供水管井

供水管井
供水管井

中华人民共和国城乡建设环境保护部部标准

供水管井设计、施工及验收规范

CJJ 10-86

主编单位:中国市政工程西南设计院

批准部门:中华人民共和国城乡建设环境保护部

实行日期:1996年12月1日

关于批准颁发《供水管井设计、施工

及验收规范》的通知

(86)城城字第236号

根据原国家城市建设总局(80)城科字第51号文安排,由中国市政工程西南设计院负责组织编制的《供水管井设计、施工及验收规范》,现经我部审查,批准为部标准,编号为CJJ10—86,自一九八六年十二月一日起实行。在实行过程中,如有问题或意见,请函告成都市外北曹家巷中国市政工程西南设计院《供水管井设计、施工及验收规范》管理组。

城乡建设环境保护部

一九八六年五月十二日

目录

供水管井设计、施工及验收规范(CJJ10—86)

第一章总则

第二章管井设计

第一节现场踏勘

第二节井群布置及井位确定

第三节管井结构设计第四节井管设计

第三章管井施工

第一节钻进

第二节护壁与冲洗介质

第三节岩(土)样采取与地层编录

第四节井管安装

第五节填砾及封闭

第六节洗井及抽水试验

第七节水样采取

第四章管井验收

附录一土的分类和定名标准

附录二规范用词说明

第一章总则

第1.0.1条本规范适用于生活饮用和工业生产供水管井的设计、施工及验收。

第1.0.2条供水管井的设计、施工,应在具有必要的水文地质资料后进行。当水文地质资料不能满足供水管井的设计、施工时,应按勘探开采井设计、施工。

第1.0.3条供水管井所使用的材料,应符合本规范及现行标准的有关规定。

第二章管井设计

第一节现场踏勘

第2.1.1条设计前,应根据任务要求,搜集和研究建井地区的有关资料。

第2.1.2条现场踏勘时,应了解建井地区的地下水开发利用情况及施工条件,并核实已有资料。

第二节井群布置及井位确定

第2.2.1条井群位置(井位)的确定,应考虑下列因素:

一、需水量和水质要求;

二、地下水资源可靠;

三、城镇规划和现有给水设施;

四、施工、运行和维护方便;

五、有足够的卫生防护范围;

六、需水量增加时,有扩建可能。

第2.2.2条井群的布置,应进行水文地质计算,经技术经济比较后确定。遇地下水补给来源充足的大厚度含水层或多层含水层时,可设计分段或分层取水井组;与河流联通性良好的含水层,可设计傍河井群;岩溶地区地下水特别富集时,可设计同深度井组。

第2.2.3条井群设计时,应设置长期观测孔。观测孔的设计,应符合《供水水文地质勘察规范》(TJ27—78)的有关规定。

第2.2.4条井群设计时,应设置备用井。备用井的数量,可按生产井数10~20%停止工作时仍能满足设计水量确定,但不得少于一口。

第2.2.5条井位与高大建筑物或重要构筑物,应保持足够的安全距离。

第三节管井结构设计

第2.3.1条管井结构设计,一般包括下列内容:

一、井身结构;

二、过滤器类型及井管配置;

三、填砾的规格及位置;

四、封闭的位置及所用材料;

五、管井的附属设施如测水管、填砾管等。

第2.3.2条井身结构应尽量简化。井身设计应首先根据成井要求,确定井的最终直径,然后考虑成井工艺、岩石可钻性等因素,确定每段井径大小与深度,最后,确定井的开口直径。

第2.3.3条松散层中管井的深度,应根据拟采含水层(组)的顶板埋藏深度、过滤器的合理长度、过滤器的安装位置、沉淀管的长度来确定。基岩地区的管井,应尽量穿透拟采含水构造带(岩溶发育带、断裂破碎带、裂隙发育带)。

注:如有确切资料,部分揭露含水构造带,就能满足需水要求时,管井亦可不穿透含水构造带。

第2.3.4条设计井径时,应考虑管井的设计取水量和成井工艺等因素。并满足下列要求:

一、井径应比设计过滤器的外径大50mm,基岩地区在不下过滤器的裸眼井段,上部安泵段的井径应比抽水设备铭牌标定的井管公称内径大50mm。

填砾过滤器的骨架,可采用穿孔管、穿孔缠丝管或钢筋骨架缠丝管。

第2.3.7条松散层中的管井,应全部设置井管,设计动水位以上设井壁管,设计动水位以下的取水含水层(段)设足够长度的过滤管,其余井段设井壁管,底部设沉淀管。沉淀管的长度,应根据含水层的岩性和井深确定,一般为2~10m。

基岩地区的管井,上部安泵井段应设井管,下部井段是否设置井管,应根据岩层稳定性确定。

第2.3.8条过滤器的长度和位置,应根据设计出水量、含水层岩性及技术经济等因素确定:

一、含水层厚度小于30m时,可在设计动水位以下的含水层部位,全部设过滤器;

二、含水层厚度大于30m时,宜根据试验资料确定过滤器的合理长度。

第2.3.9条单层填砾过滤器的砾石规格,可按下列规定确定:

径。

η为含水层的不均匀系数。

四、填砾应尽量用均匀砾石(填砾的不均匀系数小于2)。

第2.3.10条填砾过滤器骨架管的缠丝间距或不缠丝穿孔管的圆孔直径(条孔宽度)t,一般按下式确定:

t=D10(2.3.10)

式中D10为填砾的有效粒径(mm)。

第2.3.11条双层填砾过滤器的外层填砾规格,按2.3.9条的规定确定,内层填砾的粒径,一般为外层填砾粒径的4~6倍。

第2.3.12条单层填砾过滤器的填砾厚度:粗砂以上地层为75mm;中、细、粉砂地层为100mm。

双层填砾过滤器的填砾厚度:内层为30~50mm,外层为100mm。

第2.3.13条双层填砾过滤器的内层砾石网笼上下端,均应设弹簧钢板四块或其他保护网笼装置。

第2.3.14条填砾过滤器的填砾高度,一般按下列规定确定:

一、填砾高度应根据过滤管的位置确定,底部宜低于过滤管下端2m以上,上部宜高出过滤管上端8m以上。但供生活饮用水的管井,第一含水层距地表过近时,不受此限。

二、非均质含水层或多层含水层中两层相近,且颗粒组成有差异,无法满足本条第一款规定时,可根据具体情况,按下列规定处理:1.含水层颗粒组成差异不大时,则可按本条一的规定,全部填入根据细颗粒含水层确定的砾石。

2.含水层颗粒组成差异较大,需要分层填砾时,不论细颗粒含水层在上还是在下,均应尽量使细颗粒含水层的砾石位置,下部低于细颗粒含水层2m以上,上部高出细颗粒含水层8m以上。

第2.3.15条骨架过滤器的孔眼尺寸,一般根据孔的形状及含水层颗粒组成,按下列规定确定:

圆孔直径t=(3~4)d20(2.3.15-1)

条孔宽度t=(1.5~2)d20(2.3.15-2)

条孔长度L=(8~10)t(2.3.15-3)

注:如根据上式计算,所得t值较大时,可适当减小,一般圆孔直径不大于21mm,条孔宽度不大于10mm。

第2.3.16条管井的封闭,按下列规定设计:

一、井管外上部的封闭,一般用优质粘土球或水泥浆封闭,厚度不得小于5m;

二、水质不良的含水层,松散层用粘土球封闭,基岩用水泥浆封闭,封闭位置,一般超过拟封闭层上、下各5m;

三、管井揭露多层含水层,需要分层开采时,对非开采含水层,可视其岩性及水头,选用粘土球或水泥浆封闭。

第2.3.17条松散层中管井的测水管,可按下列规定

设计:

一、测水管的内径一般为38~50mm;

二、下部的进水部分长度为2~3m;

