对称式和轮换对称式的因式分解

合集下载

数学奥林匹克竞赛轮换与对称

数学奥林匹克竞赛轮换与对称

因式分解对称式交代式和轮换式1、基本概念(1)对称式:在一个代数式中,如果把它所含的两个字母互换,式子不改变,那么这个代数式就叫做关于这两个字母的对称式。

如a b +,22a ab b −+,322333a a b ab b +++等都是关于,a b 的对称式。

一般地,在一个代数式中,无论把其中哪两个字母互换,式子都不变,那么这个代数式就叫做关于这些字母的对称式,如a b c ++,222a b c ab bc ca ++−−−,3333a b c abc ++−等都是关于,,a b c 的对称式。

(2)交代式:在一个代数式中,如果把它所含的两个字母互换,得到的式子和原来的代数式只差一个符号,那么这个代数式就叫做关于这两个字母的交代式。

如把a b −,22a b −中的两个字母,a b 互换,分别为()b a a b −=−−,2222()b a a b −=−−则a b −,22a b −就叫做关于,a b 的交代式。

(3)轮换式:在一个代数式中,如果把所含字母顺次替换(即第一个字母换成第二个字母,第二个字母换成第三个字母,以此类推,最后一个字母换成第一个字母),式子不变,那么这个代数式就叫做关于这些字母的轮换对称式,简称轮换式,如a b c ++,ab bc ca ++,3333a b c abc ++−等都是关于,,a b c 的轮换式。

2、齐次对称式的一般形式(1)二元齐次对称式二元一次齐次对称式:)(b a L +;二元二次齐次对称式:Mab b a L ++)(22;二元三次齐次对称式:)()(33b a Mab b a L +++。

(2)三元齐次对称式三元一次齐次对称式:)(c b a L ++;三元二次齐次对称式:)()(222ca bc ab M c b a L +++++;三元三次齐次对称式:)()([)(22233a c b c b a M c b a L ++++++Nabc b a c +++)](2。

