高等数学-微积分下-课件-华南理工大学 (24).
高等数学-微积分下-课件-华南理工大学 (25).
如果当各小段长度的最大值 0时 ,
n
P(i ,i )xi的极限总存在, 则称此极限为函数
i 1
P( x, y)在有向曲线弧 L上 对坐标x的曲线积分,
或称 第二型曲线积分.记作 P( x, y)dx,即 L
n
L
P(
x,
y)dx
lim
0
i 1
P(i
,i
)xi
n
类似地定义 Q( x, y)dy L
1 23
化成参数式方程为 x 1 t, y 1 2t,z 1 3t A点对应 t 0, B点对应 t 1,于是
xdx ydy ( x y 1)dz
01(1 t)dt (1 2t)2dt (1 3t )3dt
1
0 (6 14t)dt 13
17
例3 计算 x2dx ( y x)dy, 其中 L
n
P( x,
y, z)dx
lim
0
i 1
P(i
,i ,
i
)xi
n
Q(
x,
y,
z)dy
lim
0
i 1
Q(i
,i
,
i
)yi
n
R( x,
y, z)dz
lim
0
i 1
R(i ,i , i )zi
8
6. 性质
y L L2
(1) 如果把 L分成 L1和 L2 , 则
L1 O
x
Pdx Qdy Pdx Qdy Pdx Qdy
(1) L是上半圆周 y a2 x2 , 反时针方向;
(2) L是x轴上由点 A(a,0) 到点B(a,0) 的线段.
解 (1)中L的参数方程为
华南理工大学版微积分下课件19
第六节 高斯公式和斯托克斯公式一、高斯公式定理1:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数()()()z y x R z y x Q z y x P ,,,,,,,,在Ω上具有一阶连续偏导数,则有⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z R y Q x P或()⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂dS R Q P dv z R y Q x P γβαcos cos cos这里∑是Ω的整个边界曲面的外侧,γβαcos ,cos ,cos 是∑上 点()z y x ,,出的法向量的方向余弦。
证明:我们只需证明三个等式⎰⎰⎰⎰⎰∑Ω=∂∂Pdydz dv x P ,⎰⎰⎰⎰⎰∑Ω=∂∂Qdzdx dv y Q ,⎰⎰⎰⎰⎰∑Ω=∂∂Rdxdy dv z R证明等式最重要的是处理好积分区域! 证明⎰⎰⎰⎰⎰∑Ω=∂∂Rdxdy dv z R(如图1) 例1:计算⎰⎰∑++dxdy zx dzdx yz dydz xy 2222,其中∑为椭球面12222=++z y x 的内侧。
解:利用高斯公式⎰⎰∑++dxdy zx dzdx yz dydz xy2222=()⎰⎰⎰∑++-dxdydz x z y 2222()()⎰⎰⎰⎰⎰≤+≤+-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--+--+-=++-=123222222121212222222222221342122y x y x y x y x dxdy y x y x y x dzz y xdxdy()⎰⎰⎥⎥⎦⎤⎢⎢⎣⎡-+--=123223201232212dr r r r r d πθ ⎰=⎪⎪⎭⎫ ⎝⎛+-=2423sin cos sin 32cos sin 22ππdt t t t t tr ⎰⎪⎪⎭⎫⎝⎛-+-=2053sin 322sin 32sin 322ππdt t t t πππ5225332232543223232322-=-=⎪⎪⎭⎫ ⎝⎛-+-= 例2:计算曲面积分⎰⎰∑++xdzdx ydydz dxdy e z ,其中积分曲面∑为)20(22≤≤+=z y x z ,并取下侧。
《微积分》(上下册) 教学课件 01.第1章 函数、极限、连续 高等数学第一章第9-10节
定义 2 设函数 f ( x)在U(x0, )内有定义,如果
y
lim f (x) f (x ),
x x0
0
y f (x)
称函数 f ( x)在点 x 连续. 0
如 f ( x) x2,
0
x0
x
lim f ( x) lim x2 4 f (2),
x2
x2
f ( x) x2在x 2点连续.
说明 y f (x)在x x0点连续 下列三条同时成立 (1) f (x0)有定义;
(2) lim f (x)存在; xx0
(3)lim x x0
f
(x)
f (x0 ).
13
例1
试证函数
f
ห้องสมุดไป่ตู้
(
x)
x
sin1 x
,
0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
3、反函数函数的连续性
严格单调的连续函数必有严格单调的连续反函数. 例如, y sin x在[ , ]上单调增加且连续,
22 故 y arcsinx 在[1,1]上也是单调增加且连续.
