微积分高等数学课件完整版

合集下载

《微积分》(上下册) 教学课件 01.第1章 函数、极限、连续 高等数学第一章第9-10节

《微积分》(上下册) 教学课件 01.第1章 函数、极限、连续 高等数学第一章第9-10节
12
定义 2 设函数 f ( x)在U(x0, )内有定义,如果
y
lim f (x) f (x ),
x x0
0
y f (x)
称函数 f ( x)在点 x 连续. 0
如 f ( x) x2,
0
x0
x
lim f ( x) lim x2 4 f (2),
x2
x2
f ( x) x2在x 2点连续.
说明 y f (x)在x x0点连续 下列三条同时成立 (1) f (x0)有定义;
(2) lim f (x)存在; xx0
(3)lim x x0
f
(x)
f (x0 ).
13
例1
试证函数
f
ห้องสมุดไป่ตู้
(
x)
x
sin1 x
,
0,
处连续.
证 lim x sin 1 0,
x0
x
又 f (0) 0, lim f ( x) f (0), x0
3、反函数函数的连续性
严格单调的连续函数必有严格单调的连续反函数. 例如, y sin x在[ , ]上单调增加且连续,
22 故 y arcsinx 在[1,1]上也是单调增加且连续.
同理 y arccosx 在[1,1]上单调减少且连续;
y arctanx, y arccot x 在(,)上单调且连续.
§1.9 无穷小量的比较与等价代换
例如, 当x 0时, x, x2,sin x, x2 sin 1 都是无穷小.
x2
lim 0,

x0 x
x x2比x要快得多;
察 各 极 限
lim sin x x0 x

微积分讲解ppt课件

微积分讲解ppt课件

多元函数的表示 方法
多元函数可用记号 f(x1,x2,…,xn)或z=f(x,y) 表示。
多元函数的定义 域
使多元函数有意义的自 变量组合(x1,x2,…,xn) 的集合。
多元函数的值域
多元函数所有值的集合 。
20
偏导数与全微分
偏导数的定义
设函数z=f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量Δx时,相应地函数有增量 f(x0+Δx,y0)-f(x0,y0)。如果Δz与Δx之比当Δx→0时的极限存在,那么此极限值称为函数z=f(x,y)在点(x0,y0)处对 x的偏导数。
22
06
微积分在实际问题中的应用
2024/1/25
23
在物理学中的应用
运动学
描述物体的位置、速度和加速度 之间的关系,通过微积分可以精 确地计算物体的运动轨迹和速度 变化。
力学
研究物体受力作用下的运动规律 ,微积分可用于求解牛顿第二定 律中的加速度和力的关系。
电磁学
分析电场和磁场的分布和变化规 律,微积分可用于求解麦克斯韦 方程组等电磁学基本方程。
2024/1/25
9
微分法则与运算技巧
微分的基本法则
包括和差微分法则、乘积 微分法则、商微分法则等 。
微分运算技巧
换元法、分部积分法、有 理化分母等,用于简化复 杂的微分运算。
隐函数与参数方程
对于无法直接求解的隐函 数和参数方程,可通过微 分法求解其导数。
微分的应用
在几何、物理、经济等领 域中的应用,如求曲线的 切线、求速度加速度、求 边际效应等。
全微分的定义
如果函数z=f(x,y)在点(x,y)的全增量Δz=f(x+Δx,y+Δy)-f(x,y)可以表示为Δz=AΔx+BΔy+o(ρ),其中A、B不依赖 于Δx, Δy而仅与x,y有关,ρ=(Δx^2+Δy^2)^0.5,则称函数z=f(x,y)在点(x,y)处可微,AΔx+BΔy称为函数 z=f(x,y)在点(x,y)处的全微分。

大学微积分课件(PPT幻灯片版)pptx

大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关

连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。

高等数学(微积分)ppt课件

高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性

级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。

高等数学《微积分基本定理》课件

高等数学《微积分基本定理》课件
5.3 微积分基本定理
5.3.1 积分上限函数及其导数 5.3.2 微积分的基本定理
5.3.1 积分上限函数及其导数
1、 问题的提出
在变速直线运动中,) v(t)
物体在时间间隔
内经过的路程为 T2v(t)dt T1
另一方面这段路程可表示为 s(T2 ) s(T1 )
又由

b0
,得 c1 2
故a 1
例4.
证明
只要证

内为单调递增函数 .
F ( x) 0
证:
x
x
f (x)0
f (t)dt
x
f (x)0 t
f (t)dt
x 0
f
(t )d t
2
x
f
(
x
)
(
0
x
t
)
f (t)dt
x
0
f
(t )d t
2
0
例 5 设 f ( x)在[0,1]上连续,且 f ( x) 1.证明
b a
f
( x)dx
F
(
x
)
b a
F (b)
F (a)
★ 微积分基本定理
牛顿——莱布尼兹公式
b
a f ( x)dx
f ( )(b a) F ( )(b a) F(b) F(a)
积分中值定理
微分中值定理
通常把这一公式又叫微积分基本定理
例1 求
2 (2cos x sin x 1)dx.
所以f ( x)在[a, b]上连续
定理 2 如果 f ( x)在[a, b]上连续,则积分上限的函
数( x)
x
a
f

