新人教版八年级上《画轴对称图形》优秀教学设计1
人教版八年级数学上册13.2.1《画轴对称图形》教案
人教版八年级数学上册13.2.1《画轴对称图形》教案一. 教材分析人教版八年级数学上册13.2.1《画轴对称图形》是学生在掌握了轴对称的概念和性质的基础上,进一步学习如何通过作图的方法来画出各种轴对称图形。
本节内容通过具体的实例,使学生进一步理解轴对称图形的特征,提高他们的观察能力和动手能力,培养他们的空间想象能力。
二. 学情分析学生在学习本节内容前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称图形。
但是,对于如何通过作图的方法来画出轴对称图形,部分学生可能还存在困难。
因此,在教学过程中,需要教师通过详细的讲解和示范,引导学生掌握作图的方法。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和动手能力。
3.情感态度价值观:培养学生对数学的兴趣,提高他们解决问题的能力,培养他们的合作意识。
四. 教学重难点1.重点:使学生能够理解和掌握轴对称图形的特征,能够通过作图的方法来画出各种轴对称图形。
2.难点:如何引导学生通过作图的方法来画出轴对称图形。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等,通过引导学生观察、操作、思考、交流等活动,提高他们的空间想象能力和动手能力。
六. 教学准备教师准备PPT、作图工具(直尺、圆规等)、练习题等。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生回顾轴对称的概念和性质,激发他们的学习兴趣。
2.呈现(10分钟)教师通过PPT展示各种轴对称图形,引导学生观察和思考,使他们能够发现轴对称图形的特征。
3.操练(10分钟)教师引导学生通过作图的方法来画出各种轴对称图形,边讲解边示范,使他们能够理解和掌握作图的方法。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,检测他们对于轴对称图形的理解和掌握。
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计一. 教材分析人教版八年级数学上册第十三章《轴对称》是学生在学习了平面几何基本概念和性质的基础上进行的一章内容。
本章主要让学生掌握轴对称图形的概念,性质,以及如何画出各种轴对称图形。
13.2节《画轴对称图形》是本章的第二节内容,主要让学生学会如何通过对称轴画出各种轴对称图形,培养学生的动手操作能力和空间想象能力。
二. 学情分析学生在之前的学习中已经掌握了平面几何的基本概念和性质,对一些基本的几何图形有了一定的了解。
但学生在画图方面可能还有一定的困难,特别是在画对称轴和轴对称图形时。
因此,在教学过程中,教师需要耐心引导学生,让学生逐步掌握画图的方法。
三. 教学目标1.让学生理解轴对称图形的概念,并能找出生活中的轴对称图形。
2.让学生掌握画轴对称图形的方法,提高学生的动手操作能力和空间想象能力。
3.培养学生观察、思考、交流的能力,提高学生的合作意识。
四. 教学重难点1.重点:让学生掌握轴对称图形的概念,以及画轴对称图形的方法。
2.难点:如何引导学生找出生活中的轴对称图形,以及如何让学生独立画出各种轴对称图形。
五. 教学方法采用“引导法”、“实例法”、“合作学习法”等教学方法。
教师通过引导,让学生主动探索轴对称图形的性质,找出生活中的轴对称图形。
同时,采用合作学习的方式,让学生在小组内交流讨论,共同完成画轴对称图形的任务。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备几何画图工具,如直尺、圆规等。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形实例,如剪纸、图片等,引导学生观察并思考:这些图形有什么共同特点?让学生初步感受轴对称图形的性质。
2.呈现(10分钟)教师通过课件呈现轴对称图形的定义,让学生明确轴对称图形的概念。
同时,教师通过讲解,让学生了解轴对称图形的性质,如对称轴的性质,对称点的性质等。
人教版数学八年级上册教学设计《13-2画轴对称图形》(第1课时)
人教版数学八年级上册教学设计《13-2画轴对称图形》(第1课时)一. 教材分析《13-2画轴对称图形》是人教版数学八年级上册的教学内容,本节课主要让学生掌握轴对称图形的概念,学会如何判断一个图形是否为轴对称图形,以及如何找出图形的对称轴。
教材通过丰富的实例,引导学生探索、发现轴对称图形的性质,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析八年级的学生已经掌握了平面几何的基本知识,对图形的变换有一定的了解。
但学生在判断轴对称图形时,容易与对称图形混淆。
因此,在教学过程中,教师要注重引导学生区分轴对称图形和对称图形,并通过大量实例让学生加深对轴对称图形的认识。
三. 教学目标1.知识与技能:使学生掌握轴对称图形的概念,学会判断一个图形是否为轴对称图形,能找出图形的对称轴。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探索、善于思考的精神。
四. 教学重难点1.重点:轴对称图形的概念及判断方法。
2.难点:找出图形的对称轴,以及区分轴对称图形和对称图形。
五. 教学方法采用讲授法、引导发现法、实践操作法、合作交流法等,充分调动学生的主观能动性,让学生在实践中掌握知识,提高能力。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习状况,准备相关的教学实例和素材。
2.学生准备:预习教材内容,了解轴对称图形的概念,尝试判断一些常见的轴对称图形。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称现象,如剪纸、衣服折叠等,引导学生关注轴对称图形,激发学生的学习兴趣。
同时,提问学生:你们认为什么是轴对称图形?怎样判断一个图形是否为轴对称图形?2.呈现(10分钟)教师通过PPT或黑板,展示一些典型的轴对称图形,如正方形、矩形、圆等,引导学生观察、思考,总结出轴对称图形的特征。
同时,讲解如何找出图形的对称轴。
2024秋八年级数学上册第十三章轴对称13.2画轴对称图形1画轴对称图形教学设计(新版)新人教版
教学过程设计
1.导入新课(5分钟)
目标:引起学生对轴对称图形的兴趣,激发其探索欲望。
过程:
开场提问:“你们知道什么是轴对称图形吗?它与我们的生活有什么关系?”