同理 y arccosx 在[1,1]上单调减少且连续;
y arctanx, y arccot x 在(,)上单调且连续.
§1.9 无穷小量的比较与等价代换
例如, 当x 0时, x, x2,sin x, x2 sin 1 都是无穷小.
x2
lim 0,
观
x0 x
x x2比x要快得多;
察 各 极 限
lim sin x x0 x
大学微积分课件(PPT幻灯片版)pptx
高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
高等数学(微积分)ppt课件
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性
质
级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。
微积分讲解ppt课件
多元函数的表示 方法
多元函数可用记号 f(x1,x2,…,xn)或z=f(x,y) 表示。
多元函数的定义 域
使多元函数有意义的自 变量组合(x1,x2,…,xn) 的集合。
多元函数的值域
多元函数所有值的集合 。
偏导数与全微分
偏导数的定义
设函数z=f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量Δx时,相应地函数有增量 f(x0+Δx,y0)-f(x0,y0)。如果Δz与Δx之比当Δx→0时的极限存在,那么此极限值称为函数z=f(x,y)在点(x0,y0)处对 x的偏导数。
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将方程转化为可积分的形式
二阶常微分方程解法
可降阶的二阶微分方程
通过变量替换或分组,将方程降为一阶微分方 程求解
二阶线性微分方程法
利用特征根的性质,求解二阶线性常系数齐次 和非齐次微分方程
常系数线性微分方程组法
在经济学中的应用
边际分析
通过求导计算边际成本、边际收益等,为企业的决策 提供依据。
弹性分析
研究价格、需求等经济变量之间的相对变化关系,微 积分可用于计算弹性系数。
最优化问题
在资源有限的情况下,通过微积分求解最大化或最小 化某一经济指标的问题。
在工程学中的应用
结构力学
分析建筑、桥梁等结构的受力情况和稳定性,微积分可用 于求解复杂的力学方程。
通过消元法或特征根法,求解常系数线性微分方程组
05
多元函数微积分
多元函数的基本概念
多元函数的定义
设D为一个非空的n元有 序数组的集合,f为某一 确定的对应规则。若对 于每一个有序数组 (x1,x2,…,xn)∈D,通过 对应规则f,都有唯一确 定的实数y与之对应, 则称对应规则f为定义在 D上的n元函数。
2024版大学微积分课件(ppt版)
大学微积分课件(ppt 版)目录•微积分概述•极限与连续•导数与微分•积分学•微分方程•微积分在实际问题中的应用PART01微积分概述微积分的定义与发展微积分的定义微积分是研究函数的微分与积分的数学分支,微分研究函数在某一点的变化率,而积分则是研究函数在一定区间上的累积效应。
微积分的发展微积分起源于17世纪的物理学和几何学问题,经过牛顿、莱布尼兹等数学家的努力,逐渐发展成为一门独立的数学学科。
微积分的研究对象与意义研究对象微积分的研究对象是函数,包括一元函数和多元函数,主要研究函数的性质、图像、变化率以及函数间的相互关系等。
研究意义微积分在自然科学、工程技术、社会科学等领域有着广泛的应用,如求解物理问题、优化工程设计、分析经济数据等。
微积分的基本思想与方法基本思想微积分的基本思想是通过局部近似来研究函数的整体性质,即“以直代曲”、“以不变应万变”。
基本方法微积分的基本方法包括微分法和积分法。
微分法是通过求导数来研究函数的局部性质,如单调性、极值等;积分法则是通过求原函数来研究函数的整体性质,如面积、体积等。
PART02极限与连续极限的概念与性质01极限的定义:描述函数在某一点或无穷远处的变化趋势。
02极限的性质:唯一性、局部有界性、保号性、四则运算法则。
03无穷小量与无穷大量:定义、性质及比较。
极限的运算法则与存在准则极限的四则运算法则加法、减法、乘法、除法。
极限存在准则夹逼准则、单调有界准则。
连续函数的概念与性质连续函数的定义函数在某一点连续的定义及性质。
间断点及其分类第一类间断点(可去间断点、跳跃间断点)、第二类间断点。
连续函数的性质局部性质(局部有界性、局部保号性)、整体性质(有界性、最值定理、介值定理)。
连续函数的四则运算加法、减法、乘法、除法。
初等函数基本初等函数及其性质,初等函数的连续性。
复合函数的连续性复合函数连续性的判断及证明。
连续函数的运算与初等函数PART03导数与微分导数的概念与几何意义导数的定义导数的几何意义可导与连续的关系描述函数图像在某一点处的局部变化率。
《微积分》(上下册) 教学课件 02.第2章 导数与微分 高等数学第一章第3-5节
1
记作
f
(
x),
y,
d2y dx2
或
d
2 f (x) dx2
.