高等数学(微积分)课件--§7.1常数项级数的概念与性质

高等数学(微积分)课件--§7.1常数项级数的概念与性质
请利用几何级数计算: 1: ( ) 3 n 1 2 :
n 1
2
n
( 1) 2 3
n 1
n 1
3 : ( ) n2 4
n
8
例题(证明级数发散)
例 证明
证明级数 1 2 3 n 是发散的
n(n 1) 2
.
这级数的部分和为
sn 1 2 3 n
3 3
( 1)
n
8 9
n n
;
(2)
1 3

1 6

1 9

1 3n
; q 8 9 , 1 q

( 1 ) 因为级数是等比级数且
故原级数收敛
.
( 2 ) 因为级数

n1

1 n
是调和级数
, 它是发散的,
故由级数的性质知级数
1 3

1 6

1 9

1 3n
第七章

无穷级数
§7.1常数项级数的概念与性质 §7.2正项级数敛散性的判别 §7.3任意项级数敛散性的判别 §7.4*广义积分敛散性的判别 §7.5*幂级数 §7.6*函数的幂级数展开
1
§7.1常数项级数的概念与性质



一、常数项级数的概念 二、级数的基本性质 三、习题
2
一、常数项级数的概念

因为级数

n1

1 2
n

n1

1 3
n
都是收敛的等比级数
,
故由级数的性质知级数
1 1 1 1 1 1 2 2 n n 3 2 3 3 2 2

高等数学微积分第一章函数及其图形(共44张PPT)

高等数学微积分第一章函数及其图形(共44张PPT)

如果A,B互相包含,即A B且B A,则称A与B相等,记为A=B。
如果把 y看作自变量,x 看作因变量,按照函数的定义就得到一个新的函数,这个新函数称为函数y=f(x)的反函数,记作 x=j(y)。
解: 要使函数有意义,必须x 0,且x2-4³0。
如果A,B互相包含,即A B且B A,则称A与B相等,记为A=B。
1
O
x
3.对数函数
指数函数y=ax的反函数叫做对数函数,记为
y=logax(a>0,a 1). 对数函数的定义域是区间(0,+ ).
单调性:
若a>1,则logax单调增加; 若0<a<1,则logax单调减少.
性质见书P34
y y=ax
1
O
y=logxax
a>1
4.三角函数
U(a)。 设>0,则称区间(a-, a+)为点a 的邻域,记作U(a, ),
即 U(a, ) ={x|a-<x<a+} ={x| |x-a|<}。
其中点 a 称为邻域的中心, 称为邻域的半径。
O a-
a+ x
去心邻域:
U
(a,)
={x
|0<|
x-a
|<}。
O a- a a+ x
左(右)邻域、M领域的概念见书中第七页。
bx
[a, b]={x|axb}称为闭区间。
[a, b]
Oa
bx
[a, b)={x|ax<b}及 (a, b]={x|a<xb}称为
半开区间。 [a, b)
Oa
bx
(a, b]
Oa
bx

大学微积分课件(PPT版)

大学微积分课件(PPT版)
微分方程是包含未知函数及其导数的等式。
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。

高等数学(微积分)课件--§6.1定积分的概念与性质

高等数学(微积分)课件--§6.1定积分的概念与性质

y = f (x)
O a
b x
3
无限细分、无限求和

处理该类问题的基本思路: 无限细分(化曲为直)、无限求和!
y y= f (x)
O
a
b
x
4
曲边梯形的面积计算—分割

设函数在区间[a,b]上连续, y=f(x)≥0 y 分割:
任意插入n-1个分点:
a x0 x1 xn 1 xn b
T1 t0 t1 t n 1 t n T2
把[T1,T2]分成n小段[ti-1, ti] (i=1,2,…,n),每小段 时间长度∆ti= ti- ti-1 ;相应地,位移也分成n段∆si v ②取近似: ∆siv(i)∆ti (i=1,2,…,n) v vt ③求和:
浙江财经学院本科教学课程 ----经济数学(一)
微积分
第六章 定积分
§6.1定积分的概念与性质 §6.2微积分基本定理 §6.3定积分计算方法 §6.4定积分的应用 §6.5广义积分初步
1
§6.1定积分的概念与性质