展示一些关于轴对称图形的图片或视频片段,让学生初步感受轴对称图形的魅力或特点。
简短介绍轴对称图形的基本概念和重要性,为接下来的学习打下基础。
2.轴对称图形基础知识讲解(10分钟)
2.轴对称图形的性质:引导学生探究轴对称图形的性质,如对应点的连线与对称轴垂直,对应点的距离相等。
3.轴对称图形的画法:教授学生如何画出轴对称图形,包括找出对称轴,画出对应点,连接对应点等步骤。
4.实际应用:通过一些实际问题,让学生运用轴对称图形的知识解决问题,提高学生的实际应用能力。
核心素养目标
本节课的核心素养目标主要包括以下几个方面:
⑤轴对称图形的性质和画法的应用:利用轴对称图形的性质和画法可以解决一些几何问题,如求解对称图形的面积、角度等。
板书设计:
1.轴对称图形的概念
-可以沿着某条直线折叠,两边完全重合
2.轴对称图形的性质
-对称轴和对应点
-对应点连线与对称轴垂直
-对应点距离相等
3.轴对称图形的画法
-找出对称轴
-画出对应点
最新人教版八年级数学上册《画轴对称图形》教案(精品教案)
画轴对称图形【教学目标】1.知识与能力:(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.2.过程与方法:在探索问题的过程中体会知识间的关系,感受函数与生活的联系.3.情感、态度与价值观:培养学生的应用意识和探究精神.【教学重点】(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.【教学难点】用轴对称知识解决相应的数学问题.【教学方法】创设情境-主体探究-合作交流-应用提高.【教学过程】1.创设情境,激发学生兴趣,引出本节课要研究的内容活动1观察图片操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?学生活动设计:学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流.教师活动设计:教师组织活动,引导学生作以下归纳:(1)由一个平面图形可以得到它关于一条直线l 成轴对称的图形,这个图形与原图形的形状、大小完全一样;(1) 新图形上一个点,都是原图形上的某一点关于直线l 的对称点;(2) 连接任意一对对应点的线段被对称轴垂直平分. 活动2问题如图(1),已知△ABC 和直线l ,你能作出△ABC 关于直线l 对称的图形吗?l ABCl O C'B'A'ABC图(1) 图(2) 学生活动设计:学生进行讨论,然后根据讨论的结果独立作图,最后交流想法.根据轴对称的性质,只需要作出点A 、B 、C 关于直线l 的对称点再连接就可以了.教师活动设计:在学生交流的过程中,引导学生探索作对称点的方法.如图(2),作点A 关于l 的对称点的方法是:(1)过A 作l 的垂线垂足为O ;(2)连接AO 并延长到A′,使A′O=AO ,则点A′就是点A 关于直线l 的对称点.最后进行归纳.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.活动3二、观察操作,主动探索,研究坐标系内的轴对称活动4问题在平面直角坐标系内画出下列已知点以及对称点,并把坐标填在表格中,你能发现坐标间有什么规律?已知点A(2,-3) B(-1,2)C(-6,-5)D(0.5,1)E(4,0)关于x轴对称的点关于y轴对称的点学生活动设计:学生动手画图,观察各个对称点与原来的点之间坐标的关系,经过讨论得出规律.点(x,y)关于x轴对称的点的作标是(x,-y);点(x,y)关于y轴对称的点的作标是(-x,y).教师活动设计:组织学生进行探索,观察猜测,然后进行归纳总结.活动5问题如图,四边形ABCD的四个顶点的坐标分别为A(-5,1),B(-2,1),C (-2,5),D (-5,4),分别作出四边形ABCD 关于y 轴和x 轴对称的图形. 53y x -1-2-3-4124-1-2-3-4-5654321D''C''B''A''D'C'B'A'O AB CD学生活动设计:学生根据活动4中发现的规律,首先求出点A 、B 、C 、D 关于x 轴、y 轴的对称点,然后再连接对称点即可.教师活动设计:本活动主要巩固加深学生对利用坐标表示轴对称的理解,所以要特别关注学生对对称点的坐标的求解过程.三、应用提高、拓展创新问题如图所示:要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.教师和学生活动设计:分组讨论,让学生探索:在街道上找一点C,使得AC+BC为最小.通过学生活动,使他们懂得:只有A、C、B在一直线上时,才能使AC+BC最小,这时作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.学生自主探索其中的原因(原因:在直线l上取异于点C的点D,由于l垂直平分AA′,所以得到DA=DA′,所以DA+DB=DA′+DB,根据两点之间线段最短得到DA′+DB >A′B,而A′B=A′C+BC=AC+BC,于是有AD+DB>AC+BC.)四、归纳小结、布置作业小结:1.作轴对称图形;2.用坐标表示轴对称.。
13.2画轴对称图形 教学设计 2022-2023学年度人教版八年级数学上册
13.2 画轴对称图形教学设计一、教学目标:1.了解轴对称图形的概念和特点;2.学会使用坐标轴画出轴对称图形;3.掌握判断图形是否对称的方法;4.提高学生的空间想象能力和逻辑思维能力。
二、教学重点与难点:1.教学重点:轴对称图形的定义和判断方法;2.教学难点:使用坐标轴画出轴对称图形,并灵活运用判断方法。
三、教学过程:1. 导入新知识引导学生回忆上节课学习的内容,复习图形的基本概念和性质。
2. 引入轴对称图形通过展示一些轴对称的图形,引导学生观察和思考图形的特点。
例如,让学生观察一个正方形、一个矩形和一个圆,让他们发现这些图形都具有轴对称性。
并让学生讲解他们对轴对称图形的理解。
3. 讲解轴对称图形的定义和特点通过板书,讲解轴对称图形的定义和特点。
