第一讲:数学的起源与发展

合集下载

数的起源与发展

数的起源与发展

数的起源与发展一、数的起源数的起源可以追溯到人类文明的早期阶段。

在人类远古时代,人们开始意识到需要使用一种方法来计数物品、人口和时间等。

最早的数是通过使用手指来计数的,每个手指代表一个单位。

随着时间的推移,人们开始使用更复杂的计数系统,例如使用石头、骨头和木棍等物体来代表不同的数。

随着农业的发展,人们开始使用更大的数字来计算土地面积、收成和贸易等。

为了更方便地进行计数,人们发明了计数工具,例如算盘和算尺等。

这些工具可以帮助人们更快速地进行复杂的计算。

二、数的发展1. 古代数学古代数学的发展可以追溯到古埃及、古巴比伦和古印度等文明。

这些文明的数学家们开始研究几何学、代数学和三角学等数学分支。

他们发现了许多数学规律和定理,例如勾股定理和二次方程等。

2. 阿拉伯数学阿拉伯数学在中世纪时期取得了重大突破。

阿拉伯数学家们引入了十进制系统,并发明了我们现在使用的阿拉伯数字。

他们还发展了代数学和三角学,为后来的数学研究奠定了基础。

3. 欧洲数学欧洲在文艺复兴时期重新发现了古代数学的知识。

数学家们开始研究几何学、代数学和微积分等领域。

伽利略、牛顿和莱布尼茨等数学家的贡献推动了数学的发展。

4. 现代数学现代数学包括了许多分支,例如数论、拓扑学和概率论等。

数学家们通过研究抽象的数学概念和结构,推动了数学的发展。

现代数学在物理学、工程学和计算机科学等领域中起着重要的作用。

三、数的应用数的应用广泛存在于我们生活的方方面面。

以下是一些数的应用领域的例子:1. 自然科学:数学在物理学、化学和生物学等自然科学领域中起着重要的作用。

通过数学建模和计算,科学家们可以预测天气、研究分子结构和模拟生态系统等。

2. 工程学:数学在工程学中应用广泛,例如在建筑设计、电子工程和航空航天等领域。

工程师们使用数学原理来解决问题,设计和优化各种系统。

3. 经济学:数学在经济学中被广泛应用,例如在市场分析、金融风险管理和经济预测等方面。

经济学家们使用数学模型来研究经济现象和制定政策。

数学史与数学教育

数学史与数学教育
x 10,求这两个正方形的边长.设较大的正方形的边长为 ,则另一正
方形的边长为 2 x 10 ,故只需解二次方程
3
x2 ( 2 x 10)2 1000 3
• 古巴比伦人将这一解法所需的步骤简单地叙述为“平方10,得100;1000 减去100,就得900,开平方得30”,求得该正方形的边长为30,另一个 正方形边长为10.这就是说,古巴比伦人那时可能已经知道某些类型的 一元二次方程的求根公式.由于他们没有负数的概念,二次方程的负根 不予考虑.至于他们是如何得到上述这些解法的,泥板书上没有具体说 明.他们还讨论了某些三次方程和双二次方程的解法.在一块泥板上, 他们给出这样的数表,它不仅包含了从1到30的整数的平方和立方,还包
16,8和4相加得28,取6的三分之一为2,取28的二倍为56,则它的体积 就是这个数.由此我们可以看出,古埃及人是通过具体问题说明了高为h、 底边长为a和b的正四棱台的体积公式是
V 1 (a2 ab b2 )h 3
古巴比伦的数学
• 古巴比伦,又称美索波达米亚,位于亚洲西部的幼发拉底与底格 里斯两河流域,大体上相当于今天的伊拉克。大约是在公元前 3000年左右,古巴比伦人在这里建立起了自己的奴隶制王国。在 过去相当长的一段时间内,人们对于古巴比伦数学的认识是通过 古希腊文化中的零星资料得到的。
古巴比伦的天文学
• 在公元前5000年到公元前4000年间,古巴比伦人就已开始使用年、 月、日的天文历法,他们的年历是从春分开始的,一年有12个月, 第一个月是以“金牛座”命名的,每月有30天,每6年加上第13 个月作为闰月.一个星期有7天,这7天是以太阳、月亮和金、木、 水、火、土七星来命名的,每个星神主管一天,如太阳神主管星 期日.因此,所谓“星期”也就是指星的日期,我们现在的“星 期制”就是在古巴比伦时代所创立的,这种表示方法在今天的英 语单词中还能找到一些痕迹.此外,圆周分为360度,每度60分, 每分60秒,1小时60分,1分60秒的记法,也是来自古巴比伦.

第一讲:数学的起源与发展

第一讲:数学的起源与发展

前言一、数学史研究什么?为什么要学习数学史?数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。

对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。

庞加莱(法,1854-1912年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。

萨顿(比——美,1884-1956年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。

二、关于数学的论述培根说:数学是思维的体操。

恩格斯说:“要辩证而又唯物地了解自然,就必须掌握数学。

”英国著名哲学家培根说:“数学是打开科学大门的钥匙。

”著名数学家霍格说:“如果一个学生要成为完全合格的、多方面武装的科学家,他在其发展初期就必定来到一扇大门并且通过这扇门。

在这扇大门上用每一种人类语言刻着同样一句话:‘这里使用数学语言。

’”数学是一门逻辑性很强的基础科学,人们通过运用数学推导出了种种概念、原理与规律指导日常生活。

有人把数学对于人类的意义比作生活中不能缺少盐。

数学是盐,所以,离开了数学,人们的生活将寸步难行。

数学是盐,所以,它将自己融化在生活的水里,让人们很难一眼看出它的存在,但是细细品味和体会,数学又是无处不在的,它对于生活的各个方面都有潜在的影响,当然,这种影响是用思维来实现的。

数学有一个美誉叫做“思维体操”,多做一些“枯燥”的数学题, 能够提高人的逻辑思维能力。

康托尔说:“数学的本质在于它的自由。

”数学是一门艺术,是一种生活工具,是一门让我们的头脑变得更灵敏的科学。

数学史的分期:(1) 数学的起源与早期发展(公元前6世纪);(2) 初等数学时期(公元前6世纪-16世纪);(3) 近代数学时期(17世纪-18世纪);(4) 现代数学时期(1820年至今)。