三、测水管宜紧靠井壁。

第四节井管设计

第2.4.1条供水管井的管材,应根据井水用途、地下水水质、管材强度及技术经济等因素选定。

第2.4.2条在地下水具有强侵蚀性的地区建井,设计井管时,应采取下列措施:

一、选用耐腐蚀的管材,对抗腐蚀性差的管材应采取防腐措施;

二、条件可能时,采用不缠丝的过滤管;

三、缠丝采用不锈钢丝、铜丝或玻璃纤维增强聚乙烯滤水丝。

第2.4.3条常用井管的管材质量宜满足下列要求:

一、钢管:

隔、裂缝、错位等妨碍使用的明显缺陷。凡是使壁厚减薄的各种局部缺陷,其深度不得超过(2+0.05T)mm。管端面应与轴线相垂直。

三、钢筋混凝土管:弯曲度不得超过3mm/m,外径公差不超过±5mm,壁厚偏差不得超过±2mm。内壁应光滑,管身无裂纹、缺损及暗

伤,钢筋不得外露。管两端应切成直角,并清除毛刺。

第2.4.4条缠丝过滤管的骨架为穿孔管时,其穿孔形状、尺寸和排列方式应根据管材强度和加工工艺等因素确定。

第2.4.5条缠丝过滤管的骨架为穿孔管时,其穿孔孔隙率,应根据管材强度、受力条件和设计出水量确定,一般为15~30%。

第2.4.6条缠丝过滤管必须有纵向垫筋。垫筋高度一般为6~8mm,其间距以保证缠丝距管壁2~4mm为准。垫筋两端应有挡箍。

第2.4.7条缠丝应采用无毒、耐腐蚀、抗拉强度大、膨胀系数小的线材,断面形状以梯形或三角形为宜。

第2.4.8条缠丝不得松动。缠丝间距偏差应小于设计丝距±20%。

第2.4.9条钢筋骨架缠丝过滤管,应根据材料强度和受力条件设计。

第2.4.10条井管应采取丝扣连接或焊接。焊接井管的上下端,应经机械找平,下端面应有45°坡口。

第三章管井施工

第一节钻进

第3.1.1条钻进方法的选择,应综合考虑地层岩性、井身结构、钻进工艺等因素。一般参照下表确定:

第3.1.2条钻进中如遇漂石或坚硬岩层,造成钻进极为困难时,可进行井内爆破。

第3.1.3条钻进中,应注意防斜,并按照《供水水文地质钻探与凿井操作规程》的规定进行测斜,发现井斜,应及时纠斜。井深大于200m时,应安装钻具指重表,采用钻铤,加设扶正器。

第3.1.4条井身质量,应符合下列要求:

一、井身应圆正;

二、井的顶角及方位角,不能突变;

三、井深100m以内,井身顶角倾斜,不能超过1°;井深

100m以下的井段,每100m,顶角倾斜不得超过1.5°。

注:冲击钻进时,顶角倾斜,可根据井口钢绳位移折算。

第二节护壁与冲洗介质

第3.2.1条在松散层中冲击钻进,如钻进用水的水源充足,并能使井内水位保持比静水位高3~5m时,应采用水压护壁。

第3.2.2条在松散、破碎或水敏性地层中钻进,一般采用泥浆护壁。泥浆的性能应根据地层的稳定情况、含水层的富水程度及水头高低、井的深浅以及施工周期等因素确定。制作泥浆,应测定比重、含砂量、粘度、失水量四项泥浆指标。

第3.2.3条在松散层覆盖的基岩中钻进,上部松散层及下部易坍塌岩层,可采用管材护壁,护壁管需要起拔时,每套护壁管与地层的接触长度宜小于40m。

注:护壁管系指套管及留作成井用的井管。

第3.2.4条冲洗介质应根据地层特点和施工条件等因素合理选用。一般按下列规定考虑:

一、粘土、稳定地层,采用清水;

二、松散、破碎或水敏性地层,采用泥浆;

三、渗漏地层,缺水地区,采用空气;

四、富水地层,严重漏失地层,采用泡沫。

第3.2.5条制作泥浆,宜采用供钻进用的粘土粉;无粘土粉时,造浆粘土应经鉴定后选用。当制作的泥浆性能不能满足钻进要求时,应对泥浆进行处理。

第三节岩(土)样采取与地层编录

第3.3.1条钻进过程中所采取的岩(土)样,应能准确反映原有地层的特征。并应遵守下列规定:

一、采取鉴别地层的岩土样,在非含水层中,宜每3~5m取一个;含水层中,每2~3m取一个;变层时,应加取一个。当有测井、扫描照相、井下电视配合工作时,鉴别地层的岩(土)样数量,可适当减少。

二、采取颗粒分析样,在厚度大于4m的含水层中,宜每4~6m取一个,当含水层的厚度小于4米时,应取一个。取样重量不宜少于下列数值:

砂1kg

圆砾(角砾)3kg

卵石(碎石)5kg

三、基岩岩芯的采取率,不宜小于下列数值:

完整岩层70%

构造破碎带、风化带、岩溶带30%

注:在水文地质资料较多的地区建井,取样数可适当减少。

第3.3.2条土的分类和定名,应按本规范附录一的规定执行。

第3.3.3条土样和岩样(岩芯)的描述,应按表3.3.3的内容进行。

第3.3.4条在钻探过程中,应对水位、水温、冲洗液消耗量、漏水位置、自流水的水头和自流量、井壁坍塌、涌砂和气体逸出的情况、岩层变层深度、含水构造和溶洞的起止深度等进行观测和记录。

第3.3.5条对采取的土样、岩样(岩芯),应及时描述和编录。妥善保管并至少保存至管井验收时为止。

第四节井管安装

第3.4.1条井管安装前,应作好下列准备工作:

一、检查井身的圆度和深度,井身直径不得小于设计井径20mm,井深偏差不得超过设计井深的正负千分之二;

二、泥浆护壁的井身,除自流井外,应先清理井底沉淀物,并适当稀释泥浆;

三、按本规范第二章第四节的有关规定,检查井管的质量,不符合要求的井管,不得下入井内。

第3.4.2条下管方法,应根据下管深度、管材强度及钻探设备等因素选择:

一、井管自重(浮重)不超过井管允许抗拉力或钻探设备安全负荷时,宜用直接提吊下管法;

二、井管自重(浮重)超过井管允许抗拉力或钻机安全负荷时,宜用托盘下管法或(和)浮板下管法;

三、井身结构复杂或下管深度过大时,宜用多级下管法。

第3.4.3条井身全部下管时,井管应封底;井管仅下入井身一部分时,井管必须座落在稳定岩层的变径井台上;若下部井段废弃不用,应以卵石或碎石回填并捣实后,才能下入井管。

第3.4.4条井管应安装在井的中心,上口应保持水平。井管与井深的尺寸偏差,不得超过全长的正负千分之二,

过滤管安装位置偏差,上下不得超过300mm。

第3.4.5条采用填砾过滤器的管井,安装井管时,应设找中器。找中器的外径应比井径小30~50mm;找中器的数量应根据井深确定。

第五节填砾及封闭

第3.5.1条填砾前,应作好下列准备工作:

一、除自流井外,宜再次稀释泥浆;

二、按照设计,将计划填入井内的不同规格砾石的数量和高度进行计算,并准备一定的余量。

第3.5.2条填砾的质量,应符合下列要求:

一、按设计规格筛选,不合规格的砾石不得超过15%;

二、磨圆度好,不得用碎石代替;

