中点),单击【Measurd (度量)菜单的【Coordinates】(坐标),屏幕上出现线段AA中点的坐标O (0, 0).(14)用【选择工具】选中点A,单击【Edit](编辑)菜单的【Action Buttons】(操作类按钮)中的【Animation】(动画),在对话框(如图3所示)中,单击【确定】.屏幕上出现操作类按钮【Animation Point】(运动点),用【文本工具】将按钮名称【Animation Point】改为【运动点A].单击【运动点A】按钮,点A 在函数h(x) =x3的图象上运动或停止运动,发现线段AA■中点始终与原点O重合,6.图5(15)单击【File】(文件)菜单的【Document Options】(文档选项)对话框,单击【Add Page](增加页),单击【Biank Page](空白页),将页面名称改为“ r(x)=丄”.x(16)单击【Graph]菜单的【Plot New Function](绘制函数图象),弹出“New Function”函数式编辑器,在对话框内依次单击x,A,—1,单击【0K]后画出函数r(x)二丄的图象.选中函数r(x)二1的图象,单击【Con struct](构造)x x菜单的【Point On Function Plot](对象上的点),用【文本工具]给点标签为A,再用【选择工具]选中点A,单击【Measure (度量)菜单的【CoordinateS I (坐标),屏幕上出现点A的坐标.(17)双击原点0,即将原点0标记为对称中心,选中点A,单击【Transform](变换)菜单的【Rotate](旋转),屏幕上出现对话框(图5),将图5中的“90.0” 改为“ 180.0”,再单击【Rotate],此时,屏幕上出现点A关于原点0的对称点,发现该点也落在曲线r(x)二丄上.选择【文本工具],将此点的标签记为“ A ”,x再用【选择工具]选中点A,单击【Measurd (度量)菜单的【CoordinateQ (坐标),屏幕上出现点A的坐标.1(18)为了进一步验证r(x)=-的图象关于原点0中心对称,先同时选中x点A、A :然后按“ Ctrl + L”,画出线段AA H,单击【Con struct](构造)菜单中的【Midpoint](线段的中点),屏幕上出现线段AA中点的为原点0.(19)用【选择工具]选中点A,单击【Edit](编辑)菜单的【ActionButtons](操作类按钮)中的【Animation](动画),在对话框(如图3所示)中,单击【确定].屏幕上出现操作类按钮【Animation Point ](运动点),用【文本工具]将按钮名称【Animation Point]改为【运动点A].单击【运动点A]按钮,点A 1在函数r(x)=-的图象上运动或停止运动,发现线段AA中点始终与原点0重x合,如图7.(20)单击【File](文件)菜单的【Document 0ptions](文档选项)对话框,单击【Add Page](增加页),单击【Blank Page](空白页),将页面名称P改为“ s(x)=x q”.(21)单击【Graph]菜单的【New Paramete](新建参数),出现对话框(图8),将图8中的【Name】(名称)“t[1]”改为“p”,【Value](值)“ 1.0”改为“7.0”,再单击【OK].屏幕上出现“p= 1.00”,同法再新建参数“q=1.00”.图7 图8(22)单击【Graph]菜单的【Plot New Function](绘制函数图象),弹出“New Function”函数式编辑器,在对话框内依次单击x,A,(,p,/,q,),除p、q在屏幕上单击外,其余的都在函数编辑器上,单击【OK]后屏幕上出现函P数s(x)二x q的图象,如图9.17.6&1,00a =P15—=?用甘---------------1r o j课件使用说明:1. 在页面“画图象”中单击“f(x) =x” , “g(x) = X2”, “ h(x) = X3”,“ q(x) = X2”,1和“ r(x)二1”按纽就会隐藏或显示相应函数的图象.x2. 在页面“ g (x)= x2”,“ h(x) = x3”和“ r(x)=」”中,单击按纽【运x动点A】点A就会在相应的函数图象上运动或停止运动,同时点A与点A,的坐标也跟着发生变化,可以让学生观察点A与点A •的坐标的关系,也可以让学生观察线段AA中点的位置特征,通过观察上述函数的图象特征来探究函数的性质(定义域、值域、奇偶性、单调性等).p p3. 在页面“ s(x) =x q”中,选中函数s(x)二x q的图象,单击【Display】(显示)菜单中的【Trace Function Plot】(追踪函数图象).任意选中“ p= 1.00”或“q=1.00”,按“ + ”或“一”号改变p、q的值,同时屏幕上会出现各种幕函数的图象,使学生对幕函数的图象与性质有比较全面的认识.(浙江省台州中学项莉敏吴兰水)。

相关文档
最新文档