强调轴对称图形对称轴的概念,以及对称轴两侧的图形完全相同。
并给出一些例子进行说明。
4. 活动设计分组活动:将学生分为若干小组,每个小组分别设计一个轴对称图形,并用纸板进行制作。
制作完成后,小组展示自己设计的图形,并向其他小组介绍图形的对称轴位置和特点。
5. 讲解如何使用坐标轴画出轴对称图形讲解如何使用坐标轴画出轴对称图形的步骤和方法。
通过具体的例题进行讲解,让学生理解和掌握。
6. 练习与巩固现场抽题,让学生上台做题。
题目可以是判断一个图形是否轴对称或画出一个给定图形的对称图形。
7. 总结与反思对本节课所学内容进行总结,并引导学生对本节课的学习进行反思。
询问学生是否掌握了轴对称图形的概念和画图方法,是否能够准确判断一个图形是否轴对称。
四、作业布置作业:练习册上与轴对称图形相关的练习题,并要求学生解答思考题:可以有无限个轴对称图形吗?为什么?五、教学反思本节课通过引入轴对称图形的概念和特点,让学生了解了轴对称图形的定义和判断方法。
通过活动设计和练习,让学生能够灵活运用所学知识。
同时,通过作业布置和思考题的提出,引导学生深入思考轴对称图形的性质和特点,提高他们的逻辑思维能力。
人教版八年级数学上册教学设计13.2 画轴对称图形
人教版八年级数学上册教学设计13.2 画轴对称图形一. 教材分析人教版八年级数学上册“画轴对称图形”这一节,主要让学生掌握轴对称图形的概念,学会如何寻找对称轴,并能够运用这个概念解决一些实际问题。
教材通过引入生活中的实例,激发学生的学习兴趣,接着引导学生通过观察、操作、猜想、推理等过程,体会轴对称图形的特征,最后通过一些练习题,巩固学生对知识的理解和运用。
二. 学情分析学生在七年级时已经学习了图形的变换,对图形的平移、旋转等概念有了一定的了解。
但轴对称图形与这些变换有所不同,它需要学生能够从图形中抽象出对称轴,并理解对称轴是将图形分成两个完全相同的部分。
因此,在教学过程中,需要关注学生对抽象概念的理解,以及他们能否将理论知识应用到实际问题中。
三. 教学目标1.了解轴对称图形的概念,理解轴对称图形的特征。
2.学会寻找对称轴,并能运用轴对称图形的知识解决一些实际问题。
3.培养学生的观察能力、操作能力以及抽象思维能力。
四. 教学重难点1.重点:轴对称图形的概念,对称轴的寻找。
2.难点:理解轴对称图形的特征,将理论知识应用到实际问题中。
五. 教学方法采用问题驱动的教学方法,让学生在解决问题的过程中,逐渐理解并掌握轴对称图形的知识。
同时,运用观察、操作、猜想、推理等方法,引导学生主动探索,提高他们的抽象思维能力。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备一些练习题,包括基础题和拓展题。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称图形实例,如剪纸、图片等,让学生观察并说出它们的特点。
引导学生发现这些图形都具有对称性,从而引入本节课的主题——轴对称图形。
2.呈现(10分钟)讲解轴对称图形的概念,让学生理解什么是对称轴,如何判断一个图形是否是轴对称图形。
通过一些具体例子,让学生学会寻找对称轴,并理解对称轴是将图形分成两个完全相同的部分。
人教版八年级数学上册《画轴对称图形(第1课时)》示范教学设计
画轴对称图形(第1课时)教学目标理解轴对称变换的性质,能作出简单平面图形关于给定对称轴的对称图形.教学重点画轴对称图形.教学难点利用轴对称的性质解决实际问题.教学过程知识回顾1.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.2.图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.【师生活动】教师提出问题,学生作答.【设计意图】通过复习已学过的轴对称知识,为引出本节课的课题“画轴对称图形”作铺垫.新知探究一、探究学习【问题】1.如图,在一张半透明的纸的左边部分,画一只左脚印,如何由此得到相应的右脚印?【师生活动】教师提问,学生独立思考并尝试作图解答.【答案】把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印.【问题】2.通过画图,你发现了什么?【师生活动】教师提问,学生独立思考.【答案】(1)右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴;(2)连接任意一对对应点的线段被对称轴垂直平分.【归纳】轴对称变换的性质:由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.【设计意图】首先通过在半透明的纸上描图的方法,由左脚印得到了与它对称的右脚印,然后让学生自己动手画图形,归纳得出轴对称的性质,激发学生的学习兴趣,提高学生的归纳总结能力.【思考】如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?【师生活动】教师提示:点是最基本的几何图形.学生回答:可以按点→线→图形的思路考虑.教师追问:根据轴对称的性质,你能否画出一个点关于已知直线的对称点?【设计意图】通过逐步设疑提问,引出问题“画一个点关于已知直线的对称点”,为例题1的讲解练习作铺垫.二、典例精讲【例1】如图,已知点A和直线l.求作:点A关于直线l的对称点A′.【师生活动】教师分析:对应点的连线AA′被对称轴l垂直平分.学生作答。
《轴对称图形》教案(优秀8篇)
《轴对称图形》教案(优秀8篇)轴对称图形教案篇一教学目标:1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:经历发现长方形、正方形对称轴条数的过程。
画平面图形的对称轴。
课前准备:小黑板、学具卡片。
