微积分PPT课件
合集下载
微积分基本公式PPT课件

xa a
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[ ( x)] ( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[ ( x)] ( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
微积分ppt课件

和趋势。
02
微积分在机器学习中的应用
利用微积分优化算法,提高机器学习的效率和准确性。
03
微积分在金融工程中的应用
研究微积分在金融衍生品定价、风险管理等领域的应用,推动金融工程
的发展。
THANKS
感谢观看
用微积分解决经济学问题
总结词
微积分在经济学中用于研究经济现象的变化规律和优 化资源配置。
详细描述
在经济学中,微积分被用于分析边际成本、边际收益、 边际效用等问题,以及研究经济增长、通货膨胀、供需 关系等经济现象的变化规律。此外,微积分还可以用于 优化生产和分配资源,提高经济效率。
06
微积分的未来发展与展望
微积分与其他学科的交叉研究
微积分与物理学的交叉
01
研究微积分在解决物理问题中的应用,如流体力学、电磁学等
领域的数学模型。
微积分与经济学的交叉
02
探讨微积分在经济学理论和应用方面的作用,如最优控制理论
、动态规划等。
微积分与计算机科学的交叉
03
研究微积分在算法设计、数据科学、人工智能等领域的应用。
微积分的未来发展方向
上的整体性质,如求面积、体积等。
微积分提供了研究函数和解决实际问题的有效工具, 是高等数学的重要基础。
微积分的发展历史
17世纪,牛顿和莱布尼茨分别独立地创立了微 积分学,为微积分的发展奠定了基础。
19世纪,柯西、黎曼等数学家对微积分的概念和基 础进行了深入的研究和探讨,进一步完善了微积分理
论。
微积分的发展经历了漫长的过程,最早可以追 溯到古代数学家对面积、体积等问题的研究。
1 2
微积分的理论深化
进一步探索微积分的数学原理,发展新的理论和 方法。
大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关
系
连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。
《微积分的基本定理》课件

物理
在物理学科中,该定理可以用来 解决各种物理量如质量、速度、 力等的积分问题,例如计算物体 的动量、动能等。
工程
在工程领域,该定理可以用来解 决各种实际问题的积分计算,例 如计算电路中的电流、求解流体 动力学中的压力分布等。
02 定理的证明
定理证明的思路
明确问题
首先,我们需要明确微积分的基本定理是关于什 么的,以及它要解决的问题是什么。
难点2
如何利用积分运算法则简化每个小部分的积 分。
关键点1
理解定积分的定义和性质,以及它们在证明 定理中的作用。
关键点2
掌握导数的定义和性质,以及它们在推导原 函数值增量中的应用。
03 定理的推论和扩 展
推论一:积分中值定理
总结词
积分中值定理是微积分中的一个重要定理,它表明在闭区间上连续的函数一定存在至少一个点,使得该函数在此 点的值为该区间上函数积分的平均值。
详细描述
积分中值定理是微积分中的一个基本定理,它表明如果一个函数在闭区间上连续,那么在这个区间内一定存在至 少一个点,使得该函数在这一点处的值等于该函数在整个区间上的平均值。这个定理在解决一些微积分问题时非 常有用,因为它可以帮助我们找到函数在某个点处的值,而不需要计算整个区间的积分。
推论二:洛必达法则
个定积分的值就是曲边梯形的面积。
应用实例二:求解不定积分
总结词
微积分的基本定理是求解不定积分的关 键工具。
VS
详细描述
不定积分是微分学的逆运算,其求解过程 需要用到微积分的基本定理。根据基本定 理,不定积分∫f(x)dx = F(x) + C,其中 F(x)是f(x)的一个原函数,C是常数。通过 基本定理,我们可以找到一个函数F(x), 使得F'(x) = f(x)。这样,我们就可以求解 不定积分了。
( 人教A版)微积分基本定理课件 (共38张PPT)

