《直角三角形相似的判定》教案
三角形相似的判定数学教学教案
三角形相似的判定数学教学教案一、教学目标:1. 让学生理解三角形相似的概念,掌握三角形相似的判定方法。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容:1. 三角形相似的定义2. 三角形相似的判定方法3. 相似三角形的性质4. 实际问题中的应用三、教学重点与难点:1. 教学重点:三角形相似的判定方法,相似三角形的性质。
2. 教学难点:三角形相似的证明,实际问题中的运用。
四、教学准备:1. 教学课件2. 练习题3. 几何画板或其他绘图工具五、教学过程:1. 导入:通过复习已有知识,如平行线、相交线等,引出三角形相似的概念。
2. 新课讲解:讲解三角形相似的定义,并通过几何画板演示相似三角形的判定过程。
3. 实例分析:分析实际问题,运用三角形相似的判定方法解决问题。
4. 课堂练习:让学生独立完成练习题,巩固所学知识。
5. 总结:对本节课的内容进行总结,强调三角形相似的判定方法和性质。
6. 作业布置:布置相关作业,让学生进一步巩固三角形相似的知识。
7. 课后反思:根据学生的课堂表现和作业情况,对教学方法进行调整,以提高教学质量。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索三角形相似的判定方法。
2. 利用几何画板直观演示,帮助学生理解并掌握相似三角形的性质。
3. 设计具有梯度的练习题,让学生在实践中巩固知识。
4. 鼓励学生进行小组讨论,提高团队协作能力。
七、教学方法:1. 讲授法:讲解三角形相似的定义和判定方法。
2. 演示法:利用几何画板展示相似三角形的判定过程。
3. 案例分析法:分析实际问题,引导学生运用三角形相似的知识。
4. 小组讨论法:组织学生进行小组讨论,分享解题心得。
八、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题完成情况:检查学生作业的完成质量,评估学生对知识的掌握程度。
三角形相似的判定数学教学教案
三角形相似的判定数学教学教案一、教学目标1. 让学生理解三角形相似的概念。
2. 引导学生掌握三角形相似的判定方法。
3. 培养学生运用相似三角形解决实际问题的能力。
二、教学内容1. 三角形相似的定义。
2. 三角形相似的判定方法:AA相似定理、SAS相似定理、RHS相似定理。
3. 相似三角形的性质:对应边成比例、对应角相等。
三、教学重点与难点1. 教学重点:三角形相似的概念、判定方法及性质。
2. 教学难点:三角形相似的判定方法的灵活运用。
四、教学方法与手段1. 教学方法:讲解法、示范法、练习法、小组合作学习法。
2. 教学手段:黑板、多媒体课件、几何模型。
五、教学过程1. 导入新课:通过展示一些生活中的图片,如相似的树叶、钥匙等,引导学生发现相似现象,激发学生的学习兴趣。
2. 讲解三角形相似的概念:给出三角形相似的定义,解释相似三角形的含义。
3. 讲解三角形相似的判定方法:a. AA相似定理:若两个三角形的两边及其夹角分别相等,则这两个三角形相似。
b. SAS相似定理:若两个三角形的两边及它们夹角的夹角分别相等,则这两个三角形相似。
c. RHS相似定理:若两个三角形的斜边及夹在斜边之间的角分别相等,则这两个三角形相似。
4. 讲解相似三角形的性质:对应边成比例、对应角相等。
5. 课堂练习:布置一些有关三角形相似的判断题目,让学生独立完成,巩固所学知识。
6. 总结与拓展:对本节课的内容进行总结,提问学生有哪些实际问题可以运用相似三角形解决,引导学生思考。
7. 课后作业:布置一些有关三角形相似的练习题目,巩固所学知识。
六、教学评价1. 评价目标:检查学生对三角形相似的概念、判定方法和性质的理解及应用能力。
2. 评价方法:课堂练习、课后作业、小组讨论、课堂提问。
3. 评价内容:a. 学生能否正确理解三角形相似的定义。
b. 学生能否熟练运用AA、SAS、RHS相似定理判定三角形相似。
c. 学生能否掌握相似三角形的性质,如对应边成比例、对应角相等。
三角形相似的判定教案范文
三角形相似的判定教案一、教学目标:知识与技能:1. 学生能理解相似三角形的概念,掌握三角形相似的判定方法。
2. 学生能够运用相似三角形的性质解决实际问题。
过程与方法:1. 学生通过观察、操作、交流等活动,培养观察能力、动手能力和表达能力。
2. 学生能够运用转化思想,将复杂几何问题转化为相似三角形问题。
情感态度价值观:1. 学生培养对数学的兴趣,增强自信心,树立克服困难的勇气。
2. 学生学会合作交流,培养团队精神。
二、教学内容:1. 三角形的相似概念:学生通过观察、分析,理解相似三角形的定义。
2. 三角形相似的判定方法:学生掌握SSS、SAS、ASA、AAS四种判定方法,并能灵活运用。
3. 相似三角形的性质:学生了解相似三角形的性质,包括对应边成比例、对应角相等。
三、教学重点与难点:重点:1. 学生掌握三角形相似的判定方法。
2. 学生能够运用相似三角形的性质解决实际问题。
难点:1. 学生理解并灵活运用SSS、SAS、ASA、AAS四种判定方法。
2. 学生解决复杂几何问题,运用转化思想。
四、教学过程:1. 导入:通过展示生活中的实例,引导学生思考三角形相似的概念。
2. 新课导入:介绍三角形相似的定义,引导学生观察、分析,理解相似三角形的性质。
3. 判定方法的学习:讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题让学生动手实践。
4. 课堂练习:设计不同难度的练习题,让学生巩固所学知识。
