微积分优秀课件

合集下载

微积分ppt课件

微积分ppt课件

和趋势。
02
微积分在机器学习中的应用
利用微积分优化算法,提高机器学习的效率和准确性。
03
微积分在金融工程中的应用
研究微积分在金融衍生品定价、风险管理等领域的应用,推动金融工程
的发展。
THANKS
感谢观看
用微积分解决经济学问题
总结词
微积分在经济学中用于研究经济现象的变化规律和优 化资源配置。
详细描述
在经济学中,微积分被用于分析边际成本、边际收益、 边际效用等问题,以及研究经济增长、通货膨胀、供需 关系等经济现象的变化规律。此外,微积分还可以用于 优化生产和分配资源,提高经济效率。
06
微积分的未来发展与展望
微积分与其他学科的交叉研究
微积分与物理学的交叉
01
研究微积分在解决物理问题中的应用,如流体力学、电磁学等
领域的数学模型。
微积分与经济学的交叉
02
探讨微积分在经济学理论和应用方面的作用,如最优控制理论
、动态规划等。
微积分与计算机科学的交叉
03
研究微积分在算法设计、数据科学、人工智能等领域的应用。
微积分的未来发展方向
上的整体性质,如求面积、体积等。
微积分提供了研究函数和解决实际问题的有效工具, 是高等数学的重要基础。
微积分的发展历史
17世纪,牛顿和莱布尼茨分别独立地创立了微 积分学,为微积分的发展奠定了基础。
19世纪,柯西、黎曼等数学家对微积分的概念和基 础进行了深入的研究和探讨,进一步完善了微积分理
论。
微积分的发展经历了漫长的过程,最早可以追 溯到古代数学家对面积、体积等问题的研究。
1 2
微积分的理论深化
进一步探索微积分的数学原理,发展新的理论和 方法。

大学微积分课件(PPT幻灯片版)pptx

大学微积分课件(PPT幻灯片版)pptx

高阶导数计算
高阶导数的计算一般采用归纳法 或莱布尼茨公式等方法进行求解。 需要注意的是,在计算过程中要 遵循求导法则和运算顺序。
应用举例
高阶导数在物理学、工程学等领 域有着广泛的应用。例如,在物 理学中,加速度是速度的一阶导 数,而速度是位移的一阶导数; 在工程学中,梁的挠度是荷载的 一阶导数等。
03 一元函数积分学
VS
几何意义
函数$y = f(x)$在点$x_0$处的导数 $f'(x_0)$在几何上表示曲线$y = f(x)$在点 $(x_0, f(x_0))$处的切线的斜率。
求导法则与技巧总结
基本求导法则
包括常数的导数、幂函数的导数、指数函数的导数、对数函数的导 数、三角函数的导数、反三角函数的导数等。
求导技巧
连续性与可微性关系
连续性
函数在某一点连续意味着函数在 该点有定义,且左右极限相等并 等于函数值。连续性是函数的基 本性质之一。
可微性
函数在某一点可微意味着函数在 该点的切线斜率存在,即函数在 该点有导数。可微性反映了函数 局部变化的快慢程度。
连续性与可微性关

连续不一定可微,但可微一定连 续。即函数的连续性是可微性的 必要条件,但不是充分条件。
历史发展
微积分起源于17世纪,由牛顿和莱布尼 茨独立发展。经过数百年的完善,已成 为现代数学的重要基础。
极限思想与运算规则
极限思想
极限是微积分的基本概念,表示函数在某一点或无穷远处的变 化趋势。通过极限思想,可以研究函数的局部和全局性质。
运算规则
极限的运算包括极限的四则运算、复合函数的极限、无穷小量 与无穷大量的比较等。这些规则为求解复杂函数的极限提供了 有效方法。

高等数学(微积分)ppt课件

高等数学(微积分)ppt课件
,且f'(x0)=0,则可通过二阶导数 f''(x0)的符号来判断f(x)在x0处取得极大值还是极小值。
曲线的凹凸性与拐点
凹凸性
若函数f(x)在区间I上二阶可导,且 f''(x)>0(或<0),则称曲线y=f(x)在 I上是凹的(或凸的)。
拐点
拐点的判定
若函数f(x)在点x0处二阶可导,且 f''(x0)=0,则可通过三阶导数f'''(x0) 的符号来判断点(x0,f(x0))是否为曲线 的拐点。
THANKS
感谢观看
非线性微分方程
通过变量替换、积分等方法求解,或 利用数值方法近似求解
级数的概念与性质
级数的定义 无穷序列的部分和序列
级数的性质 加法、减法、乘法、除法、重排等性