2
2
答案:D
3.设 f(x)=x22-,x0,≤1x<≤x≤1,2,
则2f(x)dx 等于________. 0
解析:2f(x)dx=1x2dx+2(2-x)dx
0
0
1
=x3310 +(2x-x22)21
=13+[(2×2-222)-(2-12)]=56.
答案:56
探究一 计算简单函数的定积分
[自主梳理]
如果 f(x)是区间[a,b]上的 连续 函数,并且 F′(x) 内容 = f(x),那么bf(x)dx= F(b)-F(a)
a
符号
bf(x)dx=F(x)ba = F(b)-F(a)
a
二、定积分和曲边梯形面积的关系 设曲边梯形在 x 轴上方的面积为 S 上,x 轴下方的面积为 S 下,则 1.当曲边梯形的面积在 x 轴上方时,如图(1), 则bf(x)dx= S 上.
(7)baxdx=lnaxaba (a>0 且 a≠1). a
1.计算下列定积分.
(1)1(x3-2x)dx; 0
(2)
2 0
(x+cos
x)dx;
(3
解析:(1)∵(14x4-x2)′=x3-2x,
∴1(x3-2x)dx=(14x4-x2)10 =-34. 0
2.(1)若
f(x)=x2 cos
x≤0 x-1
x>0
2.常见函数的定积分公式: (1)bCdx=Cxba (C 为常数).
a
(2)abxndx=n+1 1xn+1ba (n≠-1). (3)bsin xdx=-cos xba .
a
(4)bcos xdx=sin xba . a
(5)b1xdx=ln xba (b>a>0). a
微积分讲解ppt课件

多元函数的表示 方法
多元函数可用记号 f(x1,x2,…,xn)或z=f(x,y) 表示。
多元函数的定义 域
使多元函数有意义的自 变量组合(x1,x2,…,xn) 的集合。
多元函数的值域
多元函数所有值的集合 。
偏导数与全微分
偏导数的定义
设函数z=f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量Δx时,相应地函数有增量 f(x0+Δx,y0)-f(x0,y0)。如果Δz与Δx之比当Δx→0时的极限存在,那么此极限值称为函数z=f(x,y)在点(x0,y0)处对 x的偏导数。
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将方程转化为可积分的形式
二阶常微分方程解法
可降阶的二阶微分方程
通过变量替换或分组,将方程降为一阶微分方 程求解
二阶线性微分方程法
利用特征根的性质,求解二阶线性常系数齐次 和非齐次微分方程
常系数线性微分方程组法
在经济学中的应用
边际分析
通过求导计算边际成本、边际收益等,为企业的决策 提供依据。
弹性分析
研究价格、需求等经济变量之间的相对变化关系,微 积分可用于计算弹性系数。
最优化问题
在资源有限的情况下,通过微积分求解最大化或最小 化某一经济指标的问题。
在工程学中的应用
结构力学
分析建筑、桥梁等结构的受力情况和稳定性,微积分可用 于求解复杂的力学方程。
通过消元法或特征根法,求解常系数线性微分方程组
05
多元函数微积分
多元函数的基本概念
多元函数的定义
设D为一个非空的n元有 序数组的集合,f为某一 确定的对应规则。若对 于每一个有序数组 (x1,x2,…,xn)∈D,通过 对应规则f,都有唯一确 定的实数y与之对应, 则称对应规则f为定义在 D上的n元函数。
清华大学微积分课件(全)x66_ppt课件