5. 总结与拓展:总结相似三角形的判定方法,引导学生思考如何运用相似三角形解决实际问题。
五、课后作业:1. 完成课后练习题,巩固三角形相似的判定方法。
教学评价:1. 课后作业的完成情况,检验学生对知识点的掌握。
2. 课堂练习的参与度,观察学生对问题的思考和解决能力。
3. 学生对相似三角形概念的理解,以及对实际问题的运用能力。
六、教学策略与方法:1. 采用问题驱动法,引导学生通过观察、操作、思考、讨论等活动,发现规律,掌握相似三角形的判定方法。
相似三角形的判定教案
《相似三角形的判定》教案课标要求1.掌握基本事实:两条直线被一组平行线所截,所得的对应线段成比例;2.了解相似三角形的判定定理:两角分别相等的两个三角形相似、两边成比例且夹角相等的两个三角形相似、三边成比例的两个三角形相似;3.了解相似三角形判定定理的证明.教学目标知识和技能:1.了解相似三角形及相似比的概念;2.掌握平行线分线段成比例的基本事实及推论;3.掌握相似三角形判定方法:平行线法、三边法、两边夹一角法、两角法;4.进一步熟悉运用相似三角形的判定方法解决相关问题.过程和方法:类比全等三角形的判定方法探究相似三角形的判定,体会特殊和一般的关系,从而掌握相似三角形的判定方法.情感、态度和价值观:发展学生的探究能力,渗透类比思想,体会特殊和一般的关系.教学重点掌握相似三角形的概念,能运用相似三角形的判定方法判定两个三角形相似.教学难点探究三角形相似的条件,并运用相似三角形的判定定理解决问题.教学流程一、知识迁移类比相似多边形的相关知识回答下面的问题:1.对应角相等,对应边成比例的两个三角形,叫做相似三角形.2.相似三角形的对应角相等,对应边成比例.师介绍:“相似”用符号“∽”来表示,读作“相似于”,2题可以用符号表示为∵△ABC∽△DEF,∴A=∠D,∠B=∠E,∠C=∠F;.如何判断两个三角形相似呢?反过来∵A=∠D,∠B=∠E,∠C=∠F;∴△ABC∽△DEF.师介绍:△ABC和△DEF的相似比为k,△DEF和△ABC的相似比为1k.追问:当k=1,这两个三角形有怎样的关系?引出课题:如何判断两个三角形相似呢?有没有更简单的方法?回顾学习三角形全等时,我们知道,除了可以验证所有的角和边分别相等来判定两个三角形全等外,还有判定的简便方法(SSS,SAS,ASA,AAS).类似地,判定两个三角形相似时,是不是也存在简便的判定方法呢?二、探究归纳(一)平行线分线段成比例探究1:如图,任意画两条直线l1,l2,再画三条和l1,l2都相交的平行线l3,l4,l5.分别度量l3,l4,l5在l1上截得的两条线段AB ,BC和在l2上截得的两条线段DE,EF的长度,AB BC 和DEEF相等吗?任意平移l5.ABBC和DEEF还相等吗?当l3//l4//l5时,有,,,等.基本事实:两条直线被一组平行线所截,所得的对应线段成比例.迁移:将基本事实应用到三角形中,当DE//BC时,有,,,等.结论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.应用:如图AB//CD//EF,AF和BE相交于点G,AG=2,GD=1,DF=5,求BC CE的值.(二)相似三角形的判定思考:如图1,在△ABC中,DE∥BC,且DE 分别交AB,AC于点D,E,△ADE 和△ABC 有什么关系?图1 图2分析:用定义证明△ADE∽△ABC,需要具备的条件:角:∠A=∠A,∠ADE=∠B,∠AED=∠C;边:.如何证明呢?判定三角形相似的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.变式:如图2,DE∥BC,且DE 分别交BA,CA 的延长线于点D,E,△ABC 和△ADE相似吗?符号语言:∵DE//BC∴△ABC∽△ADE应用:如图,在△ABC中,DE∥BC,且AD=3,DB=2.写出图中的相似三角形,并指出其相似比.探究2:任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k 倍.度量这两个三角形的角,它们相等吗?这两个三角形相似吗?和同学交流一下,看看是否有同样的结论.在△ABC 和△A′B′C′中,如果满足,求证:△ABC ∽△A ′B ′C ′.判定三角形相似的定理一:三边成比例的两个三角形相似. 符号语言:ABC A B C '''∴∆∆∽类比:对于在△ABC 和△A ′B ′C ′中,如果,AB ACA A AB AC '=∠=∠'''',这两个三角形一定相似吗?判定三角形相似的定理二:两边成比例且夹角相等的两个三角形相似. 符号语言:,AB ACA A AB AC '=∠=∠'''' ABC A B C '''∴∆∆∽思考:对于在△ABC 和△A ′B ′C ′中,如果,AB ACB B A B AC '=∠=∠'''',这两个三角形一定相似吗?试着画画看.应用:例1根据下列条件,判断△ABC 和△A ′B ′C ′是否相似,并说明理由: (1)AB =4 cm ,BC =6 cm ,AC =8 cm ,A ′B ′=12 cm ,B ′C ′=18 cm ,A ′C ′=24 cm . (2)∠A =120°,AB =7 cm ,AC =14 cm ,∠A ′=120°,A ′B ′=3 cm ,A ′C ′=6 cm . 追问:这两个三角形的相似比是多少?练习:判断图中的两个三角形是否相似.为什么?探究3:观察两副三角尺,其中有同样两个锐角(30°和 60°,或 45°和 45°)的两个三角尺大小可能不同,它们相似吗?试着说说理由.迁移:对于在△ABC 和△A ′B ′C ′中,如果,A A B B ''∠=∠∠=∠,这两个三角形一定相似吗?