复旦大学2005年数学分析考研试题

合集下载

2005年考研数学真题及答案解析

2005年考研数学真题及答案解析
点,直线 l1 与 l2 分别是曲线 C 在点 (0, 0) 与 (3, 2) 处的切线,其交 点 为 (2, 4) . 设 函 数 f (x) 具 有 三 阶 连 续 导 数 , 计 算 定 积 分
3 (x2 x) f (x)dx.
0
(18)(本题满分 12 分) 已 知函数 f (x) 在 [0,1] 上连续,在 (0,1) 内 可导,且 f (0) 0, f (1) 1 .
(C) a 0.3,b 0.2
(D) a 0.1,b 0.4
(14)设 X1, X 2 ,, X n (n 2) 为来自总体 N (0,1) 的简单随机样本, X 为 样本均值, S 2 为样本方差,则
(A) nX ~ N (0,1)
(B) nS 2 ~ 2 (n)
(C) (n 1) X ~ t(n 1)
S
(D) (n 1) X12 n
~
F (1, n 1)
X
2 i
i2
三 、解答题(本题共 9 小题,满分 94 分.解答应写出文字说明、证
明过程或演算步骤)
(15)(本题满分 11 分) 设 D {(x, y) x2 y 2 2, x 0, y 0} , [1 x2 y 2 ] 表 示 不 超 过
1 x2 y 2 的最大整数. 计算二重积分 xy[1 x2 y 2 ]dxdy.
D
(16)(本题满分 12 分)
求幂级数 (1)n1 (1
1
)x2n 的收敛区间与和函数 f (x) .
n 1
n(2n 1)
(17)(本题满分 11 分) 如图,曲线 C 的方程为 y f (x) ,点 (3, 2) 是它的一个拐
(A)处处可导
(B) 恰 有 一 个 不

2005—数二真题、标准答案及解析

2005—数二真题、标准答案及解析

2005—数二真题、标准答案及解析2005年考研数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则|x dy π==______ .(2) 曲线xx y 23)1(+=的斜渐近线方程为______ .(3)=--⎰1221)2(xx xdx ______ .(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为______ . (5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= ______ .(6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ](8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数. [ ](9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是 (A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D)32ln 8+.[ ](10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()( (A)πab . (B)π2ab . (C)π)(b a +. (D)π2ba + .[ ](11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ ]字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y 的特解.(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .(22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设xx y )sin 1(+=,则π=x dy=dxπ- .【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导.【详解】 方法一: xx y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得xx x x y y sin 1cos )sin 1ln(1+++=', 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x +⋅++⋅+=',故π=x dy=.)(dx dx y ππ-='(2) 曲线xx y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=,1)1(lim )(lim 23=+=+∞→+∞→xx x x x f x x[]23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x ,于是所求斜渐近线方程为.23+=x y (3)=--⎰1221)2(x x xdx 4π . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则=--⎰10221)2(xxxdx⎰-22cos )sin 2(cos sin πdttt tt=.4)arctan(cos cos 1cos 20202πππ=-=+-⎰t ttd(4) 微分方程xx y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=.【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+',于是通解为⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx=2191ln 31xC x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0→x 时,2)(kx x =α与xx x x cos arcsin 1)(-+=β是等价无穷小,则k= 43 . 【分析】 题设相当于已知1)()(lim 0=→x x x αβ,由此确定k 即可.【详解】 由题设,2cos arcsin 1lim)()(lim kx xx x x x x x -+=→→αβ=)cos arcsin 1(cos 1arcsin lim2x x x kx x x x x ++-+→=k 21143cos 1arcsin lim 2==-+→k x x x x x ,得.43=k (6)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,于是有.221941321111=⨯=⋅=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→nnn x x f ;当1=x 时,111lim)(=+=∞→nn x f ;当1>x 时,.)11(lim )(3133x xxx f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有 (B) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数. (C) F(x)是周期函数⇔f(x)是周期函数. (D) F(x)是单调函数⇔f(x)是单调函数.[ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=x C dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C)32ln 8+-. (D)32ln 8+.[ A ]【分析】 先由x=3确定t 的取值,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标.【详解】 当x=3时,有322=+t t,得3,1-==t t (舍去,此时y 无意义),于是81221111=++===t t t t dxdy,可见过点x=3(此时y=ln2)的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22≥≥≤+=y x y xy x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++⎰⎰σd y f x f y f b x f aD)()()()((A)πab . (B)π2ab . (C)π)(b a +. (D) π2ba + .[ D ]【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性.【详解】 由轮换对称性,有 =++⎰⎰σd y f x f y f b x f aD)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=σd x f y f x f b y f a y f x f y f b x f a D⎰⎰+++++])()()()()()()()([21=.2241222ππσba b a d b a D+=⋅⋅+=+⎰⎰ 应选(D).(11)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ,其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222yux u ∂∂-=∂∂. (B )2222yux u ∂∂=∂∂.(C)222y uy x u ∂∂=∂∂∂. (D) 222xuy x u ∂∂=∂∂∂.[ B ]【分析】 先分别求出22x u ∂∂、22y u ∂∂、yx u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x xu-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ,可见有2222yux u ∂∂=∂∂,应选(B).(12)设函数,11)(1-=-x x ex f 则(A) x=0,x=1都是f(x)的第一类间断点.(B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点.(D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ]【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限.【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以x=0为第二类间断点;)(lim 1=+→x f x ,1)(lim 1-=-→x f x ,所以x=1为第一类间断点,故应选(D).(13)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ.(D) 02=λ.[ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则22211211=++αλαλαk k k ,)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(14)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B,**,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.[ C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得BA E =12,于是12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(≠f ,求极限.)()()(lim 0⎰⎰--→x x x dtt x f x dtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形.【详解】 由于⎰⎰⎰=-=-=-0)())(()(xxxu t x duu f du u f dt t x f ,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 0)()()(lim)()()(lim=⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =⎰⎰+→xx x x xf du u f dtt f 0)()()(lim=)()()(limx f x duu f x dtt f x xx +⎰⎰→=.21)0()0()0(=+f f f (16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线xl 和yl . 记21,C C 与xl 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ=【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y Sx S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有 ⎰--=+-=x x t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydtt t y S 12))((ln )(ϕ,由题设,得⎰-=--y xdtt t x e 1))((ln )1(21ϕ,而xe y =,于是⎰-=--y dt t t y y 1))((ln )1ln (21ϕ 两边对y 求导得)(ln )11(21y y yϕ-=-,故所求的函数关系为:.21ln )(yy y y x --==ϕ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2,.0)3(,2)3(=''-='f f由分部积分,知⎰⎰⎰+''-''+=''+='''+3303022302)12)(()()()()()()(dxx x f x f x x x f d x x dx x f x x=dxx f x f x x f d x ⎰⎰'+'+-='+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x,并求其满足2,10='===x x y y的特解.【分析】 先将y y ''',转化为22,dt y d dt dy ,再用二阶常系数线性微分方程的方法求解即可.【详解】 dtdy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='',代入原方程,得022=+y dtyd .解此微分方程,得 221211sin cos x C x C t C t C y -+=+=,将初始条件2,10='===x x y y 代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:(I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f 【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是.1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f(20)(本题满分10分) 已知函数z=f(x,y) 的全微分ydyxdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值..【详解】 由题设,知 x x f2=∂∂,y yf2-=∂∂, 于是 )(),(2y C x y x f +=,且yy C 2)(-=',从而 Cy y C +-=2)(,再由f(1,1)=2,得 C=2, 故.2),(22+-=y x y x f令0,0=∂∂=∂∂y f x f 得可能极值点为x=0,y=0. 且2)0,0(22=∂∂=xfA ,)0,0(2=∂∂∂=yx fB ,2)0,0(22-=∂∂=yf C ,42>=-=∆AC B ,所以点(0,0) 不是极值点,从而也非最值点.再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F λλ,解⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+='=+-=+∂∂='=+=+∂∂=',014,02122,0)1(2222y x F y y y y f F x x x fF y xλλλλλ得可能极值点4,2,0===λy x ;4,2,0=-==λy x ;1,0,1-===λy x ;.1,0,1-==-=λy x 代入f(x,y)得,2)2,0(-=±f3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22≤+=y x y x D 内的最大值为3,最小值为-2.(21)(本题满分9分) 计算二重积分σd y xD⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D .【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可.【详解】 记}),(,1),{(221D y x y x y x D∈≤+=, }),(,1),{(222D y x y x y x D ∈>+=,于是 σd y xD⎰⎰-+122=⎰⎰-+-1)1(22D dxdy y x⎰⎰-++2)1(22D dxdyy x =⎰⎰--221)1(πθrdr r d ⎰⎰-++Ddxdy y x )1(22⎰⎰-+-1)1(22D dxdyy x=8π+⎰⎰⎰⎰---+20102210210)1()1(πθrdr r d dy y x dx =.314-π (22)(本题满分9分) 确定常数a,使向量组,),1,1(1T a =α,)1,,1(2T a =αTa )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βTa a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示.【分析】向量组321,,ααα可由向量组321,,βββ线性表示,相当与方程组:3,2,1,332211=++=i x x x i βββα.均有解,问题转化为),,(321βββr =3,2,1),,,(321=i r i αβββ 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,βββ不能由向量组321,,ααα线性表示,相当于至少有一个向量)3,2,1(=j jβ不能由321,,ααα表示,即至少有一方程组3,2,1,332211=++=j x x x j αααβ,无解.【详解】 对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a→ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-++--a a a a a a a a 110324001022011221→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 显然2α不能由321,,βββ线性表示,因此2-≠a ;当a=4时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,然32,αα均不能由321,,βββ线性表示,因此4≠a .而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示.又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++----→a a a a a a a a a 3240110220110221112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++--++----→24360200220110221112a a a a a a a a a ,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,必有1=-a 或022=--aa ,即a=1或2-=a .综上所述,满足题设条件的a 只能是:a=1.(23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r 1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.。