3 d ) rdr 0(r 1 2
1 2
D
11
[解法2] 利用Gauss公式
补上底面 S 1:
S : z 1 x y
2
2 2
2
z 0 , x y 1
xdy ^ dz ydz ^ dx zdx ^ dy S
S
1
z
n
y
SS 1
o
n1
D xy
D xy
Z dx ^ dy 0 Z [ x ,y ,z ( x ,y )] dxdy ( 2 )
1
S3
同理可证
Z Zdx ^ dy dV 比较 ( 1 ) 式与 (2 ) 式 ,可以得到 z S
X Xdy ^ dz dV , x S
S3
n
Z [ x ,y ,z ( x ,y )] dxdy ( 1 ) 1
2018/11/16
D xy
9
另一方面,曲面积分
S外
Zdx ^ dy Zdx ^ dy Zdx ^ d Zdx^ dy
S 1 S 2 S 3
[注意] Z [x ,y ,z ( x , y )] dxdy 2
z
n
y
T 2 2 v ( x ,y , z ), dS 1 4 x 4 y d o D xdy ^ dz ydz ^ dx zdx ^ dy
S
2 2 x v ndS (x y 1 ) d
S 2
0
2018/11/16
2若 向 向 曲 量 面 场
定1 理 : 设 为空间有 ,其 界 边 S 是 闭 界 分 域
《微积分学基本定理》课件

解决微分方程
通过微积分学基本定理,我们可以将复杂的微分方 程转化为易于处理的积分方程,从而找到微分方程 的解。
分析函数的极值
利用微积分学基本定理,可以分析函数的极 值条件,这对于优化问题、经济模型等实际 问题具有重要意义。
在实数理论中的应用
实数完备性
微积分学基本定理在实数理论中发挥了关键作用,它证明了实数系 的完备性,为实数理论的发展奠定了基础。
PART 02
微积分学基本定理的表述
REPORTING
定理的数学表达
总结词
简洁明了地表达了微积分学基本定理的数学形式。
详细描述
微积分学基本定理通常用积分形式和微分形式两种方式表达。积分形式表述为 :∫(f(x))dx = F(b) - F(a),其中∫代表积分,f(x)是待积分的函数,F(x)是f(x)的 原函数;微分形式表述为:∫(dy/dx) dx = y。
详细描述
02 习题一主要考察学生对微积分学基本定理的基础概念
理解,包括定理的表述、公式记忆以及简单应用。
解答
03
通过解析和证明,帮助学生深入理解微积分学基本定
理,并掌握其应用方法。
习题二及解答
总结词:复杂应用
详细描述:习题二涉及微积分学基本定理的复杂应用,包括多步骤推导、 不同定理的综合运用等,旨在提高学生的解题能力和思维灵活性。
揭示函数性质
通过应用微积分学基本定理,我 们可以研究函数的积分与函数的 性质之间的关系,从而深入了解 函数的特性。
证明积分不等式
利用微积分学基本定理,可以证 明各种积分不等式,这些不等式 在数学分析和实际问题中都有广 泛的应用。
在微分学中的应用
导数的定义
微积分学基本定理实际上给出了导数的定义 ,它描述了函数值随自变量变化的规律,是 研究函数局部行为的关键。
微积分PPT课件