一、曲边梯形的面积 二、定积分的定义 三、定积分的几何意义 四、定积分的基本性质 在本节中我们将从一些实际问题的计算里 提炼出一类关于“和式极限”计算的数学问 题,从而引申出定积分的概念,并探讨它的性 质、几何意义。
s v i ti
i 1 n
④取极限: 所求位移为
s lim
0
T1
T2
v t (其中 maxt )
i i i 1
1i n i
n
O
t 0 ... ti 1 t i ... t n
t
10
解决此类求和问题的数学模式

吉林大学微积分(高等数学) PPT课件

吉林大学微积分(高等数学) PPT课件
例如实数集R中集合 A {x 0 x 1}的 补集是
AC A {x x 0 或 x 1 }.
9
二、集合的基本运算
1. 集合的并、交、差
设 A、B 是两个集合,由所有属于A 或者属 于B 的元素组成的集合, 称为A 与 B 的并集(简称 并), 记作 A B,
即 A B {x x A 或 x B};
[a,b] {x a x b}.
oa
b
x
a 和 b 称为闭区间[a, b]的端点, a [a, b], b [a, b].
16
类似地可定义半开区间:
[a,b) { x a x b},(a,b] { x a x b}. 有限区间 [a, b]、(a, b)、(a, b]、[a, b).

a
a
a
点 a 叫做这个邻域的中心,
叫做这个邻域的半径.
x
19
去心邻域的定义:
点 a 的 邻域去掉中心a 后, 称为a 的去心
o
邻域, 记作U (a, ),即
o
U(a, ) { x 0 x a }.
开区间(a ,a) 称为a 的左 邻域, 开区间 (a, a ) 称为a 的右 邻域.
(,) {x x R} R
ob x
18
4.邻域的定义
设 是任一正数, 则开区间(a ,a ) 是 a 的一个邻域, 称为点a 的 邻域, 记作U(a, ). U(a, ) {x x a } {x a x a }.
22
按 照 定 义 , 如 果 数 集E有 界 , 则 存 在 常 数l与L(l L), 使 得 对 一 切x E, 都 有

高等数学(微积分学)教学课件

高等数学(微积分学)教学课件

三、两个重要极限
重要极限Ⅰ lim sin x 1 x0 x
它可以拓展为 lim sin[ f (x)] 1 f (x)0 f (x)
sin 2x
例:lim x 2x
1
1 cos x
lim
x0
x2
lim
x0
2 sin 2 x 2
4 x2 4
lim
1
sin
x 2
x0 2 x
2
2
1 2
判断:lim sin x 1
叫做因变量.
数集 D 称为这个函数的定义域.
全体函数值的集合称为函数的值域.
2. 函数的表示法
解析法(公式法):用解析表达式(或公式)表示函数关系.
y x 1
表格法:用列表的方法来表示函数关系.
x123456789 y 1 4 9 16 25 36 49 64 81
图示法:用平面直角坐标系 xoy 上的曲线来表示函数关系.
x
x
1 0
x
x
1
1
1 lim( x0 1
x
)
1 x
x
lim
x0
(1 (1
x) x
1
x) x
lim x0
(1 x) x
1 (1)
[1 (x)] x
e e1
e2
一类特殊极限
若f
(x)
a0 xm a1xm1 a2 xm2 b0 xn b1xn1 b2 xn2
am1x am bn1x bn
x 果对于定义区间的任意点 , 恒有 f (x) f (x) , 则称f (x)
为 D 内的偶函数;如果恒有 f (x) f (x) , 则称 f (x)为D

大学微积分课件(PPT幻灯片版)

大学微积分课件(PPT幻灯片版)
i 1
例 1 比较积分值0 e dx 和0 xdx 的大小.
解 令 f ( x ) e x x,
2
x
2
x [ 2, 0]
x ( e 2 x )dx 0, 0
f ( x ) 0,

0


0
2
e dx 2xdx ,
x
于是

2
0
e dx 0 xdx .
a
x1
x i 1 i xi
x n 1 b
x
以 [ xi 1 , xi ]为底, f ( i ) 为高的小矩形面积为
Ai f ( i ) x i
曲边梯形面积的近似值 n 为
i 1
A f ( i )xi
当分割无限加细 , 记小区间的最大长度 或者 ( x )
x max{ x1 , x2 , x n }
积分上限

f ( i )x i a f ( x )dx I lim 0 i 1
被 积 函 数
被 积 表 达 式
b
n
积分和
积分下限
积 分 变 量
[a , b] 积分区间
注意:
(1)积分值仅与被积函数及积分区间有关, 而与积分变量的字母无关.
a f ( x )dx a f (t )dt a f (u)du
(2)定义中区间的分法和 i 的取法是任意的.
(3)当函数 f ( x ) 在区间[a , b]上的定积分存在时 ,
b
b
b
称 f ( x ) 在区间[a , b]上可积.
三、存在定理
定理 1 当函数 f ( x ) 在区间[a , b ] 上连续时