三、宜用硅质砾石。

第3.5.3条填入井内的不同规格砾石,应进行筛分,并将筛分成果列入报告书。

第3.5.4条填砾方法,一般采用静水填砾法或循环水填砾法;必要时,可下填砾管将砾石送入井内。

第3.5.5条填砾时,砾石应沿井管四周均匀连续地填入,填砾的速度应适当。随填随测填砾深度,发现砾石中途堵塞,应及时排除。

第3.5.6条双层填砾过滤器,笼内砾石应在地面装好并振实后下入井内。笼外及其以上8m,均应填入外层规格的砾石。

第3.5.7条采用缠丝过滤器的管井,井管外空隙较大时,应回填粒径为10~20mm的砾石。

第3.5.8条封闭用的粘土球或粘土块,应采用优质粘土。粘土球(块)的大小,一般为20~30mm,半干时投入,投入速度应适当。

第3.5.9条封闭用的水泥浆,一般采用泥浆泵泵入或提筒注入。

第3.5.10条在钻探过程中,使用水泥浆封闭,应待水泥凝固后,进行封闭效果检查,不符要求时,应重新进行封闭。

第3.5.11条管外封闭位置偏差,上下不得超过300mm。

第六节洗井及抽水试验

第3.6.1条洗井方法应根据含水层特性、管井结构和钻探工艺等因素确定。

第3.6.2条洗井必须及时。可采用活塞、空气压缩机、水泵、复磷酸盐、酸、二氧化碳等交替或联合的方法进行。

第3.6.3条洗井的质量应符合下列要求:

一、达到设计抽降时,前后两次试抽的单位出水量之差应小于10%;

二、井水含砂量应符合本规范第4.0.1条第二款的规定。

第3.6.4条为了确定管井的实际出水量,洗井后必

须进行抽水试验。

第3.6.5条抽水试验的下降次数,一般为一次,下降值不小于设计抽降。需要时,下降次数可适当增加。

第3.6.6条抽水试验的水位和水量的稳定延续时间,基岩地区为8~24h;松散层地区为4~8h。

第3.6.7条抽水试验的观测要求应按《供水水文地质勘察规范》(TJ27—78)的有关规定执行。

第七节水样采取

第3.7.1条抽水试验结束前,应根据分析项目,在出水管口采取足够数量的水样,及时送交有关单位化验。

第3.7.2条水样采取应符合下列要求:

一、取样用的容器应充分洗涤,取细菌检验的水样瓶应作灭菌处理;

二、检验不稳定成分的水样,采样时应同时加放稳定剂;

三、水样采取后,应严密封口,并贴上水样标签。

第四章管井验收

第4.0.1条管井竣工后,应由设计、施工及使用单位的代表,在现场按下列质量标准验收:

一、管井的单位出水量与设计单位出水量基本相符。管井揭露的含水层与设计依据不符时,可按实际抽水量验收;

二、管井抽水稳定后,井水含砂量不得超过二百万分之一(体积比);

三、超污染指标的含水层应严密封闭;

四、井内沉淀物的高度不得大于井深的千分之五;

五、井管的安装误差,应在本规范第3.4.4条规定的允许值内;

六、井身的弯曲度应在本规范第3.1.4条第三款规定的允许值内。

第4.0.2条管井验收时,施工单位应提供下列资料:

一、井的结构、地质柱状图;

二、岩(土)样及填砾的颗粒分析成果表;

三、抽水试验资料;

四、水质分析资料;

五、管井施工及使用说明书。

附录二规范用词说明

1.表示很严格,非这样作不可的用词:

正面词采用“必须”,反面词采用“严禁”。

2.表示严格,在正常情况下均应这样作的用词:

正面词采用“应”,反面词采用“不应”或“不得”。

3.表示允许稍有选择,在条件许可时首先应这样作的用词:正面词采用“宜”或“可”,反面词采用“不宜”。

附加说明:

本规范主编单位、参加单位和主要起草人名单主编单位:中国市政工程西南设计院

参加单位:中国市政工程西北设计院

山西省勘察院

河北省城市勘察公司

山东省勘察公司

内蒙古自治区水文地质勘探队

主要起草人:蒋洪源、张锡范、沈鳌根、

高洪宣、李旭、饶耀光、

徐霞琴、黎徐声

管井设计涌水量计算

管井设计涌水量计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

乐享 管井设计涌水量计算 经营教育 乐享 2012-12-1 水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m); K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水层颗粒大 小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算;q n :单位出水量(m3/()); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q1、Q2:抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

r1、r2:抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S1、S2:观测孔内水位降深,单位米(m); S1‘、S2’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n:相应Q n时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g:允许过滤管进水流速,单位m/s,不得大于s; V j:允许井壁进水流速,单位m/s; 目录

岩溶地区隧道涌水量估算

岩溶地区隧道涌水量估算 岩溶区隧道的涌水预测是长期以来困扰生产实践的难题,其原因主要有:岩溶地下水赋存极不均一,很难确定隧道内确切的涌水部位及水量大小;勘察精度不够,无动态观测资料及试验资料较少,不能正确描述地质条件及水动力场特征;难以确定合理的计算方法和各类参数。 本次隧道涌水预测是根据隧址区岩溶发育特征、地下岩溶管道系统的分布、地下水补径排特点及各含水岩组富水性等特征,通过采用地下径流模数法和大气降水入渗法、结合地区经验,估算隧道涌水量。 标签:隧道涌水测量 1概况 隧道长2000m左右、最大埋深近200m。中山、溶蚀峰丛洼地地貌区,亚热带湿润季风气候,隧址区内无水库、堰塘。可溶性碳酸盐岩分布广泛,地表溶沟、溶槽、石牙、溶孔、溶穴、溶管、峰丛、洼地、溶丘及溶蚀沟谷等发育,地下岩溶形态则有落水洞、地下河、溶洞等。突水、突泥对隧道工程建设影响甚大。 隧址区位于向斜东翼,向斜轴近乎南北向,两翼岩层倾角约40°左右,近乎对称。轴部地层为三叠系巴东组及白垩系组成,白垩系不整合覆盖于巴东组之上。隧址区内无断裂。区内裂隙发育,一般为张性裂隙,张开宽1~35cm不等,面裂隙率在1.5~3条/m2之间;裂隙发育走向在N45°~65°W、N50°~60°E、N75°~80°E。 2水文地质条件 2.1隧址区岩溶发育规律 溶沟、溶槽、石牙、溶孔、溶穴、溶管在地表随处可见,落水洞口多呈圆形或椭圆形,直径在1~5m之间,普遍发育深度5~15m,少数深不见底,底部多充填黏土夹碎石,以缝状为主,竖井状较少。漏斗多见于斜坡地带或洼地周边缓坡地带,受地形影响多呈斜歪状和碟状,主要受层面、地形和裂隙控制发育而成,深度多为1~3m。隧址区岩溶发育具有以下规律和特征:①岩溶发育的呈层性,岩溶的发育与地壳的上升、停顿和岩溶水的变迁密切相关,故不同岩溶期发育着不同的岩溶形态,从而形成了区域上岩溶发育的呈层性特点;②岩溶发育深度与侵蚀基准面的一致性,河流和泉是调查区当地侵蚀基准面,各水平岩溶出口标高基本与最低侵蚀基准面一致;③岩溶发育方向具有与岩层走向一致性的特点,区内岩层走向N4°~9°W,倾向西,主要发育一组东西走向裂隙,地表落水洞多呈串珠状沿岩层走向分布,区内最大溶槽走向南北。因此,区内岩溶总体具顺岩层走向发育特征;④与地下水运动条件关系密切,区内含水地层与相对隔水层组成了区内四个相对独立的含水单元,这些隔水层顶底板附近,地下水活动相对强烈,

管井设计涌水量计算

11月整理 管井设计及出水量计算 稳定流完整井 / 吴成泽 2012-12-1 — 主要针对潜水及承压水稳定流完整井的理论及经验公式展开论述,并介绍了井群在不同地质条件下的布置及计算遵循的原则,最后介绍了洗井及单井出水量校核。最后利用4个Excel文件概括理论及经验公式,可代入抽水试验值分别计算管井单井出水量。