判定三角形相似的定理三:两角分别相等的两个三角形相似. 符号语言:,A A B B ''∠=∠∠=∠ ABC A B C '''∴∆∆∽应用:例2如图,Rt △ABC 中,∠C =90°,AB=10,AC=8.E 是 AC 上一点,AE =5,ED ⊥AB ,垂足为 D .求 AD 的长.问题:根据三角形相似的条件,判定两个直角三角形相似有哪些方法呢?思考:我们知道,两个直角三角形全等可以用“HL ”来判定.那么,满足斜边和一条直角边成比例的两个直角三角形相似吗?判定直角三角形相似定理:斜边和一条直角边成比例的两个直角三角形相似. 练习:如图,在 Rt △ABC 中,CD 是斜边 AB 上的高,求证:(1)△ACD ∽△ABC ;(2)△CBD ∽△ABC .三、应用提高1.如图,△ABC 中,DE∥FG∥BC,找出图中所有的相似三角形.第1题图第2题图2.有一块三角形的草地,它们一条边长为25m.在图纸上,这条边长为5cm,其他两条边的长都为4cm,求其他两条边的实际长度.3.底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论.四、体验收获说一说你的收获.1.三角形相似的定义;2.平行线分线段成比例的基本事实、推论及在三角形中的运用;3.三角形相似的判定方法.五、拓展提升1.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4cm,5cm 和6cm,另一个三角形框架的一边长为2cm,它的另外两条边长应当是多少?说出你的制作方案.2.如图,△ABC 中,DE∥BC,EF∥AB,求证△ADE∽△EFC;六、课内检测1.根据下列条件,判断△ABC 和△A′B′C′是否相似,并说明理由:(1)∠A=40°,AB=8 cm,AC=15 cm,∠A′=40°,A′B′=16cm ,A′C′=30 cm.(2)AB=10 cm,BC=8 cm,AC=16 cm,A′B′=16cm ,B′C′=12.8cm ,A′C′=25.6cm.2.如果Rt△ABC 中的两条直角边分别为3和4,那么以3k和4k(k为正整数)为直角边的直角三角形一定和Rt△ABC 相似吗?为什么?七、布置作业必做题:教材42页习题27.2第2、3、7题.选做题:教材44页习题27.2第13题.附:板书设计教学反思:。
相似三角形的判定定理1教案
教学过程生:不能,必须是两个角对应相等。
教师板书相似三角形的判定数学符号表示:∵ ∠A=∠A',∠B=∠B' A∴ ΔABC ∽ ΔA'B'C'A’(两个角分别对应相等的两个三角形相似.)B C B’ C’三、巩固练习例一:如图所示,在两个直角三角形△ABC和△A′B′C′中,∠B=∠B′=90°,∠A=∠A′,判断这两个三角形是否相似.解:∵∠B=∠B′=90°(已知),∠A=∠A′(已知),∴△ABC∽△A′B′C′(两个角分别对应相等的两个三角形相似.)例二:在△ABC 中, D、E 分别是AB、 AC延长线上的点,且 DE∥BC,试说明△ABC与△ADE相似.解: ∵ DE∥BC (已知)∴∠AED=∠C(两直线平行,内错角相等),∵∠EAD=∠CAB.(对顶角)∴△ADE∽△ABC.(两组对应角分别相等的两个三角形相似.)CB'A'CBAAB CE D老师在课件上展示出习题中常见的两角相等两三角形相似的图形。
随堂练习如图,△ABC 中,DE∥BC,EF∥AB,试说明△ADE∽△EFC.解:∵DE∥BC,EF∥AB(已知),∴∠ADE=∠B=∠EFC (两直线平行同位角相等)∠AED=∠C. (两直线平行同位角相等)∴△ADE∽△EFC. (两个角分别对应相等的两个三角形相似.)通过随堂练习,使学生达到巩固提升的效果四、课堂小结1.通过本节课的学习,你有什么收获?学习方法上有什么进步?2.通过本课的学习你还有什么困惑?作业布置教材第67页练习题1、2。
《学法》相应练习题。
板书设计23.1.2成比例线段新课导入例一、二随堂练习题相似三角形的判定定理1复盘反思通过本节课的学习,学生都能掌握学习的内容,并能很好的进行运用。
但仍有个别同学存在上课开小差的现象,在今后的教学中还得加强教学的生动性,充分调动学生学习的积极主动性,让学生们产生学习的欲望。
《相似三角形的判定(第1课时)》教案
相似三角形的判定第1课时相似三角形的判定〔1〕【知识与技能】会说判定两个三角形相似的方法:两个角分别相等的两个三角形相似.会用这种方法判断两个三角形是否相似.【过程与方法】培养学生动手操作能力.【情感态度】在动手推演中感受几何的趣味性.【教学重点】相似三角形的判定定理1以及推导过程,并会用判定定理1来证明和计算.【教学难点】相似三角形的判定定理1的运用.一、情境导入,初步认识1.两个矩形一定会相似吗?为什么?2.如何判断两个三角形是否相似?根据定义:对应角相等,对应边成比例.△ABC与△A′B′C′会相似吗?为什么?是否存在判定两个三角形相似的简便方法?本节就是探索识别两个三角形相似的方法.二、思考探究,获取新知同学们观察你与你的同伴用的三角尺,及老师用的三角板,如有一个角是30°的直角三角尺,它们的大小不一样.这些三角形是相似的,我们就从平常所用的三角尺入手探索.〔1〕45°角的三角尺是等腰直角三角形,它们是相似的.〔2〕30°的三角尺,那么另一个锐角为60°,有一个直角,因此它们的三个角都相等,同学们量一量它们的对应边,是否成比例呢?这样,从直观上看,一个三角形的三个角分别与另一个三角形三个角对应相等,它们好似就会“相似〞.是这样吗?请同学们动手试一试:1.画两个三角形,使它们的三个角分别相等.画△ABC与△DEF,使∠A=∠D,∠B=∠E,∠C=∠F,在实际画图过程中,同学们画几个角相等?