二、教学工作安排授课形式:讲解与自学相结合,分13讲。

第一讲:数学的起源与早期发展

第一讲:数学的起源与早期发展
埃及文明上溯到距今6000年左右,从公元前3500年左右开始出现一 些小国家,公元前3000年左右开始出现初步统一的国家。 1、古王国时期:前2686-前2181年。埃及进入统一时代,开始建 造金字塔,是第一个繁荣而伟大的时代。
2、新王国时期:前1567-前1086年。埃及进入极盛时期,建立了 地跨亚非两洲的大帝国。
直到公元前332年亚历山大大帝征服埃及为止。
埃及人创造了连续3000多年的辉煌历史,发明了铜器、创造 了文字、掌握了较高的天文学和几何学知识,建造了巍峨宏伟的 神庙和金字塔。
古代埃及的数学
吉萨金字塔(公元前2600年)(刚果,1978)
古代埃及的数学
莱茵德纸草书
莫斯科纸草书
古代埃及的数学
埃及纸草书 (民主德国, 1981)
05级考核要求
座号 25 26 27 28 29 30 31 32 33 34 35 书本范围 P. 165-170 P. 170-175 P. 176-181 P. 181-187 P. 188-196 P. 196-201 P. 201-206 P. 208-213 P. 213-218 P. 218-221 P. 221-225 标题 莱布尼茨 1 莱布尼茨 2 微积分的发展 1 微积分的发展 2 微分方程 方程的根式解 17 世纪的数论 伽罗瓦 哈密顿与四元数 布尔代数 高斯与代数数论 座号 36 37 38 39 40 41 42 43 43 45 46 书本范围 P. 226-229 P. 229-233 P. 238-242 P. 242-246 P. 247-251 P. 251-255 P. 255-258 P. 258-263 P. 363-366 P. 366-369 P. 373-376 标题 平行线公设 非欧几何的诞生 射影几何 统一的几何学 柯西 魏尔斯特拉斯 康托尔与集合论 复变函数论 数学与社会进步 数学发展中心的迁移 数学社团的成立

数学史的起源和早期发展1PPT课件

数学史的起源和早期发展1PPT课件
这一切都阻碍埃及数学向更高的水平发展。公元前4世 纪希腊人征服埃及以后,这一古老的数学文化完全被蒸 蒸日上的希腊数学所取代。
-
21
作业:(任选两题):
1.谈谈您对《数学史》课程的期望. 2.谈谈您的理解: 数学是什么? 3.从数学的起源简述人类活动对文化发展的 贡献.
上交时间:9月2日统一格式的打印稿!
-
30
4.古巴比伦的天文
(1)阴历历法与默冬周期
苏美尔的历法以月亮的盈亏周期作为计时标准,属 于太阴历。大约在公元前2000年苏美尔的历法中,一 年被定为354天,12个月,还分大小月,大月30天, 小月29日,大小月相间。到公元前6世纪末,他们摸 索出了固定的置闰规则,起先是8年3闰,以后是27年 10闰,最后于公元前383年定为19年7闰,和默冬周期 一致。
纸草书 : 莫斯科纸草书(约公元前1900年) 莱因德纸草书(约公元前1700年)
-
9
莱 因 德 纸 草 书
1858年英国人莱因德发现的,现存英国博物馆,叫做 莱因德纸草书。该纸草书的作者是公元前1700年左右的一 位埃及僧人阿摩斯。这份纸草书的内容是从公元前22世纪 的旧纸草书上转录下来的,可能是当时的一种实用计算手 册。该书长550cm,宽33cm。全书分为三章,第一章是算 术,第二章是几何,第三章是杂题,共有题目85个。
(2)占星术
古代美索不达米亚地区有着极为发达的天文学,公 元前两千多年以前,已有关于金星出没的准确记录。 当时的天象观测工作由祭司们负责,寺庙中的塔台就 是最早的天文台。- Nhomakorabea31
4.古巴比伦的天文
(3)黄道十二宫
公元前2000年,他们发现了金星运动的周期性,还相对 准确地测定了土星和木星的会合周期。古代两河流域的 人已经知道了黄道,并把黄道带划分为十二星座,每月 对应一个星座,每个星座都按神话中的神或动物命名, 并用一个特殊的符号来表示。这套符号一直沿用至今, 形成了所谓的黄道十二宫(十二星座)。

关于数学的由来简介3篇

关于数学的由来简介3篇

关于数学的由来简介第一篇:数学的起源和发展数学作为一门学科,其起源可以追溯到古代。

在人类的文明历程中,各个文明古国都有自己的数学思想和数学成果,如古埃及、古印度、古希腊、古罗马等。

科学技术的进步推动了数学的飞速发展,数学也成为了现代科学的基础和重要组成部分。

首先,古埃及是世界上最早的数学文明之一,其数学成就主要表现在测量、几何和代数方面。

例如,古埃及人使用极其简单的方法进行高精度的土地测量。

他们还学会了推导和使用勾股定理,以及计算圆周率等。

古印度数学发展的历史同样悠久,隋末唐初,印度《一百至一千的称数》和《大乘法经》广传中国。

印度数学家阿耳戈摩哥的《九章算术》对中国《九章算术》也有很大的影响。

印度数学的代表成就之一是无穷级数的概念,还有计算出了$2^{216}-1$为质数。

其次,古希腊的数学成就尤为显著,视为世界上最早的发扬光大的数学文明。

希腊数学的代表人物是欧几里得,他所创立的《几何原本》被视为数学史上的里程碑。

对几何的研究,让古希腊数学家不断地发现新的定理和方法,打下了一定的代数基础。

此外,希腊人还发明了一些几何工具,如竖劈仪、刻度尺等,用于测量距离、角度等。

古罗马数学的贡献主要体现在实用性方面。

罗马人对数字的发明使用、商业计算都有极其扎实的功底,达到了非常高的精度。

再者,中世纪欧洲的数学发展又格外活跃。

欧洲学者将古代各国的数学思想和成果进行整理、推广和吸收,开展了广泛而深入的数学研究,如对等式、代数式、解析几何等的深入探究,推进了几何、代数、微积分、数论等数学领域的发展。

伟大的意大利数学家菲波那契在欧洲广泛传播印度阿拉伯算术之后,自创了一套计算工具,被誉为欧洲数学的重要里程碑,菲波那契数列至今仍是数学研究的重要问题之一。

总的来说,数学在不同时期有着不同的发展阶段和成就,但它作为一门高度抽象、逻辑精密的学科,在实践和理论中不断提高人类的认知水平和创造力,并且在现代社会中发挥了重要的作用,也为科学技术的进步提供了强有力的支持。