水文地质参数索引 a :含水层厚度,单位米(m); D g :过滤管外径(m); h :井中的水深,单位米(m); H :无压含水层厚度或承压含水层的水头高度或厚度,单位米(m);K :渗透系数,表示含水层的渗透性质,在达西公式中,水力坡度i=1时的渗透速度(表示地下水的运动状态、粘滞系数、含水 层颗粒大小、形状、排列);单位米/天(m/d); L :过滤管有效进水长度(m),宜按过滤管长度的85%计算; & N :过滤管进水面层有效孔隙数,宜按过滤管面层孔隙率的50%计算; q n :单位出水量(m3/()); Q g :过滤管的进水能力(m3/s); Q :管井出水量,单位m3/d; Q1、Q2:抽水井稳定流出水量,单位m3/d; Q n :单井实测最大出水量,单位m3/d; r1、r2:抽水井至观测孔距离,单位米(m); r :管井或抽水井的半径,单位米(m); ' R :影响半径,裘布衣公式中以抽水井为轴心的圆柱状含水层的半径(不以井的出水量、水位下降值的大小改变),表示井的补给能力;单位米(m); S1、S2:观测孔内水位降深,单位米(m); S1‘、S2’‘:观测孔内水位降深,单位米(m); S :水位降深,单位米(m); S n:相应Q n时的最大水位降深,单位米(m); T :导水系数,T=KM,单位m2/d; V g:允许过滤管进水流速,单位m/s,不得大于s; V j:允许井壁进水流速,单位m/s; %

管井降水计算方案

一、场地岩土工程情况 第①层杂填土,以粉土为主,混少量建筑垃圾和生活垃圾,呈稍湿、松散状态。该层厚度在~之间,层底标高在~之间。 第②层粉砂,黄褐色,颗粒矿物成分为长石、石英石,均粒结构,天然状态下呈稍湿,稍密状态。该层厚度在~之间,层底标高在~之间。 第③层粗砂,黄褐色,颗粒矿物成分为长石、石英石,颗粒级配较好,混少量砾,局部分布有粉质粘士薄夹层。天然状态下呈稍湿~饱和,中密状态。该层厚度在~之间,渗透系数为K=×10-2cm/s。 层细砂,黄褐色,颗粒矿物成分为长石、石英质,均粒结构,天然状第③ 1 态下呈稍湿~饱和,中密状态。该层以夹层或透镜体形式存在于第3层粗砂层中,该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-3cm/s。 第④层粉砂,黄绿色,颗粒矿物成分为长石、石英质,均粒结构,局部分布有粉土、粉质粘土薄夹层。天然状态下呈饱和,中密状态。该层厚度在~之间,层底标高~之间,渗透系数为K=×10-3cm/s。 第⑤层粉质粘土,灰黑色,含云母,有光泽,略带腥臭味,含有机质,有机质含量为~%,无摇振反应,切口光滑,干强度中等,韧性中等。天然状态下呈可塑~软塑状态。该层中分布有粉砂、细砂及粉土薄夹层,局部含有薄层钙质胶结层。该层厚度在~之间,层底标高在~之间,渗透系数为K=×10-6cm/s。 地下水埋藏于自然地表下~,标高在~之间,属潜水。由于临近场地正在进行降水施工,水位受其影响,现场水位偏低,根据该区域的水文地质资料,该地下水年幅度变化在~米之间。 二、降水方案的选择 本工程地质条件主要为粉土、砂土。现场基坑深度为,根据该场地附近地区的已有降水经验,拟采用管井井点降水方案降低地下水位,即在基坑周围及坑内布设一定数量的管

岩溶隧道涌水量的预测方法研究_郭玉法

为宁杭客运专线宜长段线位稳定提供了重要依据。通过本次工作也认识到:在采空区线位方案评价工作中,必须充分收集既有资料,多方走访调查,同时辅以必要的勘探工作,以查清采空区范围及影响边界,为安全、经济的线路方案做出可靠的分析评价。 参 考 文 献 [1] TB10027 2001 铁路工程不良地质勘察规程[S] [2] 铁道部工务局.铁路公务技术手册(路基篇)[M ].北京:中国铁道 出版社,1993 [3] 铁道第四勘察设计院.宁杭铁路采空区勘察报告[R ].武汉:铁道 第四勘察设计院,2007 收稿日期:2007-08-07 第一作者简介:郭玉法(1963 ),男,2003年毕业于河海大学水文水资源工程专业,工程师。 岩溶隧道涌水量的预测方法研究 郭玉法 鲍庆煜 (江苏省水文水资源勘测局南京分局,江苏南京 210008) Research on Forecasti ngM et hods for Gus hi ng W ater Vol u m e in Karst Tunnels Guo Yu fa Bao Q i n gyu 摘 要 系统分析了隧道涌水量预测的方法,并用数值模拟方法进行了某隧道涌水的预测研究,认为数值模拟方法是进行隧道涌水量预测的有效方法。 关键词 岩溶 隧道 涌水量 预测 数值模拟 铁路、公路隧道工程中经常发生较大规模的涌水现象,给隧道施工带来了严重的影响,甚至会造成很大的经济损失和人员伤亡。在岩溶地区,隧道涌水现象更为常见,对其进行预测与控制研究显得尤为重要。 根据对铁路、公路隧道涌水情况的初步统计,预测涌水量和实际涌水量相差小于20%的仅占15%,误差在20%~80%之间的占60%;误差超过80%的达25%以上,部分隧道的预测误差竟达到数十倍。如襄渝线大巴山隧道预计涌水量为4 14 104 m 3 /d ,施工时最大涌水为20 55 104 m 3 /d ;川黔线娄山关隧道预计涌水量为 6 0 104m 3/d ,施工时最大涌水量为19 20 104m 3 /d ;贵昆线岩脚寨隧道预计涌水量为0 66 104 m 3 /d ,施工时最大涌水量为10 08 104 m 3 /d [1] 。 造成上述结果的原因很多,归纳起来不外乎以下两方面:一是水文地质条件未调查清楚;二是用以预测隧道涌水量的数学模型不正确。前者是基础,若重要的水文地质条件未调查清楚,预测可能要犯大错误。但是,对于条件已经基本查清楚了的拟建隧道区,如果计算模型选得不正确,其预测效果同样也不好。无论预测结果偏小还是偏大,都将给工程的可行性论证、设 计及施工带来巨大损失。这在以往有不少教训:如果预测量偏大,可能使得已设计的既经济又方便的线路改道,或者使得设计防水系统更加复杂化,不仅会浪费大量的人力、物力及财力,而且浪费宝贵的建设时间;另一方面,如果预测量偏小,则可能使得工程在施工过程中发生灾难,甚至使得已建成隧道不能投入使用。因此,隧道涌水预测研究任重道远。 本文对现有的预测方法进行了综合评述,并采用数值模拟方法进行了某岩溶隧道工程涌水量预测的实例研究。 1 各类预测方法的综合评述 目前,隧道涌水量的预测方法主要有:水均衡法、解析法(地下水动力学法)、经验公式法、水文地质比拟法、降水入渗法、地下径流模数法、数值分析法以及非线性理论方法等。 1 1 水均衡法 水均衡法是应用水均衡原理预测隧道涌水量的一种方法。它通过研究某一时期(均衡期)均衡区地下水收支项目之间的关系,建立地下水均衡方程,从而计算隧道涌水量。其最基本的形式为 V 补-V 排= V 储73 岩溶隧道涌水量的预测方法研究:郭玉法 鲍庆煜