2005年考研数学数学二真题及答案解析

2005年考研数学数学二真题及答案解析

- 1 - 2005年考研数学二真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)设xx y )sin 1(+=,则|x dy p ==______ . (2)曲线xx y 23)1(+=的斜渐近线方程为______ . (3)=--ò10221)2(xxxdx ______ . (4)微分方程x x y y x ln 2=+¢满足91)1(-=y 的解为______ . (5)当0®x 时,2)(kx x =a 与x x x x cos arcsin 1)(-+=b 是等价无穷小,则k= ______ . (6)设321,,a a a 均为3维列向量,记矩阵),,(321a a a =A ,)93,42,(321321321a a a a a a a a a ++++++=B ,如果1=A ,那么=B .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn x x f 31lim )(+=¥®,则f(x)在),(+¥-¥内(A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)的一个原函数,""N M Û表示“M 的充分必要条件是N ”,则必有(A)F(x)是偶函数Ûf(x)是奇函数. (B )F(x)是奇函数Ûf(x)是偶函数. (C) F(x)是周期函数Ûf(x)是周期函数. (D) F(x)是单调函数Ûf(x)是单调函数. [ ] (9)设函数y=y(x)由参数方程îíì+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是(A) 32ln 81+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. [ ] (10)设区域}0,0,4),{(22³³£+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++òòs d y f x f y f b x f a D)()()()((A) p ab . (B) p 2ab . (C) p )(b a +. (D) p 2b a +. [ ] (11)设函数ò+-+-++=yx yx dt t y x y x y x u )()()(),(y j j , 其中函数j 具有二阶导数,y 具有一阶导数,则必有则必有(A) 2222y u x u ¶¶-=¶¶. (B ) 2222yu x u ¶¶=¶¶. (C) 222yu y x u ¶¶=¶¶¶. (D) 222x u y x u ¶¶=¶¶¶. [ ] (12)设函数,11)(1-=-x xex f 则(A) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ ] (13)设21,l l 是矩阵A 的两个不同的特征值,对应的特征向量分别为21,a a ,则1a ,)(21a a +A 线性无关的充分必要条件是无关的充分必要条件是(A) 01¹l . (B) 02¹l . (C) 01=l . (D) 02=l . [ ] (14)设A 为n (2³n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且)0(¹f ,求极限.)()()(lim 0òò--®x xx dtt x f xdtt f t x(16)(本题满分11分) 如图,1C 和2C 分别是)1(21xe y+=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x j =(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l与2l分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分ò¢¢¢+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos p <<=t t x 化简微分方程0)1(2=+¢-¢¢-y y x y x ,并求其满足2,10=¢===x x y y的特解. (19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:证明: (I )存在),1,0(Îx 使得x x -=1)(f ;(II )存在两个不同的点)1,0(,Îz h ,使得.1)()(=¢¢z h f f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22£+=y x y x D 上的最大值和最小值. (21)(本题满分9分) 计算二重积分sd y x Dòò-+122,其中}10,10),{(££££=y x y x D . (22)(本题满分9分) 确定常数a,使向量组,),1,1(1Ta =a ,)1,,1(2Ta =a Ta )1,1,(3=a 可由向量组,),1,1(1Ta =b ,)4,,2(2Ta -=b Ta a ),,2(3-=b 线性表示,但向量组321,,b b b 不能由向量组321,,a a a 线性表示. (23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵úúúûùêêêëé=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解2005年考研数学二真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)把答案填在题中横线上)(1)设xx y )sin 1(+=,则p=x dy= dx p - . 【分析】 本题属基本题型,幂指函数的求导(或微分)问题可化为指数函数求导或取对数后转化为隐函数求导. 【详解】 方法一:方法一: x x y )sin 1(+==)sin 1ln(x x e +,于是,于是]sin 1cos )sin 1[ln()sin 1ln(xx x x e y x x +×++×=¢+,从而从而 p=x dy=)(dx dx y p p -=¢方法二:方法二: 两边取对数,)sin 1ln(ln x x y +=,对x 求导,得求导,得xx x x yy sin 1cos )sin 1ln(1+++=¢, 于是于是 ]sin 1cos )sin 1[ln()sin 1(xx x x x y x+×++×+=¢,故,故p=x dy=.)(dx dx y p p -=¢(2) 曲线x x y 23)1(+=的斜渐近线方程为23+=x y . 【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可. 【详解】 因为a=,1)1(lim)(lim 23=+=+¥®+¥®xx x xx f x x[]23)1(lim )(lim 2323=-+=-=+¥®+¥®xx x ax x f b x x ,于是所求斜渐近线方程为.23+=x y(3)=--ò1221)2(xx xdx4p . 【分析】 作三角代换求积分即可. 【详解】 令t x sin =,则,则=--ò1221)2(xx xdx ò-22cos )sin 2(cos sin pdt t t t t =.4)arctan(cos cos 1cos 20202p pp=-=+-òt ttd(4) 微分方程x x y y x ln 2=+¢满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+¢的通解公式:的通解公式: ò+òò=-])([)()(C dx e x Q e y dxx P dxx P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为原方程等价为x y xy ln 2=+¢,于是通解为于是通解为 òò+×=+ò×ò=-]ln [1]ln [2222C xdx x x C dx e x e y dx xdx x=2191ln 31x C x x x +-,由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(5)当0®x 时,2)(kx x =a 与x x x x cos arcsin 1)(-+=b 是等价无穷小,则k= 43. 【分析】 题设相当于已知1)()(lim 0=®x x x a b ,由此确定k 即可. 【详解】 由题设,20cos arcsin 1lim )()(lim kx x x x x x x x -+=®®a b =)cos arcsin 1(cos 1arcsin lim 2x x x kx x x x x ++-+®=k 21143cos 1arcsin lim 20==-+®k x x x x x ,得.43=k (6)设321,,aa a 均为3维列向量,记矩阵维列向量,记矩阵),,(321a a a =A ,)93,42,(321321321a a a a a a a a a ++++++=B , 如果1=A ,那么=B 2 . 【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可. 【详解】 由题设,有由题设,有 )93,42,(321321321a a a a a a a a a ++++++=B=úúúûùêêêëé941321111),,(321a a a ,于是有于是有 .221941321111=´=×=A B二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)把所选项前的字母填在题后的括号内)(7)设函数nnn x x f 31lim )(+=¥®,则f(x)在),(+¥-¥内 (A) 处处可导. (B) 恰有一个不可导点. (C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=¥®n nn x x f ;当1=x 时,111lim )(=+=¥®n n x f ; 当1>x 时,.)11(lim )(3133x xx x f nn n =+=¥® 即.1,11,1,,1,)(33>££--<ïîïíì-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C). (8)设F(x)是连续函数f(x)的一个原函数,""N M Û表示“M 的充分必要条件是N ”,则必有,则必有(B) F(x)是偶函数Ûf(x)是奇函数. (B ) F(x)是奇函数Ûf(x)是偶函数. (C) F(x)是周期函数Ûf(x)是周期函数. (D) F(x)是单调函数Ûf(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案. 【详解】 方法一:任一原函数可表示为ò+=xC dt t f x F 0)()(,且).()(x f x F =¢当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F ¢=-×-¢,即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则òxdt t f 0)(为偶函数,从而ò+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项. 方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A). (9)设函数y=y(x)由参数方程îíì+=+=)1ln(,22t y t t x 确定,则曲线y=y(x)在x=3处的法线与x 轴交点的横坐标是标是(A) 32ln 81+. (B) 32ln 81+--. (C) 32ln 8+-. (D) 32ln 8+. [ A ] 【分析】 先由x=3确定t 的取值,的取值,进而求出在此点的导数及相应的法线方程,进而求出在此点的导数及相应的法线方程,进而求出在此点的导数及相应的法线方程,从而可得所需的横坐标从而可得所需的横坐标. 【详解】 当x=3时,有322=+t t ,得3,1-==t t (舍去,此时y 无意义),于是,于是81221111=++===t t t t dxdy ,可见过点x=3(此时y=ln2)的法线方程为:的法线方程为:)3(82ln --=-x y ,令y=0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)设区域}0,0,4),{(22³³£+=y x y x y x D ,f(x)为D 上的正值连续函数,a,b 为常数,则=++òòs dy f x f y f b x f a D)()()()((A) p ab . (B) p2ab . (C) p )(b a +. (D) p 2b a + . [ D ] 【分析】 由于未知f(x)的具体形式,直接化为用极坐标计算显然是困难的. 本题可考虑用轮换对称性. 【详解】 由轮换对称性,有由轮换对称性,有=++òòs d y f x f y f b x f a D)()()()(s d x f y f x f b y f a Dòò++)()()()(=sd x f y f x f b y f a y f x f y f b x f a Dòò+++++])()()()()()()()([21=.2241222p p s b a b a d ba D+=××+=+òò应选(D). (11)设函数ò+-+-++=yx yx dtt y x y x y x u )()()(),(y j j , 其中函数j 具有二阶导数,y具有一阶导数,则必有数,则必有(A) 2222y u x u ¶¶-=¶¶. (B ) 2222y u x u ¶¶=¶¶. (C) 222yu y x u ¶¶=¶¶¶. (D) 222xu yx u ¶¶=¶¶¶. [ B ] 【分析】 先分别求出22x u ¶¶、22yu ¶¶、y x u ¶¶¶2,再比较答案即可. 【详解】 因为)()()()(y x y x y x y x xu --++-¢++¢=¶¶y y j j ,)()()()(y x y x y x y x yu -+++-¢-+¢=¶¶y y j j ,于是 )()()()(22y x y x y x y x xu -¢-+¢+-¢¢++¢¢=¶¶y y j j ,)()()()(2y x y x y x y x y x u-¢++¢+-¢¢-+¢¢=¶¶¶y y j j ,)()()()(22y x y x y x y x y u-¢-+¢+-¢¢++¢¢=¶¶y y j j , 可见有2222yux u ¶¶=¶¶,应选(B).