教学活动:一、复习导入出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形)指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴)谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。
(把课题补书完整)二、教学例题1.谈话:首先我们研究长方形的对称轴。
请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。
(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?指名到黑板上量长方形的边,取中点。
人教版数学八年级上册教案《13-2画轴对称图形》(第1课时)
人教版数学八年级上册教案《13-2画轴对称图形》(第1课时)一. 教材分析《13-2画轴对称图形》是人教版数学八年级上册的教学内容,这部分内容是在学生已经掌握了轴对称的概念和性质的基础上进行学习的。
通过这部分的学习,学生能够进一步理解轴对称图形的性质,并能够运用这些性质来解决实际问题。
教材中通过丰富的例题和练习题,帮助学生巩固知识,提高解题能力。
二. 学情分析学生在学习这部分内容时,已经具备了一定的数学基础,对轴对称的概念和性质有一定的了解。
但是,对于如何运用这些性质来解决实际问题,学生可能还比较困惑。
因此,在教学过程中,需要注重引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:使学生能够理解和掌握轴对称图形的性质,并能够运用这些性质来解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:轴对称图形的性质。
2.难点:如何运用轴对称图形的性质来解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,激发学生的学习兴趣。
通过案例分析和实际问题解决,帮助学生理解和掌握知识。
通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的教学材料,如PPT、例题、练习题等。
2.准备一些实际的例子,如剪纸、图片等,用于引导学生观察和操作。
七. 教学过程1.导入(5分钟)通过一个简单的例子,如剪纸,引导学生观察和操作,让学生感受到轴对称图形的魅力。
同时,提出问题,引导学生思考轴对称图形的性质。
2.呈现(10分钟)通过PPT展示轴对称图形的性质,让学生直观地理解轴对称图形的特点。
同时,通过讲解,让学生掌握如何运用轴对称图形的性质来解决实际问题。
3.操练(10分钟)让学生分组进行合作,通过实际操作,验证轴对称图形的性质。
新人教版八年级数学上册教案:13.2画轴对称图形
5.培养学生数学抽象和数学建模素养,使学生能够从实际情境中抽象出数学问题,并运用轴对称知识进行模型构建。
三、教学难点与重点
1.教学重点
-理解轴对称图形的定义:轴对称图形是指可以通过某条直线(对称轴)将图形分为两部分,其中一部分经过旋转180度后与另一部分完全重合的图形。
-掌握轴对称的性质:包括对称轴的识别、对称点、线、面的性质等。
-学会绘制轴对称图形:能够根据给定图形,准确地找到对称轴并绘制出其轴对称图形。
举例:如在教学过程中,通过展示和分析等腰三角形、矩形、正方形等常见轴对称图形,强调对称轴的寻找和图形翻转的规律。
2.教学难点
-识别复杂图形的对称轴:对于形状复杂的图形,学生可能难以迅速准确地找到其对称轴。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解轴对称图形的基本概念。轴对称图形是指可以通过某条直线(对称轴)将图形分为两部分,其中一部分经过旋转180度后与另一部分完全重合的图形。它在艺术、建筑、设计等领域具有广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。以等腰三角形为例,分析其对称轴、对称点等性质,并展示如何绘制其轴对称图形。
(3)对于绘制具有挑战性的轴对称图形,可以采取以下措施:
-分步骤指导,将复杂图形分解为简单的部分,逐步引导学生完成绘制;
-提供直观的工具,如透明纸、直尺等,帮助学生准确绘制对称图形;
-创设挑战性的任务,鼓励学生尝试不同的方法,培养他们的创新精神和解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
-利用对称轴绘制给定图形的轴对称图形;
-探索轴对称在实际应用中的例子。
第1课时画轴对称图形 教案 2023--2024学年人教版八年级数学上册
13.2 画轴对称图形第1课时画轴对称图形教学内容第1课时画轴对称图形课时1核心素养目标1.会用数学的眼光观察现实世界:用趣味的猜字游戏导入新课,让学生感悟数学知识在生活中的重要性,在问题的引导下,体会在实际生活中的轴对称图形的构造方法.2.会用数学的思维思考现实世界:用生活情境导入,提高学生的分析问题和用数学语言总结生活问题的能力,让学生体会数学的应用价值,培养类比、分类讨论的数学思维.3.会用数学的语言表示现实世界:通过对线段的垂直平分线的作图的学习,在经历猜想、验证、归纳的学习过程中,体会归纳的数学思想方法,逐步养成用数学语言表达与交流的习惯,感悟数据的意义与价值.知识目标1.理解图形轴对称变换的性质.2.能按要求画出一个平面图形关于某直线对称的图形.3.灵活运用轴对称变换设计图案,提高学生的审美观,学会欣赏,并从中感悟数学的美和实际应用价值.教学重点学会画轴对称图形.教学难点利用轴对称进行简单的图案设计.教学准备课件教学过程主要师生活动设计意图一、情境导入二、探究新知一、创设情境,导入新知教师叙述:你能根据下面汉字的一部分猜出原来的数字,说说你是怎么猜到的.二、小组合作,探究概念和性质之前我们学到,小翼用镜子让下列等式变成真正的等式,请认真观察这两个式子.(1)两个式子有什么关系?(2) 镜子所在的直线与AA′、BB′、CC′之间存在什么样的关系?