限也相应的改变.
(2)求出 f [ (t )] (t )的一个原函数(t)后,不
必象计算不定积分那样再要把(t )变换成原 变量 x的函数,而只要把新变量t 的上、下 限分别代入(t )然后相减就行了.
28
例9 计算定积分 2 cos5 xsinxdx. 0
解 令 tcox,sdtsinxdx,
F ( x ) 在 [ 0 , 1 ] 上 为 单 调 增 加 函 数 .F (0 ) 10 ,
1
1
F(1)1 f(t)dt 0
0[1 f (t)]dt
0,
所以F ( x) 0即原方程在 (0,1) 内只有一个解.
11
定理 (原函数存在定理)
如果 f ( x)在[a, b]上连续,则积分上限函数
x
( x) a f (t)dt 就是 f ( x)在[a, b]上的一个原
函数. 定理的重要意义:
(1)肯定了连续函数的原函数是存在的. (2)初步揭示了积分学中的定积分与原函数之 间的联系.
12
4.2.2 牛顿—莱布尼茨公式
定理 2(微积分基本定理)
如果F ( x)是连续函数 f ( x)在区间[a,b]上
dx a
db
dxx f(u)duf(x)
21
课堂练习题
一、 填空题:
1、
d dx
b a
e
x2 2
dx
=____.
2、
xd (
f ( x))dx ____ .
a dx
3、 d 2 3 t ln(t 2 1)dt _______ .
dx x
4、
2
f
( x)dx
____,其中
f
(2)求出 f [ (t )] (t )的一个原函数(t)后,不
必象计算不定积分那样再要把(t )变换成原 变量 x的函数,而只要把新变量t 的上、下 限分别代入(t )然后相减就行了.
28
例9 计算定积分 2 cos5 xsinxdx. 0
解 令 tcox,sdtsinxdx,
F ( x ) 在 [ 0 , 1 ] 上 为 单 调 增 加 函 数 .F (0 ) 10 ,
1
1
F(1)1 f(t)dt 0
0[1 f (t)]dt
0,
所以F ( x) 0即原方程在 (0,1) 内只有一个解.
11
定理 (原函数存在定理)
如果 f ( x)在[a, b]上连续,则积分上限函数
x
( x) a f (t)dt 就是 f ( x)在[a, b]上的一个原
函数. 定理的重要意义:
(1)肯定了连续函数的原函数是存在的. (2)初步揭示了积分学中的定积分与原函数之 间的联系.
12
4.2.2 牛顿—莱布尼茨公式
定理 2(微积分基本定理)
如果F ( x)是连续函数 f ( x)在区间[a,b]上
dx a
db
dxx f(u)duf(x)
21
课堂练习题
一、 填空题:
1、
d dx
b a
e
x2 2
dx
=____.
2、
xd (
f ( x))dx ____ .
a dx
3、 d 2 3 t ln(t 2 1)dt _______ .
dx x
4、
2
f
( x)dx
____,其中
f
大学微积分课件

定积分应用举例
01
面积计算
利用定积分可以计算平面图形或 立体图形的面积,如曲线围成的 面积、旋转体体积等。
物理应用
02
03
经济应用
在物理学中,定积分可以用来计 算物体的质心、转动惯量等物理 量。
在经济学中,定积分可以用来计 算总收益、总成本等经济指标, 以及进行边际分析和弹性分析。
04
多元函数微积分学
微分概念与性质
阐述微分的概念,包括微分的定义、几何意义及物理意义,探讨微分的性质,如微分与导数的关系、微分的运算法则 等。
微分中值定理及其应用
介绍微分中值定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理,并探讨它们在证明不等式、求 极限等方面的应用。
积分概念及性质
定积分概念与性质
引入定积分的概念,包括定积分的定义、几何意义及物理 意义,探讨定积分的性质,如可积性、积分区间可加性等 。
大学微积分课件
contents
目录
• 微积分基本概念 • 微分学基本原理 • 积分学基本原理 • 多元函数微积分学 • 无穷级数与微分方程初步 • 微积分在实际问题中应用举例
01
微积分基本概念
函数与极限
函数定义与性质
阐述函数的基本概念,包括定义 域、值域、对应关系等,并介绍 函数的性质,如单调性、奇偶性 、周期性等。
根据加速度函数和时间的关系,利用 二次积分可以计算物体在一段时间内 的位移。
03
求解功和能量
在力学中,功是力和位移的乘积,利 用定积分可以计算变力沿直线所做的 功;能量则是功的积累,通过定积分 可以求解物体的势能或动能。
在经济学问题中应用
计算总收益和总成本
在经济学中,总收益和总成本都 是价格或产量的函数,利用定积 分可以计算在一定价格或产量范 围内的总收益或总成本。
大学微积分课件(PPT版)

微分方程是包含未知函数及其导数的等式。
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。
微积分基本公式ppt课件