(12)设函数,11)(1-=-x xex f 则(B) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点. (C) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (E) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. [ D ] 【分析】 显然x=0,x=1为间断点,其分类主要考虑左右极限. 【详解】 由于函数f(x)在x=0,x=1点处无定义,因此是间断点. 且 ¥=®)(l i m 0x f x ,所以x=0为第二类间断点;为第二类间断点; 0)(l i m 1=+®x f x ,1)(lim 1-=-®x f x ,所以x=1为第一类间断点,故应选(D). (13)设21,l l 是矩阵A 的两个不同的特征值,的两个不同的特征值,对应的特征向量分别为对应的特征向量分别为21,a a ,则1a ,)(21a a +A 线性无关的充分必要条件是性无关的充分必要条件是(A) 01¹l . (B) 02¹l . (C) 01=l . (D) 02=l . [ B ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令方法一:令 0)(21211=++a a a A k k ,则,则022211211=++a l a l a k k k , 0)(2221121=++a l a l k k k . 由于21,a a 线性无关,于是有线性无关,于是有îíì==+0,022121l l k k k当02¹l 时,显然有0,021==k k ,此时1a ,)(21a a +A 线性无关;反过来,若1a ,)(21a a +A 线性无关,则必然有02¹l (,否则,1a 与)(21a a +A =11a l 线性相关),故应选(B). 方法二:方法二: 由于由于 úûùêëé=+=+21212211121101],[],[)](,[l l a a a l a l a a a a A ,可见1a ,)(21a a +A 线性无关的充要条件是.001221¹=l l l 故应选(B). (14)设A 为n (2³n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则随矩阵,则(B) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [ C ] 【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可. 【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得使得 B A E =12,于是于是 12*11212*12***12*)(E A E E A EA A EB -=×===-,即,即*12*B E A -=,可见应选(C). 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设函数f(x)连续,且0)0(¹f ,求极限.)()()(lim 0òò--®xxx dtt x f xdtt f t x【分析】 此类未定式极限,典型方法是用罗必塔法则,但分子分母求导前应先变形. 【详解】 由于òòò=-=-=-0)())(()(xxxu t x du u f du u f dt t x f ,于是于是òòòòò-=--®®xxx x x xx duu f xdtt tf dt t f xdtt x f xdtt f t x 0)()()(lim )()()(lim=òò+-+®xxx x xf du u f x xf x xf dt t f 0)()()()()(lim =òò+®xxx x xf du u f dtt f 0)()()(lim=)()()(lim 0xf x duu f x dtt f xxx +òò®=.21)0()0()0(=+f f f(16)(本题满分11分) 如图,1C 和2C 分别是)1(21x e y +=和xe y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点M(x,y)分别作垂直于x 轴和y 轴的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与yl 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x j =【分析】 利用定积分的几何意义可确定面积)(),(21y S x S ,再根据)()(21y S x S =建立积分等式,然后求导引出微分方程,最终可得所需函数关系. 【详解】 如图,有如图,有ò--=+-=xxt t xe dt e e x S 01)1(21)]1(21[)(,ò-=ydt t t y S 12))((ln )(j ,由题设,得由题设,得 ò-=--yxdt t t x e 1))((ln )1(21j ,而x e y =,于是ò-=--ydt t t y y 1))((ln )1ln (21j 两边对y 求导得求导得)(ln )11(21y y y j -=-,故所求的函数关系为:.21ln )(yy y y x --==j(17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分ò¢¢¢+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,的函数值与导数值,在在x=3处的函数值及一阶、处的函数值及一阶、二阶导数值二阶导数值. 【详解】 由题设图形知,f(0)=0, 2)0(=¢f ; f(3)=2, .0)3(,2)3(=¢¢-=¢f f 由分部积分,知由分部积分,知òòò+¢¢-¢¢+=¢¢+=¢¢¢+33302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dxx f x f x x f d xòò¢+¢+-=¢+-33030)(2)()12()()12(=.20)]0()3([216=-+f f (18)(本题满分12分)用变量代换)0(cos p <<=t t x 化简微分方程0)1(2=+¢-¢¢-y y x y x ,并求其满足2,10=¢===x x y y的特解. 【分析】 先将y y ¢¢¢,转化为22,dty d dt dy ,再用二阶常系数线性微分方程的方法求解即可. 【详解】 dt dyt dx dt dt dy y sin 1-=×=¢,)sin 1(]sin 1sin cos [222t dt y d t dt dy t t dx dt dt y d y -×-=×¢=¢¢, 代入原方程,得代入原方程,得 022=+y dt yd . 解此微分方程,得解此微分方程,得 221211s i n c o s x C x C t C t C y -+=+=, 将初始条件2,10=¢===x x yy代入,有1,221==C C . 故满足条件的特解为.122x x y -+=(19)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:证明: (I )存在),1,0(Îx 使得x x -=1)(f ;(II )存在两个不同的点)1,0(,Îz h ,使得.1)()(=¢¢z h f f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论. 【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值于是由介值定理知,存在),1,0(Îx 使得)(=x F ,即xx -=1)(f . (II ) 在],0[x 和]1,[x 上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(x z x h ÎÎ,使得0)0()()(--=¢x x h f f f ,x x z --=¢1)()1()(f f f于是于是 .1111)(1)()()(=-×-=--×=¢¢xxx x x x x x zh f f f f (20)(本题满分10分)已知函数z=f(x,y) 的全微分ydy xdx dz 22-=,并且f(1,1,)=2. 求f(x,y)在椭圆域}14),{(22£+=y x y x D 上的最大值和最小值. 【分析】 根据全微分和初始条件可先确定f(x,y)的表达式. 而f(x,y)在椭圆域上的最大值和最小值, 可能在区域的内部达到,也可能在区域的边界上达到,且在边界上的最值又转化为求条件极值. .【详解】 由题设,知由题设,知 x x f 2=¶¶,y yf 2-=¶¶,于是于是 )(),(2y C x y x f +=,且,且 y y C 2)(-=¢,从而,从而 C y y C +-=2)(,再由f(1,1)=2,得,得 C=2, 故 2),(22+-=y x y x f令0,0=¶¶=¶¶y f x f 得可能极值点为x=0,y=0. 且 2)0,0(22=¶¶=xf A ,0)0,0(2=¶¶¶=yx f B ,2)0,0(22-=¶¶=y f C ,042>=-=D AC B ,所以点(0,0) 不是极值点,从而也非最值点. 再考虑其在边界曲线1422=+y x 上的情形:令拉格朗日函数为上的情形:令拉格朗日函数为)14(),(),,(22-++=y x y x f y x F ll ,解 ïïïîïïïíì=-+=¢=+-=+¶¶=¢=+=+¶¶=¢,014,02122,0)1(2222y x F y y y y f F x x x fF y x l l l l l 得可能极值点4,2,0===l y x ;4,2,0=-==l y x ;1,0,1-===l y x ;.1,0,1-==-=l y x 代入f(x,y)得,2)2,0(-=±f 3)0,1(=±f ,可见z=f(x,y)在区域}14),{(22£+=y x y x D 内的最大值为3,最小值为-2. (21)(本题满分9分) 计算二重积分sd y x Dòò-+122,其中}10,10),{(££££=y x y x D . 【分析】 被积函数含有绝对值,应当作分区域函数看待,利用积分的可加性分区域积分即可. 【详解】 记}),(,1),{(221Dy x y x y x D Σ+=,}),(,1),{(222D y x y x y x D Î>+=,于是于是s d y x Dòò-+122=òò-+-1)1(22D dxdy y x òò-++2)1(22D dxdy y x=òò--221)1(p qrdr r d òò-++Ddxdy y x )1(22òò-+-1)1(22D dxdyy x=8p +òòòò---+20102210210)1()1(pq rdr r d dy y x dx =.314-p(22)(本题满分9分) 确定常数a,使向量组,),1,1(1Ta =a ,)1,,1(2Ta =a Ta )1,1,(3=a 可由向量组,),1,1(1Ta =b ,)4,,2(2Ta -=b Ta a ),,2(3-=b 线性表示,但向量组321,,b b b 不能由向量组321,,a a a 线性表示. 【分析】向量组321,,a a a 可由向量组321,,b b b 线性表示,相当与方程组:线性表示,相当与方程组:3,2,1,332211=++=i x x x i b b b a . 均有解,问题转化为),,(321b b b r =3,2,1),,,(321=i r i a b b b 是否均成立?这通过初等变换化解体形讨论即可. 而向量组321,,b b b 不能由向量组321,,a a a 线性表示,相当于至少有一个向量)3,2,1(=j j b 不能由321,,a a a 表示,即至少有一方程组表示,即至少有一方程组3,2,1,332211=++=j x x x j a a a b ,无解. 【详解】 对矩阵),,,,(321321a a a b b b =A 作初等行变换,有作初等行变换,有),,,,(321321a a a b b b =A =úúúûùêêêëé--11411111221a a a a a a a ® úúúûùêêêëé--+-++--a a a a a a a a 110324001022011221®úúúûùêêêëé----++--a a a a a a a 1)1(3040001022011221 ,当a=-2时,®A úúúûùêêêëé-----330600030000211221 , 显然2a 不能由321,,b b b 线性表示,因此2-¹a ;当a=4时,时,®A úúúûùêêêëé----390000030660411221 ,然32,a a 均不能由321,,b b b 线性表示,因此4¹a . 而当2-¹a 且4¹a 时,秩3),,(321=b b b r ,此时向量组321,,a a a 可由向量组321,,b b b 线性表示. 又úúúûùêêêëé--==a a a a a a a B 41111122111),,,,(321321 b b b a a aúúúûùêêêëé+--++----®a a a a a a a a a3240110220110221112úúúûùêêêëé++--++----®24360200220110221112a a aa a a a a a ,由题设向量组321,,b b b 不能由向量组321,,a a a 线性表示,必有01=-a 或022=--a a ,即a=1或2-=a . 综上所述,满足题设条件的a 只能是:a=1. (23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵úúúûùêêêëé=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解. 【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩. 【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(£+B r A r(1)若k 9¹, 则r(B)=2, 于是r(A)1£, 显然r(A)1³, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ÷÷÷øöçççèæ+÷÷÷øöçççèæ=为任意常数. (2) 若k=9,则r(B)=1, 从而2)(1££A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ÷÷÷øöçççèæ=为任意常数. 2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0¹a ,则其通解为2121,,1001k k a c k a b k x ÷÷÷÷÷øöçççççèæ-+÷÷÷÷÷øöçççççèæ-=为任意常数. 3)。