供水管井设计施工及验收规范

范文范例指导参考 供水管井设计、施工及验收规范 1986-5-12 主编单位:中国市政工程西南设计院 批准部门:中华人民共和国城乡建设环境保护部 实行日期:1986年12月1日 关于批准颁发《供水管井设计、施工及验收规范》的通知 (86)城城字第236号 根据原国家城市建设总局(80)城科字第51号文安排,由中国市政工程西南设计院负责组织 编制的《供水管井设计、施工及验收规范》,现经我部审查,批准为部标准,编号为CJJ10- 86, 自一九八六年十二月一日起实行。在实行过程中,如有问题或意见,请函告成都市外北曹家巷中 国市政工程西南设计院《供水管井设计、施工及验收规范》管理组。 城乡建设环境保护部 一九八六年五月十二日第一章总则 第1.0.1条本规范适用于生活饮用和工业生产供水管井的设计、施工及验收。 第1.0.2条供水管井的设计、施工,应在具有必要的水文地质资料后进行。当水文地质资料不能满足供水管井的设计、施工时,应按勘探开采井设计、施工。 第1.0.3条供水管井所使用的材料,应符合本规范及现行标准的有关规定。 第二早管井设计 第一 -节现场踏勘 第2.1.1条设计前,应根据任务要求,搜集和研究建井地区的有关资料。 第2.1.2条现场踏勘时,应了解建井地区的地下水开发利用情况及施工条件,并核实已有资料。第二节井群布置及井位确定 第2.2.1条井群位置(井位)的确定,应考虑下列因素: 一、需水量和水质要求; 二、地下水资源可靠; 三、城镇规划和现有给水设施; 四、施工、运行和维护方便; 五、有足够的卫生防护范围; 六、需水量增加时,有扩建可能。 第2.2.2条井群的布置,应进行水文地质计算,经技术经济比较后确定。遇地下水补给来源充足的大厚度含水层 或多层含水层时,可设计分段或分层取水井组;与 学习资料整理 范文范例指导参考 河流联通性良好的含水层,可设计傍河井群;岩溶地区地下水特别富集时,可设计同深度井组。 第2.2.3条井群设计时,应设置长期观测孔。观测孔的设计,应符合《供水水文地质勘察规范》

锅炉房用水量设计计算

锅炉房用水量设计计算 1、锅炉房用水的组成 通常来说,锅炉房用水主要分为生产用水、生活用水及煤加湿水三类,其中生产用水以循环水为主,主要为锅炉热力网循环系统补水、引风机轴承冷却补水、脱硫除尘用水、离子交换器树脂再生用水、定期排污冷却用水和冲渣用水等。 2、生产用水的核算 ①锅炉热力网循环系统补水 锅炉分为蒸汽锅炉和热水锅炉两种。 蒸汽锅炉的热力网补水很好理解。如:1t/h的蒸汽锅炉,就是1t/h的水产生1t/h的蒸汽,所以用水量很容易计算。环评中,我认为可以忽略“锅炉排污量并扣除凝结水量”这部分水量,直接用产汽量来估算。 这里主要说一下热水锅炉的循环系统补水计算方法。 要知道补水量,先要知道循环用水的量。热水锅炉循环水量计算公式采用《工业锅炉房设计手册》中的经验公式 循环水量=1000×0.86kcal/MW×吸热量(MW)/一次网温度差(℃)热水锅炉补水率较低,通常为1%~2%,主要为热力网损失。根据循环水量和补水率,可以核算出补水量。 ②引风机轴承冷却补水 引风机轴承在运转过程中会发热,因此需要冷却水进行冷却。在有循环水箱时,引风机轴承冷却补水量可按0.5m3/h箱核算。

如果是抛煤机炉,抛煤机及炉排轴的冷却补水量也可按每台锅炉 0.5m3/h计算。 ③脱硫除尘用水 如锅炉房采用的是湿法脱硫,则涉及脱硫除尘用水,此部分用水分为两部分:配制碱液用水和脱硫装置补水。脱硫装置的补水比较复杂,实际工作中,猫姐使用类比法比较多。《烟气脱硫脱硝技术手册》中有很多案例,大家可以根据项目的实际脱硫法与案例进行类比,从而得出用水量。 在此,猫姐举一个例子:某集中供热锅炉房,使用石灰—石膏湿法脱硫工艺,设计脱硫效率85%,脱硫剂石灰用量4t/h。 手册中的“南宁化工集团公司石灰—石膏湿法烟气脱硫工程” 运行试验结果如下: 根据案例中的石灰和用水实测消耗量,类比出本项目的脱硫除尘用水量,见下表1。 表1 南宁化工集团公司与本项目脱硫除尘用水量类比分析表 序号项目南宁化工集团公司本项目 1 脱硫除尘法石灰—石膏法石灰—石膏法 2 除尘效率91%~91.7% ≥98%

井点降水涌水量计算

按照初定方案,本工程除埋深较深段使用拖拉管施工外,剩余大部分需使用井点降水大开挖施工。按照设计及规范初步设计沟槽底宽 1.5m,沟槽深按照最大挖深设计取4m,开挖沟槽边坡按照1:1,基坑横剖面图如附图。经地质勘探,天然地面属耕植土,其下为粉质粘土( <=-4m),淤泥质粉质粘土(<=- 7.14m)、淤泥质粉质粘土夹粉砂,底部为泥岩,基本都属于透水层。地下水位标高为- 0.5m 采用轻型井点降水施工。 1 井点布设根据工程地质及施工状况,轻型井点采用沟槽两侧单排布设,为是总 管接 近地下水位,井点管布设于已挖好的路床底。总管距沟槽开挖线边缘1m,总管长度L=50X 2=100(m) 水位降低值 S=4 (m) 采用一级轻型井点,井点管的埋设深度(总管平台面至井点管下口,不包括滤管) H 2>=H1 +h+IL= 4.0+ 0.5+ 0.1 x 5.75= 5.1(m) 采用6m长的井点管,直径50mm,滤管长1m。井点管外露地面

0.2m,埋入土中 5 . 8 m (不包括滤管)大于 5.2m,符合埋深要求。按无压非完整井环形井点系统计算。 2).基坑涌水量计算 按无压非完整井环形点系统涌水量计算公式(式1—23)进行计算Q= 先求出H、K、R、x0 值。 H: 有效带深度H= 1.85(S,+L) s'=-6 0.2- 1.0= 4.8m 求得H: H= 1.85(s,+L)= 1.85( 4.8+ 1.0)= 10.73(m) 由于HO

10.73(m) K: 渗透系数,经实测K= 0.4m/d R: 抽水影响半径R=(m) xO:基坑假想半径,x0 = (m) 将以上数值代入公式得基坑涌水量Q:Q=( m3/d )

矿井涌水量的计算与评述 钱学溥

矿井涌水量的计算与评述 钱学溥 (国土资源部,北京 100812) 摘要:文章讨论了矿井涌水量的勘查、计算、精度级别、允许误差和有效数字。文章推荐了反求影响半径、作图法求解矿井涌水量的方法。 关键词:矿井涌水量;勘查;计算;精度级别;允许误差;有效数字 根据1998年国务院“三定方案”的规定,地下水由水利部门统一管理。水利部2005年发布了技术文件SL/Z 322-2005《建设项目水资源论证导则(试行)》。该技术文件6.7款规定,地下水资源包括地下水、地热水、天然矿泉水和矿坑排水。6.1.2款规定,计算的地下水资源量要认定它的精度级别。我们认为,认定计算的矿井涌水量的级别和允许误差,不仅是水利部门要求编写《建设项目水资源论证》的需要,而且有利于设计部门的使用。在发生经济纠纷的情况下,也有利于报告提交单位和报告评审机构为自己进行客观的申辩。下面,围绕这一问题,对矿井涌水量的勘查、计算、精度级别、允许误差和有效数字等方面,作一些论述和讨论。 1 矿井涌水量与水文地质勘查 矿井涌水量比较大,要求计算的矿井涌水量精度就比较高,也就需要投入比较多的水文地质勘查研究工作。表1,可以作为部署水文地质工作的参考。 表 1 矿井涌水量与水文地质勘查 Table 1 Mine inflow and hydrogeological exploration