为什么?实际画图中,只画∠A=∠D,∠B=∠E,那么第三个角∠C与∠F一定会相等,这是根据三角形内角和为180°所确定的.2.用刻度尺量一量各边长,它们的对应边是否会成比例?与同伴交流,是否有相同结果.3.发现什么现象:发现如果一个三角形的三个角与另一个三角形的三个角对应相等,那么这两个三角形相似.4.两个矩形的四个角也都分别相等,它们为什么不会相似呢?这是由于三角形具有它特殊的性质.三角形有稳定性,而四边形有不稳定性.于是我们得到判定两个三角形相似的一个较为简便的方法:如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似,简单地说,两角对应相等,两三角形相似.同学们思考,能否再简便一些,仅有一对角对应相等的两个三角形,是否一定会相似呢?例1 如图,在两个直角三角形△ABC和△A′B′C′中,∠C=∠C′=90°,∠A=∠A′,判断这两个三角形是否相似.解:相似,因为∠C=∠C′,∠A=∠A′,根据相似三角形的判定定理1可知△A′B′C′∽△ABC.例2 在△ABC与△A′B′C′中,∠A=∠A′=50°,∠B=70°,∠B′=60°,这两个三角形相似吗?解:由三角形的内角和定理知∠C′=180°-∠A′-∠B′=180°-50°-60°=70°,∴∠C′=∠B,又∵∠A=∠A′,∴△ABC∽△A′C′B′.【教学说明】教师注意引导学生分析∠B不一定与∠B′对应.例3 如图,△ABC中,DE∥BC,EF∥AB,试说明△ADE∽△EFC.证明:∵DE∥BC,∴∠AED=∠∵EF∥AB,∴∠CEF=∠A.∴△ADE∽△EFC三、运用新知,深化理解1.△ABC中,∠ACB=90°,CD⊥AB于D,找出图中所有的相似三角形.2.△ABC中,D是AB的边上一点,过点D作一直线与AC相交于E,要使△ADE与△ABC 会相似,你怎样画这条直线?说明理由.和你的同伴交流作法是否一样.【答案】1.△ACD∽△CBD∽△ABC①过D点作DE∥BC,DE交AC于点E②以AD为一边在△ABC内部作∠ADE=∠C,另一边DE交AC于点E.【教学说明】第2题注意分类讨论.四、师生互动,课堂小结这节课你学到哪些判定三角形相似的方法?还有什么疑惑?说说看.1.布置作业:从教材相应练习和“习题”中选取.“课时作业〞局部.本课时从学生所熟悉的特殊三角板入手,通过学生动手操作探究相似三角形的判定定理1,从中感受学习几何的乐趣,从而激发学生学习兴趣,培养学生的几何推理能力.。
三角形相似的判定数学教学教案
三角形相似的判定数学教学教案一、教学目标1. 让学生理解三角形相似的概念及其性质。
2. 引导学生掌握三角形相似的判定方法。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 三角形相似的定义及性质。
2. 三角形相似的判定方法:AA相似定理、SAS相似定理、SSS相似定理。
三、教学重点与难点1. 教学重点:三角形相似的概念、性质及判定方法。
2. 教学难点:三角形相似判定方法的运用和证明。
四、教学方法与手段1. 教学方法:讲解、示范、练习、讨论。
2. 教学手段:黑板、PPT、几何模型。
五、教学过程1. 导入:通过展示一些形状相似的三角形,让学生观察并猜测它们之间的关系。
2. 新课导入:介绍三角形相似的定义及性质。
3. 判定方法讲解:讲解AA相似定理、SAS相似定理、SSS相似定理。
4. 实例演示:通过PPT展示三角形相似的判定过程,让学生理解并掌握判定方法。
5. 课堂练习:布置一些相关的练习题,让学生运用所学知识进行解答。
6. 解答与讲解:针对学生解答中的问题进行讲解,巩固知识点。
7. 课堂小结:总结本节课所学内容,强调三角形相似的判定方法及应用。
8. 作业布置:布置一些有关三角形相似的练习题,巩固所学知识。
六、教学拓展1. 引导学生思考:除了AA、SAS、SSS三种判定方法,还有其他判定三角形相似的方法吗?2. 介绍另一种判定方法:RHS相似定理(直角三角形相似定理)。
3. 通过实例让学生了解RHS相似定理的运用。
七、课堂互动1. 组织学生进行小组讨论:如何运用所学知识解决实际问题?2. 分享讨论成果:学生举例说明三角形相似在实际问题中的应用。
3. 教师点评:针对学生的分享进行点评,强调知识点在实际问题中的重要性。
八、课后反思1. 让学生回顾本节课所学内容,总结三角形相似的判定方法及应用。
2. 鼓励学生自主探索:如何运用三角形相似的知识解决更复杂的问题?3. 建议:课后查阅相关资料,了解三角形相似在实际生活中的应用。
三角形相似的判定第三课时教案
三角形相似的判定第三课时教案一、教学目标1. 知识与技能:理解三角形相似的判定方法,能够运用SSS、SAS、ASA、AAS四种判定方法判断两个三角形是否相似。
2. 过程与方法:通过小组合作、讨论交流,培养学生的合作意识与解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。
二、教学重点与难点1. 教学重点:三角形相似的判定方法。
2. 教学难点:如何运用判定方法判断两个三角形相似。
三、教学准备1. 教师准备:教材、多媒体教具、三角板。
2. 学生准备:笔记本、彩笔。
四、教学过程1. 导入新课1.1 复习上节课的内容,提问学生三角形相似的定义。
1.2 引入新课,讲解三角形相似的判定方法。
2. 自主学习2.1 学生自主学习教材,了解SSS、SAS、ASA、AAS四种判定方法。
2.2 学生尝试解答教材中的例题,巩固判定方法。
3. 合作交流3.1 学生分组讨论,分享各自的解题心得。
3.2 教师选取小组代表进行讲解,点评解题方法。