复旦考研数学分析试题

复旦考研数学分析试题

09复旦数学分析考研试题一、 数学分析(90)1. 计算(每个6分)(1) 设∑为:2224(3)6(2)(1)36x y z -+-++≤曲面的外侧,求232x dydz ydxdz +∑⎰⎰=_______。

(2) 1320(1)(1)x dx x x ++⎰=_______。

(3)ln x -(0,)+∞上有唯一的零点,A =_______。

(4) ()f x 在原点存在二阶导数,''(0)0f ≠,'()(0)()x f x f f x θ-=,则0lim x x θ→=_______。

(填某个值或不一定存在或无法确定) (5) 1sin 2009k xk k απ∞=∑在(0,)+∞上一致收敛,则α的取值范围为_______。

2. 证明(每个15分)(1)(,)f x y 定义在[,][,]a b c d ⨯上,且(,)f x y 关于x 连续,且对于某一固定的0[,]y c d ∈, 00[,]lim sup |(,)(,)|0y y x a b f x y f x y →∈-=证明:(,)f x y 在[,][,]a b c d ⨯上连续。

(2)21sin()n n n a a a n-=-求证:lim 0n n a →∞= (3)()f x 在(,)-∞+∞上任意有限区间上可积,求证:对任意的,,,,a b c d()()bd d ba c c a dx f x t dt dt f x t dx +=+⎰⎰⎰⎰ (4)()f x 定义在区间(,)ab 上,对任一(,)x a b ∈0()()lim0y f x y f y y→+-> (注:左式可以为+∞),求证:()f x 在(,)a b 上严格单调。

二、 常微分方程(30)已知2(,)3...x y x Φ=+(这个式子都记不清楚了) 和系统[*] 3dx y dt λ=+ ...dy dt = [*](1)(,)x y C Φ=是[*]的首次积分,确定[*]中λ的值。