二阶导数的导数称为三阶导数,记作
f ( x),
y,
d3y dx3 .
三阶导数的导数称为四阶导数, 记作
f (4)(x),
y(4) ,
d4y dx4 .
一般地, 函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数, 记作
f (n)(x),
10
一、微分的概念
实例 半径为 x的0 金属圆板受热后面积的改变量.
设半径由x0变到x0 x,
圆板的面积 A x02,
A (x0 x)2 x02
2x0 x (x)2.
(1)
(2)
(1) x的线性函数,且为A的主要部分;
(2) x的高阶无穷小,当x 很小时可忽略.
11
再例如
设函数 y x3在点 x0处的改变量为x时, 求函数的 改变量 y.
§2.3 高阶导数
问题 变速直线运动的加速度.
设 s s(t), 则瞬时速度为v(t) s(t);
因为加速度a是速度v对时间t的变化率,所以
a(t) v(t) s(t).
定义 如果f (x)的导函数f (x)在点x处可导,即
( f (x)) lim f (x x) f (x)
x0
x
存在,则称( f (x))为f (x)在点x处的二阶导数.
dt dx
3a sin2 t cost 3a cos2 t(sint
)
tan t,
dt
d2y dx2
d (dy) dx dx
d ( tan t ) dx
大学微积分课件(PPT版)
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。
大学微积分课件PPT幻灯片版
n 0 i 1
实例2 (求变速直线运动的路程)
设某物体作直线运动,已知速度v v(t )是 时间间隔 [T1 ,T2 ] 上 t 的一个连续函数,且 v(t ) 0,求物体在这段时间内所经过的路程
思路:把整段时间分割成若干小段,每小段上 速度看作不变,求出各小段的路 程再相加,便 得到路程的近似值,最后通过对时间的无限细 分过程求得路程的 精确值.
(1)
d
x e
t 2 dt
dx d 1
(2)
1 e t 2 dt
dx d x
(3)
cosx t 2et 2 dt
dx 1
补充
如果 f (t ) 连续,a( x) 、b( x) 可导,
则F ( x)
b( x ) f (t )dt 的导数F ( x) 为 a ( x )
F ( x)
d b( x ) a( x ) f (t )dt dx
使
b a
f ( x)dx
积分中值公式
f ( )(b a).
(a b)
m(b a) 证
b f ( x)dx M (b a) a
m
1 b a
b f ( x)dx M
a
由闭区间上连续函数的介值定理知
在区间[a, b]上至少存在一个点 ,
f ()
1
b f ( x)dx,
使
b a
x
以[ xi1 , xi ]为底,f (i ) 为高的小矩形面积为
Ai
f (i )xi
曲边梯形面积的近似值为 n
A f (i )xi i1
当分割无限加细, 记小区间的最大长度 或者( x ) x max{x1 , x2 ,xn } 趋近于零 ( x 0或者 0) 时,
(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(28)
1、选择题1)对于级数1n n a ∞=∑,"lim 0"n n a →∞=使它收敛的( B )条件。
A 、充分B 、必要C 、充要D 、非充分且非必要 2)“部分和数列{}n S 有界”,是正项级数1nn a∞=∑收敛的( C )条件。
A 、充分B 、必要C 、充要D 、非充分且非必要 3)若级数1nn a∞=∑绝对收敛,则级数1nn a∞=∑必定( A )。
A 、收敛B 、发散C 、绝对收敛D 、条件收敛 4)若级数1nn a∞=∑条件收敛,则级数1nn a∞=∑必定( B )。
A 、收敛B 、发散C 、绝对收敛D 、条件收敛2、用适当的方法判别下列级数的敛散性 1)()11ln 1n n ∞=+∑解:用比较判别法,和调和级数11n n∞=∑比较因为()11ln 1n n >+,级数()11ln 1n n ∞=+∑发散。
2)n ∞= 解:用比较判别法,因为431n n n →∞==,而级数4131n n ∞=∑收敛,级数1n ∞=3)2n n n ∞=+解:用比较判别法,因为2322lim 12n n n n n→∞→∞⎛⎫=+= ⎪⎝⎭级数3121n n∞=∑收敛,由比较判别法极限形式可得12n n n ∞=+收敛。
4)411!n n n ∞=+∑解:用比值判别法,因为()()()4444111!111limlim 01111!n n n n n n n n n →∞→∞+++++=⋅=<+++,级数411!n n n ∞=+∑收敛 5)()112n n n n ∞=++∑解:用比较判别法,因为()121lim lim 112n n n n n n n n →∞→∞+++==+,级数()112n n n n ∞=++∑发散。