设计意图:用趣味的猜字游戏导入新课,让学生感悟数学知识在生活中的重要性,在问题的引导下,猜想如何做出轴对称图形.设计意图:由浅入深,用熟悉的问题引入思考,学生独立学习提出猜想,培养学生自主学习的精神.师生活动:学生自主思考回答问题(1),教师引导学生连接AA′、BB′、CC′,并猜想镜子所在的直线与AA′、BB′、CC′之间存在的关系.教师引导学生总结:1.由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同(位置、朝向可能不同);2.新图形上的每一点都是原图形上的某一点关于直线l的对称点;3.连接任意一对对应点的线段被对称轴垂直平分. 合作探究:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?师生活动:教师提示,平面图形由点组成. 师生共同分析得出画图思路.问题1:如何画一个点的轴对称图形?如图,画出点A关于直线l的对称点A′.师生活动:学生独立思考并完成作图,有作图困难的同学教师可做出如下提示:(1) 过点A作l的垂线,垂足为点O;(2) 在垂线上截取OA′=OA.问题2:如何画一条线段的对称图形?已知线段设计意图:让学生在动手实践中巩固和理解轴对称图形的性质,提高作图能力.AB,画出AB关于直线l对称的线段.师生活动:学生独立思考并完成作图,请一名学生板书.典例精析例1如图,已知△ABC和直线l,作出与△ABC 关于直线l对称的图形.师生活动:学生再教师的点拨下,练习前面把线段进行轴对称变换作图的方法,尝试画出三角形轴对称变化得到的图形.教师可适当给出分析:把特殊点进行轴对称变化.教师引导学生总结画法:(1)过点A画直线l的垂线,垂足为点O,在垂线上截取OA′ = OA,A′ 就是点A关于直线l的对称点.(2) 同理,分别画出点B,C关于直线l的对称点B′,C′.(3) 连接A′B′,B′C′,C′A′,得到的△A′B′C′ 即为所求.练一练1. 如图,画出△ABC关于直线l对称图形△A′B′C′.师生活动:学生独立思考完成练习. 设计意图:巩固巩固学习的把平面图形进行轴对称变换的作图方法,同时让学生结合两道题,总结出作轴对称图形方法.三、当堂练习,巩固所学教师引导学生方法总结:2. 在3×3 的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出 4 个这样的△DEF.师生活动:学生独立完成作图后,分组讨论交流自己所画的图形.三、当堂练习,巩固所学1.只经过一次轴对称变换能将甲图案变成乙图案的是( )2.如图,把下列图形补成关于直线l的对称图形.3.如图,在2×2 的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,这样的三角形共有____个. 请在下面所给的格纸中一一画出(所给的六个格纸未必全用).设计意图:考查学生画出轴对称图形的作图能力.设计意图:考查对轴对称变换方式的理解和掌握.设计意图:考查学生画轴对称图形的能力.设计意图:考查对轴对称变换方式的掌握,已经运用轴对称变换作图的能力.板书设计第1课时画轴对称图形1.由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同(位置、朝向可能不同);2.新图形上的每一点都是原图形上的某一点关于直线l的对称点;3.连接任意一对对应点的线段被对称轴垂直平分 .课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图。
八年级上册《画一个图形的轴对称图形》教学设计
八年级上册《画一个图形的轴对称图形》教学设计一、教学目标1.知识目标:通过本节课的学习,学生能够了解什么是轴对称图形,能够准确判断一个图形是否具有轴对称性,并能够使用规则画出一个图形的轴对称图形。
2.能力目标:培养学生观察、分析和判断的能力,培养学生解决实际问题的能力。
3.情感目标:激发学生对数学的兴趣,培养学生的数学思维能力和创新意识。
二、教学准备1.教材:八年级数学上册2.工具:黑板、彩色粉笔、直尺、铅笔、橡皮擦三、教学过程1. 导入与引入(5分钟)教师通过提问和讲解的方式,引导学生回顾与轴对称图形相关的知识,激发学生的学习兴趣。
例如:判断一个图形是否具有轴对称性的准则是什么?有哪些常见的轴对称图形等。
2. 概念讲解(10分钟)教师通过示意图和具体例子,向学生介绍轴对称图形的定义和判断方法。
让学生能够理解什么是轴对称图形,并能够根据定义判断一个图形是否具有轴对称性。
3. 轴对称图形练习(15分钟)教师给学生提供一些图形,要求学生判断这些图形是否是轴对称图形,如果是,找出轴对称线的位置。
学生可以分小组进行讨论和答题,在教师的指导下进行自主学习及互动交流。
4. 轴对称图形的绘制(30分钟)师生共同探讨如何画一个图形的轴对称图形。
教师通过实例的演示和具体步骤的讲解,引导学生学会使用规则进行轴对称图形的绘制。
5. 合作探究(20分钟)学生分小组,每组选择一个图形进行探究,通过合作讨论和实际绘制,找出图形的轴对称线,并绘制图形的轴对称图形。
教师在一旁进行指导和引导,及时给予帮助。
6. 总结归纳(10分钟)教师在黑板上绘制轴对称图形的相关知识点,引导学生总结探究的结果,对轴对称图形的判断和绘制方法进行梳理和归纳。
7. 实践应用(15分钟)教师出示一些实际生活中的图形,要求学生判断这些图形是否具有轴对称性,并进行相关绘制。
学生可以通过组织语言和绘制实践,将所学知识运用到实际生活中。
四、课堂拓展对于掌握得较好的学生,可以提出一些更复杂的问题,如:能否判断一个图形是否具有多个轴对称线?找出图形的所有轴对称线等,以提高学生的综合运用能力。
人教版八年级数学上册13.画轴对称图形教案
任务2:已知△ABC,直线L,画出△ABC关于直线L对称的图形。
尝试归纳:
任何图形都可以看作由点组成。
对于某些图形只要画出图形中的一些特殊点的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