2005考研数二真题及解析

2005考研数二真题及解析

2005年全国硕士研究生入学统一考试数学二试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 设x x y )sin 1(+=,则π=x dy = ________________ .(2) 曲线xx y 23)1(+=的斜渐近线方程为___________.(3)=--⎰1221)2(xxxdx______________(4) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为________________. (5) 当0→x 时,2)(kx x =α与x x x x cos arcsin 1)(-+=β是等价无穷小,则k =________________ .(6) 设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B .二、选择题:7-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (7) 设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内 ( )(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.(8) 设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”, 则必有 ( )(A)()F x 是偶函数⇔()f x 是奇函数. (B)()F x 是奇函数⇔()f x 是偶函数.(C)()F x 是周期函数⇔()f x 是周期函数. (D)()F x 是单调函数⇔()f x 是单调函数.(9) 设函数()y y x =由参数方程⎩⎨⎧+=+=)1ln(,22t y t t x 确定,则曲线()y y x =在3x =处的法线与x 轴交点的横坐标是 ( )(A) 1ln 238+. (B) 32ln 81+-. (C) 32ln 8+-. (D) 32ln 8+. (10) 设区域}0,0,4),{(22≥≥≤+=y x y x y x D ,()f x 为D 上的正值连续函数,,a b 为常数,则=++⎰⎰σd y f x f y f b x f a D)()()()( ( )(A) πab . (B)π2ab . (C) π)(b a +. (D) π2b a + . (11) 设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有 ( )(A) 2222yu x u ∂∂-=∂∂. (B) 2222y u x u ∂∂=∂∂ (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂.(12) 设函数,11)(1-=-x x e x f 则 ( )(A) 0x =,1x =都是()f x 的第一类间断点. (B) 0x =,1x =都是()f x 的第二类间断点.(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点.(D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点.(13) 设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是 ( )(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. (14) 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,B A 分别为,A B 的伴随矩阵,则 ( )(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分11分)设函数()f x 连续,且0)0(≠f ,求极限.)()()(lim⎰⎰--→x xx dtt x f x dtt f t x(16)(本题满分11分)如图,1C 和2C 分别是)1(21xe y +=和x e y =的图象,过点(0,1)的曲线3C 是一单调增函数的图象. 过2C 上任一点(,)M x y 分别作垂直于x 轴和y 轴 的直线x l 和y l . 记21,C C 与x l 所围图形的面积为)(1x S ;32,C C 与y l 所围图形的面积为).(2y S 如果总有)()(21y S x S =,求曲线3C 的方程).(y x ϕ= (17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0))与(3,2)处的切线,其交点为(2,4). 设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)用变量代换)0(cos π<<=t t x 化简微分方程0)1(2=+'-''-y y x y x ,并求其满足2,10='===x x y y的特解.(19)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(I)存在),1,0(∈ξ 使得ξξ-=1)(f ;(II)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f (20)(本题满分10分)已知函数(,)z f x y =的全微分ydy xdx dz 22-=,并且(1,1)2f =. 求(,)f x y 在椭圆域}14),{(22≤+=y x y x D 上的最大值和最小值.(21)(本题满分9分)计算二重积分σd y x D⎰⎰-+122,其中}10,10),{(≤≤≤≤=y x y x D(22)(本题满分9分)确定常数a ,使向量组,),1,1(1T a =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示. (23)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且0AB =, 求线性方程组0AX =的通解.2005年全国硕士研究生入学统一考试数学二试题解析一、填空题(1)【详解】先求出函数的导数,再求函数在某点的微分. 方法1:利用恒等变形得x x y )sin 1(+==)sin 1ln(x x e+,于是]sin 1cos )sin 1[ln()sin 1ln(xxx x e y x x +⋅++⋅='+,从而 π=x dy=.)(dx dx y ππ-='方法2:两边取对数,)sin 1ln(ln x x y +=,对x 求导,得 1cos ln(1sin )1sin x xy x y x'=+++ , 于是 ]sin 1cos )sin 1[ln()sin 1(xxx x x y x+⋅++⋅+=',故 π=x dy =.)(dx dx y ππ-='(2)【详解】由求斜渐近线公式y ax b =+(其中()limx f x a x→∞=,lim[()]x b f x ax →∞=-),得:32()limlim 1,x x f x a x →+∞=== []23)1(lim)(lim 2323=-+=-=+∞→+∞→xxx ax x f b x x , 于是所求斜渐近线方程为.23+=x y (3)【详解】通过还原变换求定积分 方法1:令t x sin = (0)2t π<<,则=--⎰1221)2(xxxdx⎰-202cos )sin 2(cos sin πdt tt t t 220sin 2sin t dt t π=-⎰22200cos arctan(cos )1cos 4d t t t πππ=-=-=+⎰方法2t =,有221,x t =-所以有xdx tdt =-,其中01t <<.11201arctan 014dtt t π-===+⎰⎰(4)【答案】.91ln 31x x x y -=【详解】求方程()()dyP x y Q x dx +=的解,有公式 ()()()P x dx P x dx y e Q x e dx C -⎡⎤⎰⎰=+⎢⎥⎣⎦⎰ (其中C 是常数).将原方程等价化为 x y xy ln 2=+',于是利用公式得方程的通解 22[ln ]dx dxx x y e x e dx C -⎰⎰=⋅+⎰221[ln ]x xdx C x =⋅+⎰=211ln 39C x x x x -+, (其中C 是常数) 由91)1(-=y 得0C =,故所求解为.91ln 31x x x y -=(5)【详解】由题设,200()limlim ()x x x x kx βα→→==)cos arcsin 1(cos 1arcsin lim 20x x x kx x x x x ++-+→ 201arcsin 1cos lim 2x x x x k x →+-=2001arcsin 1cos lim lim 2x x x x k x x →→-⎡⎤=+⎢⎥⎣⎦, 又因为 201c o s 1l i m 2x x x →-=,00arcsin lim arcsin lim 1sin x u x ux u x u→→ = = 所以 0()11lim (1)()22x x x k βα→=+34k =由题设0→x 时()~()x x αβ,所以314k =,得.43=k (6)【答案】2【详解】方法1:因为1231231()(,,)11αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,1231231(24)(,,)24αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,1231231(39)(,,)39αααααα⎡⎤⎢⎥++=⎢⎥⎢⎥⎣⎦,故 12312312(,24,39)B ααααααααα=++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα,记123(,,)A ααα=,两边取行列式,于是有.221941321111=⨯=⋅=A B方法2:利用行列式性质(在行列式中,把某行的各元素分别乘以非零常数加到另一行的对应元素上,行列式的值不变;从某一行或列中提取某一公因子行列式值不变)123123123,24,39B ααααααααα=++++++[2][1]1232323[3][1],3,28ααααααα--====++++[3]2[2]123233====,3,2αααααα-+++123233=2,3,αααααα+++[1][3]1223[2]3[3]====2,,αααα--+[1][2]123====2,,ααα-又因为123,,1A ααα==,故B 2A =2=.二、选择题 (7)【答案】C【详解】分段讨论,并应用夹逼准则,当||1x <≤n →∞取极限,得1n =,1n =,由夹逼准则得()1n f x ==;当||1x =时,()1n n f x ===;当||1x >时,33|||x x =<≤,命n →∞取极限,得3||n x =,由夹逼准则得13331()lim ||(1)||.||n n n f x x x x →∞=+= 所以 31,||1(),||1x f x x x <⎧⎪=⎨≥⎪⎩再讨论()f x 的不可导点. 按导数定义,易知1x =±处()f x 不可导,故应选(C).(8)【答案】A 【详解】方法1:应用函数奇偶性的定义判定,函数()f x 的任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当()F x 为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即)()(x f x f =--,亦即)()(x f x f -=-,可见()f x 为奇函数;反过来,若()f x 为奇函数,则0()()xF x f t dt C --=+⎰,令t k =-,则有dt dk =-,所以 00()()()()()xxxF x f t d t C f k d k Cf k d k C F x--=+=--+=+=⎰⎰⎰, 从而 ⎰+=xC dt t f x F 0)()( 为偶函数,可见(A)为正确选项.方法2:排除法,令()1f x =, 则取()1F x x =+, 排除(B)、(C);令()f x x =, 则取21()2F x x =, 排除(D); (9)【答案】A【详解】当3x =时,有322=+t t ,得121,3t t ==-(舍去,此时y 无意义),曲线()y y x =的导数为 2111222(1)dy dy dt t dx dx t t dt+===++, 所以曲线()y y x =在3x =(即1t =)处的切线斜率为18于是在该处的法线的斜率为8-, 所以过点(3,ln 2)的法线方程为)3(82ln --=-x y ,令y =0, 得其与x 轴交点的横坐标为:32ln 81+, 故应(A).(10)【答案】D【详解】由于积分区域D 是关于y x =对称的, 所以x 与y 互换后积分值不变, 所以有=++⎰⎰σd y f x f y f b x f a D)()()()(σd x f y f x f b y f a D⎰⎰++)()()()(=12D d σ⎰⎰ =22.2242Da d σππ+=⋅⋅⋅=⎰⎰ 应选(D).(11)【答案】B 【详解】因为)()()()(y x y x y x y x x u--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ,于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ, )()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ,)()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222y u x u ∂∂=∂∂,应选(B).(12)【答案】D【详解】由于函数()f x 在0x =,1x =点处无定义,因此是间断点.且 ∞=→)(lim 0x f x ,所以0x =为第二类间断点;0)(l i m 1=+→x f x ,1)(lim 1-=-→x f x ,所以1x =为第一类间断点,故应选(D). (13)【答案】B【详解】方法1:利用线性无关的定义12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.设有数12,k k ,使得0)(21211=++αααA k k ,则022211211=++αλαλαk k k 1211222()0k k k λαλα⇒++=.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,则⎩⎨⎧==+.0,022121λλk k k 当122100λλλ=≠时,方程只有零解,则0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法2:将向量组的表出关系表示成矩阵形式12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由于()()()1112111221221,(),,0A λααααλαλαααλ⎛⎫+=+= ⎪⎝⎭, 因12λλ≠,因不同特征值对应的特征向量必线性无关,知21,αα线性无关. 若1α,)(21αα+A 线性无关,则()112,()2r A ααα+=,则()()11112122221112,min ,,2000r r r r λλλααααλλλ⎛⎫⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=≤≤≤ ⎪⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩⎭,故121220r λλ⎛⎫≤≤ ⎪⎝⎭,从而12120r λλ⎛⎫= ⎪⎝⎭,从而122100λλλ=≠ 若122100λλλ=≠,则12120r λλ⎛⎫= ⎪⎝⎭,又21,αα线性无关,则 ()11122211,200r r λλααλλ⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()()11121221,(),20r A r λαααααλ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭从而1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B). 方法3:利用矩阵的秩12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.因12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,又121122()A ααλαλα+=+,故1α,)(21αα+A 线性无关112(,())2r A ααα⇔+=又因为()()211122122,,αλαλαλααλα+=11将的-倍加到第列则111221222(,)(,)20r r αλαλααλαλ+==⇔≠(若20λ=,与122(,)2r αλα=矛盾) 方法4:利用线性齐次方程组12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.由12λλ≠,因不同特征值对应的特征向量必线性无关,故21,αα线性无关,112,()A ααα+线性无关 11122,αλαλα⇔+线性无关⇔11122,0αλαλα+≠,⇔()11122,0X αλαλα+=只有零解,又()()1111221221,,0λαλαλαααλ⎛⎫+= ⎪⎝⎭⇔()1112221,00x x λααλ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭只有零解⇔12,αα线性无关时()12,0Y αα=只有零解,故1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,只有零解,⇔1122100x Y x λλ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭的系数矩阵是个可逆矩阵,⇔122100λλλ=≠,故应选(B) 方法5:由12λλ≠,21,αα线性无关12,αα分别是特征值12,λλ对应的特征向量,根据特征值、特征向量的定义,有111222,A A αλααλα==121122()A ααλαλα⇒+=+.向量组()12I :,αα和向量组()1121122II :,()A αααλαλα+=+. 显然向量组()II 可以由向量组()I 线性表出;当20λ≠时,不论1λ的取值如何,向量组()I 可以由向量组()II 线性表出11αα=,112111*********11()()()A λλααλαλααααλλλλ=-++=-⋅++, 从而()I ,()II 是等价向量组⇒当20λ≠时,()()1211122,,2r r αααλαλα=+=(14)【答案】(C) 【详解】 方法1:由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得B A E =12,(A 进行行变换,故A 左乘初等矩阵),于是 ****1212()B E A A E==,又初等矩阵都是可逆的,故 *1121212E E E -=, 又121E E =-=-(行列式的两行互换,行列式反号),11212E E -=,故****1*1*1212121212B A E A E E A E A E --==⋅=-=-,即*12*B E A -=,可见应选(C).