6)()11,,0n a b na b∞=>+∑解:用比较判别法,因为11lim lim 1n n na b a b a n n →∞→∞+==+,级数11n na b ∞=+∑发散。
(2024年)《高数微积分》PPT课件
平面图形面积的计算
利用定积分求解由平面曲线围成的图形面积,了解不同图形的求解 方法。
极坐标下平面图形的面积
掌握极坐标下平面图形面积的求解方法,理解极坐标与直角坐标的 转换。
20
空间几何体的体积与表面积
2024/3/26
空间几何体体积的计算
通过三重积分求解空间几何体的体积,了解不同几何体的求解方 法。
2024/3/26
6
02
微分学基础
Chapter
2024/3/26
7
极限与连续
01
极限的概念
描述函数在某一点的 变化趋势,是微积分 的重要基础。
02
极限的性质
包括唯一性、有界性 、保号性等,用于推 导和证明其他微积分 定理。
03
连续的概念
函数在某一点的变化 是平稳的,没有跳跃 或间断。
04
连续的判定
通过极限来判断函数 在某一点是否连续。
2024/3/26
8
导数与微分
包括基本初等函数的导数、导数 的四则运算法则、复合函数的导 数等。
通过导数来计算函数在某一点的 微分。
导数的概念 导数的计算 微分的概念 微分的计算
描述函数在某一点的变化率,即 函数值随自变量变化的快慢程度 。
在自变量产生微小变化时,函数 值的变化量的线性部分。
2024/3/26
9
导数的应用
切线与法线
利用导数求解曲线在某一点的切 线和法线方程。
01
02
凹凸性与拐点
03
利用二阶导数判断函数的凹凸性 ,并求解函数的拐点。
04
2024/3/26
单调性与极值
大学微积分课件幻灯片版
不定积分的性质
包括线性性质、积分区间可加性 、常数倍性质和积分与微分互逆 性质。
基本积分公式与法
则
包括幂函数、三角函数、指数函 数、对数函数等基本初等函数的 不定积分公式,以及分部积分法 、换元积分法等基本积分法则。
定积分的概念与性质
定积分的定义
定积分是求一个函数在闭区间上的积分值,表达形式为 ∫[a,b]f(x)dx,表示函数f(x)在区间[a,b]上的面积。
根据未知函数及其导数的次数划 分
一阶微分方程及其解法
可分离变量法
通过变量分离,将微分方程转化为可积分的 形式
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将一阶线性微分方程转化为 可积分的形式
二阶微分方程及其解法
二阶线性微分方程
具有常系数的二阶线性微分方程的通解结构
振动与波动方程
描述振动与波动现象的二阶线性微分方程
欧拉方程
通过变量替换,将欧拉方程转化为二阶线性微分方程进行求解
高阶微分方程的降阶法
通过变量替换或积分法,将高阶微分方程降阶为一阶或二阶微分方程进行求解
05
多元函数微积分学
多元函数的基本概念
01 02
多元函数的定义
设$D$为一个非空的$n$ 元有序数组的集合, $f$为某一 确定的对应规则。若对于每一个有序数组$( x1,x2,…,xn)∈D$,通过对应规则$f$,都有唯一确定的实 数$y$与之对应,则称对应规则$f$为定义在$D$上的$n$ 元函数。
三重积分的定义
设三元函数$f(x,y,z)$在可求体积的有界闭区域$Omega$上连续,将$Omega$任意分成$n$个小闭区域$Delta V_1,Delta V_2,…,Delta V_n$,记各小闭区域的直径中的最大值为$lambda $。若不论对$Omega $如何分割 及如何选取点$(xi_i,eta_i,zeta_i)$,只要当$lambda to 0 $时,和式$sum_{i=1}^{n} f(xi_i,eta_i,zeta_i)Delta V_i $的极限存在且唯一,则称此极限为函数 $f(x,y,z) $在区域 $Omega $上的三重积分。
《高等数学微积分》课件
实际应用
极值问题在经济学、物理学等领域有广泛应 用,如成本最小化、利润最大化等。
曲线的长度
曲线长度公式
利用微积分计算曲线的长度。
参数方程
通过参数方程将曲线表示为参数的函数,便于计算长度。
实际应用
在工程、地理等领域,需要计算各种曲线的长度,如河流长度、 道路长度等。
面积和体积
面积和体积公式
利用微积分计算平面图形的面积和空间图形的体积。
结合律
微积分运算还具有结合律,即函数的微积分运算顺序不影响结果。
交换律
此外,微积分运算还满足交换律,即函数的微积分运算满足交换律 。
微积分运算的法则
分部积分法
分部积分法是微积分运算中的一 种重要方法,它将两个函数的乘 积的导数转化为两个函数的导数 的乘积,从而简化了计算过程。
换元法
换元法是微积分运算中的另一种 重要方法,它通过引入新的变量 来简化计算过程。
如何提高微积分的计算能力?