数学的起源与发展

数学的起源与发展

数学的起源与发展数学作为一门学科,是人类智慧的结晶,贯穿了人类文明的发展历程。

本文将介绍数学的起源与发展,并探讨其对社会和科学的重要性。

一、数学的起源从远古时代起,人类就开始使用基本的数学概念。

最早的数学记录可以追溯到公元前3000年的古埃及和古巴比伦,当时的人们需要计算农作物的收成,并解决一些实际问题。

古埃及人发明了简单的计数系统和几何概念,而古巴比伦人则创造了基本的算术和代数。

随着历史的演进,古希腊的数学家们对数学做出了巨大的贡献。

毕达哥拉斯提出了著名的毕达哥拉斯定理,开创了几何学的发展。

欧几里得在他的著作《几何原本》中系统总结了希腊几何学的成果,为后世的数学研究奠定了基础。

二、数学的发展从古代到中世纪,数学的发展逐渐转向抽象和推理的层面。

阿拉伯数学家在9世纪至13世纪期间,对古代希腊和印度数学的研究做出了重要贡献。

他们引入了阿拉伯数字和算术运算符号,开展了代数学的研究,将数学引入了一个新的阶段。

在文艺复兴时期,数学经历了一次突破性的发展。

数学家们开始运用符号代表未知数,并研究了方程的解法。

其中,代数学家费马提出了著名的费马大定理,至今仍未被证明。

现代数学的起步可以追溯到17世纪,这个时期被称为数学的“科学革命”。

牛顿和莱布尼兹分别独立地发现了微积分学,为物理学的发展提供了强有力的工具。

在19世纪,高斯、欧拉、勒让德等数学家相继出现,各自做出了重要的发现和推断。

三、数学在科学中的重要性数学在科学中扮演着重要的角色。

无论是物理学、化学、经济学还是天文学,都少不了数学的应用。

数学提供了精确的建模工具,帮助科学家们理解和解释自然现象,并预测未来的趋势。

在工程领域,数学被广泛应用于计算机科学、通信技术、电力系统和结构设计等领域。

数学的逻辑和推理能力也有助于培养人们的思维能力和解决问题的能力。

此外,数学还对社会科学和金融领域起到关键作用。

统计学的发展帮助我们进行数据分析和预测,经济学家们依据数学模型来分析市场和制定政策。

数学史 第一讲 数学的起源和早期发展 课件

数学史 第一讲 数学的起源和早期发展 课件

• 亚里士多德(前384-前332)曾指出,今天十进制的 广泛采用,只不过是我们绝大多数人生来具有10个手 指这样一个解剖学事实的结果。 • 《周易。系辞下传》有“上古结绳而治,后世圣人,易 之以书契”之说。 • 南美印加部落用来记事的绳结,称为基普。
• 直到距今大约五千多年前,出现了书写记 数以及相应的记数系统。如古埃及的象形 数字、巴比伦的qi形数字、中国甲骨文数 字等等。 • 记数系统的出现使数和数的书写运算成为 可能,初等算术应运而生了。
主要工作和特点 1、采用60进制为主的记数系统。对60以内的 整数采用简单十进累计法,对大于59的数采用 六十进制的位值记法。他们还巧妙地将位置记 法推广到整数以外的分数。 例: 2、在算术方面,他们长于计算,创造了很多 成熟的算法。 例:开方根。
3、他们编制了很多数学用表,如乘法表、倒 数表、平方表、立方表、平方根表、立方根 表三、甚至还有指数对数表等等。 4、在代数领域达到了相当高度,能有效地处 理二元二次方程和一些简单的三次方程。 例: 5、在几何领域掌握了三角形、梯形等平面图 形面积和棱柱、平截头方锥等一些立体图形 的体积公式,还会利用图形相似性的概念。
2. 形的概念 • 最初的几何知识是从人们的直觉中萌发出来的。 从自然界中提取几何形式,并且在器皿制作、 建筑设计及绘画装饰中加以再现。 • 据亚里士多德的研究,古埃及几何学产生于尼 罗河泛滥后土地的重新丈量。 • 古印度的几何学的起源和宗教实践密切相关。 • 古中国的几何学的起源更多地和天文观测相联 系。
在公元前1850~前1650年之间,相当于中国的夏代。
主要工作和特点 1、十进制记数系统,但没有位值的概念。单位 分数被广泛使用。 例:整数和单位分数的表示。 莱茵德纸草书上有一张形如2/(2p+1)(p从2到 50)的分数分解成单位分数之和的表。 2、在古埃及数学中,埃及算术主要是加法, 而乘法是加法的重复。 例:乘法和除法。