10. 因式分解技巧-轮换式与对称式 -单墫

10. 因式分解技巧-轮换式与对称式 -单墫

10 .轮换式与对称式关于x 、y 的多项式)1(,,,*,,223322 xy y x y x y x xy y x ++++在字母x 与y 互换时,保持不变.这样的多项式称为x 、y 的对称式.类似地,关于x 、y 、z 的多项式,,,,333222z y x zx yz xy z y x z y x ++++++++)2(,,22/2222 xyz y z x z x y z y z x y x +++++在字母x 、y 、z 中任意两字互换时,保持不变.这样的多项式称为x 、y 、z 的对称式.关于x 、y 、z 的多项式,,,,333222z y x zx yz xy z y x z y x ++++++++)3(,,,222222 xyz zx yz xy x z z y y x ++++在将字母x 、y 、z 轮换(即将x 换成y ,y 换成z ,z 换成x )时,保持不变,这样的多项式称为x 、y 、z 的轮换式,显然,关于x 、y 、z 的对称式一定是x 、y 、z 的轮换式.但是,关于x 、y.z 的轮换式不一定是对称式.例如,x z z y y x 222++就不是对称式,次数低于3的轮换式同时也是对称式,两个轮换式(对称式)的和、差、积、商(假定被除式能被除式整除)仍然是轮换式(对称式). 轮换式与对称式反映了数学的美.它们的因式分解也是井然有序,可以按照一定的规律去做的.10.1 典 型 方法例1 分解因式:).()()(222y x z x z y z y x -+-+- 解 )()()(222y x z x z y z y x -+-+-是关于x 、y 、z 的轮换式.如果把)()()(222y x z x z y z y x -+-+-看作关于x 的多项式,那么在y x= 时,它的值为 .0)()()(222=-+-+-y y z y z y z y y因此,根据第8单元,y x -是)()()(222y x z x z y z y x -+-+-的因式.由于)(y x z x z y z y x -+-+-222)()(是x 、y 、z 的轮换式,所以可知z y -与x z -也是它的因式,从而它们的积))()((x z z y y x --- (4)是 )()()(222y x z x z y z y x -+-+- (5)的因式.由于(4)、(5)都是x 、y 、z 的三次多项式,所以两者至多相差一个常数因数k ,即有).)()(()()()(222x z z y y x k y x z x z y z y x ---=-+-+- (6)现在我们来确定常数k 的值.为此,比较(6)的两边y x 2的系数:左边系数为1,右边系数为-k ,因此,于是 )()()(222y x z x z y z y x -+-+-).)()((x z z y y x ----=例2 分解因式:).()()(333b a c a c b c b a -+-+-解 )()()(333b a c a c b c b a -+-+-是关于a 、b 、C 的轮换式.与例1类似,它有三次因式 ).)()((a c c b b a ---由于原式是a 、b 、c 的四次式,所以还应当有一个一次因式.原式是a 、b 、c 的四次齐次式,所以这个一次因式也是a 、b 、c 的一次齐次式,即它的常数项是0(否则,它的常数项与三次式))()((a c c b b a ---相乘得到一个三次式).这个一次齐次式是a 、b 、c 的轮换式,它的形状应当是k c b k ),(++α是常数.即有)()()(333b a C a c b c b a -+-+-).)()()((a c c b b a c b a k ---++= (7)比较两边b a 3的系数,得k=-1.于是 )()()(333b a c a c b c b a -+-+-).)()()((a c c b b a c b a ---++-=上面求k 的方法是比较系数,也可以改用另一种方法,即适当选一组使0))()()((=/---++a c c b b a c b a的数代替a 、b 、c ,从而定出k ,例如,令,0,1,2===c b a把它代入(7),得),2(3028-⋅⋅=+-k即 .1-=k以上两种确定系数的方法可以结合起来使用.例3 分解因式.)()()()(3333c b a b a c a c b C b a -+--+--+-++解 在0=a 时,原式的值为,0)()()()(3333=----+-+c b b c c b c b所以a 是原式的因式.由于原式是a 、b 、c 的轮换式,所以b 、c 也是它的因式,从而有,)()()()(3333kabc c b a b a c a c b c b a =-+--+--+-++ (8)其中k 是待定系数.令,1===c b a 得,11133333k =---即 ,24=k所以.24)()()()(3333abc c b a b a c a c b c b a =-+--+--+-++在(3)中列出的各式称为基本的轮换式.每一个轮换式都能由它们组成,例如:一次齐次的轮换式是);(z y x l ++二次齐次的轮换式是);()(222zx yz xy m z y x l +++++三次齐次的轮换式是.)()()(222222333kxyz zx yz xy n x z z y y x m z y x l +++++⋅++++这里,L 、m 、n 、k 都是待定的常数.10.2 齐 次 与 非 齐 次例4 分解因式:.)()()(555y x x z z y -+-+- 解 用上面的方法易知原式有因式).)()((x z z y y x ---因为原式是x 、y 、z 的五次齐次轮换式,所以还有一个因式是二次齐次轮换式,我们设555)()()(y x x z z y -+-+-)].()()[)()((222zx yz xy m z y x l x z z y y x +++++---= (9)令,0,1,2===z y x 得),25(21321m l +-=+-即 .1525=+m l (10)令,1,0,1-===z y x 得),2(21321m l --=+-即 .152=-m l (11)由(10)、(11)这两个方程,解得⎩⎨⎧-==,5,5m l 于是 555)()()(y x x z z y -+-+-)](5)(5)[)()((222zx yz xy z y x x z z y y x ++-++---=).)()()((5222zx yz xy z y x x z z y y x ---++---=在例4中,任给一组x 、y 、z 的值(当然不能使(x- y) (y-z) (z-x)为0),都可以得到一个形如(10)或(11)的方程,不过为了便于计算,以较小的值代人为好.在例4中,如果注意到,5)(455 +-=-z y y z y那么比较(9)式两边z y 4的系数,可以得 ,5l -=-再结合(10)或(11)中的任一个,可以得出.5-=m 这种做法更简单一些.例5 分解因式:.)(555b a b a ---解 原式在a 、b 互换时变号,它不是a 、b 的轮换式(二元的对称式与轮换式是一致的).但是,如果改记-b 为c ,那么原式成为,)(555c a c a +-+是a 、c 的轮换式,因而也可以采用前面的方法去处理.不过,应当注意到,更简单的办法是在例4中令,,b C x z a z y -==-=-那么 ,a b y x -=-555)(b a b a ---555)()()(y x x z z y -+-+-=))()()((5222zx yz xy z y x x z z y y x ---++---=2)()()().(5222x z z y y x b a ab -+-+--= 2)().(5222a b b a b a ab -++-= ).)((522ab b a b a ab -+-=由此可以看出,做题的时候应当充分利用已有的结果.例6 分解因式:).1)(()1)(1)((2222yz x z xz xy z y +-+++-).1)(1)(()1(22zy zx y x yx ++-++ 解 这是x 、y 、z 的轮换式,容易知道它有因式),)()((y x x z z y ---但是另一个因式是什么呢?原式并非齐次式,为了便于处理,我们按照次数把它整理一下.由于,1)()1)(1(+++⋅=++z y x x xyz xz xy所以 )1)(1)(()1)(1)((2222yx yz x z xz xy z y ++-+++-)1)(1)((22zy zx y x ++-+ )]()()([222222y x z x z y z y x xyz -+-⋅+-=)]()()[(222222y x x z z y -+-+-+)])(())(())(([222222y x y x z x z x z y z y z y x -++-++-++)]()()([222222y x z x x y z y x xyz -+-+-= )].)(())(())(([222222y x y x z x z x z y z y z y x -++-++-++于是,例题中的非齐次式化为两个齐次式的和,用前面所说的方法可得齐次式)()()(222222y x z x z y z y x -+-+-),)()((x z z y y x ---=))(())(())((222222y x y x z x z x z y z y z y x -++-++-+).)()()((z y x x z z y y x ++---=所以得)1)(1)(()1)(1)((2222yx yz x z xz xy z y ++-+++-)1)(1)((22zy zx y x ++-+).)()()((z y x xyz x z z y y x +++---=10.3 abC C b a 3333-++例7 分解因式:.3333abc c b a -++解 在)(c b a +-=时,有abc C b a 3333-++)(3)(333c b bc C b c b +++++-=2233322333)33(bc c b C b c bc c b b +++++++-=,0=所以c b a ++是abc c b a 3333-++的因式,显然,abc c b a 3333-++是a 、b 、c 的三次齐次轮换式,我们设abc C b a 3333-++)].()()[(222ca bc ab m C b a l c b a +++++++=(12) 比较两边3a 的系数得,1=l 比较abc 的系数得,33m =-即 ,1-=m所以 abc c b a 3333-++ ).)((222ca bc ab c b a c b a ---++++= (13)有的时候也把(13)写成abc c b a 3333-++)13].(2)()())[((2122a c c b b a c b a -+-+-++=(13)与)13(/也可以作为公式来使用.例8 分解因式:-+--++-++-+b a b a c a c b c b a (3)()()(333).)()(b a c a c b c -+-+ 解 由公式),13(/得333)()()(b a c a c b c b a -++-++-+))()((3b a c a c b c b a -+-+-+-)].()()[(21b a c a c b c b a -++-++-+=22)]()[()](){[(b a c a c b a c b c b a -+--++-+--+})]()[(2c b a b a c -+--++ ])(4)(4)(4)[(21222b c a b c a c b a -+-+-++= ])()())[((2222b c a b c a c b a -+-+-++=).)((4222Ca bc ab C b a C b a ---++++=本题的结果表明将abc c b a 3333-++中的a 、b 、c 分别用a+b-c 、b a c a c b -+-+、代替后,所得的式子为原来的4倍,从(13)可以看出,如果,0=++c b a 那么,3333abc c b a =++这也是一个有用的结论.例9 分解因式:.)()()(333y x x z z y -+-+- 解 因为 ,0)()()(=-+-+-y x x z z y所以 333)()()(y x x z z y -+-+- ).)()((3y x x z z y ---=10.4 焉 用 牛 刀例10 分解因式:.2)()()(222333xyz y x z x z y z y x z y x -++++++---解 在z y x +=时,有原式)(2)2()2()()(22333z y yz z y z y z y z y z y z y +-++++++--+-=β)(2)]2([)]2([2323z y yz z y z z y z y y +-++-+++-=y z z y z z y z y y z y 222222)2()2(---++-+=y zz y y x z y 22222222 ⋅--+= ,0=所以,x- y-z 是原式的因式.由于原式为x 、y 、z 的三次轮换式,我们设xyz y x z x z y z y x z y x 2)()()(222333-++++++--- ),)()((y x z x z y z y x k ------=比较3x 的系数,得k=-1,于是 xyz y x z x z y z y x z y x 2)()()(222333-++++++---))()((y x z x z y z y x -------=).)()((z y x y x z x z y -+-+-+=例11 分解因式:.3222222xyz zx yz xy x z z y y x ++++++解 这个三次式如果能分解,那么它必有一次因式,这一次因式是齐次的轮换式,即x+y+z .事实上,把x 用一(y+z)代入后原式为0.不过,没有必要去验证这一点,因为原式不难直接分解.由 ),(22z y x xy xyz xy y x ++=++),(22z y x yz xyz yz z y ++=++),(22z y x zx xyz zx x z ++=++可得 xyz zx yz xy x z z y y x 3222222++++++ )./)((zx yz xy z y x ++++=杀鸡焉用牛刀!特殊的问题可以用特殊的方法处理,并不是每一道题都非得用一般的方法去对付不可.10.5 整 除 问 题例12 证明:322243222432224)()()(c b a c b a C b a c b a -++-++-+能被222222444222a c c b b a c b a ---++整除.证明 由第4单元例6,可得222222444222a c c b b a c b a ---++),)()()((c b a b a c a c b C b a -+-+-+++-=因此,只要证明 ))()()((c b a b a c a c b c b a -+-+-+++是.)()()(322243222432224C b a c b a c b a C b a -++-++-+ (14)的因式即可,在a=b+c 时,(14)式的值为4222432224])([])([)(b c b C b c b c b c b -++++-++32224])[(c b c b c -+++32432434)22()22()2()(bc b c bc cb bc c b ++++-+= 343334433)(8)(8)(8c b c b c b c b c b c b +++++-=])([)(8333c b c b C b c b +++-+=,0=所以c b a --是(14)的因式.由于在a 变号时,(14)的值不变,所以)(c b a +-=时,(14)的值仍然为0.即c b a ++也是(14)的因式.(14)是a 、b 、c 的轮换式;因而b a c a c b ----、也是它的因式,从而))()()((b a c a c b c b a c b a ------++是(14)的因式,这就是要证明的结论.例13 n 是大于1的自然数,证明n n n n n n n z y x y x x z z y z y x 2222222)()()()(++++-+-+-++ )15(能被4444444)()()()(z y x y x x z z y z y x ++++-+-+-++ (16)整除,证明 在x=0时,(15)的值为,0)()(222222=++--+-+n n n n n n z y y z z y z y因此,x 是(15)的因式.在)(z y x +-=时,(15)的值为,0)()(222222=--++--+-n n n n n n z y z y z y z y因此,z y x ++是(15)的因式.由于(15)是轮换式,所以)(z y x xyz ++ (17)是它的因式.特别地,在n=2时得到(17)是(16)的因式.(16)与(17)都是四次式,因此它们至多相差一个常数.(15)能够被(17)整除,所以(15)也能够被(16)整除,10.6 原 来 是 零例14 分解因式: -----+-+-c c b b a b a a c c b ()()9)()()(22666(----332)()(2)c a b a a .)()(2)()(23333b c a c a b c b ----- )18( 解 易知b a =时(18)为0,从而导出(18)有因式).)()((a c c b b a ---在a=0时,(18)的值为333333222666)(2)(22)(9)(b c c b c b c b c b c b b c c b -------++-)2()(9]22)[()(33662223333c b c b c b c b c b c b c b -++--+---=-+--+--+--=32223332233)(9]2233[)(b c b c b c b C bc c b b c b (23)cbc b c b c b c b c b bc b c c b +-+---+--=2222222333)()(9)]33()[()((22)c +2222223)[()()](3))([()(c bc b c b b c bc b bc c b c c b ++-+-+++--=])3(2bc -22222224)(3()()4()(c bc b bc c bc b c b b bc c c b +++++-+++--=)3bc -)4()()4()(224224C bc b c b b bc C c b ++-+++--=,0=于是a 是(18)的因式,从而))()((a c c b b a abc ---是(18)的因式.由于(18)的次数为6,所以设222666)()()(9)()()(a c c b b a b a a c c b -----+-+-333333)()(2)()(2)()(2b c a c a b c b c a b a ---------).)()((a c c b b a kabc ---=令,1,2,3===c b a 得3333222666)1(.122122119121-⨯⨯-⨯⨯-⨯⨯⨯-++33)1()2(2-⨯-⨯-,12k -=即 ,012=-k于是 ,0=k从而 222666)()()(9)()()(a c c b b a b a a c c b -----+-+-333333)()(2)()(2)()(2b c a c a b c b c a b a ---------.0=表面上(18)是一个6次式,实质上,它等于0,这是有一点出乎意料的.0无需进行分解,每一个(非零)多项式都是它的因式.例15 分 解 因 式:).2()()2()()2()(333c b a b a b a c a c a c b c b -+-+-+-+-+-解 容易验证在a=0与a=b 时,原式的值为0.因此,a(a-b)是它的因式,由于原式是a 、b 、c 的轮换式,所以))()((a c c b b a abc --- (19)是它的因式.但(19)是6次式,而原式的次数≤4,这说明原式必须为0,即.0)2()()2()()2()(333=-+-+-+-+-+-c b a b a b a c a c ac b c b )20( 例16 证明.0)2)(()2)(()2)((333=-+-+-+-+-+-z y x y x y x z x z x z y z y分析 本题可以按照例15的办法处理.不过,更简单地是在(20)中令,,,y x c x z b z y a -=-=-=便得到)33()2()33()2(33x x y z x y z x y z --++--+)33()2(3x y z x y --++,0=从而导出了要证明的结论.10.7 四 元 多项 式例17 分解因式:.)())(()(44d b a c d a c b d a c b --++----+).)(()())((4d c b a d c b a d b a c ----++--解 原式是a 、b 、c 的轮换式,用前面的方法易知它有因式 ).)()((a c c b b a ---另一方面,把原式看成d 的多项式,在d=a 时,易知它的值为0.因此,原式有因式d -a .再由轮换性,它也有因式d-b ,d-c 于是))()()()()((c d b d a d a c c b b a ------是它的因式,因为原式是a 、b 、c 、d 的6次式,我们设 ))(()())(()(44d b a c d b a c d a c b d a c b ----++----+))(()(4d c b a d c b a ----++ ).)()()()()((c d b d a d a c c b b a k ------=令,2,1,0,1=-===d c b a 得.16=k 即原式 ).)()()()()((16c d b d a d a c c b b a ------=例18 分解因式:).)(())()((222222a d d c a d c b d d c c b d c b ------)()(222a d b a k c a -- ).)()(())((222a c c b b a c b a d b b a ------解 原式是a 、b 、c 的轮换式,和上题类似,可得))()()()()((c d b d a d a c c b b a ------是它的因式,则))()(())()(([222222c a a d d c a d c b d d c c b d c b -------)(222a d b a d -+)])()(())((222a c c b b a c b a d b b a ------))()([(a c c b b a ---÷)])()((c b b d a d ---所得商式是a 、b 、c 、d 的三次齐次式,并且,在a 、b 、c 、d 中,任意两个字母互换时,商式保持都不变(请读者自己观察一下),说明商式是a 、b 、c 、d 的三次齐次对称式.又原式对每一个字母来说,都是四次多项式,----d a c c b b a )()()(())()(c d b d a --对每一个字母来说,都是三次多项式,所以商式对每个字母来说,是一次多项式,因此,商式的形式是).(dab cda bcd abc l +++由待定系数法易知L=l ,于是原式).)()()()()()((dab cda bcd abc c d b d a d a c c b b a +++------=小 结轮换式与对称式的分解通常是:首先,把它看成一个字母的多项式,用第8单元的方法导出一些因式;然后,根据轮换式的特点,导出更多的因式;最后,用待定系数法求出其余的因式.非齐次的轮换式可以先按照次数分为几个齐次轮换式的和,对每个齐次轮换式进行分解,再相加后分解.特殊的轮换式可能有比较简便的特殊的方法,不一定非用一般的方法去分解.))((3222333ca bc ab C b a C b a abc c b a ---++++=-++可以作为一个公式使用,在0=++c b a 时,.3333abc C b a =++这两个结论都有不少应用.习 题10将以下各式分解因式:1 ).()()(b a ab a c ca c b bc -+-+-2 .2222222abc ab b a ca a c bc c b ++++++3 .2222222abc bc c b ac c a ab b a -++-+-4 ).()()(222222b a c a C b c b a -+-+-5 .)(3333z y x z y x ---++6 .))(())(())((222b a b a a c a c c b c b +-++-++-7 ).())()(())()((b a a c b a c b a c c b a c b a c b -+-++--+-++--)(b a c +-).(b a c -+8 .4)()()(222xyz y x z x z y z y x -+++++9 ).)(()()()(222b a c a c b c b a c b a c b a c b a -+-+--++-++-+).(c b a -+ 10 ).)(()()()(222b a c a c b c b a c b a c b a c b a -+-++-++-++-+).(c b a -+11 ).())(())((a c b c a c b c b a b c b a b a c a -++-+-++-+-+)()(a c b b a c -++-+ ).)((c b a b a c -+-+12 ).)(())(())((5333b c a c c a b c b b c a b a a abc C b a ---------+++ 13 ).()()(333b a ab a c ca C b bc C b a ++++++++14 +--+-++-++-+))((2)2()2()2(22222c a b a c b a c b a c b a c b a ))((222a b c b -- ).)((222b c a C --+15 .1333-++ab b a16 .8)1(1827)1(2332+++-+y x y x 17 .)()()(333333bx ay C az cx b cy bz a -+-+-18 .)()()(333b a c a c b c b a -+-+-19 .))(())(())((333b a b a a c a c c b c b +-++-++-20 )()()()()(222222222c b a c b a abc b a c a c b c b a +++++++++++).(ca bc ab ++ 21 ).()()(444b a c a c b c b a -+-+-22 ).()()(222222b a b a a c a c c b c b -+-+- 23 ).()()(444444b a c a c b c b a -+-+-24 .)(555b a b a --+25 .)(5555z y x z y x ---++26 .)()()()(5555c b a b a C a c b c b a -+--+--+-++ 27 .)()()(323232y x z x z y z y x -+-+-28 .))(())(())((444b a b a a c a c c b c b +-++-++- 29 ).)(())()(())()((222b c a c c a c a b c b b c b c a b a a +++-+++-++).(b a -30 ++++-++-++-+)()()()(222232323C b a abc c b a c b a c b a c b a ab c b a -++222( ).)()()(c b a b a c a c b ca bc -+-+-+--31 ).()()(224224224b a c a c b c b a -+-+-32 ).()()(555b a c a c b c b a -+-+- 33 .)()()(555b a c a c b c b a -+-+-34 .)2()2()()(4222322b a b a b a b ab a ++--++35 .)(777y x y x +-+36 ).()()(333333b a b a a c a c c b c b -+-+- 37 ).()()(663663663y x z x z y z y x -+-+-38 ).)(())()(())()((333b a a d c c a a d d c b b d d c c b a --+-------3)(d d b --)(b a - ).)((a c c b --习题答案。