级数的收敛与发散 部分和序列有极限则级数收敛,否则 发散
常见级数及其敛散性 等差级数、等比级数、调和级数、交 错级数等,通过比较法、比值法、根 值法等方法判断其敛散性
VS
极限的性质
唯一性、局部有界性、保号性、保不等式 性、迫敛性等。
极限的运算法则
极限的四则运算法则
若两个函数的极限存在,则它们的和、差、积、商(分母不为零)的极限也存在,且等于这两 个函数极限的和、差、积、商。
复合函数的极限运算法则
设函数$y=f[g(x)]$是由函数$u=g(x)$与函数$y=f(u)$复合而成,若$lim_{x
无穷小量的定义
如果函数$f(x)$当$x to x_0$(或$x to infty$)时的极限为零,那么称函数$f(x)$为当$x to x_0$(或$x to infty$)时 的无穷小量。

微积分讲解ppt课件

微积分讲解ppt课件

多元函数的表示 方法
多元函数可用记号 f(x1,x2,…,xn)或z=f(x,y) 表示。
多元函数的定义 域
使多元函数有意义的自 变量组合(x1,x2,…,xn) 的集合。
多元函数的值域
多元函数所有值的集合 。
偏导数与全微分
偏导数的定义
设函数z=f(x,y)在点(x0,y0)的某一邻域内有定义,当y固定在y0而x在x0处有增量Δx时,相应地函数有增量 f(x0+Δx,y0)-f(x0,y0)。如果Δz与Δx之比当Δx→0时的极限存在,那么此极限值称为函数z=f(x,y)在点(x0,y0)处对 x的偏导数。
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将方程转化为可积分的形式
二阶常微分方程解法
可降阶的二阶微分方程
通过变量替换或分组,将方程降为一阶微分方 程求解
二阶线性微分方程法
利用特征根的性质,求解二阶线性常系数齐次 和非齐次微分方程
常系数线性微分方程组法
在经济学中的应用
边际分析
通过求导计算边际成本、边际收益等,为企业的决策 提供依据。
弹性分析
研究价格、需求等经济变量之间的相对变化关系,微 积分可用于计算弹性系数。
最优化问题
在资源有限的情况下,通过微积分求解最大化或最小 化某一经济指标的问题。
在工程学中的应用
结构力学
分析建筑、桥梁等结构的受力情况和稳定性,微积分可用 于求解复杂的力学方程。
通过消元法或特征根法,求解常系数线性微分方程组
05
多元函数微积分
多元函数的基本概念
多元函数的定义
设D为一个非空的n元有 序数组的集合,f为某一 确定的对应规则。若对 于每一个有序数组 (x1,x2,…,xn)∈D,通过 对应规则f,都有唯一确 定的实数y与之对应, 则称对应规则f为定义在 D上的n元函数。

教学课件微积分第三版

教学课件微积分第三版
称函数值f(x0)为函数f(x)在区间I上的最大值,
点x0为函数f(x)在区间I上的最大值点;若恒有
f(x0)≤f(x),则称函数值f(x0)为函数f(x)在区
间I上的最小值,点x0为函数f(x)在区间I上的最
小值点.
第一章 函数与极限
1.2 几何与经济方面函数关系式
1.几何方面函数关系式
(1)矩形面积S等于长x与宽u的积,即
又已知生产xkg产品的总成本为
1
C=C(x)=9x2+6x+100
所以每日产品全部销售后获得的总利润
1
1
L=L(x)=R(x)-C(x)= − 3 2 + 46x - 9 2 + 6x + 100
4
=- x2+40x-100(元)
9
1
由于产量x>0;又由于销售价格p>0,即46-3x>0,得到0<x<138,因而函数定
1.5 未定式极限
2.第二种基本情况
已知函数R(x)与S(x)中至少有一个含二次根式,当x→x0(有限值)时,
() 0
若R(x)→0且S(x)→0,则无理分式极限 lim
为 型未定式极限.
→0 () 0
解法:分子R(x)、分母S(x)同乘以它们的有理化因式,并注意到在
x→x0的过程中,恒有x-x0≠0,因而约去使得分子、分母同趋于零的
义域为0<x<138.
第一章 函数与极限
1.3 极限的概念与基本运算法则
定义1.8 已知数列
y1,y2,y3,y4,…,yn,…
当n→∞时,若一般项yn无限接近于常数A,则称当n→∞时数列yn的极
限为A,记作