热力学
温度与热量,熵与绝热过程,热力学第二定律
微积分在经济中的应用实例
01
总结词
边际分析,最优化问题,经济增长 模型
最优化问题
最大利润,最小成本,最优解
03
02
边际分析
边际成本,边际收益,边际利润
经济增长模型
索洛模型,哈罗德-多马模型,内生 增长模型
04
THANKS
感谢观看
微积分基本公式的应用实例
总结词
微积分基本公式在解决实际问题中有着广泛 的应用,例如求解变速直线运动的位移、求 解曲线的面积等。
详细描述
通过微积分基本公式,我们可以求解变速直 线运动的位移。例如,假设一个物体以速度 v(t)运动,那么物体在时间t到时间t+Δt之间 的位移就是∫(v(t)dt),通过微积分基本公式 可以求得该物体的位移。此外,微积分基本 公式还可以用于求解曲线的面积,例如求解
要点二
高阶导数的几何意义
掌握高阶导数的计算方法,例如利用莱布尼茨公式计算二 阶、三阶等高阶导数。
理解高阶导数在几何上的意义,例如二阶导数表示曲线的 凹凸性,三阶导数表示曲线的拐点等。
05
定积分的计算
定积分的计算方法与技巧
积分公式
掌握积分公式是进行定积分计算的基础,包括 幂函数的积分公式、三角函数的积分公式等。
微积分基本公式
微积分基本公式的内容与证明
总结词
微积分基本公式是微积分学的基础,它描述 了函数在某一点处的导数与该函数在该点附 近的变化率之间的关系。
详细描述
微积分基本公式通常表示为∫(f'(x))dx = f(b) - f(a),其中∫代表积分,f'(x)代表函数f 在点x处的导数,b和a分别代表积分的上限 和下限。这个公式在理解函数的积分和导数 之间关系上起着关键作用。
温度与热量,熵与绝热过程,热力学第二定律
微积分在经济中的应用实例
01
总结词
边际分析,最优化问题,经济增长 模型
最优化问题
最大利润,最小成本,最优解
03
02
边际分析
边际成本,边际收益,边际利润
经济增长模型
索洛模型,哈罗德-多马模型,内生 增长模型
04
THANKS
感谢观看
微积分基本公式的应用实例
总结词
微积分基本公式在解决实际问题中有着广泛 的应用,例如求解变速直线运动的位移、求 解曲线的面积等。
详细描述
通过微积分基本公式,我们可以求解变速直 线运动的位移。例如,假设一个物体以速度 v(t)运动,那么物体在时间t到时间t+Δt之间 的位移就是∫(v(t)dt),通过微积分基本公式 可以求得该物体的位移。此外,微积分基本 公式还可以用于求解曲线的面积,例如求解
要点二
高阶导数的几何意义
掌握高阶导数的计算方法,例如利用莱布尼茨公式计算二 阶、三阶等高阶导数。
理解高阶导数在几何上的意义,例如二阶导数表示曲线的 凹凸性,三阶导数表示曲线的拐点等。
05
定积分的计算
定积分的计算方法与技巧
积分公式
掌握积分公式是进行定积分计算的基础,包括 幂函数的积分公式、三角函数的积分公式等。
微积分基本公式
微积分基本公式的内容与证明
总结词
微积分基本公式是微积分学的基础,它描述 了函数在某一点处的导数与该函数在该点附 近的变化率之间的关系。
详细描述
微积分基本公式通常表示为∫(f'(x))dx = f(b) - f(a),其中∫代表积分,f'(x)代表函数f 在点x处的导数,b和a分别代表积分的上限 和下限。这个公式在理解函数的积分和导数 之间关系上起着关键作用。
微积分的基本公式PPT幻灯片课件