对称式与轮换对称式.doc

对称式与轮换对称式.doc

八年级实验班竞赛专题-------对称式与轮换对称式1. 基本概念【定义1】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。

例如,222x y x y xy x y z xy yz zx xy++++++,,,,都是对称式。

如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。

由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。

根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:222()()()a x y z b xy yz zx c x y z d +++++++++【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。

由定义2知,n 元多项式12()n f x x x ,,,是r 次齐次多项式,当且仅当对任意实数t 有 1212()()r n n f tx tx tx t f x x x =,,,,,,。

例如,含三个字母的三元三次齐对称式为:333222222()()a x y z b x y x z y x y z z x z y cxyz +++++++++。

【定义3】一个n 元代数式12()n f x x x ,,,,如果交换任意两个字母的位置后,代数式均改变符号,即对于任意的i j ,()1i j n ≤<≤,都有 11()()i j n j i n f x x x x f x x x x =-,,,,,,,,,,,,那么就称这个代数式为n 元交代式。

因式分解的高级方法(解析版)

因式分解的高级方法(解析版)

因式分解的高级方法一.双十字相乘法1.双十字相乘法原理计算()()22235316731385x y x y x xy y x y -++-=--++-.从计算过程可以发现,乘积中的二次项22673x xy y --只和乘式中的一次项有关,而与常数项无关;乘积中的一次项138x y +,只和乘式中的一次项及常数项有关系;乘积中的常数项,只和乘式中的常数项有关系。

2.所以运用双十字乘法对22Ax Bxy Cy Dx Ey F +++++型的多项式分解因式的步骤: (1)用十字相乘法分解前三项组成的二次三项式;(2)在这个十字相乘图右边再画一个十字,把常数项分解为两个因数,填在第二个十字的右端,使这两个因数在第二个十字中交叉之积之和,等于原式中含y 的一次项的系数E ,同是还必须与第一个十字中左列的两个因数交叉相乘,使其交叉之积之和等于原式中含x 的一次项的系数D . 二.对称式与轮换对称式【定义1】一个n 元代数式12()n f x x x g g g ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =g g g g g g g g g g g g g g g g g g ,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。

例如,222x yx y xy x y z xy yz zx xy++++++,,,,都是对称式。

如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。

由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。

轮换对称式因式分解对称轮换式

轮换对称式因式分解对称轮换式

轮换对称式因式分解对称轮换式对称多项式和轮换多项式的因式分解【定义1】一个n元代数式,如果交换任意两个字母的位置后,代数式不变,那么,就称这个代数式为n元对称式,简称对称式。

多项式中的任意两个字母互换,多项式保持不变例如,x y,xyx y,x2 y2 z2,xy y z z x都是对称式。

xy由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式中,若有ax项,则必有ay3,az3项;若有bx2y项,则必有bxz,by2z,by2x,bz2x,bz2y 项,这些项叫做对称式的同形项,同形项的系数都相同。

【定义2】一个n元代数式中的所有字母顺次轮换(如x y,y z,z,... x)后,代数式保持不变,那么称这个代数式为n元轮换对称式,简称轮换式。

显然,对称式一定是轮换式,但轮换式不一定是对称式。

例如,a(x2 y2 z2)是对称式也是轮换式;b(x2y y2z z2x)是轮换式,但不是对称式。

对称式、轮换式之间有如下性质:(1)两个同字母的对称式的和、差、积、商仍是对称式;(2)两个同字母的轮换式的和、差、积、商是轮换式;齐次(各项的次数均等于同一个常数r)对称多项式的一般形式:(1)二元齐次对称多项式一次:a(x y),二次:a(x2 y2) b xy;三次:a(x3 y3) b xy(x y)(2)三元齐次对称多项式一次:a(x y z);二次:a(x2 y2 z2) b(xy y z z x)333222x(y z) y(z x) z(x y) 三次:a(x y z) b c xyz 322.分解因式(1)f(x,y) (x x y y) 4xy(x y)3(3)f(x,y,z) (x y) y z z x3322222(4)f(x,y,z) x y y z z x x y z x yz(5)f(x,y,z) x4 y z y4 z x z4 x y333(6)f(x,y,z) x y z x y z333222222(7)f(x,y,z) x y z x y z y z x z x y2xyz 3(8)f(x,y,z) x2y x y2 x2z x z2 y2z y z2 3xyz222333(9)f(x,y,z) x y z y z x z x y x y z2xyz(10)f(a,b,c,d) b cd c da d ab a bc b c a d c d a b d b a c2练习答案与提示:1.5(x y)(y z)(z x)(x2 y2 z2 x y y z z x)2.(1)可设f k(x2 A xy y2)(x2 B xy y2),可求得k 1,A B 1(2)可设f kxyz(x y z),可求出k 12(3)可设f k(x y)(y z)(z x),可求出k 3(4)可设f k(x y)(y z)(z x),可求出k 1222(5)f (x y)(y z)(z x) A(x y z) B(xy y z z x) ,可求出A B 1(6)3(x y)(y z)(z x)(7)(x y z)(y z x)(z x y)(8)(x y z)(xy y z z x)(9)(x y z)(y z x)(z x y)(10)当a b c d时,f 0,∴f有abcd的因式,可设2222f abcd A(a b c d) B(ab b c c d d a a c b d) ,,B 2,∴f abcd(a b c d) 可求得A 12百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆。

初二对称式和轮换对称式分解因式题

初二对称式和轮换对称式分解因式题

初二对称式和轮换对称式分解因式题①(a+b+c)^5-a^5-b^5-c^5②8(a+b+c)^3-(b+c)^3-(c+a)^3-(a+b)^3③x^2(y+z)+y^2(z+x)+z^2(x+y)-(x^3+y^3+z^3)-2xyz先说明一下,这三题比较难,省略了一些过程,请你自己补充完整.(1) 分析:将原式看成X的多项式,可知当X=-Y时,原式=(-Y+Y+Z)^5-(-Y)^5-Y^5-Z^5=0所以原式有因式(X+Y),同理原式还有因式(Y+Z),(Z+X)设原式=(X+Y)(Y+Z)(Z+X)[K(X^2+Y^2+Z^2)+T(XY+YZ+ZX)]令X=1,Y=1,Z=0,代入得30=2(2K+T);令X=1,Y=-1,Z=0,代入得-30=-2(5K-2T)解得K=5,T=5所以原式=5(X+Y)(Y+Z)(Z+X)(X^2+Y^2+Z^2+XY+YZ+ZX)2) 分析设原式=[(2A+2B+2C)^3-(B+C)^3]-[(C+A)^3+(A+B)^3]然后利用立方差和立方和公式展开,并令整理后的式子=(2A+B+C)(M-N)其中由轮换多项式可确定(M-N)中含有(A+2B+C),(A+B+2C)比较系数的原式=3(2A+B+C) (A+2B+C)(A+B+2C)(3)分析设X=Y+Z,则有原式=(X+Y)^3+Y^2(2Z+Y)+Z^2(2Y+Z)-[(Y+Z)^3+Y^3+Z^3]-2(Y+Z)YZ=(Y+Z)^3+2Y^2Z+Y^3+2YZ^2+Z^3-(Y+Z)^3-Y^3-Z^3-2Y^2Z-2YZ^2=0所以原式有因式(Y+Z-X),同理有因式(Z+X-Y),(X+Y-Z)设原式=K(Y+Z-X)(X+Y-Z)(Z+X-Y)其中K为待定系数,比较等式两边XYZ项的系数右=K(1-1+1-1-1-1)=-2K左=-2所以解得K=1所以原式=(Y+Z-X)(X+Y-Z)(Z+X-Y)①(a+b+c)^5-a^5-b^5-c^5=[-a^4×(b-c)-b^4 ×(c-a)-c^4 ×(a-b)]×(-5)=-5(a-b)(b-c)(c-a)(a^2+b^2+c^2+ab+bc+ca)②8(a+b+c)^3-(b+c)^3-(c+a)^3-(a+b)^3=(2a+2b+2c)^3-(b+c)^3-(c+a)^3-(a+b)^3…………③x^2(y+z)+y^2(z+x)+z^2(x+y)-(x^3+y^3+z^3)-2xyz ②③可以参考第①题a+b+c)^5-a^5-b^5-c^5=[-a^4×(b-c)-b^4 ×(c-a)-c^4 ×(a-b)]×(-5)=-5(a-b)(b-c)(c-a)(a^2+b^2+c^2+ab+bc+ca)②8(a+b+c)^3-(b+c)^3-(c+a)^3-(a+b)^3=(2a+2b+2c)^3-(b+c)^3-(c+a)^3-(a+b)^3…………③x^2(y+z)+y^2(z+x)+z^2(x+y)-(x^3+y^3+z^3)-2xyz 依此类推。