大学微积分课件

大学微积分课件

定积分应用举例
01
面积计算
利用定积分可以计算平面图形或 立体图形的面积,如曲线围成的 面积、旋转体体积等。
物理应用
02
03
经济应用
在物理学中,定积分可以用来计 算物体的质心、转动惯量等物理 量。
在经济学中,定积分可以用来计 算总收益、总成本等经济指标, 以及进行边际分析和弹性分析。
04
多元函数微积分学
微分概念与性质
阐述微分的概念,包括微分的定义、几何意义及物理意义,探讨微分的性质,如微分与导数的关系、微分的运算法则 等。
微分中值定理及其应用
介绍微分中值定理,包括罗尔定理、拉格朗日中值定理和柯西中值定理,并探讨它们在证明不等式、求 极限等方面的应用。
积分概念及性质
定积分概念与性质
引入定积分的概念,包括定积分的定义、几何意义及物理 意义,探讨定积分的性质,如可积性、积分区间可加性等 。
大学微积分课件
contents
目录
• 微积分基本概念 • 微分学基本原理 • 积分学基本原理 • 多元函数微积分学 • 无穷级数与微分方程初步 • 微积分在实际问题中应用举例
01
微积分基本概念
函数与极限
函数定义与性质
阐述函数的基本概念,包括定义 域、值域、对应关系等,并介绍 函数的性质,如单调性、奇偶性 、周期性等。
根据加速度函数和时间的关系,利用 二次积分可以计算物体在一段时间内 的位移。
03
求解功和能量
在力学中,功是力和位移的乘积,利 用定积分可以计算变力沿直线所做的 功;能量则是功的积累,通过定积分 可以求解物体的势能或动能。
在经济学问题中应用
计算总收益和总成本
在经济学中,总收益和总成本都 是价格或产量的函数,利用定积 分可以计算在一定价格或产量范 围内的总收益或总成本。

大学微积分课件(PPT版)

大学微积分课件(PPT版)
微分方程是包含未知函数及其导数的等式。
微分方程的解
满足微分方程的函数称为微分方程的解。
一阶微分方程
一阶线性微分方程
形如y'=f(x)y' = f(x)y'=f(x)y=f(x)的一阶微 分方程,可以通过分离变量法求解。
一阶非线性微分方程
形如y'=f(y/x)y' = f(y/x)y'=f(y/x)的一阶微 分方程,可以通过变量代换法求解。
定积分的计算
计算方法与技巧
定积分的计算是微积分中的重要技能。常用的计算方法包括换元法、分部积分法、牛顿-莱布尼兹公 式等。通过这些方法,可以将复杂的定积分转化为易于计算的形式。
反常积分
概念与计算方法
VS
反常积分分为无穷积分和瑕积分两种 类型。对于无穷积分,需要讨论其在 有限的区间上收敛的情况;对于瑕积 分,需要讨论其在某一点附近的收敛 情况。反常积分的计算方法与定积分 的计算方法类似,但需要注意收敛的 条件。
极限与连续性
极限的定义与性质
极限的定义
极限是描述函数在某点附近的变化趋势 的一种数学工具。对于函数$f(x)$,如果 当$x$趋近于$a$时,$f(x)$的值趋近于 某个确定的常数$L$,则称$L$为函数 $f(x)$在点$a$处的极限。
极限的性质
极限具有唯一性、有界性、保序性和 局部有界性等性质。这些性质有助于 我们更好地理解极限的概念和应用。
连续函数的图像
连续函数的图像是连续不断的曲线。在微积分中,我们经常需要研究连续函数的性质和 变化规律,以便更好地解决实际问题。
03
导数与微分
导数的定义与性质
要点一
导数的定义
导数是函数在某一点的变化率,表示函数在该点的切线斜 率。