一个原函数, 则
b a
f
(x)d x
F ( x)
b a
F (b)
于是
0 | F(x) | |
x x
f (t)dt |
xx
| f (t) | dt Mx
x
x
由夹逼定理及点 x 的任意性, 即可得 F (x) C([a,b]) .
7
定理1说明: 定义在区间[a,b] 上的 积分上限函数是连续的.
积分上限函数是否可导?
8
由 F(x x) F(x)
xx
f (t)dt,
x
如果 f (x) C([a,b]), 则由积分中值定理, 得
xx
F(x x) F(x) x f (t)dt f ( )x ,
( 在 x 与 x x 之间)
故 lim F (x x) F (x) lim f ( )x
x0
推论2 基本初等函数在其定义域内原函数存在.
推论3 初等函数在其有定义的区间内原函数存在.
17
2. 微积分基本公式
如果 f (x) C([a,b]), 则
x
f (t)dt
为 f (x) 在[a,b] 上
a
的一个原函数.
若已知 F (x) 为 f (x) 的原函数, 则有
x
a f (t)dt F (x) C0.
( x)
F(x) ( a f (t)dt ) f ((x)) (x) .
14
例3
e1 t2 d t
计算 lim x0
cos x
x2
.
解
e1 t2 d t
cos x et2 d t
《微积分》PPT课件

x x0
f (x)
f
(x0 )
何时函数f(x)在 点 处间断?
(1)f(x)在点 x0 处无定义;
(2)f(x)在点
x0 处有定义,但
时,函数f(x)以常数A为极限,记作
lim f (x) A或f (x) A(x )
x
定 义 2 . 5 : 若 对 于 任 意 给 定 的 正 数 , 总 存
在一个正数M,使得当x>M(x<-M)时,
恒 有 f (x) A< 成 立 , 则 称 当 x (x )
时,函数f(x)以常数A为极限,记作
y=arcsinx x [1,1], y [ , ]
22
y=arccos x [-1,1], y [0, ]
y=arctanx X R, y ( , ) 22
y=arccotx X R,y (0,)
1.4 初等函数(三角函数)
正弦函数和余弦函数
正切函数和余切函数
正割函数与余割函数
三角函数的基本关系式:
xx0
ua
2.4
被迫性定理 若在某个变化过程中,
恒有y≤x≤z,且 limy=limz=A,则limx=A
两个重要极限(必考)
单调有界定理
单调有界的数列
必有极限
} 单 调 增 + 有 上 界
单调减+有下界
数列收敛
定理 2.12
定义 2.9
定理 2.13
若数列 {an}满足 an an1(或an an1)(n N) 则称数列 {an}为单调增 加(或单调减少)数列。
当x 0时,等价无穷小量:
sinx~x tanx~x
arcsinx~x 1-cosx~x2
大学微积分课件幻灯片版

不定积分的性质
包括线性性质、积分区间可加性 、常数倍性质和积分与微分互逆 性质。
基本积分公式与法
则
包括幂函数、三角函数、指数函 数、对数函数等基本初等函数的 不定积分公式,以及分部积分法 、换元积分法等基本积分法则。
定积分的概念与性质
定积分的定义
定积分是求一个函数在闭区间上的积分值,表达形式为 ∫[a,b]f(x)dx,表示函数f(x)在区间[a,b]上的面积。
根据未知函数及其导数的次数划 分
一阶微分方程及其解法
可分离变量法
通过变量分离,将微分方程转化为可积分的 形式
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将一阶线性微分方程转化为 可积分的形式
二阶微分方程及其解法
二阶线性微分方程
具有常系数的二阶线性微分方程的通解结构
振动与波动方程
描述振动与波动现象的二阶线性微分方程
欧拉方程
通过变量替换,将欧拉方程转化为二阶线性微分方程进行求解
高阶微分方程的降阶法
通过变量替换或积分法,将高阶微分方程降阶为一阶或二阶微分方程进行求解
05
多元函数微积分学
多元函数的基本概念
01 02
多元函数的定义
设$D$为一个非空的$n$ 元有序数组的集合, $f$为某一 确定的对应规则。若对于每一个有序数组$( x1,x2,…,xn)∈D$,通过对应规则$f$,都有唯一确定的实 数$y$与之对应,则称对应规则$f$为定义在$D$上的$n$ 元函数。
三重积分的定义
设三元函数$f(x,y,z)$在可求体积的有界闭区域$Omega$上连续,将$Omega$任意分成$n$个小闭区域$Delta V_1,Delta V_2,…,Delta V_n$,记各小闭区域的直径中的最大值为$lambda $。若不论对$Omega $如何分割 及如何选取点$(xi_i,eta_i,zeta_i)$,只要当$lambda to 0 $时,和式$sum_{i=1}^{n} f(xi_i,eta_i,zeta_i)Delta V_i $的极限存在且唯一,则称此极限为函数 $f(x,y,z) $在区域 $Omega $上的三重积分。
《微积分》课件