4. 课堂练习4.1 学生独立完成课堂练习题,巩固所学知识。
4.2 教师讲解答案,解析解题思路。
5. 拓展延伸5.1 学生运用判定方法,判断给出的三角形是否相似。
5.2 教师选取典型的题目进行讲解,指导学生运用判定方法。
6. 总结反馈6.1 学生总结本节课所学内容,分享自己的收获。
6.2 教师点评学生的表现,对课堂进行总结。
五、课后作业1. 完成课后练习题,巩固三角形相似的判定方法。
2. 结合生活实际,寻找三角形相似的应用实例。
六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题评价:检查学生完成的练习题,评估学生对三角形相似判定方法的掌握程度。
3. 课后作业评价:审阅学生的课后作业,了解学生对课堂内容的消化吸收情况。
七、教学反思1. 教师反思:课堂讲解是否清晰易懂,学生是否能跟上教学进度。
2. 学生反思:学习过程中是否遇到了困难,如何解决这些问题。
数学教案三角形相似的判定(优秀3篇)
数学教案三角形相似的判定(优秀3篇)知识结构本文范文为朋友们整理了3篇《数学教案三角形相似的判定》,可以帮助到您,就是本文范文我最大的乐趣哦。
角形相似的判定篇一(第3课时)一、教学目标1.使学生了解直角三角形相似定理的证明方法并会应用。
2.继续渗透和培养学生对类比数学思想的认识和理解。
3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力。
4.通过学习,了解由特殊到一般的唯物辩证法的观点。
二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是直角三角形相似定理的应用。
2.教学难点:是了解直角三角形相似判定定理的证题方法与思路。
四、课时安排3课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.我们学习了几种判定三角形相似的方法?(5种)2.叙述预备定理、判定定理1、2、3(也可用小纸条让学生默写). 其中判定定理1、2、3的证明思路是什么?(①作相似,证全等;②作全等,证相似)3.什么是“勾股定理”?什么是比例的合比性质?【讲解新课】类比判定直角三角形全等的“HL”方法,让学生试推出:直角三角形相似的判定定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
已知:如图,在∽ 中,求证:∽建议让学生自己写出“已知、求征”。
这个定理有多种证法,它同样可以采用判定定理l、2、3那样的证明思路与方法,即“作相似、证全等”或“作全等、证相似”,教材上采用了代数证法,利用代数法证明几何命题的思想方法很重要,今后我们还会遇到。
应让学生对此有所了解。
定理证明过程中的“ 都是正数,,其中都是正数”告诉学生一定不能省略,这是因为命题“若,到”是假命题(可举例说明),而命题“若,且、均为正数,则”是真命题。
例4 已知:如图,,,,当BD与、之间满足怎样的关系时∽ .解(略)教师在讲解例题时,应指出要使∽ .应有点A与C,B与D,C与B 成对应点,对应边分别是斜边和一条直角边。
直角三角形相似判定教学设计
直角三角形相似的判定教学目标:知识与技能1、使学生了解直角三角形相似定理的证明并会应用。
过程与方法1、类比证明两个直角三角形全等的方法,继续渗透和培养学生对类比思想的认识和理 解;2、通过了解定理的证明方法培养和提高学生利用已学知识证明新命题的能力。
情感、态度与价值观通过学习培养学生类比的意识,了解由特殊到一般的唯物辩证法的观点。
教学重难点:重点:直角三角形相似定理的应用。
难点:了解直角三角形相似判定定理的证明方法和思路。
教学过程:一、复习提问答:五种方法(1)定义法(2)预备定理(3)两角对应相等的两个三角形相似。
(4)两边对应成比例且夹角相等的两个三角形相似。
(5)三边对应成比例的两个三角形相似。
2.两个等腰三角形一定相似吗? 请添加适当的条件使得等腰三角形相似?3、判定两个直角三角形相似有几种方法?4、你还有其他的证明方法吗?类比直角三角形全等的判定方法HL ?提出猜想:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
已知:在Rt △ABC 和Rt △A ’B ’C ’中,∠C=∠C=90°,A ’B ’:AB=A ’C ’:AC求证:Rt △ABC ∽Rt △A ’B ’C ’证明:在线段AB 上截取AM=A'B',过点M 作ME ∥BC 与AC交于点E 。
则△AEM ∽△ACB∴AM:AB=AE:AC∵A ’B ’:AB=A ’C ’:AC 且AM=A'B∴AE:AC=A ’C ’:AC ∴AE=A ’C ’又∠C=∠C=90°∴Rt △AME ≌Rt △A ’B ’C ’∽Rt △ABCE课堂练习:1、根据下列条件判断Rt △ABC 和Rt △A ’B ’C ’是否相似,其中,∠C=∠C ’=90° ①、AC=8, BC=6 ; A'C'=4 , B'C'=3②、AB=10, AC=8 ; A'B'=15, A'C'=12③、AB=5 , AC=3 ; A'B'=15,B'C'=122、如图,在Rt △ABC 中,∠ACB=90°,CD 是边AB 上的高。
三角形相似的判定教案
三角形相似的判定教案一、教学目标1. 知识与技能:使学生掌握三角形相似的判定方法,能够运用相似三角形的性质解决实际问题。
2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