微积分基本公式ppt课件

微积分基本公式ppt课件
热力学
温度与热量,熵与绝热过程,热力学第二定律
微积分在经济中的应用实例
01
总结词
边际分析,最优化问题,经济增长 模型
最优化问题
最大利润,最小成本,最优解
03
02
边际分析
边际成本,边际收益,边际利润
经济增长模型
索洛模型,哈罗德-多马模型,内生 增长模型
04
THANKS
感谢观看
微积分基本公式的应用实例
总结词
微积分基本公式在解决实际问题中有着广泛 的应用,例如求解变速直线运动的位移、求 解曲线的面积等。
详细描述
通过微积分基本公式,我们可以求解变速直 线运动的位移。例如,假设一个物体以速度 v(t)运动,那么物体在时间t到时间t+Δt之间 的位移就是∫(v(t)dt),通过微积分基本公式 可以求得该物体的位移。此外,微积分基本 公式还可以用于求解曲线的面积,例如求解
要点二
高阶导数的几何意义
掌握高阶导数的计算方法,例如利用莱布尼茨公式计算二 阶、三阶等高阶导数。
理解高阶导数在几何上的意义,例如二阶导数表示曲线的 凹凸性,三阶导数表示曲线的拐点等。
05
定积分的计算
定积分的计算方法与技巧
积分公式
掌握积分公式是进行定积分计算的基础,包括 幂函数的积分公式、三角函数的积分公式等。
微积分基本公式
微积分基本公式的内容与证明
总结词
微积分基本公式是微积分学的基础,它描述 了函数在某一点处的导数与该函数在该点附 近的变化率之间的关系。
详细描述
微积分基本公式通常表示为∫(f'(x))dx = f(b) - f(a),其中∫代表积分,f'(x)代表函数f 在点x处的导数,b和a分别代表积分的上限 和下限。这个公式在理解函数的积分和导数 之间关系上起着关键作用。

微积分人大3版78市公开课金奖市赛课一等奖课件

微积分人大3版78市公开课金奖市赛课一等奖课件

(1 x ) m 1 mx m ( m 1 ) x 2 2!
m (m 1) (m n 1) x n (1< x< 1)。 n!
首页
上页
返回
下页
结束
第2页铃
例例22 用二项展开式计算根值。如求 5 245 的近似值。
解:由 245352,得
1
5 245 (35 2) 5
3(1
2
1
)5

35
再由二项展开式得12 535
21 )355
1 (1 55
1) 1 ( 2 )2 2! 35
]
3(1 1 2 1 4 1 4 ) 。 5 35 5 5 2! 310
上式括号内级数从第二项起是交错级数,如取前两项
作近似值,则
5 245 3(1 1 2 ) 3.0049 。 5 35
首页
上页
返回
下页
结束
第1页铃
例例22 用二项展开式计算根值。如求 5 245 的近似值。
解:由 245352,得
1
5 245 (35 2) 5
3(1
2
1
)5

35
再由二项展开式得
5
245
3[(1
12 535
21 )355
1 (1 55
1) 1 ( 2 )2 2! 35
]
二项展开式:
首页
上页
返回
下页
结束
第3页铃
例例113 求积分 0.2 e x2 dx 的近似值。 0
解:先求积分 x ex2 dx 的幂级数展开式: 0
x e x2 dx x 1 (x 2 ) n dx x (1) n x 2n dx