微分学主要研究函数在某一点附近的 局部行为,包括切线、函数的变化率 等;积分学则研究函数在某个区间上 的整体行为,包括面积、体积等。
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t2
0 分析:这是 型不定式,应用洛必达法则. 0 d 1 t cos x d t2 e d t 解 e dt , cos x dx dx 1
x
.
e
cos2 x
(cos x) sin x e
sin x e lim x 0 2x
4.2 微积分基本定理(79)
a
f (t )dt f (t )dt
a
x
o a
x
x x b
5
x
4.2 微积分基本定理(79)
f (t )dt
a
x
x x x
f (t )dt f (t )dt
a
x
x x x
f (t )dt ,
y
由积分中值定理得
( x )
f ( )x
f ( ), x
9
F ( x )
f ( x ) ( x t ) f ( t )dt
x
0
x
0
f ( t )dt
2
,
f ( x ) 0, ( x 0)
x
0
f ( t )dt 0,
又( x t ) f (t ) 0, 且不恒为 0, 0 t x,
( x t ) f ( t )dt 0, F ( x ) 0 ( x 0). 0
求定积分 0 (2cos x sin x 1)dx .
2
解
原式 2 sin x cos x x 0
2
2 x 0 x 1 例5 设 f ( x ) ,求 1 x 2 5
解
3 . 2
2
0
f ( x )dx .
y
2
0
f ( x )dx f ( x )dx f ( x )dx
4.2 微积分基本定理(79) 12
4.2.2 牛顿—莱布尼茨公式
定理 2(微积分基本定理)
如果 F ( x ) 是连续函数 f ( x ) 在区间[a , b]上 的一个原函数,则
证
b
a
f ( x )dx F (b) F (a ) .
已知F ( x ) 是 f ( x ) 的一个原函数,
a
x
如果上限 x 在区间[a , b]上任意变动,则对每个取 定的 x 值,定积分有一个对应值,所以它在[a , b] 上定义了一个函数,称为积分上限函数,记为:
( x ) f (t )dt .
a
4.2 微积分基本定理(79) 4
x
定理1 如果 f ( x ) 在[a , b]上连续,则积分上限函数
v(t )dt s(T2 ) s(T1 ),
T1
4.2 微积分基本定理(79)
T2
其中 s(t ) v(t ).
3
2、积分上限函数
设函数 f ( x ) 在区间[a , b]上连续, 并且设 x 为
[a , b]上的一点, 考察定积分
x
a
f ( x )dx f (t )dt .
x
又 ( x ) a f ( t )dt 也是 f ( x ) 的一个原函数,
4.2 微积分基本定理(79) 13
F ( x ) ( x ) C
x [a , b ]
令 xa
a
F ( a ) ( a ) C , F (a ) C ,
(a ) f (t )dt 0 a
2、 2 . 2、4.
4.2 微积分基本定理(79)
24
4.2.3 定积分法
1、换元积分法
定理3
假设(1) f ( x ) 在[a , b]上连续;
(2)函数 x ( t ) 在[ , ]上具有连续导数; (3)当 t 在区间[ , ]上变化时, x ( t ) 的值
0
x
f ( x ) 1,
F ( x ) 2 f ( x ) 0,
F ( x ) 在[0,1]上为单调增加函数 . F (0) 1 0,
F (1) 1 f ( t)d t 0 [1 f ( t)]d t 0,
0 1
1
所以 F ( x ) 0 即原方程在 (0,1) 内只有一个解.
x 0 x 0
t cos2 tdt x
2
______
.
6、 lim
x 0
1 x2
0
(1 cos t 2 )dt x
5 2
____ .
4.2 微积分基本定理(79)
22