数的起源与发展

数的起源与发展

数的起源与发展引言概述:数是人类认识和描述世界的基础工具,它的起源和发展经历了漫长的历史。

本文将从数的起源、数的发展过程、数的分类、数的应用以及数的未来发展等五个方面进行详细阐述。

一、数的起源1.1 古代数的起源- 人类最早的数是通过手指计数而来的,这种计数方式称为原始计数法。

- 随着社会的发展,人们开始使用自然物体如石头、贝壳等来代表数量。

1.2 埃及和巴比伦的数学- 埃及人和巴比伦人是数学发展的重要贡献者,他们创造了简单的计数系统和运算规则。

- 埃及人发明了分数,并用于商业和建造领域。

- 巴比伦人发明了基于60的进位制,这种制度至今仍在时间和角度的计量中使用。

1.3 希腊数学的兴起- 希腊人对数学的发展起到了重要的推动作用。

- 希腊人通过几何学的发展,建立了严谨的证明体系。

- 希腊人提出了无理数的概念,推动了数学的发展。

二、数的发展过程2.1 阿拉伯数字的引入- 阿拉伯数字的引入使数的表示更加简洁和灵便。

- 阿拉伯数字的特点是使用有限的符号来表示无限的数。

- 阿拉伯数字的传入欧洲,推动了数学的发展和商业的繁荣。

2.2 笛卡尔坐标系的建立- 笛卡尔坐标系的建立将代数和几何学联系在一起,为数学的发展开辟了新的道路。

- 笛卡尔坐标系的应用使得解决几何问题变得更加简单。

2.3 微积分的诞生- 微积分的诞生标志着数学的一次革命。

- 微积分的发展推动了物理学和工程学等应用学科的发展。

三、数的分类3.1 自然数和整数- 自然数是最早浮现的数,表示物体的个数。

- 整数是自然数的扩展,包括正整数、负整数和零。

3.2 有理数和无理数- 有理数是可以表示为两个整数之比的数,包括分数和整数。

- 无理数是不能表示为两个整数之比的数,如π和√2。

3.3 实数和复数- 实数包括有理数和无理数,是数学中最基本的概念。

- 复数是实数的扩展,包括实部和虚部,广泛应用于物理学和工程学。

四、数的应用4.1 数的应用于科学- 数学是科学的基础,几乎所有科学领域都离不开数学的应用。

中国数学的起源与发展

中国数学的起源与发展

中国数学的起源与发展中国数学的起源与发展经历了漫长的历史过程,主要如下:1.起源:- 远古时期的记数意识:在远古时代,人们就有了记数的意识。

大约7000年以前,人们对数字的认知还非常有限,甚至数到2以上都有困难。

后来人们逐渐把数字和双手联系起来,每只手代表一个“1”,这是最初对数字的直观理解。

为了记录和表达数量,祖先们先是结绳记数,后来发展到“书契”记数。

在五六千年前,已经能够书写1至30的数字,到了春秋时代,能书写3000以上的数字,并且有了加法和乘法的意识。

- 早期的数学知识记载:春秋时期孔子修改过的《周易》中出现了八卦,这是一种具有深刻数学内涵的符号系统,对后世数学的发展产生了深远影响。

八卦在数学、天文、物理等多方面都发挥着重要作用。

- 战国时期的数学突破:这一时期中国数学取得了显著进展。

算术领域,四则运算得到确立,乘法口诀已经在一些著作中零散出现,分数计算也开始应用于生产生活,比如种植土地、分配粮食等方面;几何领域,出现了勾股定理;代数领域,出现了负数概念的萌芽;并且出现了“对策论”的萌芽,如战国时期孙膑提出的“斗马术”问题,就反映了对策论中争取总体最优的数学思想。

2.发展:- 秦汉时期:这一时期在记数和计算方法上有了进一步的发展。

乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法口诀。

在几何方面,对于长方形面积的计算以及体积计算的知识也更加丰富。

同时,算筹和十进位制系统的出现和应用,为数学计算提供了便利的工具和有效的计数方法。

算筹是一些直径1分、长6分的小棍儿,质料有竹、木、骨、铁、铜等,其功用与算盘珠相仿。

- 西汉末期至隋朝中叶:这是中国数学理论的第一个高峰期,标志是《九章算术》的诞生。

《九章算术》是中国秦汉时期一二百年的数学知识结晶,全书共分为九章,收录了246道数学应用题,每道题都分为问、答、术(解法,有的一题一术,有的一题多术)三部分,内容与社会生产紧密联系。

这一时期除了《九章算术》,还出现了刘徽注的《九章算术》以及《海岛算经》《孙子算经》等数学专著。

第一讲__数学的起源与早期发展[1]

第一讲__数学的起源与早期发展[1]

二、美索不达米亚数学(巴比伦数学) 1、背景:在公元前3000年左右,巴比伦和古埃及的数学出 现以前,人类在数学上没有取得更多的进展,由于原始人早 在公元前一万年就开始定居在这一地区建立家园,靠农牧业 为生,可见最初等的数学迈出头几步是多么的费时,更由于 许多古代文明社会竟然没有什么数学可言,足见能培育出这 门科学的文明是多么的稀少。巴比伦人是首先对数学主流作 出贡献的。由于对巴比伦古代文明的知识,大部分来自于近 百年考古研究的结果。“巴比伦人”这个名词包括好些同时 或先后住在底格里斯河、幼发拉底河两河之间及其流域上的 一些民族,这快地方古代叫“美索不达米亚”,是今天的伊 拉克一带。 史料:得自于其泥版文书。即在胶泥尚软时刻上字,然后晒 干,因而那些未被毁坏的就能完整保存下来。这些泥版制作 大约在两段时期,有些是公元前2000年左右,而大部分是公 元前600到公元300年间的,今出土50万块泥版。
小结:埃及人对数学的主要贡献是: 1、他们完成了基本的算术四则运算,并且把它们推广的分数 上;他们已有了求近似平方根的方法。 2、他们已有了算术级数与几何级数的知识。 3、他们已能处理包括一次方程和某些类型的二次方程的问题。 4、他们几何知识的主要内容是关于平面图形和立体图形的的知识。 6、他们已经熟悉比例的基本原理,某些人还丛其中看到了我 们今天应称之为三角函数的那种观念的萌芽。
第二节 河谷文明与早期数学 对于科学史家来说,早期数学的发展要归功与巴比伦人 和埃及人,由他们单独提供了经得起科学分析的知识核心。 一、埃及数学 1、背景:埃及文明源自何处至今是迷,但肯定在公元前4000 年之前就已存在。大约在公元前3500年到前3000年之际统一 了南北埃及,埃及文化在公元前2500年左右达到最高点,当 时的统治者建立了至今闻名的金字塔,一直到公元332年亚里 山大征服它之前,埃及文明基本上是由本地居民创造的。 史料: 现存的数学文献主要有两批,一批是保存在莫斯科的, 叫莫斯科草片文书,另一批是英国人莱因德发现的,叫莱因 德纸草书,现存英国博物馆。

第一章数学的起源与早期发展

第一章数学的起源与早期发展

哪里有数,哪里就有美--------普洛克拉斯(古希腊)如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状.--------庞加莱(法)第1章数学的起源与早期发展§1.1 数与形概念的产生一、数概念的产生最早的数量概念是“有”与“无”。

人类关于数概念认识的第一次飞跃是从“有”中分辨出“多”与“少”。

人类关于数概念认识的第二次飞跃是从多与少中分离出具体数目。

这一过程大体经历了如下五个阶段:第一阶段为“身体指代”(或“它物指代”)阶段;第二阶段为“集合指代” 阶段;第三阶段为“刻痕记事” 阶段;第四阶段是语言表达阶段;第五阶段是科学记数阶段。

科学记数法三要素:数字符号、基数、记数法则。

历史上,2、3、4、5都曾被用作原始的数基;12、16、20、60也曾被用作数基;但使用最多的还是以10为基数的记数法。

各民族记数法介绍:公元前3500年,古埃及人创造的象形文字中就出现以10为基数的数字符号:记数法则为加法法则(从右往左)。

古巴比伦人的楔形文字:公元前2500年,古巴比伦人用三角形硬笔在泥板上倾斜刻字:古巴比伦人的楔形文字中有两个基本数字符号:巴比伦人采用混合基记数法:60以下的数采用10为基,记数法为加法法则;对大于60的数,采用60为基的位置制记数法。

古希腊人开始时学习埃及的记数方法,公元前5世纪左右创立自己的数字系统,分别用Δ字母I H X M表示1、10、100、1000、10000,用字母∏或( Γ) 表示5,记数采用加法法则(显然以10为基)。