对称式、交代式、齐次式、轮换式在初中数学中的应用

对称式、交代式、齐次式、轮换式在初中数学中的应用

对称式㊁交代式㊁齐次式㊁轮换式在初中数学中的应用杨龙田(安徽省合肥市新东方外语培训学校㊀230000)摘㊀要:掌握对称式㊁交代式㊁齐次式㊁轮换式在七年级数学中的整式乘法㊁因式分解㊁分式中的应用技巧ꎬ使得解这类题更加简便.给出若干用对称式㊁交代式㊁齐次式㊁轮换式解不等式ꎬ意在锻炼思维.关键词:对称式ꎻ交代式ꎻ齐次式ꎻ轮换式ꎻ初一数学ꎻ解题技巧中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)17-0005-03收稿日期:2020-03-15作者简介:杨龙田(1993.8-)ꎬ男ꎬ安徽省六安人ꎬ本科ꎬ从事初中数学教学研究.㊀㊀一㊁基础概念说明1.对称式一个n元代数式如果交换任意两个字母的位置后ꎬ代数式不变ꎬ那么ꎬ就称这个代数式为n元对称式ꎬ简称对称式.例如:x+yꎬxyꎬx+yxyꎬx2+y2+z2ꎬxy+yz+zx都是对称式.2.齐次式一个n元多项式的各项的次数均等于同一个常数rꎬ那么称这个多项式为n元r次齐次多项式.例如ꎬ含三个字母的三元一次齐对称式为:A(x+y+z)ꎻ含三个字母的三元二次齐对称式为:A(x2+y2+z2)+b(xy+yz+zx)ꎻ含三个字母的三元三次齐对称式为:a(x3+y3+z3)+b(x2y+x2z+y2x+y2z+z2x+z2y)+cxyz.3.交代式(多见于因式分解)一个n元代数式如果交换任意两个字母的位置后ꎬ代数式均改变符号ꎬ那么就称这个代数式为n元交代式.例如ꎬx-yꎬ(x-y)(y-z)(z-x)ꎬx-yx+y均是交代式.4.轮换式一个多项式含有x㊁y㊁zꎬ如果用x替换yꎬy替换zꎬz替换xꎬ得到的代数式与原来的代数式还相等ꎬ那么称这个代数式为轮换对称式ꎬ简称轮换式.显然ꎬ对称式一定是轮换式ꎬ但轮换式不一定是对称式.例如ꎬa(x2+y2+z2)是对称式也是轮换式ꎻb(x2y+y2z+z2x)是轮换式ꎬ但不是对称式.㊀㊀二㊁运用示例对称式㊁交代式㊁齐次式㊁轮换式在初中数学中的应用主要是涉及整式乘法㊁因式分解㊁分式这三个模块.掌握对称式㊁交代式㊁齐次式㊁轮换式在七年级数学中的整式乘法㊁因式分解㊁分式ꎬ使得解这类题更加简便.在有关不等式中的应用属于较高要求.1.在整式乘法中的运用例1计算:a+b+c()3.分析㊀a+b+c()3是一个三次齐次的对称式ꎬ则展开式是含字母aꎬbꎬc的三次齐次的对称式ꎬ其同型式的系数相等ꎬ可用待定系数法.解㊀设(a+b+c)3=m(a3+b3+c3)+n(a2b+a2c+b2c+b2a+c2a+c2b)+pabc(m㊁n㊁p是待定系数).令a=1ꎬb=0ꎬc=0.比较左右两边系数得m=1ꎻ令a=1ꎬb=1ꎬc=0比较左右两边系数得2m+2n=8ꎻ令a=1ꎬb=1ꎬc=1比较左右两边系数得3m+6n+p=27.点评㊀这道题如果使用整式乘法法则计算ꎬ会比较复杂ꎬ但是在掌握了齐次式的概念ꎬ就能知道该式子展开是什么类型ꎬ不能确定的就是系数ꎬ因此利用待定系数法ꎬ就可快速求得结果.例2㊀计算(xy+yz+zx)(1x+1y+1z)-xyz(1x2+1y2+1z2).分析㊀ȵ(xy+yz+zx)(1x+1y+1z)是关于xꎬyꎬz的轮换式ꎬ在乘法展开时ꎬ只要用xy分别乘以1xꎬ1yꎬ1z连同它的同型式一齐写下.解㊀原式=(y+x+xyz)+(z+x+xzy)+(x+y+xyz)-(xyz+xzy+xyz)=2x+2y+2z.点评㊀两个对称式(轮换式)的和ꎬ差ꎬ积ꎬ商(除式不为零)ꎬ仍然是对称式(轮换式).52.在因式分解中的运用由前面的基本概念ꎬ类似于x-yꎬ(x-y)(y-z)(z-x)ꎬx-yx+y均是交代式.基本规律:两个对称式(轮换式)的和ꎬ差ꎬ积ꎬ商(除式不为零)ꎬ仍然是对称式(轮换式).故:轮换式的因式分解结果仍是轮换式ꎬ交代式的因式分解结果一般是交代式和轮换式的乘积.交代式一般仅在因式分解当中有所考察.例3㊀分解因式:(b-c)3+(c-a)3+(a-b)3.分析㊀原式多项式是轮换式ꎬ则因式分解的结果还是一个轮换式.利用因式定理可发现ꎬ当a=b时ꎬ多项式值为零ꎬ因此ꎬ分解过后的式子肯定含有a-bꎬ则同时含有b-c和c-aꎬ这时候只要确定系数即可.解㊀设(b-c)3+(c-a)3+(a-b)3=k(a-b)(b-c)(c-a)ꎬ令a=2ꎬb=1ꎬc=a得k=3.故:(b-c)3+(c-a)3+(a-b)3=3(a-b)(b-c)(c-a).点评㊀这道题关键点是运用因式定理ꎬ但是对称式㊁交代式㊁齐次式㊁轮换式的知识会在当中起到辅助的作用.另外ꎬ要注意的是ꎬ这道题分解的结果并不是简单的(a-b)(b-c)(c-a)相乘ꎬ前面还有系数.变式㊀因式分解:a3(b-c)+b3(c-a)+c3(a-b).解㊀ȵ当a=b时ꎬa3(b-c)+b3(c-a)+c3(a-b)=0ꎬʑ有因式a-b及其同型式b-cꎬc-a.ȵ原式是四次齐次轮换式ꎬ除以三次齐次轮换式(a-b)(b-c)(c-a)ꎬ可得一次齐次的轮换式a+b+c.用待定系数法:得a3(b-c)+b3(c-a)+c3(a-b)=-(a+b+c)(a-b)(b-c)(c-a).例4㊀因式分解:x3-y3.分析㊀x3-y3是一个三次齐次交代式ꎬ则因式分解的结果是奇数个交代式与若干个对称式相乘.而利用因式定理可知ꎬx3-y3因式分解的结果含有一个x-yꎬ剩下的就是一个二次对称式了ꎬ设该二次对称式为m(x2+y2)=kxyꎬ易知m=1ꎬ只要确定k即可.解㊀设x3-y3=(x-y)(x2+kxy+y2)ꎬ当x=1ꎬy=-1时ꎬ解得k=1ꎬ故x3-y3=(x-y)(x2+xy+y2).点评㊀x3-y3是一个交代式ꎬ则x3-y3的分解结果会含有交代式和轮换式ꎬ当x=y时ꎬ原代数式为0ꎬ故x3-y3含有因式x-yꎬ这个刚好是交代式ꎬ剩下一个次数是2的轮换式.例5㊀因式分解:x3+y3+z3-3xyz.分析㊀x3+y3+z3-3xyz是一个对称式ꎬ当x+y+z=0时ꎬ原式为0ꎬ故x3+y3+z3-3xyz因式分解含有x+y+zꎬ而x3+y3+z3是一个三次齐次轮换式ꎬ则分解后剩下的部分是二次齐次轮换式ꎬ可设为:A(x2+y2+z2)+B(xy+yz+zx).解㊀x3+y3+z3-3xyz=(x+y+z)[A(x2+y2+z2)+B(xy+yz+zx)]ꎬ利用待定系数法求得A=1ꎬB=-1.故x3+y3+z3-3xyz=(x+y+z)(x2+y2+z2-xy-yz-zx).点评㊀一次齐次的轮换式形如:A(x+y+z)ꎬ二次齐次的轮换式形如:A(x2+y2+z2)+B(xy+yz+zx).3.在分式中的运用对称式㊁交代式㊁齐次式㊁轮换式在此模块中的核心解题技巧是:(1)若含有x㊁y㊁z的代数式是对称式ꎬ则在解题中可设xɤyɤzꎻ(2)若含有x㊁y㊁z的代数式是轮换式ꎬ且xꎬy满足性质pꎬ则xꎬzꎻyꎬz也满足性质pꎻ例6㊀已知a㊁b㊁c是互不相等的正整数时ꎬ求证:1-a+b+cabcȡ0.分析㊀1-a+b+cabc=12-1ab+13-1ac+16-1bc.由于a+b+cabc是一个对称式ꎬ故设1ɤa<b<cꎬ当a=1ꎬb=2ꎬc=3取极端情况.这时即可证明1-a+b+cabcȡ0.解㊀1-a+b+cabc=12-1ab+13-1ac+16-1bc.设1ɤa<b<cꎬ则12-1abȡ0ꎬ13-1acȡ0ꎬ16-1bcȡ0ꎬ则1-a+b+cabcȡ0.点评㊀这题关键点是在于明白a+b+cabc是一个对称式ꎬ进而设1ɤa<b<cꎬ故对称式的相关概念及运用在此类题目解题过程中起到关键作用.例7㊀已知实数a㊁b㊁c满足abc=1ꎬa+b+c=4ꎬaa2-3a-1+bb2-3b-1+cc2-3c-1=1ꎬ求a2+b2-c2的值.分析㊀题目当中出现的所有式子都是对称式ꎬ因此这道题解题过程中ꎬ必然对某种相似的部分做同种处理ꎬ例如若对aa2-3a-1进行变形ꎬ必然要同时对bb2-3b-1㊁cc2-3c-1进行相同形式变形ꎬ三式综合ꎬ可得到某种结果.一般情况下ꎬ具体如何变形没有定论ꎬ还是要进行尝试.当了解对称式㊁交代式㊁齐次式㊁轮换式的基本概念和性质时ꎬ它能提供的方向就是某些相同部分使用同一种变形方式.解㊀由题得:1a=-bcꎬa=4-b-cꎬ对于aa2-3a-1=1a-3-1a=1bc-b-c+1=1(b-1)(c-1).类似的:bb2-3b-1=1(c-1)(a-1)ꎬcc2-3c-1=1(a-1)(b-1).6三式相加得:aa2-3a-1+bb2-3b-1+cc2-3c-1=1(b-1)(c-1)+1(c-1)(a-1)+1(a-1)(b-1)=a+b+c-3(a-1)(b-1)(c-1)=1(a-1)(b-1)(c-1)=1.所以:(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1=1ꎬ得:ab+bc+ca=1ꎬ所以:a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=14.点评㊀这道题难度大ꎬ对称式㊁交代式㊁齐次式㊁轮换式的存在提供了一个解题方向:对三个式子进行相同的处理.这就是对称式㊁交代式㊁齐次式㊁轮换式存在的意义.例8㊀已知:1x+1y+z=12ꎬ1y+1z+x=13ꎬ1z+1x+y=14ꎬ求2x+3y+4z的值.分析㊀这道题条件中的代数式是三个轮换式ꎬ而且条件是三个等式ꎬ这里处理的方式即是对三个等式进行相同的变化.解㊀1x+1y+z=x+y+zx(y+z)=12⇒2x=y+zx+y+z.类似的:3y=z+xx+y+zꎬ4z=x+yx+y+zꎬ三式相加得:2x+3y+4z=2.点评㊀该题在解题过程中ꎬ条件中三个等式都进行了同种变化ꎬ变化时是在考虑如何凑出2x+3y+4zꎬ最后再将三个式子进行相加ꎬ即可得出最终结果.分式这块很多题都有这类特点.例9㊀已知aba+b=115ꎬbcb+c=117ꎬcac+a=116ꎬ求abcab+bc+ac的值.分析㊀典型的轮换式ꎬ对条件的三个式子同时取倒数即可.解㊀由aba+b=115可得:a+bab=1a+1b=15ꎬ同理:1b+1c=17ꎬ1a+1c=16.三式相加得:1a+1b+1c=24ꎬ故abcab+bc+ac=124.点评㊀此题对于条件的变化方式还是相同:取倒数.变化后的式子依然是相加得到所需结果.例10㊀设x㊁y㊁z是三个互不相等的数ꎬ且x+1y=y+1z=z+1xꎬ则xyz=.分析㊀条件是一个连等轮换式ꎬ一般这种式子的处理方式是:转化成x+1y=y+1z㊁x+1y=z+1x㊁y+1z=z+1xꎬ对这三个式子进行同种变化ꎬ再把得到三个式子相乘或者相加.解㊀由x+1y=y+1z得:zy=y-zx-y.类似的:zx=z-xy-zꎬxy=x-yz-x.三式相乘得:x2y2z2=1ꎬ故xyz=ʃ1.点评㊀此题条件是连等式ꎬ解决方式则是将连等式转化成三个等式.前提条件是准备认识到题目条件给出的是轮换式.难点在于三个等式的变化方式.因此ꎬ在理解 轮换式 的基础上ꎬ还是要进行一些尝试ꎬ才能得到最终的解题方式.4.在有关不等式中的应用例11㊀(2019高考数学全国1卷第23题[选修4-5:不等式选讲])已知a㊁b㊁c为正数ꎬ且满足abc=1.证明:(1)1a+1b+1cɤa2+b2+c2ꎻ(2)(a+b)3+(b+c)3+(c+a)3ȡ24.分析㊀第(1)问是一个明显的对称式ꎬ第二问是一个明显的轮换式.第一问只要将分子1换成abcꎬ然后移项配方就可以做出来ꎻ第2问要用到均值不等式.解㊀(1)⇐abca+abcb+abccɤa2+b2+c2⇐a2+b2+c2-ab-ac-bcȡ0⇐12[(a-b)2+(a-c)2+(b-c)2]ȡ0ꎬ则原不等式成立.(2)(a+b)3+(b+c)3+(c+a)3ȡ3(a+b)(b+c)(c+a)ȡ3 2ab 2bc 2ac=24.点评㊀对称式㊁交代式㊁齐次式㊁轮换式给出了一些解题方向ꎬ第1问处理方式ꎬ第二问部分处理方式.但是重要的还是课内的基础知识ꎬ对称式㊁交代式㊁齐次式㊁轮换式能算得上 锦上添花 .第2问要用到均值不等式的延伸:a3+b3+c3ȡ3abc.以上例题还存在片面性ꎬ对称式㊁交代式㊁齐次式㊁轮换式一般出现在竞赛相关的知识当中ꎬ学习这个可以锻炼思维ꎬ能够学会从不同角度解决问题ꎬ提升思维能力㊁解题能力.㊀㊀参考文献:[1]管皓ꎬ秦小林ꎬ饶永生等.动态数学数字资源开放平台的研究与设计[J].哈尔滨工业大学学报ꎬ2019ꎬ51(5):14-22.[2]何苗ꎬ孙蓓蓓.识别动力减振镗杆主系统等效参数的数学计算方法[J].振动与冲击ꎬ2019ꎬ38(6):194-198ꎬ244.[责任编辑:李㊀璟]7。