微积分31微分中值定理省公开课一等奖全国示范课微课金奖课件

微积分31微分中值定理省公开课一等奖全国示范课微课金奖课件

比如,
x2 -1 x 1
f (x)
0 x 1
f (0) 0
0 1X
第6页
例1 证明方程 x5 x 1 0 有且仅有一个正实根 . 证: 1)存在性
设 f ( x) x5 x 1, 则 f ( x)在[0,1]连续,
且 f (0) 1, f (1) 1. 由零点定理
x0 (0,1),使 f ( x0 ) 0. 即为方程正实根.
f ( x) a0 a1( x x0 ) an ( x x0 )n o( x x0 )n
Pn ( x)
Rn ( x)
误差 Rn( x) f ( x) Pn( x)
第18页
2 Pn和 Rn的确定
近似程度越来越好
分析:
1.若在 x0 点相交
y
Pn ( x0 ) f ( x0 )
在(a, b)内每一点处均不为零,那末在(a, b) 内至少
有一点(a b),使等式
f F
(a) (a)
f (b) F (b)
f F
' () 成立. ' ()
第13页
几何解释:
y
在曲线弧AB上至少有
一点C(F (), f ()),在
该点处的切线平行于
A
X F(x)
C
Y
f (x)
M
B
N
D
ln(1 x) x , 1
又0 x 1 1 1 x
1 1 1,
1 x 1
x x x, 1 x 1
即 x ln(1 x) x. 1 x
第12页
三、柯西(Cauchy)中值定理
柯西(Cauchy)中值定理 如果函数 f (x)及F(x)

《微积分九版》课件

《微积分九版》课件

微分概念
总结词
微分概念是微积分中的基础概念,它描述了函数在某一点附近的小变化。
详细描述
微分表示函数在某一点附近的小变化量,即函数值的增量与自变量增量的比值在增量趋于零时的极限 。微分的几何意义是函数图像在该点附近的一条切线。微分在近似计算、误差估计等方面有重要应用 。
积分概念
总结词
积分概念是微积分中的基础概念,它描 述了函数在某个区间上的整体效果。
弹性分析主要关注两个经济变 量之间的相对变化率,例如需 求价格弹性和供给价格弹性等 。通过计算这些弹性的导数, 可以了解它们之间的相互影响 和最优决策。
弹性分析涉及的公式包括弹性 系数的计算,例如需求价格弹 性和供给价格弹性的计算公式 。
例如,在价格制定中,企业会 计算需求价格弹性,以确定最 优的价格策略。
则描述了物体角动量的变化规律,公式为 dL/dt=M。
万有引力定律
总结词
描述物体间相互吸引的力的大小和方向。
详细描述
万有引力定律指出,任何两个物体间都存在相互吸引 的力,大小与两物体的质量成正比,与距离的平方成 反比,方向沿着两物体连线的方向。公式为 F=G(m1m2/r²)。
CHAPTER 06
《微积分九版》ppt课 件
contents
目录
• 微积分简介 • 微积分基础知识 • 微积分基本定理 • 微积分运算技巧 • 微积分在物理中的应用 • 微积分在经济学中的应用
CHAPTER 01
微积分简介
微积分的起源
微积分起源于17世纪的欧洲,是数 学的一个重要分支,主要用于研究连 续变化的量。
化趋势和最优决策。
公式
边际分析涉及的公式包 括导数和偏导数的计算 ,例如求导公式、链式

《微积分入门》课件

《微积分入门》课件
《微积分入门》ppt课件
目录
• 微积分简介 • 极限与连续性 • 导数与微分 • 积分 • 微分方程
01
微积分简介
微积分的起源
01
微积分的起源可以追溯到古 代数学,如希腊数学家阿基 米德对面积和体积的研究。
02
微积分的发展在17世纪取得 了突破,以牛顿和莱布尼茨
的工作为基础。
03
微积分在18世纪和19世纪得 到了进一步的发展和完善, 成为现代数学的重要分支。
反常积分
反常积分的定义
反常积分又称为瑕积分,它是在一个区间上定义的,但与常规的定积分有所不同。反常 积分分为两种:一种是无穷区间上的反常积分,另一种是有限区间上无界函数的反常积
分。
反常积分的性质
反常积分也具有一些重要的性质,如可加性、区间可加性等。这些性质在处理一些特殊 函数或解决一些实际问题时非常有用。
微积分的应用
01
微积分在物理学、工程学、经济学、生物学等领域 有着广泛的应用。
02
微积分可以用来解决速度、加速度、功率、电流、 压力、密度等问题。
03
微积分在金融领域中可以用来计算股票价格、投资 回报率等。
微积分的基本概念
01
极限
极限是微积分的基本概念之一 ,它描述了函数在某一点的变
化趋势。
02
05
微分方程
微分方程的建立与求解
总结词
理解微分方程的建立过程,掌握求解微 分方程的基本方法。
VS
详细描述
微分方程是描述数学模型中变量之间变化 关系的工具,通过理解问题背景和数学模 型,可以建立微分方程。求解微分方程的 方法包括分离变量法、常数变异法、参数 变异法等,这些方法能够求解各种类型的 微分方程。