受希腊记数法影响,形成的罗马记数法,采用字母表示数,且保留了五进制痕迹。

它共有七个基本数字符号: 记数方法为加减法则:相同符号并列,对应数相加;不同符号并列,左大则相加,左小则相减(右减左)。

对较大的数,在字母符号上加一横线,表示该数扩大1000倍。

居住在墨西哥尤卡坦半岛的玛雅人,远古时代创造了灿烂的文化。

他们的数字符号只有两个:“•”(豆子、玉米或卵石)和“—”(豆荚或枝条),分别表示1和5。

数学的起源与发展3篇

数学的起源与发展3篇

数学的起源与发展
第一篇:数学的起源
数学是人类基本学科之一,涉及数、量、结构、空间以
及变化等方面的研究。

从古代就有数学的产生,但数学的起源并不清晰。

在早期的文化中,人们已经开始掌握了计数的能力,并用图形、符号和文字来表示数的概念。

最早的数学思想和技术可以追溯到约5000年前的数学文化,如古代埃及、美索不达米亚、印度和中国。

这些文化的数学都是为了实际应用而发展的,如测量土地、建筑设计、财务记录等。

古代希腊数学家毕达哥拉斯是数学史上一个重要的人物,他提出了毕达哥拉斯定理,发现了整数与比例之间的关系,并通过几何形式化证明数学。

除此之外,他还探究了音乐与数学之间的联系。

公元前三世纪至公元前一世纪,亚历山大渊博的图书馆
和博物馆成为了数学研究的中心。

这个时期有很多著名的数学家,如欧多克索斯、阿基米德、阿波罗尼奥斯等,他们的成就包括几何学的重大进展,如欧几里得在《几何原本》中所做的贡献,以及支配航海、建造和战争中的数学原理。

中世纪之前,中国和印度也取得了不俗的成就。

公元三
世纪至四世纪,中国曹操的大将王充所著的《论衡》是历史上第一部数学著作。

在中国,数学发展迅速,发明了算盘,并开创了代数学,如问经、数术和海岸等。

在印度,数学家阿耶波多在公元五世纪编写了用于解决
二次方程的著作,而布拉马格普塔则在公元七世纪解决了不定方程的问题和错误,他们所发明的一些数学方法为其他数学家提供了灵感。

总之,数学的起源是复杂而多样化的,不同的文化有其特定的地位和贡献。

虽然人们在数字方面的知识和技能的发展是相互关联的,但每个文化都为数学的起源和发展做出了巨大的贡献。

数学史的第一讲

数学史的第一讲

这里h是高,a、b是底面正方形的边长。这个公式是精确的,并 且具有对称的形式。在距今四千年前能够达到这样的成就是 令人惊讶的。因此,数学史家贝尔称莫斯科纸草书中的这个 截棱锥体为“最伟大的埃及金字塔”。(在英文中棱锥体和 金字塔是同一个单词:pyramid)
埃及数学是实用数学。古埃及人没有命题证明的思想,不过 他们常常对问题的数值结果加以验证。 另外,虽然纸草书中的问题绝大部分是实用性质,但也有个 别例外,例如莱茵德纸草书第79题:“7座房,49只猫, 343只老鼠,2401颗麦穗,16807赫卡特”。 有人认为这是当时的一个数谜:7座房子,每座房里养7只猫 ,每只猫抓7只老鼠,每只老鼠吃7颗麦穗,每颗麦穗可产 7赫卡特粮食,问房子、猫、老鼠、麦穗和粮食各数值总 和。也有将房子、猫等解释为纸草书作者赋予不同幂次的 名称,即房子表示一次幂,猫表示二次幂,等等。无论如 何,这是一个没有任何实际意义的几何级数求和问题,带 有虚构的数学游戏性质。
巴比伦泥板和彗星
(不丹,1986)
美索不达米亚的数学
苏美尔计数泥版(文达, 1982)
美索不达米亚的数学
大多数文明普遍采用十进制,但美索不达 米亚人却创造了一套以60进制为主的楔 (xie)形文字记数系统。
美索不达米亚人的记数制的巧妙之处,是 同一个记号根据它在数字表示中的相对 位置赋予不同的值,这种位置原理是美 索不达米亚数学的一项更迭中表现出一种静止的特性,这种静 止特性也反映在埃及数学的发展中。莱茵德纸草书和莫斯科 纸草书中的数学,就像祖传家宝一样世代相传,在数千年漫 长的岁月中很少变化。加法运算和单位分数始终是埃及算术 的砖块,使古埃及人的计算显得笨重繁复。古埃及人的面积 、体积算法对精确公式与近似公式往往不作明确区分,这又 使它们的实用几何带上了粗糙的色彩。这一切都阻碍埃及数 学向更高的水平发展。公元前4世纪希腊人征服埃及之后,这 一古老的数学文化完全被蒸蒸日上的希腊数学所取代。

数学的由来演讲稿三分钟(3篇)

数学的由来演讲稿三分钟(3篇)