注:○1多年生产的矿山是指:开采水平不变、开采面积基本不变的多年生产的矿山,如即将闭坑或是即将破产的矿山,即是这种多年生产的矿山。○2多孔抽水试验,是指带观测孔的一个抽水主孔的抽水试验,持续抽水几天。○3群孔抽水试验是指带观测孔的多个抽水主孔的抽水试验,其抽水总量,一般要达到计算矿井涌水量的1/3~3/4,持续抽水几十天。○4利用地下水动力学计算公式,计算矿井涌水量,就属于解析法的范畴。大井法、集水廊道法就是常用的解析法。○5数理统计包括一元线性回归、多元线性回归、逐步回归、系统理论分析、频率计算等(参考钱学溥,娘子关泉水流量几种回归分析的比较,《工程勘察》1983第4期,中国建筑工业出版社)。可以把水位抽降、巷道开拓面积、矿产产量、降水量等作为自变量,把矿井涌水量作为因变量。○6数值法也就是计算机模拟,是通过利用计算机模拟地下水流场的变化,计算矿井涌水量的一种方法。○7常用的大井法、集水廊道法等解析法计算矿井涌水量,只考虑了含水层的导水性,没有考虑地下水的补给量。因此,只有进行了解析法和水均衡的计算,用地下水的补给量验证解析法计算的结果,计算的矿井涌水量的精度才能达到C 级。 2 稳定流、非稳定流公式应用的主要条件 2.1一般报告采用的解析解大井法、集水廊道法,是基于稳定流理论推导的地下水动力学计算公式。它要求地下水有比较充分的补给条件,要求在该水平开采的几年到几十年内,矿井排水计算的地下水影响半径边界上的水头高度,永远稳定在计算采用的高度上。 2.2基于非稳定流理论推导的地下水动力学计算公式,恰恰相反,它的使用条件是地下水没有补给,含水层分布无限,地下水影响半径不断向外扩大。 2.3由于采用大井法、集水廊道法,一般都没有考虑地下水补给量的问题,因此,计算的结果可能有较大的误差,它的精度一般只有D级。

降雨入渗法涌水量计算

二、涌水量的预测 拟采用大气降水渗入量法对隧道进行涌水量计算 1.大气降水渗入法(DK291+028-DK292+150段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.16; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.33km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.16*1496.88*0.33= 216.56(m3/d),平均每延米每天涌水量为:0.19(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A= 2.74*0.16*508.7*0.33=73.59(m3/d),平均每延米每天涌水量为:0.07(m3/m.d)。 2. 大气降水渗入法(DK292+150-DK293+440段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用:

α—入渗系数选用0.18; W—隧址多年平均降雨量为508.7m,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.79km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.18*1496.88*0.79= 583.23(m3/d),平均每延米每天涌水量为:0.45(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.18*508.7*0.79= 198.2(m3/d),平均每延米每天涌水量为:0.15(m3/m.d)。 3.大气降水渗入法(DK293+440- DK293+870段) Q = 2.74*α*W*A Q—采用大气降水渗入法计算的隧道涌水量(m3/d) α—入渗系数 W—年降雨量(mm) A—集水面积(km2) 参数的选用: α—入渗系数选用0.12; W—隧址多年平均降雨量为508.7mm,最大年降雨量为1496.88mm(月平均最大降雨量×12)。 A—集水面积:根据1:10000地形平面图,含水岩组分布面积圈定为0.25km2 最大涌水量为: Q= 2.74*α*W*A = 2.74*0.12*1496.88*0.25 = 123.04(m3/d),平均每延米每天涌水量为:0.29(m3/m.d)。 正常涌水量为: Q= 2.74*α*W*A = 2.74*0.12*508.7*0.25= 41.82(m3/d),平均每延米每天涌水量为: 0.1 (m3/m.d)。

供水管井设计、施工及验收规范(精品范文).doc

【最新整理,下载后即可编辑】 供水管井设计、施工及验收规范 1986-5-12 主编单位:中国市政工程西南设计院 批准部门:中华人民共和国城乡建设环境保护部 实行日期:1986年12月1日 关于批准颁发《供水管井设计、施工及验收规范》的通知 (86)城城字第236号 根据原国家城市建设总局(80)城科字第51号文安排,由中国市政工程西南设计院负责组织编制的《供水管井设计、施工及验收规范》,现经我部审查,批准为部标准,编号为CJJ10—86,自一九八六年十二月一日起实行。在实行过程中,如有问题或意见,请函告成都市外北曹家巷中国市政工程西南设计院《供水管井设计、施工及验收规范》管理组。 城乡建设环境保护部 一九八六年五月十二日 第一章总则 第1.0.1条本规范适用于生活饮用和工业生产供水管井的设计、施工及验收。 第1.0.2条供水管井的设计、施工,应在具有必要的水文地质资料后进行。当水文地质资料不能满足供水管井的设计、施工时,应按勘探开采井设计、施工。 第1.0.3条供水管井所使用的材料,应符合本规范及现行标准的有关规定。 第二章管井设计

第一节现场踏勘 第2.1.1条设计前,应根据任务要求,搜集和研究建井地区的有关资料。 第2.1.2条现场踏勘时,应了解建井地区的地下水开发利用情况及施工条件,并核实已有资料。 第二节井群布置及井位确定 第2.2.1条井群位置(井位)的确定,应考虑下列因素: 一、需水量和水质要求; 二、地下水资源可靠; 三、城镇规划和现有给水设施; 四、施工、运行和维护方便; 五、有足够的卫生防护范围; 六、需水量增加时,有扩建可能。 第2.2.2条井群的布置,应进行水文地质计算,经技术经济比较后确定。遇地下水补给来源充足的大厚度含水层或多层含水层时,可设计分段或分层取水井组;与河流联通性良好的含水层,可设计傍河井群;岩溶地区地下水特别富集时,可设计同深度井组。 第2.2.3条井群设计时,应设置长期观测孔。观测孔的设计,应符合《供水水文地质勘察规范》(TJ27—78)的有关规定。 第2.2.4条井群设计时,应设置备用井。备用井的数量,可按生产井数10~20%停止工作时仍能满足设计水量确定,但不得少于一口。 第2.2.5条井位与高大建筑物或重要构筑物,应保持足够的安全距离。 第三节管井结构设计 第2.3.1条管井结构设计,一般包括下列内容: 一、井身结构; 二、过滤器类型及井管配置; 三、填砾的规格及位置; 四、封闭的位置及所用材料;

用水量计算

用水量计算 3.6.1 居住小区的室外给水管道的设计流量应根据管段服务人数、用水定额及卫生器具设置标准等因素确定,并应符合下列规定: 1 服务人数小于等于表3.6.1中数值的室外给水管段,其住宅应按本规范第3.6.3、3.6.4条计算管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施应按本规范第3.6.5条和第3.6.6条的规定计算节点流量; 表3.6.1 居住小区室外给水管道设计流量计算人数每户 Ng 345678910 qokh 350102009600890082007600———400910087008100760071006650——4508200790075007100665062505900—50074007200690066006250590056005350 55067006700640062005900560053505100 60061006100600058005550530050504850 65056005700560054005250500048004650 70052005300520051004950480046004450

注:1 当居住小区内含多种住宅类别及户内Ng不同时,可采用加权平均法计算; 2 表内数据可用内插法。 2 服务人数大于表3.6.1中数值的给水干管,住宅应按本规范第3.1.9条的规定计算最大时用水量为管段流量。居住小区内配套的文体、餐饮娱乐、商铺及市场等设施的生活给水设计流量,应按本规范第3.1.10条计算最大时用水量为节点流量; 3 居住小区内配套的文教、医疗保健、社区管理等设施,以及绿化和景观用水、道路及广场洒水、公共设施用水等,均以平均时用水量计算节点流量。 注:凡不属于小区配套的公共建筑均应另计。 3.6.1原规范2003版设计流量计算存在下列问题: a. 3000人以上支状管道计算无依据; b. 3000人以下环状管道计算无依据; c. 在3000人前提下按设计秒流量式(3.6.4)计算和按最大小时平均流量计算得到两种结果; d. 居住小区给水支管按最大小时平均秒流量计算偏小,与住宅按概率法计算设计秒流量不能銜接;