《高等数学微积分》课件

《高等数学微积分》课件

实际应用
极值问题在经济学、物理学等领域有广泛应 用,如成本最小化、利润最大化等。
曲线的长度
曲线长度公式
利用微积分计算曲线的长度。
参数方程
通过参数方程将曲线表示为参数的函数,便于计算长度。
实际应用
在工程、地理等领域,需要计算各种曲线的长度,如河流长度、 道路长度等。
面积和体积
面积和体积公式
利用微积分计算平面图形的面积和空间图形的体积。
结合律
微积分运算还具有结合律,即函数的微积分运算顺序不影响结果。
交换律
此外,微积分运算还满足交换律,即函数的微积分运算满足交换律 。
微积分运算的法则
分部积分法
分部积分法是微积分运算中的一 种重要方法,它将两个函数的乘 积的导数转化为两个函数的导数 的乘积,从而简化了计算过程。
换元法
换元法是微积分运算中的另一种 重要方法,它通过引入新的变量 来简化计算过程。
如何提高微积分的计算能力?
总结词:掌握计算方法 总结词:细心谨慎 总结词:多做练习题
详细描述:提高微积分的计算能力需要熟练掌握各种计 算方法,如极限的计算、导数的计算和积分的计算等。 掌握这些方法可以更快更准确地完成计算。
详细描述:在微积分的计算过程中,需要细心谨慎,避 免因粗心大意而导致的错误。仔细检查每一步的计算过 程,确保准确性。
微分
微分的定义与性质
微分是函数在某一点附近的小变化量,它描述了函数在该点附近的变化趋势。微分具有一些重要的性质,如线性性、 可加性和可乘性。
微分的计算方法
包括微分的四则运算法则、复合函数的微分法则、隐函数的微分法则等。这些方法可以帮助我们快速准确地计算函数 的微分。
微分的应用
微分在许多领域都有广泛的应用,如近似计算、误差估计、优化问题等。例如,在近似计算中,微分可 以用来估计函数在某一点的近似值;在优化问题中,微分可以用来寻找函数的极值点。

《微积分》课件

《微积分》课件
微分学主要研究函数在某一点附近的 局部行为,包括切线、函数的变化率 等;积分学则研究函数在某个区间上 的整体行为,包括面积、体积等。
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$

吉林大学微积分(高等数学)课件

吉林大学微积分(高等数学)课件
23
定义 2 设E是R的非空子集,如果存在常数
R( R ),满足条件
(1) 对一切x E都有x ( x ),即 ( )为 的E下界(上界); 都存在x0 E , 使得 x0 ( x0 ), 则称 ( )为E的下 确 界 (上 确 界 ) . 数集E的下确界和上确界 分别记为
[a,) { x x a}
o
a
x o x
( , b) { x x b}
(,) { x x R} R
b
18
4.邻域的定义
设 是任一正数, 则开区间(a , a ) 是 a 的一个邻域, 称为点a 的 邻域, 记作 U (a, ).
高等数学
吉林大学数学学院 杨 泰 山
1
主要内容
第一章 预备知识 第二章 极限与连续函数 第三章 导数与微分 第四章 微分中值定理与导数的应用 第五章 不定积分 第六章 定积分 第七章 空间解析几何
2
第一章 预备知识
§1 实 数 集 §2 函数 §3 常用逻辑符号简介
3
§1 实 数 集
一、集合的概念与表示 二、集合的基本运算
(1) 列举法: 即把集合的全体元素一一列举.
例如 A {a1 , a2 ,, an };
(2) 描述法: 若集合M是由具有某种性质P 的元素的全体所组成, 写出其特性.
M { x x 具有性质 P }. 2 例 如 集合 B 是方程 x 1 0 的解集,
则集合 B { x x 1 0 }.
25
21
定义1 设E是R的一个非空子集,如果存在 常数l(或L),使得对一切x E都有 l x或xL, 则称数集E有下界(或有上界),常数l(或L) 称为数集E的一个下界(或上界),否则称 数集 E无下界或(无上界). 如果数集E既 有下界又有上界,则称E有界,否则称E无界
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档