三、课堂练习:
1.教材68页练习1书(做在书上)
2.如图所示,钱塘江的一侧有A,B两个村庄现要在江边建造一个水厂C 把水送到这两个村庄,(1)要使供水管到两村庄的距离相等,水厂C应建在何处.(2)要使供水管路线最短,水厂C应建在何处.
四、课堂小结:
我们学习了如何作已知图形关于给定直线对称的图形的方法:。
13.2.1 画轴对称图形 教学设计 2022-2023学年人教版八年级数学上册
13.2.1 画轴对称图形教学设计2022-2023学年人教版八年级数学上册一、教学目标1.了解轴对称的概念;2.掌握画轴对称图形的方法;3.训练学生的观察能力和抽象思维能力。
二、教学重难点1.轴对称的定义和特征;2.画轴对称图形的方法。
三、教学步骤与内容安排1. 导入(5分钟)教师活动:通过展示几个轴对称的图形,引起学生的兴趣,让学生观察并思考。
学生活动:观察并思考展示的图形。
2. 概念讲解(15分钟)教师活动:给出轴对称的定义,并说明轴对称图形的特征。
学生活动:记笔记,理解和掌握轴对称的概念。
3. 画轴对称图形的方法讲解(20分钟)教师活动:讲解画轴对称图形的具体步骤和方法,包括: - 选择合适的轴;- 将图形按轴对称折叠; - 使用直尺和铅笔完成轴对称图形的绘制。
学生活动:做好笔记,跟随教师的讲解,理解和记住画轴对称图形的方法。
4. 画图练习(40分钟)教师活动:给出多个图形,让学生按照步骤和方法画出轴对称图形。
学生活动:用直尺和铅笔完成练习,画出轴对称图形。
5. 总结与拓展(10分钟)教师活动:对本节课学习的内容进行总结,并提出一些拓展问题,激发学生的思考和探索。
学生活动:总结本节课的学习内容,回答教师的提问。
四、教学评价方法1.教师观察学生的课堂参与情况和学习态度;2.布置课后作业,检查学生对轴对称的理解和画图技能。
五、板书设计13.2.1 画轴对称图形教学设计教学目标:1. 了解轴对称的概念;2. 掌握画轴对称图形的方法;3. 训练学生的观察能力和抽象思维能力。
教学步骤与内容安排:1. 导入:展示轴对称图形;2. 概念讲解:轴对称的定义和特征;3. 画轴对称图形的方法讲解;4. 画图练习;5. 总结与拓展。
教学评价方法:- 观察学生的课堂参与情况和学习态度;- 检查学生的作业完成情况。
六、拓展阅读•了解轴对称在日常生活和建筑设计中的应用;•搜索相关数学问题,如轴对称图形的性质等。
人教版数学八年级上册13.2《画轴对称图形》教学设计1
【教学目标】〔1〕通过实际操作,了解什么叫做轴对称变换。
〔2〕如何作出一个图形关于一条直线的轴对称图形。
〔3〕探究并归纳点关于坐标轴对称的点的坐标变化规律。
通过观察、操作、交流等活动开展空间观念和推理能力。
通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识,在独立思考的同时能够认同他人。
【教学重点】〔1〕画轴对称图形。
〔2〕在平面直角坐标系中关于x轴或y轴对称的点的坐标的变化规律和作出与一个图形关于x 轴或y轴对称的图形。
【教学难点】点的坐标变换规律的灵活运用【教学方法】自学与小组合作学习相结合的方法【课前准备】教学课件,半透明的纸假设干。
【课时安排】1课时【教学过程】一、情境导入展示轴对称图形的图片。
【过渡】在上节课的学习中,我们认识了成轴对称的两个图形的特点,以及垂直平分线的相关知识,我们看图片,这些图片都是成轴对称的,那么现在,我想让大家思考,给出一个图形,你能画的与它成轴对称的图形吗?今天我们就来学习一下,如何画轴对称图形。
二、新课教学1.画轴对称图形【过渡】我们来看一下课本图13.2-1,同学们可以拿着刚刚发到手的半透明的纸,画一个图形,然后按照课本的方法,画出对称的图形。
学生动手操作,重在让学生在动手中掌握知识。
【过渡】由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分。
由一个平面图形可以得到与它关于一条直线对称的图形,这个图形的形状、大小与原图形的形状、大小完全一样;新图形上的每一点都是原图形上的某一点关于直线的对称点;连接任意一对对应点的线段被对称轴垂直平分。
类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.连结任意一对对应点的线段被对称轴垂直平分。
我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换。
【过渡】那么如果我们的纸不是半透明的,只有一个图形和一条线,我们该如何画与它对称的图形呢?例1:如图,△ABC 和直线l,画出与△ABC关于直线l 对称的图形.〔1〕三角形关于直线l 的对称图形是什么形状?〔2〕三角形的轴对称图形可以由哪几个点确定?〔3〕如何作一个点关于直线l 的对称点?画法:〔1〕如图,过点A 画直线l 的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A 关于直线l 的对称点;〔2〕同理,分别画点B,C 关于直线l 的对称点B′,C′;一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点〔如线段端点〕的对称点,连接这些对称点,就可以得到原图形的轴对称图形。
人教版八年级数学上册《画轴对称图形》教学设计