7年级因式分解第四讲

7年级因式分解第四讲

故原式= ( x y z)( xy yz zx) 奥巴马老师语录:特殊问题特殊对待,并非每道题都需要用一般方法来解决。
【例 7】(2012 某重点高中预录取)因式分解:
( x a)3 (b c) ( x b)3 (c a) ( x c)3 (a b)
奥巴马老师总结: 1. 轮换对称式因式分解的步骤:猜,轮,补,待。 2. 拓展公式 a3 b3 c3 3abc (a b c)(a2 b2 c2 ab bc ac) 当 a b c 0 时,特别的有 a3 b3 c3 3abc
【课后作业】 【练习 1】因式分解: (a b)3 (b c)3 (c a)3 【解析】原式= 3(a b)(b c)(c a)
1.

猜因式,即试根法。常见试根有:
x0 x y / x y x y z / x y z
根据性质 3 若含有因式 ( x y) ,则必含 ( y z)( z x) 次数 缺 0 次 缺1次 缺2次 缺3次
3 3 3
2.
轮 补 待
补k 补 k ( x y z) 补 k1 ( x2 y 2 z 2 ) k2 ( xy yz zx) 补
【例3】
因式分解: a2 (b c) b2 (c a) c2 (a b) a3 b3 c3 2abc
【解析】当 a=b+c 时,原式= a3 b3 c3 a3 b3 c3 0 设原式= k (b c a)(c a b)(a b c) 令 a 0, b 0, c 1,解得 k=-1 故原式= (b c a)(c a b)(a b c)

轮换对称式

轮换对称式

一.定义在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式.例如:代数式x+y , xy , x3+y3+z3-3xyz,x5+y5+xy, 都是对称式.其中x+y 和xy 叫做含两个变量的基本对称式.如果把一个多项式的每两个字母依次互换后,多项式不变,这种多项式叫对称多项式。

如 是一个二元对称式. (x-1)(y-1)= xy-(x+y)+1 (x+1)(y+1)= xy+(x+y)+1例题 求方程x+y=xy 的整数解。

分析 这是一道求不定方程解的题目,当然x 与y 交换位置后,原等式不变,可考虑移项分解因式。

解: ∵ x+y=xy∴ (x-1)(y-1)=1.解之,得 x-1=1,y-1=1;或 x-1=-1, y-1=-1.∴ x=2 y=2或 x=0 y=0关于x 、y 、z 三个变量的多项式,如果对式子中变量按某种次序轮换后(例如把x 换成 y , 把y 换成 z , 把z 换成 x ),所得的式子仍和原式相同,则称这个多项式是关于x 、y 、z 的轮换对称式.简称轮换式.例如:代数式 a2(b -c)+b2(c -a)+c2(a -b),2x2y+2y2z+2z2x, , (xy+yz+zx ) , . 都是轮换式.显然,对称式一定是轮换式,而轮换式不一定是对称式.二.性质1、含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.2、对称式中,如果含有某种形式的一式,则必含有该式由两个变量交换后的一切同型式,且系数相等. 例如:在含x, y, z 的二次对称多项式中,如果含有x2项,则必同时有y2, z2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:m(x2+y2+z2)+n(xy+yz+zx) 其中m, n 是常数.3、轮换式中,如果含有某种形式的一式,则一定含有该式由变量字母循环变换后所得的一切同型式,且系数相等.例如:轮换式a 2(b -c)+b 2(c -a)+c 2(a -b)中,有因式a -b 这一项, 必有同型式b -c 和c -a 两项. 例如:轮换式分解因式:y x 11+222()2a b a ab b +=++abc c b a 1111-++111()x y z ++222222222111b a c a c b c b a -++-++-+a 2(b -c)+b 2(c -a)+c 2(a -b)=- (a -b) (b -c) (c -a)例如:轮换式a3(b -c)+b3(c -a)+c3(a -b)中,有因式a -b 这一项, 必有同型式b -c 和c -a 两项.4、两个对称式(轮换式)的和,差,积,商(除式不为零),仍然是对称式(轮换式).等也都是对称式.又如:也都是轮换式。

轮换对称式

轮换对称式

一.定义在含有多个变量的代数式f (x,y,z)中,如果变量x, y, z 任意交换两个后,代数式的值不变,则称这个代数式为绝对对称式,简称对称式.例如:代数式x+y , xy , x3+y3+z3-3xyz,x5+y5+xy, 都是对称式.其中x+y 和xy 叫做含两个变量的基本对称式.如果把一个多项式的每两个字母依次互换后,多项式不变,这种多项式叫对称多项式。

如 是一个二元对称式. (x-1)(y-1)= xy-(x+y)+1 (x+1)(y+1)= xy+(x+y)+1例题 求方程x+y=xy 的整数解。

分析 这是一道求不定方程解的题目,当然x 与y 交换位置后,原等式不变,可考虑移项分解因式。

解: ∵ x+y=xy∴ (x-1)(y-1)=1.解之,得 x-1=1,y-1=1;或 x-1=-1, y-1=-1.∴ x=2 y=2或 x=0 y=0关于x 、y 、z 三个变量的多项式,如果对式子中变量按某种次序轮换后(例如把x 换成 y , 把y 换成 z , 把z 换成 x ),所得的式子仍和原式相同,则称这个多项式是关于x 、y 、z 的轮换对称式.简称轮换式.例如:代数式 a2(b -c)+b2(c -a)+c2(a -b),2x2y+2y2z+2z2x, , (xy+yz+zx ) , . 都是轮换式.显然,对称式一定是轮换式,而轮换式不一定是对称式.二.性质1、含两个变量x 和y 的对称式,一定可用相同变量的基本对称式来表示.2、对称式中,如果含有某种形式的一式,则必含有该式由两个变量交换后的一切同型式,且系数相等. 例如:在含x, y, z 的二次对称多项式中,如果含有x2项,则必同时有y2, z2两项;如含有xy 项,则必同时有yz, zx 两项,且它们的系数,都分别相等. 故可以表示为:m(x2+y2+z2)+n(xy+yz+zx) 其中m, n 是常数.3、轮换式中,如果含有某种形式的一式,则一定含有该式由变量字母循环变换后所得的一切同型式,且系数相等.例如:轮换式a 2(b -c)+b 2(c -a)+c 2(a -b)中,有因式a -b 这一项, 必有同型式b -c 和c -a 两项. 例如:轮换式分解因式:y x 11+222()2a b a ab b +=++abc c b a 1111-++111()x y z ++222222222111b a c a c b c b a -++-++-+a 2(b -c)+b 2(c -a)+c 2(a -b)=- (a -b) (b -c) (c -a)例如:轮换式a3(b -c)+b3(c -a)+c3(a -b)中,有因式a -b 这一项, 必有同型式b -c 和c -a 两项.4、两个对称式(轮换式)的和,差,积,商(除式不为零),仍然是对称式(轮换式).等也都是对称式.又如:也都是轮换式。