方法2:交换A 的第一行与第二行得B ,即12B E A =.又因为A 是可逆阵,121E E =-=-,故12120B E A E A A ===-≠, 所以B 可逆,且1111212()B E A A E ---==.又11,A B A B A B **--==,故12B A E B A**=,又因B A =-,故*12*B E A -=.三、解答题(15)【详解】 作积分变量代换,命x t u -=,则00()()()()xxxf x t dt f u du f u du -=-=⎰⎰⎰,于是⎰⎰⎰⎰⎰-=--→→xx xx x xx duu f x dtt tf dt t f x dtt x f x dtt f t x 00)()()(lim)()()(lim=洛必达法则⎰⎰+-+→xxx x xf du u f x xf x xf dt t f 0)()()()()(lim=整理⎰⎰+→xxx x xf du u f dt t f 000)()()(lim0001()lim 1()()xx xx f t dt x f x f t dtx →=+⎰⎰上下同除而 00000(())1l i m ()l i m l i m ()(0)xxx x x f t d tf t dt f x f x x →→→'==='⎰⎰所以由极限的四则运算法则得,原式0001()lim 1()()xx x f t dt x f x f t dt x →=+⎰⎰00001lim ()1lim ()lim ()x x x x f t dt x f x f t dtx →→=+⎰⎰(0)(0)(0)f f f =+(0)012f ≠=. (16) 【详解】由题设图形知,3C 在1C 的左侧,根据平面图形的面积公式得,⎰--=+-=xx t t x e dt e e x S 01)1(21)]1(21[)(,⎰-=ydt t t y S 12))((ln )(ϕ,由)()(21y S x S =,得⎰-=--y xdt t t x e 1))((ln )1(21ϕ,注意到(,)M x y 是x e y =的点,于是 ⎰-=--y dt t t y y 1))((ln )1ln (21ϕ两边对y 求导得 )(ln )11(21y y yϕ-=-,整理上面关系式得函数关系为:.21ln )(yy y y x --==ϕ (17)【详解】由直线1l 过(0,0)和(2,4)两点知直线1l 的斜率为2. 由直线1l 是曲线C 在点(0,0)的切线,由导数的几何意义知(0)2f '=. 同理可得(3)2f '=-. 另外由点(3,2)是曲线C 的一个拐点知(3)0.f ''=由分部积分公式,33220()()()()x x f x dx x x df x '''''+=+⎰⎰3320()()()(21)x x f x f x x dx ''''=+-+⎰3220(33)(3)(00)(0)()(21)f f f x x dx ''''''=+-+-+⎰=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(3(231)(3)(201)(0)2()f f f x dx '''=-⨯++⨯++⎰=.20)]0()3([216=-+f f(18)【详解】 由题设)0(cos π<<=t t x ,有sin dxt dt=-,由复合函数求导的链式法则得 dt dy t dx dt dt dy y sin 1-=⋅=',)sin 1(]sin 1sin cos [222tdt y d t dt dy t t dx dt dt y d y -⋅-=⋅'='', 代入原方程,2222cos 111(1cos )[]()cos ()0sin sin sin sin t dy d y dy t t y t dt t dt t t dt--⋅---+=, 化简得022=+y dty d ,其特征方程为210r +=,特征根1,2r i =±, 通解为12cos sin y C t C t =+所以 221211sin cos x C x C t C t C y -+=+=, 将初始条件01,x y==代入得,1210C C C =⨯+=,即21C =.)而121)y C x C C '''=+=将02x y ='=代入得112C C ==,即12C =. 将122,1C C ==代入通解公式得满足条件的特解为21 1.y x x =-<< (19)【详解】(I) 令x x f x F +-=1)()(,则()F x 在[0,1]上连续,且(0)10F =-<, (1)10F =>,于是由闭区间连续函数的介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II) 在],0[ξ和]1,[ξ上对()f x 分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (20)【详解】由ydy xdx dz 22-=知2,2z zx y x y∂∂==-∂∂.对2z x x ∂=∂两边积分得2(,)()z f x y x c y ==+. 将2(,)()z x y x c y =+代入2zy y∂=-∂得()2c y y '=. 所以2()c y y c =+. 所以22z x y c =-+.再由1,1x y ==时2z =知, 2c =. 于是所讨论的函数为222z x y =-+.求z 在2214y x +<中的驻点. 由2,2z zx y x y∂∂==-∂∂得驻点(0,0),对应的(0,0)2z f ==.讨论222z x y =-+在D 的边界22=14y x +上的最值,有两个方法. 方法1:把224(1)y x =-代入z 的表达式,有2222=52z x y x =-+-,11x -≤≤ 10x z x '=命0x z '=解得0x =,对应的2y =±,0,22x y z ==±=-还要考虑11x -≤≤的端点1x =±,对应的0y =,1,03x y z =±==由2,2,3z z z ==-=比较大小,故min 2z =-(对应于0x =,2y =±),max 3z =(对应于0x =,2y =±)方法2:用拉格朗日乘数法,作函数2222(,,)2(1)4y F x y x y x λλ=-+++- 解方程组 2222(1)0,12022104x y fF x x x f y F y y y y F x λλλλλ⎧∂'=+=+=⎪∂⎪∂⎪'=+=-+=⎨∂⎪⎪'=+-=⎪⎩由上面的第一个方程解得0x =或1λ=-:当0x =时由最后一个方程解得2y =±;当1λ=-是由第二个方程解得0y =,这时由最后一个方程解得1x =±. 故解得4个可能的极值点(0,2),(0,2),(1,0),(1,0)--.计算对应z 的值:(0,2)(0,2)(1,0)(1,0)2,2,3,3zzzz--=-=-==再与(0,0)2z =比较大小,结论同方法1.(21) 【详解】D :2210x y +-=为以O 为中心半径为1 的圆周,划分D 如下图为1D 与2D .这时可以去掉绝对值符号222222211,(,)11,(,)x y x y D x y x y x y D ⎧+-∈⎪+-=⎨--∈⎪⎩方法1:221Dx y d σ+-⎰⎰=⎰⎰-+-1)1(22D dxdy y x ⎰⎰-++2)1(22Dy x 后一个积分用直角坐标做,2112222(1)1)D x y dxdy dx x y dy +-=+-⎰⎰⎰ 312222011[(1)((1-)]33x x x dx =----⎰ 33221111222200002222[()(1)](1)3333x x dx x dx dx x dx =-+-=-+-⎰⎰⎰⎰ 42012cos 33tdt π=-+⎰220121cos 2()332t dt π+=-+⎰220121(12cos 2cos 2)334t t dt π=-+⨯++⎰201211cos 4(12cos 2)3342t t dt π+=-+⨯++⎰201211cos 4(12cos 2)33422t t dt π=-+⨯+++⎰20121321cos 4(2cos 2)33422342t t dt ππ=-+⨯⨯⨯+⨯+⎰12103834π=-++⨯⨯138π=-+.前一个积分用极坐标做,112222200011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. 所以221Dx y d σ+-⎰⎰=8π+138π-+=.314-π方法2:由于区域2D 的边界复杂,计算该积分较麻烦,可以将2D 内的函数“扩充”到整个区域D =12D D ,再减去“扩充”的部分,就简化了运算. 即222(1)d D xy σ+-=⎰⎰22(1)Dx y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰2+y 2因此221D xy d σ+-⎰⎰=122(1)D x y d σ--⎰⎰222(1)D x y d σ++-⎰⎰122(1)D x y d σ=--⎰⎰+22(1)D x y d σ+-⎰⎰122(1)D x y d σ-+-⎰⎰ 1222(1)D x y d σ=--⎰⎰+22(1)Dx y d σ+-⎰⎰由极坐标112222200011(1)(1)()248D x y dxdy d r rdr d πππθθ--=-=-=⎰⎰⎰⎰⎰. 而 3111222220001(1)(1)[(1)]03Dx x y d dy x y dx y x dy σ+-=+-=+-⎰⎰⎰⎰⎰311220011221[1]()[]033333y y dy y dy y =+-=-=-=-⎰⎰ 所以 221Dx y d σ+-⎰⎰=28π⨯13-=.314-π(22)【详解】方法1:记123123(,,),(,,)A B αααβββ==. 由于123,,βββ不能由123,,ααα线性表出,故()3r A <,(若()3r A =,则任何三维向量都可以由123,,ααα线性表出),从而111111a A a a =2222311111a a aaa+++把第、行加到第行1111(2)11(2)11a a a a ++提取第行的公因子11121(2)01031100a a a - +---行行行行13013(2)(1)110a a a +-+⋅-⨯⨯-按第列展开2(2)(1)a a =-+-0= (其中13(1)+-指数中的1和3分别是1所在的行数和列数)从而得1a =或2a =-.当1a =时,1231[1,1,1]T αααβ====,则12312300αααβββ===+⋅+⋅,故123,,ααα可由123,,βββ线性表出,但2[2,1,4]T β=-不能由123,,ααα线性表出(因为方程组2123211111114111k k k β-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==++ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即123123123214k k k k k k k k k ++=-⎧⎪++=⎨⎪++=⎩无解),故1a =符合题意. 当2a =-时,由于122112[]122121242211B A ---⎡⎤⎢⎥=---⎢⎥⎢⎥---⎣⎦ 12211221000033312006000---⎡⎤-⎢⎥--⎢⎥+⨯⎢⎥-⎣⎦行行,行行因2()2()3r B r B α=≠= ,系数矩阵的秩和增广矩阵的秩不相等,故方程组2BX α=无解,故2α不能由123,,βββ线性表出,这和题设矛盾,故2a =-不合题意.因此1a =.方法2:对矩阵),,,,(321321αααβββ =A 作初等行变换,有),,,,(321321αααβββ =A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11411111221a a a a a a a 1221121022010310423011a a a a a a a a a --⎡⎤-⎢⎥++-⎢⎥-⨯⎢⎥+--⎣⎦行行,行行1221132202201000403(1)1a a a a a a a --⎡⎤⎢⎥-⨯++-⎢⎥⎢⎥---⎣⎦ 行行, 当2a =-时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----330600030000211221 , 不存在非零常数123,,k k k ,使得123112230003006k k k --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪-=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭,2α不能由321,,βββ线性表示,因此2-≠a ; 当4a =时,→A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----390000030660411221 ,3α不能由321,,βββ线性表示,不存在非零常数123,,k k k ,使得123412200663000k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭. 因此4≠a . 而当2-≠a 且4≠a 时,秩3),,(321=βββr ,此时向量组321,,ααα可由向量组321,,βββ线性表示. 又⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==a a a a a a a B 41111122111),,,,(321321 βββααα21112221011022310110423a a a a a a a a a a --⎡⎤-⎢⎥--++⎢⎥-⨯⎢⎥--+⎣⎦ 行行,行行2111223201102200206342a a a a a a a a a --⎡⎤⎢⎥+--++⎢⎥⎢⎥--++⎣⎦行行,由题设向量组321,,βββ不能由向量组321,,ααα线性表示,则方程组()1231x αααβ =或()1232x αααβ =或()1233x αααβ =无解,故系数矩阵的秩≠增广矩阵的秩,故()123()r B r ααα≠ .又当2-≠a 且4≠a 时,()3r B =,则必有01=-a 或022=--a a ,即1a =或2-=a .综上所述,满足题设条件的a 只能是:1a =.方法3:记()()123123,,,,,A B αααβββ==,对矩阵()A B 作初等行变换,得()12312311122(,,,,)111114a A B a a a a a a αααβββ--⎡⎤⎢⎥ ==⎢⎥⎢⎥⎣⎦21112221011022310110423a a a a a a a a a a --⎡⎤-⎢⎥--++⎢⎥-⨯⎢⎥--+⎣⎦ 行行,行行2111223201102200206342a a a a a a a a a --⎡⎤⎢⎥+--++⎢⎥⎢⎥--++⎣⎦行行, 由于123,,βββ不能由123,,ααα线性表出,故()3r A <,(若()3r A =,则任何三维向量都可以由123,,ααα线性表出),从而111111aA a a =2222311111a a aaa +++把第、行加到第行1111(2)11(2)11a a a a ++提取第行的公因子11121(2)01031100a a a -+---行行行行13013(2)(1)110a a a +-+⋅-⨯⨯-按第列展开2(2)(1)a a =-+-0=从而得1a =或2a =-.当1a =时,()111122000033000096A B -⎛⎫ ⎪= ⎪ ⎪⎝⎭, 则12312300αααβββ===+⋅+⋅,123,,ααα可由123,,βββ线性表出,但由于()()212r A r A β=≠ = ,系数矩阵的秩和增广矩阵的秩不相等,方程组2Ax β=无解,2[2,1,4]T β=-不能由123,,ααα线性表出. 或由于()()312r A r A β=≠= ,系数矩阵的秩和增广矩阵的秩不相等,方程组3Ax β=无解,3β不能由123,,ααα线性表出,即123,,βββ不能由123,,ααα线性表出,故1a =符合题意.当2a =-时,()112122033000000006A B --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 因()()323r A r A β=≠ = ,,系数矩阵的秩和增广矩阵的秩不相等,123,,βββ不能由123,,ααα线性表出,但()()223r B r B α=≠ = (或()33r B α = ),系数矩阵的秩和增广矩阵的秩不相等,即2BX α=(或3BX α=)无解,即123,,ααα不能由123,,βββ线性表出,与题设矛盾,故2a =-不合题意.故1a =.(23)【详解】 由0AB =知,B 的每一列均为0Ax =的解,且.3)()(≤+B r A r (3是A 的列数或B 的行数)(1) 若9k ≠,13,ββ不成比例,12,ββ成比例,则()2r B =, 方程组0Ax =的解向量中至少有两个线性无关的解向量,故它的基础解系中解向量的个数2≥,又基础解系中解向量的个数=未知数的个数()r A -3()r A =-,于是()1r A ≤.又矩阵A 的第一行元素(),,a b c 不全为零,显然()1r A ≥, 故()1r A =. 可见此时0Ax =的基础解系由3()2r A -= 个线性无关解向量组成,13,ββ是方程组的解且线性无关,可作为其基础解系,故0Ax = 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若9k =,则123,,βββ均成比例,故()r B =1, 从而.2)(1≤≤A r 故()1r A =或()2r A =.①若()2r A =, 则方程组的基础解系由一个线性无关的解组成,1β是方程组0Ax =的基础解系, 则0Ax =的通解为:11,321k k x ⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.②若()1r A =, 则A 的三个行向量成比例,因第1行元素(),,a b c 不全为零,不妨设0a ≠,则0Ax =的同解方程组为:0321=++cx bx ax , 系数矩阵的秩为1,故基础解系由312-=个线性无关解向量组成,选23,x x 为自由未知量,分别取231,0x x ==或230,1x x ==,方程组的基础解系为121,001b c a a ξξ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则其通解为121210,,01b c a a x k k k k ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为任意常数.。