《13.2.1 画轴对称图形》教学设计一、教学内容:人教版八年级上册第十三章第2节《画轴对称图形》第1课时.二、教学目标:知识与技能:①.理解掌握轴对称变换的特征;②.会画已知图形关于某一条直线的轴对称图形,并能利用轴对称进行图案设计.过程与方法:通过观察、小组合作探究、动手操作,发展学生的观察分析能力、抽象思维能力和识图能力.情感态度与价值观:提供动手操作机会,激发学生学习的兴趣,感受数学美.三、教学重点:掌握画轴对称图形的方法.教学难点:能够按要求画简单平面图形经过一次对称后的图形.四、教学过程(一)温习旧知1:轴对称图形的性质.通过一道填空题,让学生回顾什么是轴对称图形以及轴对称图形的性质.如图所示,△ABC沿着直线l折叠后,与△DEF完全重合.(1)△ABC和△DEF关于直线对称,直线l是;(2)线段AD被垂直平分,线段CF被垂直平分;(3)P A=,AD⊥;CQ=;CF⊥ .(二)创设情境,导入新课.通过动画演示,在一张半透明纸的左边部分,画一只左脚印,如何得到相应的右脚印.引导学生分析:我们可以发现,图中的两个脚印沿着直线l对折后能够完全重合,那么这两个脚印关于直线l成,直线l叫做它们的,点P和点'P是一对,线段'PP被直线l .归纳小结:由此我们可以得到轴对称的性质:①.由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;②.新图形上的每一点都是原图形上的某一点关于直线l的对称点;③.连接任意一对对应点的线段被对称轴垂直平分.(三)小试身手.1.如图所示的长方形纸片,先沿虚线按箭头方向向右对折,接着将对折后的纸片沿虚线剪下一个小圆和一个小三角形,然后将纸片打开是下列图中的哪一个( )2.如图,将长方形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB =50°,则∠CFD的度数为 .(四)温习旧知2:如何画垂线.已知直线l和l外的一点A ,利用三角板画出直线l的垂线.(结合动画演示,师生共同口述画法)(五)合作交流,探索新知.思考:如果有一个图形和一条直线,我们能不能利用轴对称的性质来作出这个图形关于这条直线对称的图形呢?接下来我们将一起来探究如何作出这样的图形.·探究1:如图,已知点A和直线m,画出点A关于直线m对称的点A′.利用已学的轴对称的性质,引导学生思考,如果两个点关于直线l 对称的话,这两个点的连线段会被这条直线l垂直平分,因此提问学生:我们可以怎么画?依据是什么?(学生回答,通过动画演示,归纳画法.)画法:(1)过点A作直线m的垂线,垂足为B;(2)延长AB至A′,使A′B=AB,则点A′就是点A关于直线m的对称点。
人教版八年级数学上册13.2.1《画轴对称图形》教学设计
人教版八年级数学上册13.2.1《画轴对称图形》教学设计一. 教材分析《画轴对称图形》是人教版八年级数学上册第13章《轴对称与中心对称》的第一个知识点。
本节课的主要内容是让学生掌握轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及如何画出一个轴对称图形。
本节课的内容是学生对几何图形认识的一次升华,是学生空间观念形成的重要阶段。
二. 学情分析学生在七年级已经学习了平面几何的基本知识,对图形的认识有一定的基础。
但是,对于轴对称图形的概念和判断方法可能还比较陌生。
因此,在教学过程中,需要引导学生从实际问题中抽象出轴对称图形的概念,并通过实例让学生理解轴对称图形的性质。
三. 教学目标1.知识与技能:让学生掌握轴对称图形的概念,学会判断一个图形是否为轴对称图形,以及如何画出一个轴对称图形。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间观念和几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
四. 教学重难点1.重点:轴对称图形的概念和判断方法。
2.难点:如何画出一个轴对称图形。
五. 教学方法采用“问题驱动”的教学方法,通过引导学生观察实际问题,激发学生的思考,从而引出轴对称图形的概念。
在教学过程中,注重学生的动手操作和实践,让学生在实践中掌握轴对称图形的性质和画法。
同时,采用小组合作的学习方式,培养学生的合作意识和交流能力。
六. 教学准备1.教具:准备一些实际的轴对称图形,如纸牌、硬币等。
2.学具:每个学生准备一张白纸、一把剪刀、一支铅笔。
七. 教学过程1.导入(5分钟)教师通过展示一些实际的轴对称图形,如纸牌、硬币等,引导学生观察并提问:“这些图形有什么特点?你们能找到它们的轴对称线吗?”学生通过观察和思考,初步感知轴对称图形的性质。
2.呈现(10分钟)教师通过讲解和示范,向学生介绍轴对称图形的概念,以及如何判断一个图形是否为轴对称图形。
同时,教师引导学生发现轴对称图形的对称轴是对称的关键。
初二画《轴对称图形》教案(精选5篇)
•••••••••••••••••初二画《轴对称图形》教案(精选5篇)初二画《轴对称图形》教案(精选5篇)作为一位杰出的教职工,总归要编写教案,教案是备课向课堂教学转化的关节点。
那么应当如何写教案呢?下面是小编收集整理的初二画《轴对称图形》教案(精选5篇),欢迎大家借鉴与参考,希望对大家有所帮助。
初二画《轴对称图形》教案1教学内容:义务教育课程标准实验教材数学第六册56—61页内容教学资源分析:本教材从学生熟悉的生活入手,结合实例,通过观察、操作等形式多样的活动,让学生初步感知生活中的对称现象,认识简单的轴对称图形,为今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法进行变换或设计图案打好基础。
教材第一道例题首先出示了一组实物图片,要求学生观察并说说它们的共同特征,初步感知“这些物体都是对称的”,并要求学生结合自己的生活经验再找出一些具有对称特征的物体,在小组里交流。
教材这样安排的主要目的是帮助学生感受生活中的对称现象。
接下来,教材把上面的实物图形进一步抽象为平面图行,引导学生通过对折发现轴对称图形的基本特征,并初步描述轴对称图形的概念。
第二道例题则让学生利用已有的对轴对称图形的初步认识,用不同材料、不同方法“做出”轴对称图形。
以活动来帮助学生进一步积累感性认识,丰富对轴对称图形的体验,锻炼学生的实践能力。
“想想做做”安排了形式多样、内容丰富的训练帮助学生加深对轴对称图形的认识,体会数学与生活的广泛联系。
教学目标:1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。