总结词:掌握计算方法 总结词:细心谨慎 总结词:多做练习题
详细描述:提高微积分的计算能力需要熟练掌握各种计 算方法,如极限的计算、导数的计算和积分的计算等。 掌握这些方法可以更快更准确地完成计算。
详细描述:在微积分的计算过程中,需要细心谨慎,避 免因粗心大意而导致的错误。仔细检查每一步的计算过 程,确保准确性。
微分
微分的定义与性质
微分是函数在某一点附近的小变化量,它描述了函数在该点附近的变化趋势。微分具有一些重要的性质,如线性性、 可加性和可乘性。
微分的计算方法
包括微分的四则运算法则、复合函数的微分法则、隐函数的微分法则等。这些方法可以帮助我们快速准确地计算函数 的微分。
微分的应用
微分在许多领域都有广泛的应用,如近似计算、误差估计、优化问题等。例如,在近似计算中,微分可 以用来估计函数在某一点的近似值;在优化问题中,微分可以用来寻找函数的极值点。
《微积分》课件
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$
《高数微积分》PPT课件
),
即U 2E (t )
2
当 t (,) 时, U 0.
U
( , E)
2
E
U U (t)是一个分段函数,
其表达式为
o
(,0) t
2
2E t,
U(t)
2E (t
0,
),
t [0, ] 2
t ( ,] 2
t (,)
例2
设f
(
x)
1 2
0
x
1 ,
求函数
f
(x
3)的定义域.
函数值全体组成的数集 W { y y f ( x), x D} 称为函数的值域.
函数的两要素: 定义域与对应法则.
(x
D
x0 )
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
1) 2
;
2、1,1;
3、(4,6);
4. (0, 2].
七、 y ln 1 x ,(1,1). 1 x
2
l 2
3l 2
四、反函数
y
函数 y f ( x)
y
反函数 x ( y)
y0
W
o
y0
W
x0
xo
D
x0
x
D
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n
f ( x, y, z)ds lim 0 i1
f (i ,i , i ) si
6
4. 性质
(1) [ f ( x, y) g( x, y)]ds L L f ( x, y)ds L g( x, y)ds
(2) kf ( x, y)ds k f ( x, y)ds (k为常数)
L
( )
9
注意: 1. 定积分的下限 一定要小于上限 ;
(对弧长的曲线积分要求 ds 0 )
2. f ( x, y)中x, y不彼此独立, 而是相互有关的.
10
L的
参
数
方
程
为
x y
(t) (t)
( t ),
f ( x, y)ds L
f [ (t), (t)]
2(t) 2(t)dt
匀质之质量 M s
分割 M1, M2 , , Mn1
(i ,Mii)•1 sMi i
A M1 M2
O
取近似 取 (i ,i ) si , Mi (i ,i ) si
x
n
求和 M (i ,i ) si
近似值
i1 n
取极限
M
lim 0
i
1
(i
,i
)
si
精确值
3
二、对弧长的曲线积分的概念
OA
0
⌒
AB
A⌒B
: e
x a cos
x2 y2 ds
, y asin ,
4 eaad
0
4
0 aea
4
15
BO : y x, 0 x 2 a.