2005考研数一真题及解析

2005考研数一真题及解析

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________。

(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________。

(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________。

(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B 。

(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________。

二、选择题(本题共8小题,每小题4分,满分32分。

每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B )恰有一个不可导点(C )恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A )()F x 是偶函数()f x ⇔是奇函数 (B )()F x 是奇函数()f x ⇔是偶函数(C )()F x 是周期函数()f x ⇔是周期函数 (D )()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B )2222yux u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D )222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B )可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C )可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D )可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A )01≠λ (B )02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C )交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A )0.2,0.3a b == (B )0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b == (14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B )22~()nS n χ(C ))1(~)1(--n t SXn (D )2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分。

2005年考研数学试题详解及评分参考介绍

2005年考研数学试题详解及评分参考介绍
n n ®¥
3n
= x lim(
n ®¥
3
1 x
3n
+ 1) = x ,故 f (x) = lim n 1 + x
n ®¥
1 n
ì ï 1, =í 3 ï îx ,
x £1 x >1
.
于是有 f -¢( -1) = lim -
- x3 - 1 = -3, x ®1 x +1 1 -1 f -¢(1) = lim = 0, x ®1- x - 1
2005 年 • 第 3 页
郝海龙:考研数学复习大全·配套光盘·2005 年数学试题详解及评分参考
z , Fz¢ = - ln y + e xz x ,于是有 y Fx¢(0,1,1) = 2 ¹ 0 , Fy¢(0,1,1) = -1 ¹ 0 , Fz¢(0,1,1) = 0 . 因此根据隐函数存在定理,由此 可确定相应的隐函数 x = x( y, z ) 和 y = y ( x, z ) . 故选 (D) . Fx¢ = y + e xz z , Fy¢ = x (11) 设 l1 , l 2 是 矩阵 A 的 两 个 不同 的 特征值 , 对 应的 特征 向量分 别 为 a 1 , a 2 ,则 a 1 ,
2005 年 • 第 1 页
(4) 设 W 是由锥面 z =
郝海龙:考研数学复习大全·配套光盘·2005 年数学试题详解及评分参考
整个边界的外侧,则
òò xdydz + ydzdx + zdxdy =
S
.
【答】 应填 (2 - 2)p R 3 . 【解】 由高斯公式,得
2 3 òò xdydz + ydzdx + zdxdy = 3òòò dV =3ò dq ò 4 sin j dj ò r dr = (2 - 2)p R . S W 0 0 0 2p

2005考研数一真题及解析

2005考研数一真题及解析

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =1001,02x y x<<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P ,再由初始条件确定任意常数即可. 【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B ,如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y, 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点.[ C ]【分析】 先求出f(x)的表达式,再讨论其可导情形.【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ]【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ, )()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x yu-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222y u x u ∂∂=∂∂,应选(B).(10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z).[ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xz x +=', yz x F y -=',x e y F xzz +-='ln , 且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D)02=λ. [ B ]【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k .由于21,αα线性无关,于是有⎩⎨⎧==+.0,022121λλk k k 当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA , 可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ]【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P ,即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D ,}0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=2213132cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑, 122211()(1),(1,1)1n n n S x x x x∞--=''=-=∈-+∑.由于 (0)0,(0)0,S S '== 所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Lyx xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cy x xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )1ll 3如图,将C 分解为:21l l C +=,另作一条曲线3l =++⎰Cyx xydydx y 4222)(ϕ-++⎰+314222)(l l yx xydydx y ϕ022)(3242=++⎰+l l yx xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂.24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++① 243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A ,由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,③ ④解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为 2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为.,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧= 求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ; 2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n nn n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

复旦大学2005年数量经济学西方经济学考研真题

复旦大学2005年数量经济学西方经济学考研真题

2005年数量经济学西方经济学考试题目回忆
一简答(10分/题)
1 为什么要用弹性而不是变化率来反映价格对需求的影响?
2 可口可乐和百事可乐是完全替代品,如果可口可乐的价格下降,哪一部分是替代效应,
哪一部分是收入效应?
3 边际报酬递增的厂商不会面对边际报酬递减的情况.这种说法对吗?
4 试用博弈论解释为什么价格战导致利润消失?
5 用一种理论解释,支持政府免费教育的政策
二计算(20分/题)
全部都是尹伯成第四版习题集上的题
1 是190页5 求成本函数的
2 是238页9
3 是310页12
三分析(20分/题)
1 试比较厂商长期生产成本曲线和短期生产成本曲线的异同。

2 完全竞争的市场中实现一般均衡,用Edgeworth框图说明商品在不同消费者之间的有
效配置。

复旦大学数学分析考研真题

复旦大学数学分析考研真题

复旦大学 数学分析考研真题一.填空题(1)0lim x →ln(1)1cos x x x+-=_____(2)微分方程'y =(1)y x x-的通解是____,这是变量可分离方程(3)设∑是锥面z=22x y +(0≤z ≤1)的下侧,则23(1)x d y d z y d z d x z d x d y ++-=∑⎰⎰____(4)点(2,1,0)到平面3x+4y+5z=0的距离d=____ (5)设A=2112⎛⎫⎪-⎝⎭,2阶矩阵B 满足BA=B+2E,则B =____(6)设随机变量X 与Y 相互独立,且均服从区间[]0,3上的均匀分布,则{m a x (,)1}P x y ≤=____一、 选择题(1) 设函数()y f x =具有二阶导数,且'()0f x >,''()0f x >,x 为自变量x 在x,处的增量,y 与dy 分别为()f x 在点x处对应的增量与微分,若0x >,则( )(A )0dx y << (B )0y dy << (C )0y dy << (D )0dy y << (2)设(,)f x y 为连续函数,则41(cos ,sin )d f r r rdr πθθθ⎰⎰等于( )(A )2210(,)xx dx f x y dy -⎰⎰(B )22100(,)xdx f x y dy -⎰⎰(C )2210(,)yydy f x y dx -⎰⎰(D )2210(,)ydy f x y dx -⎰⎰(3)若级数1nn a∞-∑收敛,则级数( )(A )1nn a∞-∑收敛 (B )1(1)n nn a ∞--∑收敛(C )11n n n a a ∞+-∑收敛 (D )112n n n a a ∞+-+∑收敛(4)设(,)f x y 和(,)x y ϕ均为可微函数,且'(,)y x y ϕ≠0,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是( ) (A )若'00(,)0x f x y =,则'00(,)0y f x y = (B )若'00(,)0x f x y =,则'00(,)0y f x y ≠ (C )若'00(,)0x f x y ≠,则'00(,)0y f x y = (D )若'00(,)0x f x y ≠,则'00(,)0y f x y ≠ (5)设12,,,s ααα都是n 维向量,A 是m n ⨯矩阵,则( )成立(A)若12,,,s ααα线性相关,则12,,s A A A ααα线性相关 (B)若12,,,s ααα线性相关,则12,,s A A A ααα线性无关 (C)若12,,,s ααα线性无关,则12,,s A A A ααα线性相关 (D)若12,,,s ααα线性无关,则12,,s A A A ααα线性无关(6)设A是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第一列的1-倍加到第2列上得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则( )(A )1C P AP -= (B )1C PAP -= (C )TC P AP = (D )TC PAP =(7)设A ,B 为随机事件,()0P B >,()|1P A B =,则必有( ) (A )()()P A B P A ⋃> (B )()()P A B P B ⋃> (C )()()P A B P A ⋃= (D )()()P A B P B ⋃=(8)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{1}{1}P X P Y μμ-<>-<,则( )(A )12σσ< (B )12σσ> (C )12μμ< (D)12μμ>三、简答题(1) 设区域22{(,)|1,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰ (2) 设数列{}n x 满足110,sin n n x x x π+<<=(n=1,2),求:(I )证明lim n x x →∞存在,并求之(II )计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭(3) 设函数()f u 在(0,∞)内具有二阶导数,且22()z f x y =+满足等式22220z zx y∂∂+=∂∂ (I )验证'''()()0f u f u u+= (II )若'(1)0,(1)1f f ==,求函数()f u 的表达式(4) 设在上半平面{(,)|0}D x y y =>内,函数(,)f x y 是有连续偏导数,且对任意的0t >都有2(,)(,)f tx ty t f x y =证明:对L 内的任意分段光滑的有向简单闭曲线L,都有(,)(,)0Lyf x y dx xf x y dy -=⎰(5)已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解(I)证明方程组系数矩阵A的秩 ()2r A = (II )求 a , b 的值及方程组的通解(6)设3阶实对称矩阵A 的各行元素之和均为3,向量1(1,2,1)T α=--,2(0,1,1)T α=-实线性方程组0Ax =的两个解,(I )求A 的特征值与特征向量(II )求:正交矩阵Q与对角矩阵A,使得TQ AQ A =(7)随机变量X 的概率密度为1,1021(),0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其他令2,(,)y x F x y =为二维随机变量(,)X Y 的分布函数(I)求Y的概率密度()Y f y (II)1,42F ⎛⎫-⎪⎝⎭(8)设总体X 的概率密度,01(,0)1,120,x F X x θθ<<⎧⎪=-≤<⎨⎪⎩其他其中θ实未知参数(01θ<<),12,,,n X X X 为来自总体X 的简单随即样本,记N 为样本值12,,,n x x x 中小于1的个数,求θ的最大似然估计。

2005年考研数学真题

2005年考研数学真题

2005年考研数学真题一、第一部分2005年的考研数学真题可谓多种多样,考查了各个领域的数学知识。

本文将分别从数学分析、代数学和概率论三个方面,进行讨论和解答。

二、数学分析1. 问题一问题描述:设函数f(x)在区间[a, b]上连续且可微,且f(a) = f(b) = 0,证明在(a, b)内至少存在一点ξ,使得f'(ξ) = kf(ξ),其中0<k<1。

解答思路:首先利用罗尔定理,证明函数f(x)在[a, b]上存在至少一点ξ,使得f'(ξ) = 0。

然后,利用闭区间套定理,证明存在一个闭区间[a', b'],其中a'<ξ<b',在该区间内f'(x)的绝对值小于1。

最后,根据零点定理和介值定理,证明在(a', b')内存在一点ξ,使得f'(ξ) = kf(ξ)。

2. 问题二问题描述:已知函数f(x)在区间[0, +∞)上连续,且对于任意的x>0,有f(x) = 2∫(0 to x) f(t)dt + e^x - 1,求函数f(x)的表达式。

解答思路:首先对等式两边求导,得到f'(x) = 2f(x) + e^x。

然后,将该一阶常系数线性微分方程转化为齐次方程和特解方程。

通过求解齐次方程的特征方程得到f(x)的齐次解,再通过待定系数法求解特解方程得到f(x)的特解。

将齐次解和特解相加,即可得到函数f(x)的表达式。

三、代数学问题描述:已知复数z满足(z^2 - 1)(z^2 + 1) + 2z(z + 1)(z - 1) = (z - 1)^3,求z的值。

解答思路:首先将方程进行展开和整理,然后将同类项合并得到一个关于z的二次方程。

通过求解二次方程得到z的两个解,再通过验证这两个解是否满足原方程,确定唯一的解。

2. 问题二问题描述:已知二次方程ax^2 + bx + c = 0的两个根为α和β,求二次方程(a^2)x^2 + (b^2)x + c^2 = 0的两个根α^2和β^2。