二、教学内容1. 三角形相似的定义2. 三角形相似的判定方法3. 相似三角形的性质三、教学重点与难点1. 教学重点:三角形相似的判定方法,相似三角形的性质。
2. 教学难点:三角形相似的判定方法的灵活运用。
四、教学准备1. 教具:三角板、多媒体设备。
2. 学具:学生用书、练习题。
五、教学过程1. 导入新课1.1 复习相关知识:回顾三角形的基本概念,引出三角形相似的概念。
1.2 提出问题:如何判断两个三角形是否相似?2. 自主探究2.1 学生分组讨论,尝试找出判断两个三角形相似的方法。
3. 讲解与示范3.1 教师讲解三角形相似的判定方法,结合实例进行演示。
3.2 学生跟随教师一起操作,巩固判定方法。
4. 练习与反馈4.1 学生完成练习题,检测自己对三角形相似判定的掌握程度。
4.2 教师批改练习题,及时反馈错误,引导学生纠正。
5.2 学生展示拓展题目,分享解题思路,互相学习。
6. 布置作业教师布置课后作业,巩固三角形相似的判定方法。
7. 课后反思六、教学策略1. 采用问题驱动的教学方法,引导学生主动探究三角形相似的判定方法。
2. 利用多媒体展示实例,增强学生的直观感受。
3. 组织小组讨论,培养学生团队合作精神。
4. 注重个体差异,给予不同程度的学生个性化的指导。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 练习完成情况:检查学生课后作业的完成质量,评估学生对知识点的掌握程度。
3. 小组讨论:评价学生在小组讨论中的表现,包括合作意识、沟通交流能力等。
1. 课堂纪律:要求学生按时上课,保持课堂安静,遵守课堂规则。
相似三角形的判定数学教学教案【优秀10篇】
相似三角形的判定数学教学教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!相似三角形的判定数学教学教案【优秀10篇】数学是人们认识自然、认识社会的重要工具。
数学《相似三角形的判定》第二课时教案
相似三角形的判定(二)一、教学目标1.经历两个三角形相似的探索过程,进一步发展学生的探究、交流能力.2.掌握“两角对应相等,两个三角形相似”的判定方法.3.能够运用三角形相似的条件解决简单的问题.二、重点、难点1.重点:三角形相似的判定方法3——“两角对应相等,两个三角形相似”2.难点:三角形相似的判定方法3的运用.3.难点的突破方法(1)在两个三角形中,只要满足两个对应角相等,那么这两个三角形相似,这是三角形相似中最常用的一个判定方法.(2)公共角、对顶角、同角的余角(或补角)、同弧上的圆周角都是相等的,是判别两个三角形相似的重要依据.(3)如果两个三角形是直角三角形,则只要再找到一对锐角相等即可说明这两个三角形相似.三、课堂引入1.复习提问:(1)我们已学习过哪些判定三角形相似的方法?(2)如图,△ABC中,点D在AB上,如果AC2=AD•AB,那么△ACD 与△ABC 相似吗?说说你的理由.(3)如(2)题图,△ABC 中,点D 在AB 上,如果∠ACD=∠B, 那么△ACD 与△ABC 相似吗?-—引出课题.四、例题讲解例1已知:如图,矩形ABCD 中,E 为BC 上一点,DF⊥AE 于F,若AB=4,AD=5,AE=6,求DF 的长.分析:要求的是线段DF 的长,观察图形,我们发现AB 、AD 、AE 和DF 这四条线段分别在△ABE 和△AFD 中,因此只要证明这两个三角形相似,再由相似三角形的性质可以得到这四条线段对应成比例,从而求得DF 的长.由于这两个三角形都是直角三角形,故有一对直角相等,再找出另一对角对应相等,即可用“两角对应相等,两个三角形相似”的判定方法来证明这两个三角形相似.解:略(DF=310). 五、课堂练习1.已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.2.下列说法是否正确,并说明理由.(1)有一个锐角相等的两直角三角形是相似三角形;(2)有一个角相等的两等腰三角形是相似三角形.1. 已知:如图,△ABC 的高AD 、BE交于点F .求证:FDEF BF AF .2.已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.(1)求证:AC•BC=BE•CD;(2)若CD=6,AD=3,BD=8,求⊙O的直径BE的长.教学反思。
数学《相似三角形的判定》教案
相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。
从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。
同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。
2、这一内容可分为四课时完成,本教学设计是第一课时。
3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。
教学重点:三角形相似的判定定理1的理解和应用。
教学难点:三角形相似的判定定理1的证明方法。
因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。
二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。
三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。
(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。
三角形相似的判定教案范文
三角形相似的判定教案范文一、教学目标:1. 让学生理解相似三角形的概念,掌握相似三角形的判定方法。