轮换对称多项式因式分解

轮换对称多项式因式分解

轮换对称多项式因式分解
因式分解是数学分析的基本操作之一,它是将一个一次对称多项式分解为几个因式的乘积。

在学习数学分析时,大家都会学习如何使用因式分解来解决问题,但实际上,因式分解的
概念可以更广泛地应用于轮换对称多项式的分解。

轮换对称多项式是指多项式中出现的变量,无论其位置怎么改变,相同变量之间的顺序必
须保持不变。

例如,<a+b+c>是轮换对称多项式,其中a,b,c是变量,a、b、c之间的顺序可以改变,例如b+c+a也是轮换对称多项式,两者具有相同的系数。

在轮换对称多项式中,因式分解首先将一个轮换对称多项式分解为几个不同的因式,然后
将每个因式与另一个特定的多项式相乘,最终完成分解。

例如,将<a+b+c>因式分解,得
到(a+b)·(b+c)·(c+a)。

轮换对称多项式的因式分解技术可以应用于多项式的分析。

它可以用来确定多项式的极限,解决带有未知变量的方程,以及计算多项式在特定条件下的结果。

因此,因式分解在轮换
对称多项式中,也能够给数学题目带来更多帮助。

总之,因式分解是一种有用的数学工具,也是轮换对称多项式的分解的重要技术。

无论是
求解多项式的极限,解决特定方程,或是计算出某些多项式的结果,因式分解都能帮助我
们更好地完成任务。

奥数-因式分解-3师

奥数-因式分解-3师

因式分解3:对称式、轮换式、及应用一、对称式和轮换对称式对称式和轮换对称式是特殊的代数式,根据其结构对称的特点,可以得到对称式和轮换对称式的一些特殊性质,利用这些性质,可以简便地解决有关对称的问题.(1) (完全)对称式如果把一个代数式中的字母对调,所得的代数式和原来的代数式恒等,那么就说原来的代数式关于这些字母呈对称,原来的代数式就是关于这些字母的对称式.例如,a b c ++,222x xy y ++,1ab,3333a b c abc ++-等都是对称式,但a b c --、1x y -、23a b c ++就不是对称式.(2) 轮换对称式把一个代数式里的字母按照某个秩序排列,然后依次把第一个字母换成第二个字母,把第二个字母换成第三个字母……把最后一个字母换成第一个字母,我们把这种变换字母的方法叫作轮换.如果通过轮换后所得到的代数式和原来的代数式恒等,那么就把原来的代数式叫作关于这些字母的轮换对称式.例如,222x y y z z x ++中将x 以y 代换,y 以z 代换,z 以x 代换,则得222y z z x x y ++,它与原式完全相同,所以222y z z x x y ++是关于x 、y 、z 的轮换对称式.(3)交代对称式:一个代数式中,如果把它所含的两个字母互换,得到的式子和原来的代数式只差一个符号,那么这个代数式就叫做关于这两个字母的交代式。

例如a b -,22a b -。

(4) 齐次轮换对称式如果轮换对称式中的各项的次数相等,那么就把这样的代数式叫作齐次轮换对称式.(5) 基本性质① 任何对称式都可以用它的基本对称式来表示.② 对称式的和、差、积、商也是对称式.③ 轮换对称式的和、差、积、商也是对称式.④ 齐次轮换对称式的和、差、积、商也是对称式.⑤ 一个m 次对称式乘一个n 次对称式,其积必为一个m n +次对称式.(6) 齐次轮换、对称式的因式分解:因式定理、待定系数法结合因式定理、待定系数法来分解因式,例如齐次轮换式()()()222a b c b c a c a b -+-+-,当a b =时,原式的值为0.根据因式定理可知:原式必有因式()a b -,同样的必有因式()b c -和()c a -,所以()()()()()()222a b c b c a c a b k a b b c c a -+-+-=---,可求得1k =-.例1 333()()()x y z y z x z x y -+-+-答案:33333333322()()()()()()()[()()]()()()()x y z y z x z x y x y z x z y zy z y y z x z zy y x zy y z y z z x x y x y z -+-+-=-+-+-=--++++=------例2 ()()ab bc ca a b c abc ++++-答案:上式中令0a b +=,则()()[()][())]0ab bc ca a b c abc ab b a c a b c abc abc abc ++++-=++++-=-=即a b +为上式中的一个因式,由轮换性知,,b c c a ++都是上式的一个因式 设()()()()()ab bc ca a b c abc k a b b c c a ++++-=+++ 待定系数法得1k =()()()()()ab bc ca a b c abc a b b c c a ++++-=+++例3 3333()x y z x y z ++---答案:上式中令0x y +=,则33333333()()0x y z x y z z x x z ++---=----=即x y +为上式中的一个因式,由轮换性知,,y z z x ++都是上式的一个因式设3333()()()()x y z x y z k x y y z z x ++---=+++待定系数法得3k =3333()3()()()x y z x y z x y y z z x ++---=+++例4 555()a b a b +--答案:法一: 55555554322344432234322322()()()()()()()[()()]()(555)5()()a b a b a b a b a b a b a a b a b ab b a b a b a a b a b ab b a b a b a b ab ab a b a ab b +--=+-+=+-+-+-+=++--+-+=+++=+++法二:555()a b a b +--分别令0,0,a b a b ===-,上式都为0,则()ab a b +为上式的因子设55522()()[()]a b a b kab a b m a b nab +--=+++ 分别令122,,,113a a a b b b =⎧==⎧⎧⎨⎨⎨==-=-⎩⎩⎩解答51k m n =⎧⎨==⎩即55522()5()()a b a b ab a b a b ab +--=+++例5 333()()()b c c a a b -+-+-=3(a-b )(b-c )(c-a )例6 3333x y z xyz ++-=(x+y+z)(x^2+y^2+z^2-xy-yz-zx);因为原式只能写出一次对称式和二次对称式的积,根据立方系数为1,用待定系数法可设(x+y+z)[x^2+y^2+z^2+k(xy+yz+zx)]例7 ()()()y z z x x y xyz ++++=(x+y+z)(xy+yz+zx) 因为原式只能写出一次对称式和二次对称式的积,根据无立方项,且其它各项系数为1,故显然为(x+y+z)(xy+yz+zx)例8 ()()a b c ab bc ca abc ++++-=(a+b )(b+c )(c+a ) 这是例7的变形,或者利用a=-b 是根例9.(2000年天津市竞赛题)分解因式:)()()(222222x z zx z y yz y x xy -+-+-解析:原式是四次轮换式,由因式定理,可知x z z y y x ---,,都是它的因式.由轮换性,它的另一个一次因式只能是z y x ++,不可能是别的形式,否则与次数为四次不符.设原式))()()((x z z y y x z y x k ---++=.令,2,1,0===z y x 解得1-=k .也可以比较等式两边同类项的系数,得出1-=k .故原式))()()((x z z y y x z y x ---++-=例10.(2005年北京市竞赛题)设c b a ,,是三角形的三边长,求证:04)()()(222333<-------++abc b a c a c b c b a c b a解析:考虑原式左边.令c b a +=,得到原式左边的代数式值为0,故c b a --是它的一个因式.由轮换对称性,b a c a c b ----,都是它的因式.因为原式左边是关于c b a ,,的三次式,故可设左边))()((b a c a c b c b a k ------=.比较两边的系数,或者设特殊值,可得1=k .所以左边))()((b a c a c b c b a ------=.由三角形两边之和大于第三边,原不等式可证.二、 因式分解的应用例1. 已知22223()()a b c a b c ++=++,求证:a b c ==例2:若n 为整数,求证:()()()222222111++=++++n n n n n n 分析:本题的证明是要把左边的代数式转化为右边的完全平方式显然要找到左边式子中符合完全平方展开试的结构式进行公式法因式分解。

(完整word版)对称式与轮换对称式

(完整word版)对称式与轮换对称式

八年级实验班竞赛专题-------对称式与轮换对称式1. 基本概念【定义1】一个n 元代数式12()n f x x x g g g ,,,,如果交换任意两个字母的位置后,代数式不变,即对于任意的i j ,(1i j n ≤<≤),都有11()()i j n j i n f x x x x f x x x x =g g g g g g g g g g g g g g g g g g ,,,,,,,,,,,,那么,就称这个代数式为n 元对称式,简称对称式。

例如,222x yx y xy x y z xy yz zx xy++++++,,,,都是对称式。

如果n 元对称式是一个多项式,那么称这个代数式为n 元对称多项式。

由定义1知,在对称式中,必包含任意交换两个字母所得的一切项,例如,在对称多项式()f x y z ,,中,若有3ax 项,则必有33ay az ,项;若有2bx y 项,则必有2bx z ,2222by z by x bz x bz y ,,,项,这些项叫做对称式的同形项,同形项的系数都相同。

根据对称多项式的定义,可以写出含n 个字母的对称多项式的一般形式,例如,含有三个字母x y z ,,的二次对称多项式的般形式是:222()()()a x y z b xy yz zx c x y z d +++++++++【定义2】如果一个n 元多项式的各项的次数均等于同一个常数r ,那么称这个多项式为n 元r 次齐次多项式。

由定义2知,n 元多项式12()n f x x x g g g ,,,是r 次齐次多项式,当且仅当对任意实数t 有1212()()r n n f tx tx tx t f x x x =g g g g g g ,,,,,,。

例如,含三个字母的三元三次齐对称式为:333222222()()a x y z b x y x z y x y z z x z y cxyz +++++++++。

初二奥数精讲——第3讲对称式的因式分解(一)

初二奥数精讲——第3讲对称式的因式分解(一)

初二奥数精讲——第3讲对称式的因式分解(一)一、知识点解析因式分解是一种重要的恒等变形,虽然它是初中阶段学习的内容,在高中阶段也有着非常广泛的应用,比如,比较大小,判断函数的单调性,证明不等式,解高次方程、超越方程等,因此,因式分解历来是“高考”和数学竞赛着重考察的热点问题。