数学分析试题及答案

数学分析试题及答案
∫∫ 六.计算曲面积分 x2dydz + y 2dzdx + z 2dxdy ,其中 Σ 为锥面 x2 + y 2 = z 2 在平面 Σ
z = 0 与 z = h ( h > 0 )之间的部分,定向为下侧。
七.设 A(x, y) = 2xy(x 4 + y 2 )λ i − x 2 (x 4 + y 2 )λ j 是右半平面 D = { (x, y) | x > 0 } 上 的向量场,试确定常数 λ ,使得 A(x, y) 为 D 上函数 u(x, y) 的梯度场,并求出 u(x, y) 。
∑ 计算 ∞ (−1)n+1 的值。 n2 n=1
4
复旦大学 2005~2006 学年第一学期期末考试试卷
答案
1. (本题满分 40 分,每小题 8 分) (1) 2 2x + y − 2 = 0 。
(2) 1 。 2
1
(3) y = e e 为极大值。 x=e
(4)曲线在 (0, 1] 上为上凸,在[1,+∞) 上为下凸, (1, − 7) 为拐点。
∫∫∫ 四.计算三重积分 e|z|dxdydz ,其中 Ω = { (x, y, z) | x2 + y 2 + z 2 ≤ 1}。 Ω
五. 计算曲线积分
∫ 2 y 2 + z 2 ds ,
L
其中 L 是球面 x2 + y 2 + z 2 = a 2 ( a > 0 )与平面 x = y 相交而成的圆周。
A t(1 + t 2 ) 2
x→+∞ 1 t(1 + t 2 )
∫ 所以存在 X > 0 ,当 x > X 时成立 A cos xt dt < ε ,于是当 x > X 时成立

2005复旦 高校自主招生数学试题及解答

2005复旦 高校自主招生数学试题及解答

)2+y12=x22+
1 x12
=x22+k2x22,|QB|2=x22+(y2-b)2=x22+(kx2)2
故|PA|=|QB|
17.【简解】⑴f(x)+f(1-x)=1,倒叙相加得到
S
n
=
n
2
1
⑵ 1 1
1
n2
→∞,故不存在 M
S2 S3
S n1 k 1 k
.
8.写出 3 1000 在十进制中的最后 4 位
.
9.设定义在 R 上的函数 f(x)满足 f(x)+2
f
x 2002 x 1 =4015−x(x≠1),
则 f(2004)=
.
10.函数 y= 1 sin x 的最大值是
.
2 cos x
二、解答题
x2 11.在四分之一个椭圆 a2
y2 b2
4.设抛物线 y=2x2+2ax+a2 与直线 y=x+1 交于 A,B 两点, 当|AB|最大时,a=
.
5.计算: lim( n2 n 1 n2 n 1) =
.
n
6.化简:l+3+6+…+ n(n 1) =
.
2
7.一个班有 20 个学生,其中有 3 个女生,抽 4 个人去参观展览馆,恰好抽到 l 个女生的概率为
2 x0 a2
2 y0 y0 b2
=0
y0
=-
b2 a2
x0 y0
,在点
P
处的切线方程为
y-
y0
=-
b2 a2
x0 y0
(x- x0 )
它与两坐标轴的交点为

2005年考研数学一试题分析、详解和评注

2005年考研数学一试题分析、详解和评注

2005年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y 【评注】 如何求垂直渐近线、水平渐近线和斜渐近线,是基本要求,应熟练掌握。

这里应注意两点:1)当存在水平渐近线时,不需要再求斜渐近线;2)若当∞→x 时,极限xx f a x )(lim∞→=不存在,则应进一步讨论+∞→x 或-∞→x 的情形,即在右或左侧是否存在斜渐近线。

完全类似例题见《数学复习指南》(理工类)P.192【例7.32】(2) 微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=【评注】 本题虽属基本题型,但在用相关公式时应注意先化为标准型. 另外,本题也可如下求解:原方程可化为x x xy y x ln 222=+',即 x x y x ln ][22=',两边积分得C x x x xdx x y x +-==⎰332291ln 31ln , 再代入初始条件即可得所求解为.91ln 31x x x y -=完全类似公式见《数学复习指南》(理工类)P.154(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ 【评注】 本题若n=},,{l n m 非单位向量,则应先将其单位化,从而得方向余弦为:,cos 222ln m m ++=α,cos 222ln m n ++=β222cos ln m l ++=α.完全类似例题见《数学复习指南》(理工类)P.330【例12.30】(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ .【评注】 本题属基本题型,不论是用球面坐标还是用柱面坐标进行计算,均应特别注意计算的准确性,主要考查基本的计算能力.完全类似例题见《数学复习指南》(理工类)P.325【例12.22】(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B【评注】 本题相当于矩阵B 的列向量组可由矩阵A 的列向量组线性表示,关键是将其转化为用矩阵乘积形式表示。

复旦大学考研真题经济学综合基础2005(回忆版)

复旦大学考研真题经济学综合基础2005(回忆版)

复旦大学2005年硕士研究生入学考试试题(回忆版)
考试科目:经济学综合基础
一、名词解释
1.产品生命周期
2.提供曲线
二。

选择
1.需求价格弹性是-1.3,供求曲线向上倾斜,单位商品征税1,求均衡价格
2.蛛网模型的假定前提
三。

简单题
1.用弹性分析法来分析贬值的时滞效应和J曲线
2.资本完全流动条件下的IS/LM/BP模型
3.当代金融危机是系统危机
4.宏观调控政策的目标,及他们的相互制约作用
四.论述(记得挺清楚的,这个题是30分的)
生产要素在财富创造中的作用与市场经济中按要素分配的必然性
五。

计算
1.是在开放经济条件下。

然后给了一堆的式子
c=c0+c1Yd-c2r+c3W,I=... W..,Md=m0+m1y-m2r+m3W,Ms=Md,X=..,Im=v0+v1Y,税收=tY+T,
好像就是这样子了,其中I的那个式子中还有一堆的参数了。

问题1.参数的经济含意。

2.哪些是外生变量,哪些是内生变量。

3.推导IS-LM
4.求均衡产出
2.垄断厂商需求曲线P=10-3Q,成本函数TC=Q2-2Q,
(1)求利润最大时的Q,P,R。

(2)若政府限价,就是说要使其与完全竞争时的状况相同,求这个P。

(3)若政府征收固定调节税,求P。

(4)若政府对单位商品征1个单位的税,求P.
(5)问以上三种作法对消费者的影响。

我记得此题是尹书的原题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、级数

∑u
n =1 1
n
( x) 在 [a, b] 上收敛,且存在常数 G,使得对任何自然数 n 及实数 x ∈ [a, b] ,

恒有
∑u
n =1
n
( x) < G ,证明级数 ∑ u n ( x) 在 [a, b] 上一致收敛。
n =1
设 f (u ) 是定义在 u ≥ u 0 上的实函数,在任意区间 [u 0 , x ] 上可积,且 uf (u ) 是递增函数。若
lim
1 f (u )du = a ,证明: lim f ( x) = a x →∞ x →∞ x ∫ u0
x
∫∫
D
sin(π x 2 + y 2 )
x +y
2 n 2
dxdy ,其中 D={ ( x, y ) 1 ≤ x 2 + y 2 ≤ 4 }
1. 设函数 H ( x1 , x 2 ,...x n ) = −
∑x
i =1
i
log 2 xi ,并且 xi > 0, ∑ xi = 1(i = 1,2,...n) ,证明:
i =1
n
H ( x12. 设函数 f ( x ) 在 [ a, b] 上常义可积,函数 g ( x ) 以 T 为周期( T > 0 )在 [0, T ] 上可积, 且 g ( x) ≥ 0 ,则 lim
n →∞

a
b
f ( x) g (nx)dx =
1 g ( x)dx ∫ f ( x)dx T∫ 0 a
2005年复旦大学数学分析考研试题 05年复旦大学数学分析考研试题
一、严格表达下述概念(15) 1.请给出函数项级数一致收敛的定义。 2.第一类曲线积分的数学定义。 3.以

+∞
−∞
f ( x)dx 为例,叙述反常积分的区间可加性。
二、判断下述结论是否正确,并说明理由。 ( 6′ ×5) 1.若 f ( x ) 在点 x0 连续, g ( x) 在点 x0 不连续,则 f ( x) g ( x) 在点 x0 不连续。 2.函数 f ( x) =
x 0
x为无理数 x为有理数
,在闭区间 [0, 1] 上 Riemann 可积。
3.空间曲线上过点 P 的任意一条曲线在 P 点的切向量都在同一平面上。 4.若
∑ a ,∑b
n =1 n n =1


n
均发散,且 a n ≤ c n ≤ bn , ( n = 1,2,...) ,则级数
xy
2 2
n
4.将二重积分
∫∫ ( x − y )
D
f ( y )dxdy 化为定积分。其中 D: y = x0 , y = x 及 x = z ( x0 < z )
n +1次 6444 7444 8
所围成的三角形内部。并证明: dx dx L
x0

∫ ∫
x
x
( ∫ f(x
x0
x
)dx =
x0
1 ( x − y ) n f ( y )dy n! ∫
T
b
(说明本题可作为推广的 Riemann 引理证明中的部分) 3. 设 f ( x ) 为实集 R 到 R 的函数,且存在 M > 0 证明: (1) lim f ( x ) = 0
x →0
使得对 ∀x ∈ R ,成立 f ( x ) ≤ M x
2
(2)如果 f ( x ) 在 x=0 处连续,则 f ( x ) 在 x=0 处可导。
∑c
n =1

n
也发散。
5.函数 f ( x, y ) =

x +y 0
x2 + y2 ≠ 0 x2 + y 2 = 0
在( 0,0 )处连续且可偏导,但它在该点不可微。
三、计算题 ( 10′ × 4 ) 1.已知 2 sin( x + 2 y − 3 z ) = x + 2 y − 3 z ,求
∂z ∂z + ∂x ∂y
2. 求函数 F(t)的导数。 设 F (t ) =
∫∫∫ f ( x
x 2 + y 2 + z 2 ≤t 2
2
+ y 2 + z 2 )dxdydz , 这里 f 为可微函数。
3.讨论级数
∑ n ln n(ln ln n)
n =3
+∞
1
p
的敛散性。
4.计算二重积分 I = 四、证明题
相关文档
最新文档