2. 培养学生运用相似三角形解决实际问题的能力。
3. 提高学生对数学知识的理解和运用能力,培养学生的逻辑思维能力。
二、教学内容:1. 相似三角形的定义2. 相似三角形的判定方法3. 相似三角形的性质4. 相似三角形在实际问题中的应用三、教学重点与难点:1. 重点:相似三角形的定义、判定方法和性质。
2. 难点:相似三角形在实际问题中的应用。
四、教学方法:1. 采用讲解法、示范法、练习法、讨论法等教学方法。
2. 利用多媒体课件辅助教学,提高学生的学习兴趣。
3. 组织学生进行小组合作学习,培养学生的团队精神。
五、教学过程:1. 导入新课:通过复习旧知识,引入相似三角形的概念。
2. 讲解相似三角形的定义:引导学生理解相似三角形的含义。
3. 讲解相似三角形的判定方法:a. AA相似判定法b. SSS相似判定法c. SAS相似判定法4. 讲解相似三角形的性质:引导学生掌握相似三角形的性质。
5. 练习与巩固:布置课堂练习题,让学生运用所学知识解决问题。
6. 拓展与应用:结合实际问题,让学生运用相似三角形解决实际问题。
7. 课堂小结:总结本节课所学内容,强调相似三角形的重要性质和应用。
8. 布置作业:布置课后作业,巩固所学知识。
六、教学评价:1. 通过课堂练习和课后作业,评价学生对相似三角形概念和判定方法的理解程度。
2. 观察学生在课堂讨论和小组合作中的表现,评价学生的团队协作能力和逻辑思维能力。
3. 分析学生解决实际问题的能力,评价学生对相似三角形应用的理解和运用。
七、教学反思:1. 反思教学内容安排是否合理,是否有助于学生理解相似三角形的概念和判定方法。
2. 反思教学方法是否适合学生的学习需求,是否能够激发学生的学习兴趣。
3. 反思课堂氛围和组织形式,是否有利于学生的积极参与和思考。
八、教学拓展:1. 探讨相似三角形的其他判定方法,如AAS相似判定法。
相似三角形的判定 教案
27.2.1 相似三角形的判定学习目标、重点、难点【学习目标】1.掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似).2.掌握“两组对应边的比相等且它们的夹角相等的两个三角形相似"的判定方法;掌握“两角对应相等,两个三角形相似”的判定方法.3.会运用“两个三角形相似的判定条件”和“三角形相似的预备定理"解决简单的问题.【重点难点】1.相似三角形的定义与三角形相似的预备定理.2.运用三角形相似的条件解决简单的问题.知识概览图定义及表示方法两个三角形的三组对应边的比相等两个三角形的两组对应边的比相等,并且它们的夹角相等两个三角形有两对对应角相等相似三角形的性质:对应角相等,对应边的比相等新课导引【生活链接】小明为了迎接世界中学生数学大会的召开,制作了一个如右图所示形状的花束,三边长分别是35 cm,40 cm,50 cm,小丽也想制作一个这样形状的花束,但她手中只有一根长100 cm的木条,她应该怎么制作呢?【问题探究】如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似,但是定义中条件较多,过于苛刻,你能减少定义中的条件来判断两个三角形相似吗?教材精华知识点1 相似三角形相似三角形是形状相同的三角形,它们的对应角都相等,对应边的比都相等.如图27—10所示,△ABC与△DEF的形状相同,大小不同,这两个三角形相似,所以∠A=∠D,∠B=∠E,∠C=∠F,AB BC ACDE EF DF==·拓展相似三角形的定义既是最基本的判定方法,也是最重要的性质.知识点2 相似三角形的表示方法△ABC与△DEF相似,可以写成△ABC∽△DEF,也可以写成△DEF∽△ABC,读作“△ABC 相似于△DEF”或“△DEF相似于△ABC”.拓展用“∽”这个符号表示两个图形相似时,对应的顶点应该写在对应的位置上,如图27-10所示,表示△ABC与△DEF相似,∠A的对应角是∠D,∠B的对应角是∠E,∠C的对应角是∠F,即△ABC∽△DEF,而不要写成△ABC∽△EFD,如果把△ABC写成△BAC,那么就应该记作△BAC∽△EDF,这样做的目的是为了指明对应角、对应边.相似三角形相似三角形的判定知识点3 三角形的相似比两个三角形相似,对应边的比叫做相似比.例如:若△ABC ∽△DEF ,则AB BC CA DE EF FD ==.设比值为k ,于是AB BC CA DE EF FD===k ,即△ABC 与△DEF 的相似比为k .拓展 这时△DEF 与△ABC 的相似比为1k .若BC =6,EF =8,则△ABC 与△DEF 的相似比为6384=,△DEF 与△ABC 的相似比为43。
相似三角形的判定数学教学教案(优秀6篇)
相似三角形的判定数学教学教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!相似三角形的判定数学教学教案(优秀6篇)学习可以这样来看,它是一个潜移默化、厚积薄发的过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习2,选择
下列结论中,不正确的是( )
A、有一个角为 90°的两个等腰三角形相似
B、有一个角为 60°的两个等腰三角形相似
C、有一个角为 30°的两个等腰三角形相似
D、有一个角为 100°的两个等腰三角形相似
练习3:思考
1、如图,在ΔABC 中 ,点 D、E 分别是边 AB、AC 上的点,连结 DE,利
相似三角形的判定(三)
一、教学目标
1.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程, 进一步发展学生的探究、交流能力.