第1篇大家好!今天,我站在这里,非常荣幸能够与大家分享一个古老而永恒的话题——数学的由来。

数学,作为人类智慧的结晶,贯穿了人类文明的发展历程,为我们揭示了宇宙的奥秘,为科技进步提供了强大的理论基础。

接下来,我将带领大家穿越时空,探寻数学的起源与发展。

一、数学的起源数学的起源可以追溯到遥远的古代,它的诞生与人类的生产活动密切相关。

早在远古时期,人类为了计数、测量和分配,开始关注自然界的规律,逐渐形成了数学的雏形。

1. 古埃及数学古埃及是人类文明史上最早的国家之一,也是数学发展的摇篮。

古埃及人为了建造金字塔、测量土地、计算税收等,创立了一套以十进制为基础的数学体系。

其中,著名的《莫斯科数学纸草》记载了古埃及人的数学成就,包括加减乘除、分数和小数等。

2. 巴比伦数学古巴比伦位于两河流域,是古代文明的重要发源地之一。

巴比伦人继承了古埃及的数学传统,并在此基础上发展了自己的数学体系。

他们创造了六十进制,并且能够解决一些复杂的数学问题,如求平方根、立方根等。

3. 印度数学印度是世界上最早研究数学的国家之一。

印度数学家发明了阿拉伯数字,简化了计算方法,使得数学在印度和阿拉伯地区得到了迅速发展。

印度数学家还提出了零的概念,为后来的数学发展奠定了基础。

4. 古希腊数学古希腊是西方文明的发源地,也是数学的黄金时代。

古希腊数学家们创立了几何学、代数学、数论等数学分支,他们的著作《几何原本》成为了数学的经典之作。

古希腊数学家欧几里得、阿基米德、毕达哥拉斯等人的成就,为后世数学家树立了榜样。

二、数学的发展数学的发展历程是一部人类智慧不断升华的历史。

从古至今,数学家们不断探索、创新,使数学逐渐成为一门严谨、完善的科学。

1. 欧洲数学的兴起随着古希腊文明的衰落,阿拉伯数学家们将古希腊数学知识传入欧洲。

在中世纪,欧洲数学家们在阿拉伯数学的基础上,开始创立自己的数学体系。

意大利数学家斐波那契的《算盘书》标志着欧洲数学的兴起。

2. 近代数学的崛起16世纪至18世纪,欧洲数学进入了近代数学时期。

《数学的产生于发展》课件

《数学的产生于发展》课件

04
数学与科技的关系
数学在科技发展中的作用
数学是科技发展的基础
数学为科技提供了理论支撑和工具,是解决科技问题的关键。
数学在科学研究中的应用
数学在物理、化学、生物、工程等领域中发挥了重要作用,为科学 研究提供了强大的工具。
数学在技术创新中的作用
数学在算法设计、数据分析、机器学习等领域中发挥了重要作用, 推动了技术创新和产业升级。
19世纪末,庞加莱等人创立了拓 扑学,用于研究几何图形的整体 性质。拓扑学在数学和理论物理
等领域有着重要的应用。
概率论与统计学的发展
01
概率论的起源
概率论作为数学的一个分支,起源于赌博和保险业的需求。在17世纪,
费马、帕斯卡等人开始研究概率论的基本原理。
02
大数定律和中心极限定理的发现
在19世纪,拉普拉斯和切比雪夫等人证明了概率论中的大数定律和中心
在19世纪末和20世纪初,数学家们开 始深入研究微分方程的性质和求解方 法。这些研究在理论物理、工程和经 济等领域有着广泛的应用。
实数理论的建立
在19世纪,康托尔等人建立了实数理 论,为微积分提供了严格的数学基础 。实数理论在数学分析、实变函数等 领域有着重要的应用。
03
数学的应用
物理学的数学应用
几何的发展
解析几何的兴起
在17世纪,笛卡尔等人创立了解 析几何,将几何图形与代数方程 结合起来进行研究。解析几何的 出现为微积分学的发展奠定了基
础。
微分几何的诞生
在18世纪,欧拉、克莱洛和达朗 贝尔等人创立了微分几何,用于 研究曲线和曲面的局部性质。微 分几何在理论物理和工程领域有
着广泛的应用。
拓扑学的兴起
05

第1章数学的起源与早期发展

第1章数学的起源与早期发展

近代数学时期
第三,代数学的新生。方程的解的研究一直是代数学研究的 重要课题,直到抽象代数的建立,代数学的研究重点才 从方程的求解转移到代数结构的研究。重点介绍了阿贝 尔,伽罗瓦工作,重现了代数方程的可解性与群概念的 发现历程,它为抽象代数的创立奠定了基础,对现代数 学的发展有重要的意义。
第四,几何学的变革。古希腊欧几里得建立了公理化体系。 对其第五公设(平行公设)进行证明和等价命题的替代 工作导致了非欧几何的创立,其意义在于不仅解决了两 千年来一直悬而未决的第五公设问题,更重要的是引起 了几何观念和空间观念的深刻变革。
当人们发现一对雏 鸡和两天之间有某 种共同的东西
(数字 2 )时,数学 就诞生了。
——伯特兰 ·罗素
记数方式
对数的认识变得越来越明确时,产生以某种方式表达事 物属性的需要——记数
美洲印第安人通过收集被杀者的头皮来算计他们杀敌的 数目,而非洲的原始猎人通过积累野猪的牙齿来算计他 们杀死野猪的数目。
现代数学时期
介绍了 20世纪数学发展的主要趋势以及中国数学的西化历程. 20世纪的纯粹数学和应用数学得到了空前的发展,数学向人 类几乎所有的知识领域渗透,目的是对现代数学发展有直观 的认识,了解现代数学发展的前沿。 中国数学在中世纪取得了辉煌的成就,元末之后逐渐 衰微。故介绍了 西方数学在中国传播和现代数学研究在中国的兴起。
第一,近代数学的兴起。近代数学兴起于代数学领域,包括 三、四次方程的求解和符号代数的引入;近代数学本质上 是变量数学,笛卡尔、费尔马解析几何的创立是变量数学 的第一个里程碑,基本思想是引进坐标思想,将代数方程 和几何曲线统一起来。
第二,微积分的创立与发展。解析几何为微积分的创立搭建 了舞台,牛顿、莱布尼兹在此基础上创立了微积分,使之 成为普遍适用的算法,给整个自然科学带来了革命性的影 响,被誉为是“人类精神的最高胜利”,在此基础上产生 了许多数学新分支,开创了数学中的“分析时代”。