管井降水计算书

管井降水计算书 一、水文地质资料 二、计算依据及参考资料 该计算书计算主要依据为国家行业标准《建筑基坑支护技术规范》(JGJ 120-99),同时参阅了《建筑施工手册》(第四版)和姚天强等编写的《基坑降水手册》。 三、计算过程 1、基坑总涌水量计算: 根据基坑边界条件选用以下公式计算: 基坑降水示意图 Q=(2H-S)*S/(lgR-lgr0) Q为基坑涌水量; k为渗透系数(m/d):取综合渗透系数10m/d H为含水层厚度(m):主要为细砂层以上取 R为降水井影响半径(m):根据施工经验取15m r 0为基坑范围的引用半径(m):r =(r1+r2r+r3+r4+…+rn)1/n 降水干扰井 群分别至基坑中心点的距离; S为基坑水位降深(m):

D为基坑开挖深度(m):取 d 为地下静水位埋深(m):取 w sw为基坑中心处水位与基坑设计开挖面的距离(m):取 通过以上计算可得基坑总涌水量为2672m3。 2、降水井深度确定: 降水井深度按下式: H W =H1+ H2 + H3 + H4 + H5 + H6 H W—降水井深度(m); H1—基坑深度(m);(取) H2—降水水位距离基坑底要求的深度(m);(取) H3—iy0;i为水力坡度,在降水井分布范围内宜为1/10—1/15,y0为降水井分布范围内基坑等效半径;(计算得,取) H1—降水期间水位变幅(m);(取) H2—降水井过滤器工作长度(m);(取) H W—沉砂管工作长度(m);(取) 根据上式计算得:降水井深度为 3、降水井数量确定: 单井出水量计算: q = (l′d)/a*24 降水井数量计算: q为单井允许最大进水量(m3/d); d为过滤器外径(mm):取400mm l′为过滤器进水部分长度(m)(过滤器进水部分有效长度取); a为与含水层渗透系数有关的经验系数(根据渗透系数5—15m/d,含水层厚度≤20m,取100)

涌水量计算案例

集水面积 集水面积是指流域分水线所包围的面积。集水面积大都先从地形图上定出分水线用求积仪或其它方法量算求得,计算单位为平方公里。如长江集水面积180万 分水线图 平方公里,黄河集水面积约75万平方公里。 地面分水线 地下分水线

计算:复核: 引文一: 4.3隧道涌水量预测 隧道区以根据地质调查结果分析,目前隧道涌水量暂按降水入渗法和地下径流模数法进行预测计算。等深孔水文地质试验参数出来后再按地下水动力法核算。 (1)大气降水入渗法 采用公式:Q=2.74 a W A(m'/d) 采用公式:Q=2.74 a W A(m3/d) a:降水入渗系数。全隧道地表为可溶岩,裂隙发育、岩溶化程度高。DK63+165至DK64+600段洞身大部处于石英砂页岩、炭质页岩夹煤系下,考虑到断层构造影响严 重,降水入渗系数a取值0.25 ;DK64+600至DK67+651隧道处岩溶强烈发育的可溶岩中,降水入渗系数a取值0.5。W:年平均降水量,本测区取1448mm

A:集水面积。 DK63+165 ?DK64+600 段:计算集水面积2.79km2; DK64+600?DK67+651 段;计算集水面积7.32 km2; 涌水量分别计算如下: Q=2.74 汉0.25江1448^.79 =2767(m'/d)?2800 (m3/d) Q=2.74 0.5 1448 7.32 =14521(m'/d)?14500 (m3/d) 两项合计Q 平常=2800+14500=17300(m7d) 考虑到岩溶区有暗河发育并构造发育,影响入渗系数的因素可能要大,DK64+600?DK67+651段雨季涌水量期倍增系数按3考虑,DK63+165?DK64+600段按系数2 考虑; 隧道雨季涌水量Q洪=2800X2+14500X3 =5600+4350009100 (m3/d) ( 2)地下径流模数法 Q=86.4X M X A M—地下径流模数(m/d ? Km) A—为隧道通过含水体的地下集水面积( Km2) 测区集水面积A=10.11 (Knn)(大致估算),地下水径流模数M枯=10.3( 升/秒?平方公里)(依据都匀幅《区域水文地质普查报告》)则: Q 枯= M 枯X A =86.4 X10.3X 10.11 =9000 ( m3/d ) 考虑到岩溶区有暗河发育并构造发育,其雨季涌水量期倍增系数按 3 考虑 隧道雨季涌水量Q洪=9000X3 3 =27000( m3/d)

供水管井设计施工验收规范

供水管井设计施工验收规范

供水管井设计、施工及验收规范CJJ10—86 主编单位:中国市政工程西南设计院 批准部门:中华人民共和国城乡建设环境保护部 实行日期:1986年12月1日 关于批准颁发《供水管井设计、施工及验收规范》的通知 (86)城城字第236号 根据原国家城市建设总局(80)城科字第51号文安排,由中国市政工程西南设计院负责组织编制的《供水管井设计、施工及验收规范》,现经我部审查,批准为部标准,编号为CJJ10—86,自一九八六年十二月一日起实行。在实行过程中, 如有问题或意见,请函告成都市外北曹家巷中国市政工程西南设计院《供水管井设计、施工及验收规范》管理组。 城乡建设环境保护部 一九八六年五月十二日 第一章总则 第1.0.1条本规范适用于生活饮用和工业生产供水管井的设计、施工及验收。 第1.0.2条供水管井的设计、施工,应在具有必要的水文地质资料后进行。当水文地质资料不能满足供水管井的设计、施工时,应按勘探开采井设计、施工。 第1.0.3条供水管井所使用的材料,应符合本规范及现行标准的有关规定。 第二章管井设计 第一节现场踏勘 第2.1.1条设计前,应根据任务要求,搜集和研究建井地区的有关资料。 第2.1.2条现场踏勘时,应了解建井地区的地下水开发利用情况及施工条件,并核实已有资料。

第二节井群布置及井位确定 第2.2.1条井群位置(井位)的确定,应考虑下列因素: 一、需水量和水质要求; 二、地下水资源可靠; 三、城镇规划和现有给水设施; 四、施工、运行和维护方便; 五、有足够的卫生防护范围; 六、需水量增加时,有扩建可能。 第2.2.2条井群的布置,应进行水文地质计算,经技术经济比较后确定。遇地下水补给来源充足的大厚度含水层或多层含水层时,可设计分段或分层取水井组;与河流联通性良好的含水层,可设计傍河井群;岩溶地区地下水特别富集时,可设计同深度井组。 第2.2.3条井群设计时,应设置长期观测孔。观测孔的设计,应符合《供水水文地质勘察规范》(TJ27—78)的有关规定。 第2.2.4条井群设计时,应设置备用井。备用井的数量,可按生产井数10~20%停止工作时仍能满足设计水量确定,但不得少于一口。 第2.2.5条井位与高大建筑物或重要构筑物,应保持足够的安全距离。 第三节管井结构设计 第2.3.1条管井结构设计,一般包括下列内容: 一、井身结构; 二、过滤器类型及井管配置; 三、填砾的规格及位置; 四、封闭的位置及所用材料; 五、管井的附属设施如测水管、填砾管等。 第2.3.2条井身结构应尽量简化。井身设计应首先根据成井要求,确定井的最终直径,然后考虑成井工艺、岩石可钻性等因素,确定每段井径大小与深度,最后,确定井的开口直径。 第2.3.2条松散层中管井的深度,应根据拟采含水层(组)的顶板埋藏深度、过滤器的合理长度、过滤器的安装位置、沉淀管的长度来确定。