1. 基本知识对称多项式:设A是一个多项式,如果将A中两个字母互换,得到的多项式与A恒等,则称A关于这两个字母对称。

如果多项式A关于它所含的任意两个字母都是对称的,则称A是全对称多项式,简称对称多项式。

比如,都是关于x、y对称的多项式,而只有后者才是全对称多项式。

对称多项式的一般形式为(以三次对称多项式为例):基本对称多项式:考察含有三个字母x、y、z的多项式,则x+y+z、xy+yz+zx、xyz称为基本对称多项式。

对于含有n个字母的多项式,其n个字母的和、n个字母中每取r(r=2,3,…,n)作积的和,称为n元基本对称多项式。

齐次多项式:如果多项式所有项的次数都相等,则称为齐次多项式。

比如,基本对称多项式都是齐次对称多项式。

字母的个数和次数都不超过三的齐次对称多项式具有如下形式:轮换对称多项式:设A是一个关于n个字母的多项式,如果将A 中n个字母任意排列为x1,x2,…,xn,同时将x i+1(i=1,2,…,n; x n+1=x1),得到的多项式与A恒等,则称A是轮换对称多项式。

显然,对称多项式一定是轮换对称多项式,但反之则不然。

比如,是轮换对称多项式,但不是对称多项式。

轮换对称多项式:设A是一个多项式,如果将A中两个字母互换,得到的多项式与-A恒等,则称A是关于这两个字母的交代多项式。

如果多项式A关于它所含的任意两个字母都是交代对称的,则称A是交代对称多项式,简称交代多项式。

比如,都是交代多项式。

上述一些特殊多项式具有如下一些性质:(1)任何一个对称多项式均可表示成若干基本对称多项式的和。

(2)任何两个对称多项式的和、差、积仍是对称多项式,任何两个轮换对称多项式的和、差、积仍是轮换对称多项式,任何两个齐次多项式的和、差、积仍是齐次多项式。

对称式和轮换对称式的因式分解

对称式和轮换对称式的因式分解

在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.对称式的因式分解在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.例7分解因式x4+(x+y)4+y4分析这是一个二元对称式,二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.解∵x4+y4=(x+y)4-4x3y-6x2y2-4xy2=(x+y)4-4xy(x+y)2+2x2y2.∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4=2(x+y)4-4xy(x+y)2+2x2y2=2[(x+y)4-2xy(x+y)2+(xy)2]=2[(x+y)2-xy]2-2(x2+y2+xy)2,例8分解因式a2(b-c)+b2(c-a)+c2(a-b).此题中若将式中的b换成a,c换成b,a换成c,即为c2(a-b)+a2(b-c)+b2(c-a),,原式不变,这类多项式称为关于a、b、c的轮换对称式,轮换对称式的因式分解,用因式定理及待定系数法比较简单,下面先粗略介绍一下因式定理,为了叙述方便先引入符号f(x)、f(a)如对一元多项式3x2-5x-2可记作f(x)=3x2-5x-2,f(a)即表示当x=a时多项式的值,如x=1时多项式3x2-5x-2的值为f(1)=3×12-5×1-2=-4,当x=2时多项式3x2-5x-2的值为f(2)=3×22-5×2-2=0.因式定理如果x=a时多项式f(x)的值为零,即f(a)=0,则f(x)能被x-a整除(即含有x-a之因式).如多项式f(x)=3x2-5x-2,当x=2时,f(2)=0,即f(x)含有x-2的因式,事实上f(x)=3x2-5x-2=(3x+1)(x-2).证明设f(x)=anxn+an-1xn-1+…+a1x+a0,若f(a)=0,则f(x)=f(x)-f(a)=(anxn+an-1xn-1+…+a1x+a0)=(anan+an-1an-1+…+a1a+a0)=an(xn-an)+an-1(xn-1-an-1)+…+a1(x-a),由于(x-a)|(xn-an),(x-a)|(xn-1-an-1),…,(x-a)|(x-a),∴(x-a)|f(x),对于多元多项式,在使用因式定理时可以确定一个主元,而将其它的元看成确定的数来处理.现在我们用因式定理来解例8.解这是一个含有a、b、c三个字母的三次多项式,现以a为主元,设f(a)=a2(b-c)+b2(c-a)+c2(a-b),易知当a=b和a=c时,都有f(a)=0,故a-b和a-c 是多项式的因式,而视b为主元时,同理可知b-c也是多项式的因式,而三次多项式至多有三个因式故可设a2(b-c)+b2(c-a)+c2(a-b)=k(a-b)(b-c)(c-a),其中k为待定系数,令a=0,b=1,c=-1可得k=-1.∴a2(b-c)+b2(c-a)+c2(a-b)=-(a-b)(b-c)(c-a).例9分解因式a3(b-c)+b3(c-a)+c3(a-b).分析这是一个关于a、b、c的四次齐次轮换多项式,可用因式定理分解,易知a-b,b-c,c-a是多项式的三个因式,而四次多项式还有一个因式,由轮换对称性可知这个一次因式应是a+b+c,故可设a3(b-c)+b3(c-a)+c3(a-b)=k(a-b)(b-c)(c-a)(a+b+c)(其中k为待定系数),取,a=0,b=1,c=-1可得k=-1,所以原式=-(a-b)(b-c)(c-a)(a+b+c).。

因式分解技巧——轮换式与对称式

因式分解技巧——轮换式与对称式

因式分解技巧——轮换式与对称式先来看⼏个代数式:xy, x+y, x2y+xy2, xy+yz+xz, x3+y3+z3.交换这些式⼦中的任意两个字母,式⼦不变。

我们把这样的式⼦叫做对称式。

再看⼏个式⼦:x2y+y2z+z2x, xyz, xy2+yz2+zx2.将这些式⼦中的x换成y,将y换成z, 将z换成x,即将字母做⼀个轮换,式⼦保持不变。

我们将这样的式⼦叫做轮换式。

明显地,对称式⼀定是轮换式,但轮换式未必是对称式。

另外,两个轮换式(对称式)的和、差、积、商仍然是轮换式(对称式)。

典型⽅法分解因式:x2(y−z)+y2(z−x)+z2(x−y).我们可以看到这是⼀个关于x, y, z的轮换式. 不妨把这个式⼦看作关于x的多项式。

容易看出y是多项式的⼀个根,于是x−y是⼀个因式。

由于是轮换式,y−z, z−x也是它的因式,从⽽它们的积 (x−y)(y−z)(z−x) 也是因式。

原式是三次多项式,这个乘积也是三次的,因此两者最多相差⼀个常数因数,即x2(y−z)+y2(z−x)+z2(x−y)=k(x−y)(y−z)(z−x).为确定k, 我们来⽐较两边x y项的系数,易得k=−1. 于是就有分解x2(y−z)+y2(z−x)+z2(x−y)=−(x−y)(y−z)(z−x).分解因式:a3(b−c)+b3(c−a)+c3(a−b).与上例类似可知 (a−b)(b−c)(c−a) 是它的因式。

但原式是四次的,因此我们还缺⼀个⼀次因式。

原式是轮换的,我们找到的乘积也是轮换的,所以寻求的那个⼀次因式也应该是轮换。

同时根据两者的齐次性(⽆常数项),可知那个⼀次因式形如k(a+b+c)。

利⽤之前的⽐较系数法,或者取特殊值法,可求得k=−1.即分解为 $$a3(b-c)+b3(c-a)+c^3(a-b)=-(a+b+c)(a-b)(b-c)(c-a).$$分解因式:(a+b+c)3−(b+c−a)3−(c+a−b)3−(a+b−c)3.取a=0, 得原式为 0, 于是a是⼀个因式。