数的起源与发展

数的起源与发展

数的起源与发展引言概述:数是人类文明发展的基础,它的起源可以追溯到远古时代。

随着人类社会的进步,数的概念逐渐完善并得到应用。

本文将从数的起源、数的发展、数的应用、数的未来以及数的重要性等五个部份详细阐述数的起源与发展。

一、数的起源1.1 早期人类的数数方式- 早期人类使用物体计数的方式,如用石头、棍棒等物体进行计数。

- 人类逐渐发现手指的数量,开始使用手指计数,形成十进制计数系统。

1.2 数的符号表示- 早期人类开始尝试使用符号来表示数,如古代埃及人使用的象形数字。

- 罗马人发明了罗马数字系统,用不同的字母组合表示不同的数值。

1.3 基础数学概念的形成- 古希腊的数学家开始研究数的性质,提出了数的概念和基本性质。

- 古印度的数学家发明了零的概念,并开始使用负数和分数。

二、数的发展2.1 阿拉伯数字的浮现- 阿拉伯人引入了我们现在使用的十进制阿拉伯数字系统,包括0到9的数字。

- 这个数字系统的优势在于简洁易懂,逐渐被世界各地广泛使用。

2.2 数学的发展与突破- 数学在古希腊时期得到了长足的发展,欧几里得几何学成为数学的重要组成部份。

- 中世纪时期,代数学的发展为数学的进一步研究奠定了基础。

2.3 计算机的浮现与数学的应用- 计算机的发明与普及使得数学得以广泛应用,如在科学计算、数据分析、密码学等领域。

- 数学的应用还延伸到金融、工程、物理等各个领域,为人类社会的发展做出了巨大贡献。

三、数的应用3.1 数学在科学中的应用- 数学是科学研究的基础,它在物理学、化学、生物学等领域中发挥着重要作用。

- 数学模型的建立和数值计算的应用使得科学研究更加准确和高效。

3.2 数学在工程中的应用- 工程领域需要数学的支持,如在结构设计、电路设计、通信技术等方面。

- 数学的应用使得工程师能够更好地解决问题,提高工程的效率和质量。

3.3 数学在金融中的应用- 数学在金融领域中的应用广泛,如在投资组合优化、风险管理、期权定价等方面。

第一讲:数学的起源与早期发展34页PPT

第一讲:数学的起源与早期发展34页PPT
▪ 亚述帝国:前8世纪-前612年,建都尼尼微 (今伊拉
克的摩苏尔市)。
▪ 新巴比伦王国:前612-前538年。尼布甲尼撒二世
(在位前604-前562年)统治时期达到极盛,先后两次 攻陷耶路撒冷,建成巴比伦“空中花园”。
▪ 公元前6世纪中叶,波斯国家逐渐兴起,并于公元前
538年灭亡了新巴比伦王国。
古代巴比伦的数学
1、数与形概念的产生
1、数学起源
手指计数(伊朗,1966)
1、数学起源
结绳计数(秘鲁,1972)
1、数学起源
文字5000年 (伊拉克, 2019)
1、数学起源
西安半坡遗址出土的陶器残片
1、数学起源
• 2、河谷文明与早期数学
古代埃及 古巴比伦 古代中国
古代埃及的数学
古代埃及的数学
古代埃及简况
埃及文明上溯到距今6000年左右,从公元前3500年左右开始出现一 些小国家,公元前3000年左右开始出现初步统一的国家。
1、古王国时期:前2686-前2181年。埃及进入统一时代,开始建 造金字塔,是第一个繁荣而伟大的时代。
2、新王国时期:前1567-前1086年。埃及进入极盛时期,建立了 地跨亚非两洲的大帝国。
主要参考书
▪ [美]克莱因. 古今数学思想. 牛津大学出版社, 1972(中译本: 北京大学数
学系数学史翻译组译, 上海科学技术出版社, 1979~1981, 4卷本)
▪ 张奠宙. 20世纪数学经纬. 上海: 华东师范大学出版社, 2019 ▪ 吴文俊主编. 世界著名数学家传记(上、下册). 北京: 科学出版社, 2019 ▪ 程民德主编. 中国现代数学家传(5卷本). 南京: 江苏教育出版社, 1994-
西汉以前的中国数学
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数学史研究什么?为什么要学习数学史?数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。

对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。

庞加莱(法,1854-1912 年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。

萨顿(比——美,1884-1956 年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。

二、关于数学的论述培根说:数学是思维的体操恩格斯说:“要辩证而又唯物地了解自然,就必须掌握数学。

”英国著名哲学家培根说:“数学是打开科学大门的钥匙。

”著名数学家霍格说:“如果一个学生要成为完全合格的、多方面武装的科学家,他在其发展初期就必定来到一扇大门并且通过这扇门。

在这扇大门上用每一种人类语言刻着同样一句话:‘这里使用数学语言。

'”数学是一门逻辑性很强的基础科学,人们通过运用数学推导出了种种概念、原理与规律指导日常生活。

有人把数学对于人类的意义比作生活中不能缺少盐。

数学是盐,所以,离开了数学,人们的生活将寸步难行。

数学是盐,所以,它将自己融化在生活的水里,让人们很难一眼看出它的存在,但是细细品味和体会,数学又是无处不在的,它对于生活的各个方面都有潜在的影响,当然,这种影响是用思维来实现的。

数学有一个美誉叫做“思维体操” ,多做一些“枯燥”的数学题, 能够提高人的逻辑思维能力。

康托尔说:“数学的本质在于它的自由。

”数学是一门艺术,是一种生活工具,是一门让我们的头脑变得更灵敏的科学。

数学史的分期:(1)数学的起源与早期发展(公元前6 世纪);(2)初等数学时期(公元前6 世纪-16世纪);(3)近代数学时期(17世纪-18 世纪);(4)现代数学时期(1820 年至今)。

二、教学工作安排授课形式:讲解与自学相结合,分13 讲。

第一讲:数学的起源与早期发展;第二讲:古代希腊数学;第三讲:中世纪的东西方数学I ;第四讲:中世纪的东西方数学II ;第五讲:文艺复兴时期的数学;第六讲:牛顿时代:解析几何与微积分的创立;第七讲:18世纪的数学:分析时代;第八讲:19 世纪的代数;第九讲:19世纪的几何与分析I;第十讲:19世纪的几何与分析II;第十一讲:20 世纪数学概观I;第十二讲:20 世纪数学概观II;第十三讲:20世纪数学概观III ;选讲:数学论文写作初步。

作业:每一讲写600 字左右的读书笔记,30%记入学期总成绩。

考查:每位同学选取一名数学家,以这数学家为主题写一篇数学史讲稿(约2000字),并把讲稿内容制作成PowerPoint文档(约15 分钟,5-8 张文档),70%记入学期总成绩。

要求:讲稿用A4纸单面打印,连同PowerPoint文档于2008年6月18日(第17 周星期三)上交第一讲数学的起源与早期发展【主要内容】数与形概念的产生、河谷文明与早期数学、西汉以前的中国数学。

第一节数与形概念的产生从原始的“数”到抽象的“数”概念的形成,是一个缓慢、渐进的过程。

人从生产活动中认识到了具体的数,导致了记数法。

“屈指可数”表明人类记数最原始、最方便的工具是手指。

如,手指计数(伊朗,1966),结绳计数(秘鲁,1972)(美国自然史博物馆藏有古代南美印加部落用来记事的绳结,当时人称之为基普),文字5000 年(伊拉克,2001)(楔形数字),西安半坡遗址出土的陶器残片。

早期几种记数系统,如古埃及、古巴比伦、中国甲骨文、古希腊、古印度、玛雅(玛雅文明诞生于热带丛林之中,玛雅是一个地区、一支民族和一种文明,分布在今墨西哥的尤卡坦半岛、危地马拉、伯利兹、洪都拉斯和萨尔瓦多西部)世界上不同年代出现了五花八门的进位制和眼花缭乱的记数符号体系,足以证明数学起源的多元性和数学符号的多样性。

第二节河谷文明与早期数学一、河谷文明历史学家常把兴起于埃及、美索不达米亚、中国和印度等地域的古代文明称为河谷文明。

早期数学就是在尼罗河、底格里斯河与幼发拉底河、黄河与长江、印度河与恒河等河谷地带首先发展起来的。

1.古代埃及的数学古埃及是世界上文化发达最早的几个地区之一,位于尼罗河两岸,公元前3200 年左右,形成一个统一的国家。

尼罗河是埃及人生命的源泉,他们靠耕种河水泛滥后淤土覆盖的田地谋生。

尼罗河定期泛滥,淹没全部谷地,水退后,要重新丈量居民的耕地面积。

由于这种需要,多年积累起来的测地知识便逐渐发展成为几何学。

由于他们也得准备好应付洪水的危害,因此就得预报洪水到来的日期。

这就需要计算。

埃及人还把他们的天文知识和几何知识结合起来用于建造他们的神庙,使一年里某几天的阳光能以特定方式照射到庙宇里。

公元前2900 年以后,埃及人建造了许多金字塔,作为法老的坟墓。

从金字塔的结构,可知当时埃及人已懂得不少天文和几何的知识。

例如基底直角的误差与底面正方形两边同正北的偏差都非常小。

埃及文明上溯到距今6000 年左右,从公元前3500 年左右开始出现一些小国家,公元前3000 年左右开始出现初步统一的国家。

古代埃及可以分为5 个大的历史时期:早期王国时期(公元前3100-前2688 年)、古王国时期(前2686-前2181年)、中王国时期(前2040-前1768 年)、新王国时期(前1567-前1086年)、后期王国时期(前1085-前332 年)。