供水管井设计、施工及验收规范

供水管井设计、施工及验收规范 1986-5-12 主编单位:中国市政工程西南设计院 批准部门:中华人民共和国城乡建设环境保护部 实行日期:1986年12月1日 关于批准颁发《供水管井设计、施工及验收规范》的通知 (86)城城字第236号 根据原国家城市建设总局(80)城科字第51号文安排,由中国市政工程西南设计院负责组织编制的《供水管井设计、施工及验收规范》,现经我部审查,批准为部标准,编号为CJJ10—86,自一九八六年十二月一日起实行。在实行过程中,如有问题或意见,请函告成都市外北曹家巷中国市政工程西南设计院《供水管井设计、施工及验收规范》管理组。 城乡建设环境保护部 一九八六年五月十二日 第一章总则 第1.0.1条本规范适用于生活饮用和工业生产供水管井的设计、施工及验收。 第1.0.2条供水管井的设计、施工,应在具有必要的水文地质资料后进行。当水文地质资料不能满足供水管井的设计、施工时,应按勘探开采井设计、施工。 第1.0.3条供水管井所使用的材料,应符合本规范及现行标准的有关规定。 第二章管井设计 第一节现场踏勘 第2.1.1条设计前,应根据任务要求,搜集和研究建井地区的有关资料。 第2.1.2条现场踏勘时,应了解建井地区的地下水开发利用情况及施工条件,并核实已有资料。

第二节井群布置及井位确定 第2.2.1条井群位置(井位)的确定,应考虑下列因素: 一、需水量和水质要求; 二、地下水资源可靠; 三、城镇规划和现有给水设施; 四、施工、运行和维护方便; 五、有足够的卫生防护范围; 六、需水量增加时,有扩建可能。 第2.2.2条井群的布置,应进行水文地质计算,经技术经济比较后确定。遇地下水补给来源充足的大厚度含水层或多层含水层时,可设计分段或分层取水井组;与河流联通性良好的含水层,可设计傍河井群;岩溶地区地下水特别富集时,可设计同深度井组。 第2.2.3条井群设计时,应设置长期观测孔。观测孔的设计,应符合《供水水文地质勘察规范》(TJ27—78)的有关规定。 第2.2.4条井群设计时,应设置备用井。备用井的数量,可按生产井数10~20%停止工作时仍能满足设计水量确定,但不得少于一口。 第2.2.5条井位与高大建筑物或重要构筑物,应保持足够的安全距离。 第三节管井结构设计 第2.3.1条管井结构设计,一般包括下列内容: 一、井身结构; 二、过滤器类型及井管配置; 三、填砾的规格及位置; 四、封闭的位置及所用材料; 五、管井的附属设施如测水管、填砾管等。 第2.3.2条井身结构应尽量简化。井身设计应首先根据成井要求,确定井的最终直径,然后考虑成井工艺、岩石可钻性等因素,确定每段井径大小与深度,最后,确定井的开口直径。 第2.3.2条松散层中管井的深度,应根据拟采含水层(组)的顶板埋藏深度、过滤器的合理长度、过滤器的安装位置、沉淀管的长度来确定。 基岩地区的管井,应尽量穿透拟采含水构造带(岩溶发育带、断裂破碎带、裂隙发育带)。 注:如有确切资料,部分揭露含水构造带,就能满足需水要求时,管井亦可不穿透含水构造带。 第2.3.4条设计井径时,应考虑管井的设计取水量和成井工艺等因素。并满足下列要求: 一、井径应比设计过滤器的外径大50mm,基岩地区在不下过滤器的裸眼井段,上部安泵段的井径应比抽水设备铭牌标定的井管公称内径大50mm。 二、松散层中的管井井径,应用允许入井渗透流速(Vj)复核,并满足下式要求:

矿井涌水量的计算

三、地下水动力学法 地下水动力学法的理论依据是地下水运动的线性渗透定律,即达西定律。根据这个原理和具体的水文地质条件,可选择不同的公式计算矿井井简的浦水量。 (一)垂直井筒涌水量的计算 1.潜水完整井涌水量计算 所谓潜水完整井是指开凿在潜水含水层中,井打穿含水层到隔水层底板的井筒 22 1.366lg lg H h Q K R r -=- 因为 h=H-S 所以 (2)1.366lg lg H S S Q K R r -=- 在井筒掘凿时,井筒中式不允许积水的,因此h=0,或者说S=H,这时, 2 1.366lg lg H Q K R r =- 式中 Q ——井筒涌水量(m3/d ) K ——含水层渗透系数(m/d ) H ——含水层厚度 h ——井中出水地段高度 S ——水位降低值 R ——影响半径 r ——井筒半径 2.承压水完整井涌水量计算 承压水完整井是指开凿在承压含水层中,并全部揭露含水层的井筒 ()2.73lg lg M H h Q K R r -=-或 2.73lg lg MS Q K R r =- 3.完整潜水承压井涌水量计算 当井筒穿过承压含水层水位下降很大,降到隔水顶板以下时,井筒附近变为无压水,这种情况称为潜水承压井 22(2)1.366lg lg HM M h Q K R r --=- 上述公式同样适用于钻孔涌水量计算 如果抽水试验是在井筒检查孔中进行,用钻孔涌水量可按下式换算成井筒涌水量 112122 lg lg lg lg R r Q Q R r -=- (二)水平尽道涌水量的预剐方法 计算水平巷道涌水量时,同样可将巷道看成为水平集水于程。因此,可利用地卞水向水平集水工程运动的公式计算。

供水管井技术要求规范

供水管井技术规范 前言 本规范是根据国家计委计综合〔1991〕290号文的要求,由原冶金工业部主编,具体由冶金工业部武汉勘察研究院会同中国市政工程西南设计研究院、中国煤田地质总局、冶金工业部勘察研究总院、中国有色金属工业总公司昆明勘察院和合肥工业大学等单位组成修订组,对原《供水管井工程施工及验收规范》GBJ 13—66进行修订而成。由于规范增加了管井设计的内容,故更名为《供水管井技术规范》,经建设部1999年4月13日以建标[1999] 101号文批准,并会同国家质量技术监督局联合发布。 在修订过程中,修订组进行了大量的调查研究,针对原规范在执行中发现的问题及生产中提出的新的要求,认真总结了我国供水管井设计和施工的实践经验,并广泛征求了全国有关单位和专家的意见,最后由原冶金工业部会同有关部门审查定稿。 本次修订的主要内容有:关于术语与符号的规定;增加了管井设计的要求;关于管井施工的技术要求等。 在执行本规范过程中,希望各单位结合工程实践和科学研究,认真总结经验,注意积累资料。如发现需要修改和补充之处,请将意见和有关资料寄交武汉市冶金大道177号冶金部武汉勘察研究院《供水管井技术规范》国家标准管理组[邮政编码430080,传真(027) 86861906],以供今后修订时参考。 本规范主编单位、参编单位和主要起草人: 主编单位:冶金工业部武汉勘察研究院 参编单位:中国市政工程西南设计研究院 中国煤田地质总局 冶金工业部勘察研究总院 中国有色金属工业总公司昆明勘察院 合肥工业大学 主要起草人:胡琏张锡范叶贵钧李天成蒋本昌邱掌珠 1 总则 1.0.1 为统一供水管井工程的设计和施工的技术要求,特制定本规范。 1.0.2 本规范适用于生活用水和工业生产用水管井工程的设计、施工及验收。 1.0.3 供水管井的设计与施工,应在取得现行国家标准《供水水文地质勘察规范》 GBJ 27规定的勘探阶段的水文地质资料后进行。当资料不能满足管井的设计或施工时,应补

相关文档
最新文档