对称式和轮换对称式的性质及其应用

对称式和轮换对称式的性质及其应用

●数学活动课程讲座●对称式和轮换对称式的性质及其应用祝朝富(四川省威远中学,642450) 收稿日期:2005-08-03 (本讲适合初中)对称式和轮换对称式是特殊的代数式.根据对称的特点,可以得到对称式和轮换对称式的一些特殊性质,利用这些性质,可简便地解决有关对称的问题.下面介绍对称式和轮换对称式的基本性质及其在初中数学竞赛中的应用.1 预备知识1.1 对称式如果把一个代数式中的字母对调,所得的代数式和原来的代数式恒等,那么,就说原来的代数式关于这些字母成对称.原来的代数式就是关于这些字母的对称式.1.2 轮换对称式把一个代数式里的字母按照某个秩序排列,然后依次把第一个字母换成第二个字母,把第二个字母换成第三个字母,……,把最后一个字母换成第一个字母,我们称这种变换字母的方法叫做轮换.如果通过轮换后所得的代数式与原来的代数式恒等,那么,就把原来的代数式叫做关于这些字母的轮换对称式.1.3 齐次轮换对称式如果轮换对称式中各项的次数相等,那么,就把这样的代数式叫做齐次轮换对称式.1.4 基本性质不难验证,对称式和轮换对称式具有以下性质:性质1 任何对称式都可以用它的基本对称式来表示.性质2 对称式的和、差、积、商也是对称式.性质3 轮换对称式的和、差、积、商也是轮换对称式.性质4 齐次轮换对称式的和、差、积、商也是齐次轮换对称式.性质5 一个m 次对称式乘以一个n 次对称式,其积必为一个m +n 次对称式.2 基本应用2.1 多项式乘法例1 计算(x +y +z )(xy +yz +zx ).分析:因为原式中的两个因式都是关于x 、y 、z 的轮换对称式,由性质5知,其积也是关于x 、y 、z 的轮换对称式,于是,只要把第一个因式的第一个字母乘以第二个因式,然后,按照轮换对称的规律写出其余各项即可.解:因x (xy +yz +zx )=x 2y +xyz +zx 2,所以,原式=x 2y +xyz +zx 2+y 2z +yzx +xy 2+z 2x +zxy +yz2=x 2y +zx 2+y 2z +xy 2+z 2x +yz 2+3xyz.2.2 因式分解由轮换对称式的性质可知,当一个轮换对称式有某个因式时,它一定还有关于这个因式中的变数的轮换对称式.根据这个性质,再利用因式定理和待定系数法,可以比较简便地把一个轮换对称式因式分解.例2 分解因式:(xy -1)2+(x +y -2)(x +y -2xy ).(1996,天津市初二数学竞赛决赛)分析:这是一个关于x、y的对称式,由性质1知,可以用它的基本对称式x+y和xy来表示.解:设x+y=u,xy=v,则原式=(v-1)2+(u-2)(u-2v)=v2-2v+1+u2-2u-2uv+4v=(u-v)2-2(u-v)+1=(u-v-1)2=(x+y-xy-1)2=(x-1)2(y-1)2.例3 设△ABC的三边长分别为a、b、c,且a-b 1+ab +b-c1+bc+c-a1+ca=0.则△ABC的形状一定是三角形.(1989,武汉市初二数学竞赛)分析:因为已知等式是关于a、b、c的轮换对称式,可考虑先去分母,再通过分解因式来确定a、b、c的关系.解:将原式去分母,并设其为f,得f=(a-b)(1+bc)(1+ca)+(b-c)(1+ab)·(1+ ca)+(c-a)(1+bc)(1+ab)=a(b2-c2)+b(c2-a2)+c(a2-b2)=0.当a=b时,f=0,由因式定理知f有因式a- b.又f是关于a、b、c的轮换对称式,由性质知,f还有因式b-c和c- a.于是,f有因式g=(a-b)(b-c)(c-a).由于f和g都是三次齐次轮换对称式,故f 和g之间只差一个非零常数因子,即f=k(a-b)(b-c)(c-a)=0.由此可知,a-b、b-c、c-a中至少有一个等于0,即a、b、c中至少有两个相等,则三角形至少有两条边相等.所以,三角形是等腰三角形.2.3 化简求值例4 已知x和y是正整数,且满足条件xy+x+y=71,x2y+xy2=880.求x2+y2的值.(第14届江苏省初中数学竞赛)分析:已知式和所求式都是对称式,可先利用对称式的性质将其化简,再求值.解:设x+y=u,xy=v.由已知等式得u+v=71,uv=880.由韦达定理知u、v是一元二次方程t2-71t+880=0的两个根.解此方程得t=16或t=55.所以,u=16,v=55或u=55,v=16,即 x+y=16,xy=55或x+y=55,xy=16.由第一个方程组得x2-16x+55=0,Δ=62,方程有整数根;由第二个方程组得x2-55x+16=0,Δ=2961,方程无整数根.只有x+y=16,xy=55符合题意.故x2+y2=(x+y)2-2xy=146.例5 已知xyz=1,x+y+z=2,x2+ y2+z2=16.则1xy+2z+1yz+2x+1zx+2y= .(2003,北京市中学生数学竞赛(初二决赛))分析:这是关于x、y、z的轮换对称式,根据性质1,可用它的基本对称式来表示.解:把x+y+z=2两边平方得x2+y2+z2+2(xy+yz+zx)=4.把x2+y2+z2=16代入得xy+yz+zx=-6.由x+y+z=2,得z=2-x-y.所以,1xy+2z=1xy-2x-2y+4=1(x-2)(y-2).同理,1yz+2x=1(y-2)(z-2),1zx+2y=1(z-2)(x-2).故1xy+2z+1yz+2x+1zx+2y=1(x-2)(y-2)+1(y-2)(z-2)+1(z-2)(x-2)=z -2+x-2+y-2(x-2)(y-2)(z-2)=x +y+z-6xyz-2(xy+yz+zx)+4(x+y+z)-8=2-61-2×(-6)+4×2-8=-413.2.4 证明例6 设a、b、c是互不相等的实数.求证:a4(a-b)(a-c)+b4(b-c)(b-a)+c4(c-a)(c-b)>0.(2000,太原市初中数学竞赛)解:设不等式的左边为f,通分得f=-(b-c)a4-(c-a)b4-(a-b)c4 (a-b)(b-c)(c-a).由于分子是一个5次齐次轮换对称式,分母是一个3次齐次轮换对称式,由性质5知,商式是一个2次齐次轮换对称式.故可设f=-(b-c)a4-(c-a)b4-(a-b)c4 (a-b)(b-c)(c-a)=k(a2+b2+c2)+p(ab+bc+ca).取a=0,b=1,c=2,得5k+2p=7;取a=1,b=2,c=3,得14k+11p=25.解得p=1,k=1.故f=(a2+b2+c2)+(ab+bc+ca)=12[(a+b)2+(b+c)2+(c+a)2].由于a、b、c互不相等,所以,f>0.因此,所证不等式成立.例7 设a、b是方程x2-3x+1=0的两个根,c、d是方程x2-4x+2=0的两个根.已知ab+c+d +bc+d+a+cd+a+b+da+b+c=B.求证:a2b+c+d +b2c+d+a+c2d+a+b+d2a+b+c=7B-7.(1991—1992年度广州、洛阳、福州、武汉、重庆初中数学联赛)证明:由韦达定理得a+b=3,ab=1;c+d=4,cd=2.则a+b+c+d=3+4=7.因为a2+b2=(a+b)2-2ab=7,c2+d2=(c+d)2-2cd=12,所以,a2+b2+c2+d2=19.故a2b+c+d=a2+7a-7ab+c+d=7a-a(7-a)b+c+d=7ab+c+d- a.由于上式是关于a、b、c、d轮换对称的,同理可得b2c+d+a=7bc+d+a-b,c2d+a+b=7cd+a+b-c,d2a+b+c=7da+b+c- d.故a2b+c+d+b2c+d+a+c2d+a+b+d2a+b+c=7ab+c+d+bc+d+a+cd+a+b+da+b+c-(a+b+c+d)=7B-7.注:用同样方法可证a3b+c+d+b3c+d+a +c3d+a+b+d3a+b+c=49B-68.2.5 解对称方程组解对称方程组时,可以通过对称替换把原方程组化简.例8 求方程组x3+x3y3+y3=17,x+xy+y=5的实数解.(1990,浙江省绍兴市初二数学竞赛)解:设x+y=u,xy=v,则原方程组可化为u 3+v 3-3uv =17,u +v =5.①②②3-①得uv =6.③由式②、③得u =2,v =3或u =3,v =2,即 x +y =2,xy =3或x +y =3,xy =2.由韦达定理知,这两方程组中的x 、y 是方程t 2-2t +3=0或t 2-3t +2=0的两个根.第一个方程无实根,解第二个方程得t =1或t =2.故原方程组的实数解是x 1=1,y 1=2;x 2=2,y 2=1.练习题1.已知x +y =3,x 2+y 2-xy =4.则x 4+y 4+x 3y +xy 3的值为.(第13届江苏省初中数学竞赛)(提示:设x +y =u ,xy =v.答案:36.)2.分解因式:a 2(b +c )+b 2(c +a )+c 2(a +b )-a 3-b 3-c 3-2abc.(提示:当a +b =c 时,原式=0.答案:(a +b -c )(b +c -a )(c +a -b ).)3.化简a21b-1c+b 21c-1a+c 21a-1ba1b-1c +b1c-1a+c1a-1b=.(1989,全国初中数学竞赛吉林省预选赛)(提示:先通分,设商式为k (a +b +c ).答案:a +b +c.)4.不等于0的三个数a 、b 、c 满足1a+1b+1c=1a +b +c.求证:a 、b 、c 中至少有两个互为相反数.(1999,北京市中学生数学邀请赛(初二))(提示:先通分,设f =(ab +bc +ca )(a +b +c )-abc.当a +b =0时,f =0.由此可得(a +b )(b +c )·(c +a )=0.)5.方程组x +xy +y =1,x 2+x 2y 2+y 2=17的实数解(x ,y )=.(1996,东方航空杯———上海市初中数学竞赛)(提示:设x +y =u ,xy =v.答案:x 1=3+172,y 1=3-172;x 2=3-172,y 2=3+172.)全国第六届初等数学研究学术交流会(第一轮)会议通知根据中国初等数学研究工作协调组第九次工作会议和全国第五届初等数学研究学术交流会的建议,全国第六届初等数学研究学术交流会将于2006年8月在湖北宜昌举行,由湖北大学《中学数学》编辑部和宜昌市教研中心联合承办。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.
二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.
对称式的因式分解
在一个含有若干个元的多项式中,如果任意交换两个元的位置,多项式不变,这样的多项式叫做对称多项式.
例7分解因式x4+(x+y)4+y4
分析这是一个二元对称式,二元对称式的基本对称式是x+y,xy任何二元对称多项式都可用x+y,xy表示,如x2+y2=(x+y)2-2xy,二元对称多项式的分解方法之一是:先将其用xy,x+y表示,再行分解.
解∵x4+y4
=(x+y)4-4x3y-6x2y2-4xy2
=(x+y)4-4xy(x+y)2+2x2y2.
∴原式=(x+y)4-4xy(x+y)2+2x2y2+(x+y)4
=2(x+y)4-4xy(x+y)2+2x2y2
=2[(x+y)4-2xy(x+y)2+(xy)2]
=2[(x+y)2-xy]2-2(x2+y2+xy)2,
例8分解因式a2(b-c)+b2(c-a)+c2(a-b).
此题中若将式中的b换成a,c换成b,a换成c,即为c2(a-b)+a2(b-c)+b2(c-a),,原式不变,这类多项式称为关于a、b、c的轮换对称式,轮换对称式的因式分解,用因式定理及待定系数法比较简单,下面先粗略介绍一下因式定理,为了叙述方便先引入符号f(x)、f(a)如对一元多项式3x2-5x-2可记作f(x)=3x2-5x-2,f(a)即表示当x=a时多项式的值,如x=1时多项式3x2-5x-2的值为f(1)=3×12-5×1-2=-4,当x=2时多项式3x2-5x-2的值为f(2)=3×22-5×2-2=0.
因式定理如果x=a时多项式f(x)的值为零,即f(a)=0,则f(x)能被x-a整除(即含有x-a之因式).
如多项式f(x)=3x2-5x-2,当x=2时,f(2)=0,即f(x)含有x-2的因式,事实上
f(x)=3x2-5x-2=(3x+1)(x-2).
证明设f(x)=anxn+an-1xn-1+…+a1x+a0,
若f(a)=0,则
f(x)=f(x)-f(a)
=(anxn+an-1xn-1+…+a1x+a0)
=(anan+an-1an-1+…+a1a+a0)
=an(xn-an)+an-1(xn-1-an-1)+…+a1(x-a),
由于(x-a)|(xn-an),(x-a)|(xn-1-an-1),…,(x-a)|(x-a),
∴(x-a)|f(x),
对于多元多项式,在使用因式定理时可以确定一个主元,而将其它的元看成确定的数来处理.
现在我们用因式定理来解例8.
解这是一个含有a、b、c三个字母的三次多项式,现以a为主元,设
f(a)=a2(b-c)+b2(c-a)+c2(a-b),易知当a=b和a=c时,都有f(a)=0,故a-b和a-c 是多项式的因式,而视b为主元时,同理可知b-c也是多项式的因式,而三次多项式至多有三个因式故可设a2(b-c)+b2(c-a)+c2(a-b)=k(a-b)(b-c)(c-a),其中k为待定系数,令a=0,b=1,c=-1可得k=-1.
∴a2(b-c)+b2(c-a)+c2(a-b)
=-(a-b)(b-c)(c-a).
例9分解因式a3(b-c)+b3(c-a)+c3(a-b).
分析这是一个关于a、b、c的四次齐次轮换多项式,可用因式定理分解,易知a-b,b-c,c-a是多项式的三个因式,而四次多项式还有一个因式,由轮换对称性可知这个一次因式应是a+b+c,故可设
a3(b-c)+b3(c-a)+c3(a-b)=k(a-b)(b-c)(c-a)(a+b+c)(其中k为待定系数),取,a=0,b=1,c=-1可得k=-1,所以
原式=-(a-b)(b-c)(c-a)(a+b+c).。

相关文档
最新文档