y
2
ds 1 12dx
e x2 y2ds
2a
2e
2x
O
2dx ea 1
BO
0
故 e x2 y2ds 2(ea 1) aea
L
L
(3) 与积分路径的方向无关, 即
L(
⌒
AB)
f
(
x,
y)ds
L(⌒BA)f ( x, y)ds
7
注意
(1) 若 L(或 )是分段光滑的, (L L1 L2 )
f ( x, y)ds f ( x, y)ds f ( x, y)ds
L1 L2
L1
L2
(对路径具有可加性)
(2) 函数f ( x, y)在 闭曲线L上对弧长的曲线积分
i 1
A
O
Ls (
i
,i
)
•
M n1 Mi
M1 M2
Mi1 i
x
④ 如果当各小弧段的长度的最大值 0时,
4
n
f (i ,i ) si
i 1
这和的极限存在, 则称此极限为函数f ( x, y)
在曲线弧 L 对弧长的曲线积分 或
第一类曲线积分.记作 f ( x, y)ds, 即 L 被积函数
特殊情形
(1) L : y ( x), a x b
f ( x, y)ds
b
f [ x, ( x)]
1 2( x)dx (a b)
L
a
ds 1 2( x)dx
(2) L : x ( y), c y d
f ( x, y)ds L
d
f [( y), y]
c
1 2( y)dy (c d )
L
4
B
Ax
16
四、几何意义与物理意义
(1) 当 f ( x, y) 1时, L弧长 ds L
(2) 当 f ( x, y)表示立于L上的 柱面在点( x, y)处的高时,
z f (x, y)
2(t) 2(t) 2(t)dt
( )
12
注意
如果积分路径L是两个曲面的交线
z
z
f (x, y) g(x, y)
或
12
( (
x, x,
y, y,
z) z)
0 0
此时需把它化为参数方程 (选择x, y, z中某一个
为参数), 再按上述方法计算.
13
例1 求I yds,其中L为y2 2x上自原点到 L
n
L
f ( x, y)ds lim 0
i 1
f (i ,i ) si
积分弧段 弧元素
积分和式
曲线形构件的质量 M L ( x, y)ds
5
2. 存在条件 当 f ( x, y)在光滑曲线弧 L上 连续,
对弧长的曲线积分 f ( x, y)ds 存在. L 3. 推广
函数 f ( x, y, z)在空间曲线弧 上
1.定义
设L为 xOy面内一条光滑曲线弧,
函数 f ( x, y)在L上有界.①在L上任意插入一点列
M1, M 2 ,L , M n1 把L分成n个小段. 设第i个小段的
长度为 si ,又(i ,i )为 第i个小段上任意取定的
y
B
一点,②作乘积 f (i ,i ) si ,
n
③并作和 f (i ,i ) si ,
第九章 曲线积分与曲面积分
curvillnear integral and surface integral
1
第一节 对弧长的曲线积分 arc length 问题的提出 对弧长的曲线积分的概念 对弧长的曲线积分的计算 几何意义与物理意义 小结 作业
2
一、问题的提出
实例 曲线形构件的质量 y
B
L Mn1
(2,2)的一段.
解 y2 2x x y2 (0 y 2)
2
I
2
y
0
1
y2dy
1 3
(5
5 1)
y
y2 2x
• (2,2)
O
x
例2 求I xyzds,其中 : x a cos , y a sin ,
z k 的一段. (0 2 )
解 I 2 a2 cos sin k a2 k2d 0
1ka2 a2 k 2
2
14
例3 计算 e x2 y2ds, L :由圆周x2 y2 a2, L
直线y x及x轴在第一象限中所围图形的边界.
提示
e x2 y2 ds Lຫໍສະໝຸດ OAA⌒BBO
y
B
解 OA : y 0, 0 x a,ds 1 02dx O
Ax
e x2 y2ds a e xdx ea 1
ds 1 2( y)dy
11
(3) L : r r( ),
L f ( x, y)ds f [r( )cos ,r( )sin ] r 2( ) r2( )d
推广 : x (t), y (t), z (t) ( t )
f ( x, y, z)ds
f [(t), (t),(t)]
记作 f ( x, y)ds L
8
三、对弧长曲线积分的计算
化为定积分计算
定理 设 f ( x, y)在曲线弧 L上 有定义且连续,
L的
参
数
方
程
为
x y
(t) (t)
( t ),其中
(t), (t)在[ , ]上 具有一阶连续导数, 且
f ( x, y)ds f [ (t), (t)] 2(t) 2(t)dt