二、 求导数: t2 d2 y x 1 t l n tdt , 1、 设 (t 1) ,求 2 ; 1 dx y 2 t 2 l n tdt , t 2、设 g ( x )
4.2 微积分基本定理(79) 23
课堂练习题答案
一、1、0; 5 4、 ; 6 2、 f ( x ) f (a ) ; 3、 3 x ln( x 2 1) ;
1 5、 2
;
1 6、 10 .
1 二、1、 2 ; 2t ln t 5 三、1、 2 ; 6 5 3 , 0. 四、 9
21
课堂练习题
一、 填空题: x d x2 b d f ( x ))dx ____ . 2 1、 =____. 2、 a ( e d x a dx dx d 2 3 2 t ln( t 1)dt _______ . 3、 x dx 2 x2 , 0 x 1 4、 f ( x )dx ____,其中 f ( x ) . 0 2 x , 1 x 2 5、 lim
y x
2
x 2 x 0 x 0 x 1 , x2 1 x 2
2
o
1
2
x
原式 x dx xdx 2 2 00来自121
11 x dx . 2
2
17
4.2 微积分基本定理(79)
例7
求积分
1
2
1 dx . x
1 解 当 x 0 时, 的一个原函数是ln | x | , x 1 1 1 d x 2 x ln | x | 2 ln1 ln 2 ln 2. 例 8 计算曲线 y sin x 在[0, ]上与 x 轴所围
cos2 x
,
lim
x0
1
cos x
e dt
t2
cos2 x
x2
1 . 2e
8
例2
设 f ( x ) 在( , )内连续,且 f ( x ) 0 .
x 0 x 0
证明函数 F ( x )
加函数.
tf ( t )dt f ( t )dt
在(0, )内为单调增
4.2 微积分基本定理(79) 11
定理 (原函数存在定理)
如果 f ( x ) 在[a , b]上连续, 则积分上限函数
( x ) f ( t )dt 就是 f ( x ) 在[a , b]上的一个原 a
函数.
x
定理的重要意义: (1)肯定了连续函数的原函数是存在的.
(2)初步揭示了积分学中的定积分与原函数之 间的联系.
F ( x ) f (t )dt C ,
a
x
x
a
f ( t )dt F ( x ) F (a ),
令x b
b
a
f ( x )dx F (b) F (a ).
牛顿—莱布尼茨公式
14
4.2 微积分基本定理(79)
b
a
f ( x )dx F (b) F (a ) F ( x ) F ( x ) a
[ x , x x ],
o
a
x x x b x
lim lim f ( ) x 0 x x 0
(或 [ x x, x])
x 0, x
( x ) f ( x ).
4.2 微积分基本定理(79) 6
补充 如果 f ( t ) 连续, a ( x )、 b( x ) 可导,
4.2.1 原函数存在定理
1、变速直线运动问题
设某物体作直线运动,已知速度 v v ( t )是时 间间隔[T1 , T2 ]上 t 的一个连续函数,且 v ( t ) 0 , 求物体在这段时间内所经过的路程.
变速直线运动中路程为
T2
T1
v(t )dt
另一方面这段路程可表示为 s(T2 ) s(T1 )
b a
b
微积分基本定理表明:
一个连续函数在区间[a , b] 上的定积分等于 [a , b] 上的增量. 它的任意一个原函数在区间
求定积分问题转化为求原函数的问题. 注意:
当 a b 时,
b
a
f ( x )dx F (b) F (a ) 仍成立.
4.2 微积分基本定理(79) 15
例4
成的平面图形的面积.
解
面积 A
π
y
0
sin xdx
0
o
cos x 2.
4.2 微积分基本定理(79)
x
18
4.2.5 小结与思考题1-2
1.积分上限函数 ( x ) f ( t )dt
a x
2.积分上限函数的导数 ( x ) f ( x ) 3.微积分基本公式