2.掌握三角形相似的判定条件(AA)。
3.会运用“两个角对应相等的三角形相似”判断常见图形中的三角形相似, 并应用判定三解决简单的问题.
二、教学重点
1.相似三角形的判定三的应用。与三角形相似的预备定理及平行线平分线 段成比例定理和推论.
方法 5:相似三角形的判定定理 3:(AA)
(四)作业
B
1. P42:第 7 题
60° C
E D
2. 如图:在等边⊿ABD 中,AB=9,BC=3,∠ACE=60°,求 ED 的长。
2.认识直角三角形斜边上的高所分的两个三角形与原三角形相似
三、教学难点
1.相似三角形的判定三的证明。
2.相似三角形的判定三的应用.
3.难点的突破方法
(1)对于判定三的证明,参考判定一和判定二的证明思路,把较小的三角 形移到另一个三角形的内的思路,即利用已有条件构造全等三角形。
(2)利用圆中的相似三角形和直角三角形斜边上的高构成的相似三角形的 展示,让学生形成应用判定三的意识,即:如果两个三角形具有公共角或对顶角, 或两个三角形是直角三角形,那么只要再有一个角对应相等就会相似。
∴∠ADE=∠B,
∴DE//BC,
∴ΔADE∽ΔABC。
∴ΔA′B′C′∽ΔABC
判定三小结:
判定定理 3:如果一个三角形的两个角与另 一个三角形的两个角对应相等,么这两个三角 形相似。
简单说成:两角对A应 相等A'的, 两B个三角B形' 相
似。
图 18.3.3
几何语言:
∴△ABC∽△ A'B'C'
用所学的知识讨论:当具备怎样的条件时,ΔADE 与 ΔABC 相似?
A
斜截 A 型
平截 A 型
强调思D 路小结:记住,当E 两个三角形有 公共角或对顶角,或两个是直角三角形时, 只要再有一对角相等时,就可以得到相似。
比B 如:请观察下图中 Rt⊿CABC 和 Rt⊿ B CDE 是否相似?
如果把图中的直角改成 60 度,⊿ABC B 和⊿CDE 是否仍然相似?
2、判定三的简单应用
图 18.3.3
圆中常见的相似:大家用刚学的定理 3,AA 来寻找下列图中的相似三角形
A
A
D
E
A
P
C
B
B
E
D
C
C D
B
A
A
O
O
B
D
CB
C D
E
E
注意:公共角和对顶角的使用 3、例题分析
例 2 如图,Rt⊿ABC 中,∠C=90°,AB=10,AC=8,E 是 AC 上一点, AE=5,ED⊥AB,垂足为 D。求 AD 的长。
解:∵ ED⊥AB,
∴ ∠EDA=90°,
又∠C=90°,得∠EDA=∠C,
C
又∠A=∠A,
E
∴⊿AED∽⊿ABC。
AD AE .
AC AB
A
D
B
思路AD小结A:CA由BA三E 角 8形10相5 似4的条件可知,如果两个直角三角形满足一个锐角相
等,或两组直角边成比例,那么这两个直角三角形相似。
练习1,已知:Rt△ABC 中,∠ACB =90°,CD⊥AB, 试说明图中有几对相 似三角形。并尝试证明。
三角形中的ASA和AAS应该对应相似中的什么方法呢?
在学生猜想出AA后提出问题: 在刚才的探究问题中,如果△ABC 和△ A′B′C′中,∠A=∠A′,∠B=∠ B′.问△ABC 与△ A′B′C′ 是否相似? (二)、新课讲解 1、判定三的证明 猜想:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这 两个三角形相似。 如图,已知:在△ABC 和△A′B′C′中,∠A=∠A′,∠B=B′。求证: △ABC∽△A′B′C′ 分析:把小的三角形移动到大的三角形上。如何移动呢? 证明:在ΔABC 的边 AB、AC 上, 分别截取 AD= A′B′,AE=A′C′ , 连结 DE。 ∵ AD=A ′ B ′ , ∠ A= ∠ A ′ , AE=A′C′ ∴ΔADE≌ΔA′B′C′ ∴∠ADE=∠B′, 又∵∠B′=∠B,
A
D
A
E
60° C
C E
D
如图:在等边⊿ABD 中,AB=9,BC=3, A ∠ACE=60°,求 ED 的长。
(三)课堂小结:
E
识别三角形相似的方法有哪些?
方法 1: 运用定义(不常用)
B
方法 2: 预备定理:(由平行得到相似)
方法 3:相似三角形的判定定理 1:(SSS)
C
D
A
方法 4: 相似三角形的判定定理 2: (SAS)
四、教学过程
(一)、引入
我们学习了哪几种判定三角形相似的方法?
1、定义
2、预备定理(由平行得到相似)
3、相似三角形的判定一
4、相似三角形的判定二
探究:如图:△ABC 和△ A′B′ C′,当它们具备什么样的条件时,能够 判定它们相似?
(通过探究,进一步巩固判定一、 B
A
C B '
A '
C '
二) 判定三的引入:对比思考 观察下表中全等三角形和相似三角形的判定方法,对比之后进行思考:全等
已知:如图 Rt△ABC 中,来自D 是斜边 上的高。求证:△ABC∽△CBD∽△ACD
证 明 : ∵ ∠ B= ∠ B, ∠ CDB= ∠ ACB=90°,
∴△ABC∽△CDB(两个角对应相等的两个三角形相似).
同理可证:△ABC∽△ACD
∴△ABC∽△CBD∽△ACD.
提出思考:当AD左右平移时,图形会有什么变化,几个三角形是否还会相 似?(利用几何画板进行动画演示)