(1)古王国时期:前2686-前2181 年。

埃及进入统一时代,开始建造金字塔,是第一个繁荣而伟大的时代。

(2)新王国时期:前1567-前1086 年。

埃及进入极盛时期,建立了地跨亚非两洲的大帝国。

直到公元前332 年亚历山大大帝征服埃及为止埃及人创造了连续3000 多年的辉煌历史,建立了国家,有了相当发达的农业和手工业,发明了铜器、创造了文字、掌握了较高的天文学和几何学知识,建造了巍峨宏伟的神庙和金字塔。

吉萨金字塔(公元前2600年)(刚果,1978),它显示了埃及人极其精确的测量能力,其中它的边长和高度的比例约为圆周率的一半。

古埃及最重要的传世数学文献:纸草书,来自现实生活的数学问题集。

莱茵德纸草书(1858年为苏格兰收藏家莱茵德购得,现藏伦敦大英博物馆,主体部分由84 个数学问题组成,其中还有历史上第一个尝试“化圆为化”的公式)。

莫斯科纸草书(1893 年由俄国贵族戈列尼雪夫购得,现藏莫斯科普希金精细艺术博物馆,包含了25 个数学问题)。

埃及纸草书(民主德国,1981)。

数学贡献:记数制,基本的算术运算,分数运算,一次方程,正方形、矩形、等腰梯形等图形的面积公式,近似的圆面积,锥体体积等。

公元前4世纪希腊人征服埃及以后,这一古老的数学完全被蒸蒸日上的希腊数学所取代。

2.古代巴比伦的数学古巴比伦是世界最早的文明——美索不达米亚(Mesopotamia,希腊语的意思是两河之间的土地。

)文明(又称两河文明)发源于底格里斯河(Tigris)和幼发拉底河(Euphrates)之间的流域——苏美尔(Sumer)地区(中下游地区),这个地区没有天然险阻可以抵挡入侵者,所以有着多样性的民族文化。

美索不达亚是古巴比伦(Babylon)的所在,在今伊拉克(Iraq)共和国境内公元前3500年进入文明,公元前4000年到公元前2250 年是两河文明的鼎盛时期,《旧约全书》称其为"希纳国"(Land of Shinar)。

两河沿岸因河水泛滥而积淀成肥沃土壤,史称"肥沃的新月地带"(南美的那个和"金三角"齐名的地区堪称"罪恶的新月地带" )。

由于两河不象尼罗河一样是定期泛滥的,所以确定时间就必须靠观测天象。

住在下游的苏美人发明了太阴历,以月亮的阴晴圆缺作为计时标准,把一年划分为12 个月,共354天,并发明闰月,放置与太阳历相差的11 天。

把一小时分成60分,以7 天为一星期。

还会分数、加减乘除四则运算和解一元二次方程,发明了10进位法和16进位法。

他们把圆分为360 度,并知道π近似于3。

甚至会计算不规则多边形的面积及一些锥体的体积。

两河流域(美索不达米亚)文明上溯到距今6000年之前,几乎和埃及人同时发明了文字“楔形文字” 。

(1)古巴比伦王国:公元前1894-前729 年。

汉穆拉比(在位前1792-前1750)统一了两河流域,建成了一个强盛的中央集权帝国,颁布了著名的《汉穆拉比法典》。

(2)亚述帝国:前8 世纪-前612年,建都尼尼微(今伊拉克的摩苏尔市)。

(3)新巴比伦王国:前612-前538 年。

尼布甲尼撒二世(在位前604-前562 年)统治时期达到极盛,先后两次攻陷耶路撒冷,建成世界古代七大奇观之一的巴比伦“空中花园” 。

世界古代七大奇观指埃及金字塔、巴比伦空中花园、阿苔密斯神殿、摩索拉斯陵墓、宙斯神像、亚历山大灯塔、罗德岛太阳神铜像,他们是分布于西亚、北非和地中海沿岸的古迹,是古代西方人眼中的全部世界,而中国的长城距他们太远了。

记录者古希腊哲学家费隆·拜占廷说过:“心眼所见,永难磨灭”。

公元前6 世纪中叶,波斯国家逐渐兴起,并于公元前538 年灭亡了新巴比伦王国。

了解古代美索不达米亚文明的主要文献是泥版,迄今已有约50 万块泥版出土。

苏美尔计数泥版(文达,1982)。

现在泥版文书中大约有300 多块是数学文献:以60 进制为主的楔形文记数系统,长于计算,发展程序化算法的熟练技巧(开方根),能处理三项二次方程,有三次方程的例子,三角形、梯形的面积公式,棱柱、方锥的体积公式。

泥版楔形文,普林顿322(现在美国哥伦比亚大学图书馆,年代在公元前1600 年以前,数论意义:整勾股数)。

巴比伦泥板和彗星(不丹,1986)。

3.西汉以前的中国数学黄河壶口瀑布(中国,2002)《史记·夏本纪》大禹治水(公元前21 世纪)中提到“左规矩,右准绳” ,表明使用了规、矩、准、绳等作图和测量工具,而且知道“勾三股四弦五” 。

考古学的成就,充分说明了中国数学的起源与早期发展。

1952 年在陕西西安半坡村出土的,至今六七千年的陶器上刻画的符号中,有一些符号就是表示数字的符号。

在殷墟出土的商代甲骨文中,有一些是记录数字的文字,表明中国已经使用了完整的十进制记数,包括从一至十,以及百、千、万,最大的数字为三万。

殷墟甲骨上数学(商代,公元前1400-前1100年,1983-1984 年间河南安阳出土)。

算筹(1971 年陕西千阳县西汉墓出土)是中国古代的计算工具,它的起源大约可上溯到公元前5 世纪,后来写在纸上便成为算筹记数法。

至迟到春秋战国时代,又开始出现严格的十进位制筹算记数(约公元前300 年)。

相关文档
最新文档