激发对数学学习的积极情感。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《作轴对称图形》
教学目标
1.通过实际操作,了解什么叫做轴对称变换.
2.如何作出一个图形关于一条直线的轴对称图形.
教学重点
1.轴对称变换的定义.
2.能够按要求作出简单平面图形经过轴对称后的图形.
教学难点
1.作出简单平面图形关于直线的轴对称图形.
2.利用轴对称进行一些图案设计.
教学过程
Ⅰ.设置情境,引入新课
在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.
将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,•得到的两个图案是关于折痕成轴对称的图形.
准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,•位于折痕两侧的墨迹图案也是对称的.
•这节课我们就是来作简单平面图形经过轴对称后的图形.
Ⅱ.导入新课
•由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.
类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.
对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.
下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,•再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.
结论:由一个平面图形呆以得到它关于一条直线L对称的图形,•这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;
连结任意一对对应点的线段被对称轴垂直平分.
我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.
成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.
取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,•一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(1)在你所得的花边中,相邻两个图案有什么关系?•相间的两个图案又有什么关系?说说你的理由.
(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?•三个图案为一组呢?为什么?
(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,•然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.
注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.Ⅲ.随堂练习
(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).(1)猜一猜,将纸打开后,你会得到怎样的图形?
(2)这个图形有几条对称轴?
(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?
答案:(1)轴对称图形.
(2)这个图形至少有3条对称轴.
(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,•得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,•打开即可得到一个至少含有5条对称轴的轴对称图形.
(二)回顾本节课内容,然后小结.
Ⅳ.课时小结
本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,•并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.Ⅴ.动手并思考
(一)如下图所示,取一张薄的正方形纸,沿对角线对折后,•得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的角形沿黑色线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺平.
(1)你会得怎样的图案?先猜一猜,再做一做.
(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.
(3)如果将正方形纸按上面方式折3次,然后再沿圆弧剪开,去掉较小部分,•展开后结果又会怎样?为什么?
(4)当纸对折2次后,剪出的图案至少有几条对称轴?3次呢?
答案:(1)得到一个有2条对称轴的图形.
(2)按照上面的做法,实际上相当于折出了正方形的2条对称轴;因此(1)•中的图案一定有2条对称轴.
(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,•因此得到的图案一定有4条对称轴.
(4)当纸对折2次,剪出的图案至少有2条对称轴;当纸对折3次,•剪出的图案至少有4条对称轴.
(二)自己设计并制作一个花边.
课后作业:同步练习
Ⅵ.活动与探究
如果想剪出如下图所示的“小人”以及“十字”,你想怎样剪?设法使剪的次数尽可能少.
过程:学生通过观察、分析设计自己的操作方法,教师提示学生利用轴对称变换的应用.
结果:“小人”可以先折叠一次,剪出它的一半即可得到整个图.
“十字”可以折叠两次,剪出它的四分之一即可.
板书设计
§13.2作轴对称图形(一)
一、轴对称变换
由一个平面图形得到它的轴对称图形叫做轴对称变换.
二、利用轴对称变换设计图案。