微积分人大3版82市公开课金奖市赛课一等奖课件

微积分人大3版82市公开课金奖市赛课一等奖课件

xy
x xyy xy
xy
注意:若高为h,则 xyh=2
首页
上页
返回
2 xy
x
下页
y
结束
第2页铃
一、多元函数概念
一个实际问题:
用铁板做成一个体积为2立方米有盖长方体水箱,
问长、宽、高各取多少时,才干使用料最省。
设水箱的长为 x、宽为 y,则高为 2 ,表面积为
xy
x 2 S) 2(xy 2y 22 )(x>02,)y>02)(。xy 2 2 ) (x>0,y>0)。
边界 y
D Ox
y DO x
首页
上页
返回
下页
结束
铃 第11页
二、二元函数定义域
围成平面区域曲线称为该区域边界,包括边界在内 区域称为闭区域,不包括边界区域称为开区域。
闭区域 y
D Ox
y DO
开区域 x
首页
上页
返回
下页
结束
铃 第12页
二、二元函数定义域
假如区域延伸到无穷远处,则称为无界区域,不然
称为有界区域。
有界区域总能够包括在一个以原点为圆心相称大圆
域内。
无界区域
有界区域
y
y
D
Ox
DO x
练习
首页
上页
返回
下页
结束
铃 第13页
二、二元函数定义域
函数zln(x+y)定义域为D1{(x, y)|x+y>0},它是无界 开区域。
函数zarcsin(x2y2)定义域为D2{(x, y)|x2y21},它 是有界闭区域。
它们图形分别为上半球面和下半球面。

大学微积分课件幻灯片版

大学微积分课件幻灯片版

不定积分的性质
包括线性性质、积分区间可加性 、常数倍性质和积分与微分互逆 性质。
基本积分公式与法

包括幂函数、三角函数、指数函 数、对数函数等基本初等函数的 不定积分公式,以及分部积分法 、换元积分法等基本积分法则。
定积分的概念与性质
定积分的定义
定积分是求一个函数在闭区间上的积分值,表达形式为 ∫[a,b]f(x)dx,表示函数f(x)在区间[a,b]上的面积。
根据未知函数及其导数的次数划 分
一阶微分方程及其解法
可分离变量法
通过变量分离,将微分方程转化为可积分的 形式
齐次方程法
通过变量替换,将齐次方程转化为可分离变 量的形式
一阶线性微分方程法
利用积分因子,将一阶线性微分方程转化为 可积分的形式
二阶微分方程及其解法
二阶线性微分方程
具有常系数的二阶线性微分方程的通解结构
振动与波动方程
描述振动与波动现象的二阶线性微分方程
欧拉方程
通过变量替换,将欧拉方程转化为二阶线性微分方程进行求解
高阶微分方程的降阶法
通过变量替换或积分法,将高阶微分方程降阶为一阶或二阶微分方程进行求解
05
多元函数微积分学
多元函数的基本概念
01 02
多元函数的定义
设$D$为一个非空的$n$ 元有序数组的集合, $f$为某一 确定的对应规则。若对于每一个有序数组$( x1,x2,…,xn)∈D$,通过对应规则$f$,都有唯一确定的实 数$y$与之对应,则称对应规则$f$为定义在$D$上的$n$ 元函数。
三重积分的定义
设三元函数$f(x,y,z)$在可求体积的有界闭区域$Omega$上连续,将$Omega$任意分成$n$个小闭区域$Delta V_1,Delta V_2,…,Delta V_n$,记各小闭区域的直径中的最大值为$lambda $。若不论对$Omega $如何分割 及如何选取点$(xi_i,eta_i,zeta_i)$,只要当$lambda to 0 $时,和式$sum_{i=1}^{n} f(xi_i,eta_i,zeta_i)Delta V_i $的极限存在且唯一,则称此极限为函数 $f(x,y,z) $在区域 $Omega $上的三重积分。

《高等数学微积分》课件

《高等数学微积分》课件

实际应用
极值问题在经济学、物理学等领域有广泛应 用,如成本最小化、利润最大化等。
曲线的长度
曲线长度公式
利用微积分计算曲线的长度。
参数方程
通过参数方程将曲线表示为参数的函数,便于计算长度。
实际应用
在工程、地理等领域,需要计算各种曲线的长度,如河流长度、 道路长度等。
面积和体积
面积和体积公式
利用微积分计算平面图形的面积和空间图形的体积。
结合律
微积分运算还具有结合律,即函数的微积分运算顺序不影响结果。
交换律
此外,微积分运算还满足交换律,即函数的微积分运算满足交换律 。
微积分运算的法则
分部积分法
分部积分法是微积分运算中的一 种重要方法,它将两个函数的乘 积的导数转化为两个函数的导数 的乘积,从而简化了计算过程。
换元法
换元法是微积分运算中的另一种 重要方法,它通过引入新的变量 来简化计算过程。
如何提高微积分的计算能力?
总结词:掌握计算方法 总结词:细心谨慎 总结词:多做练习题
详细描述:提高微积分的计算能力需要熟练掌握各种计 算方法,如极限的计算、导数的计算和积分的计算等。 掌握这些方法可以更快更准确地完成计算。
详细描述:在微积分的计算过程中,需要细心谨慎,避 免因粗心大意而导致的错误。仔细检查每一步的计算过 程,确保准确性。
微分
微分的定义与性质
微分是函数在某一点附近的小变化量,它描述了函数在该点附近的变化趋势。微分具有一些重要的性质,如线性性、 可加性和可乘性。
微分的计算方法
包括微分的四则运算法则、复合函数的微分法则、隐函数的微分法则等。这些方法可以帮助我们快速准确地计算函数 的微分。
微分的应用
微分在许多领域都有广泛的应用,如近似计算、误差估计、优化问题等。例如,在近似计算中,微分可 以用来估计函数在某一点的近似值;在优化问题中,微分可以用来寻找函数的极值点。

《微积分》课件

《微积分》课件
微分学主要研究函数在某一点附近的 局部行为,包括切线、函数的变化率 等;积分学则研究函数在某个区间上 的整体行为,包括面积、体积等。
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$

《高数微积分》PPT课件

《高数微积分》PPT课件

),
即U 2E (t )
2
当 t (,) 时, U 0.
U
( , E)
2
E
U U (t)是一个分段函数,
其表达式为
o
(,0) t
2
2E t,
U(t)
2E (t
0,
),
t [0, ] 2
t ( ,] 2
t (,)
例2
设f
(
x)
1 2
0
x
1 ,
求函数
f
(x
3)的定义域.
函数值全体组成的数集 W { y y f ( x), x D} 称为函数的值域.
函数的两要素: 定义域与对应法则.
(x
D
x0 )
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
1) 2

2、1,1;
3、(4,6);
4. (0, 2].
七、 y ln 1 x ,(1,1). 1 x
2
l 2
3l 2
四、反函数
y
函数 y f ( x)
y
反函数 x ( y)
y0
W
o
y0
W
x0
xo
D
x0
x
D
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例如y, 1 1x2
D:(1,1)
微积分
函数-函数概念
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
o
例如 x2, y2a2.
(x, y)
x
x
D
定义: 点C 集 {x (,y)yf(x)x ,D }称为
函y数 f(x)的图 . 形
微积分
集合的表示法
函数-集合
1. 列举法:按任意顺序列出集合的所有元素,并 用{}括起来。
例: 由x2-5x+6=0的根所构成的集合A,可表示为:
A={2,3}
注:必须列出集合的所有元素,不得遗漏和重复。
微积分
函数-集合
2.描述法:设P(a)为某个与a有关的条件或法则,A 为满足P(a)的一切a构成的集合,记为:
A={a|P(a)}
例: 由x2-5x+6=0的根所构成的集合A,表示为: A={x|x2-5x+6=0}
例:全体实数组成的集合通常记作R,即: R={x|x为实数}
微积分
函数-集合
子集
如果集合A的元素都是集合B的元素,即若 xA 则 必 xB , 就 说 A 是 B 的 子 集 , 记 作 AB(读作A包含于B)或BA(读作例子 1. 1990年10月1日在南宁市出生的人。
2. 彩电、电冰箱、VCD。
3. x2-5x+6=0的根。
4. 全体偶数。
集合具有确定性,即对某一个元素是否属于某个 集合是确定的,是或不是二者必居其一。 由有限个元素构成的集合,称为有限集合。 由无限多个元素构成的集合,称为无限集合;
微积分
函数-函数概念
几个特殊的函数举例
y
(1) 符号函数
1 当x0 ysgnx 0 当x0
1 当x0
1
o
x
-1
xsgxn x
y
4321
(2) 取整函数 y=[x]
[x]表示不超过 x 的最大整数
阶梯曲线
-4 -3 -2 -1 o -11 2 3 4 5 x -2 -3 -4
微积分
函数-函数概念
3
微积分
函数-集合
空 U( a , δ)={ x | 0<|x-a|< δ}
心 邻
={ x | a- δ <x<a 或 a<x<a+δ}

=(a- δ, a)U(a , a+ δ)
称为点a的δ空心邻域。
a- δ
a
a+ δ
x
例:
U(2,1)={x|0<|x-2|<1}={x|1<x<2或2<x<3 }
=( 1,2)U(2,3)
1 δ=1 2 δ=1 3
x
微积分
函数-函数概念
定义 设x和y是两个变量,D是一个给定的非空 数集,若对于x ∈ D,变量y按照确定的法则f 总有确定的数值和它对应,则称y是x的函数
记作 yf(x)
因变量
自变量
当 x 0 D 时 ,称 f(x 0)为函 x 0 处 数的 在 . 函 点
非负小数部分函数 取整函数 y=(x)=x-[x]
x=7/3时,[x]=2,(x)=0.5 x=1/3时,[x]=0,(x)=1/3 x=-8/5时,[x]=-2,(x)=0.4
y y=(x)
1
-2 -1 O 1 2
x
微积分
函数-函数概念
(3) 狄利克雷函数
yD(x)10
当x是有理数时 当x是无理数时
注:{0}及{}都不是空集,前者有元素0,后者 有元素。
微积分
集合的运算
函数-集合
集合的并:AB={x|x A 或x B}
集合的交:A B={x|x A 且x B} 集合的差:A-B={x|x A 且x B}
微积分
函数-集合
区 在一条直线上指定了一点作为原点O,再指 间 定了正向,此外又规定了单位长度,这条直
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y mf( a x )g x ,(x ){}y mf(ix )n g ,(x ) {}
y
y
f (x)
f (x)
g(x)
o
x
g(x)
o
x
微积分
(5)绝对值函数
函数-函数概念y
y| x|xx,,xx00 定义域R 值域 [0,)
微积分
函数-集合
邻 U(a,δ)={x| |x-a|< δ}={x|a-δ<x<a+}=(a-δ,a+δ) 域 称为点a的δ邻域。a称为邻域的中心,δ称
为邻域的半径。
x
a- δ
a
a+ δ
例:U(2 ,1 )={ x | |x-2|<1 }={x | 1<x<3 }=( 1, 3)
δ=1
δ=1
x
1
2
微积分
微积分优秀课件
微积分
第一章 函数
• 集合 • 函数概念 • 函数的几种特性 • 反函数 • 复合函数 • 初等函数
微积分
函数-集合
集 合 集合是指具有特定性质的一些事物的总体. 定 组成这个集合的事物称为该集合的元素. 义
通常用大写拉丁字母表示集合,小写字母表示 元素.
a是集合M的元素,记作aM(读作a属于M); a不是集合M的元素,记作aM (读作a不属于M).
如果A B且或AB,则称A与B相等。
1. AA即集合A是其自己的子集。 2. 传递性 AB、B C 则A C。 3. A,即空集是任何集合A的子集。
微积分
全集与空集
函数-集合
所研究的所有事物构成的集合称为全集,记为:U。
不含任何元素的集合称为空集,记为: 。
例1:x2+1=0实数根集合为空集。 例2:平面上两条平行线的交点集合为空集。
线就称为数轴。
数轴上的点与实数之间可以建立一一对应的 关系。有时为了形象化起见,把数x称为点x, 就是指数轴上与数x对应的那个点。
O
x
-1 0 1
微积分
函数-集合
有 闭区间:[a,b]={x|a≤x≤b}
限 区
O a
b
x

开区间:(a,b)={x|a<x<b}
O
a
b
x
左闭右开区间:[a,b)={x|a≤x<b}
O a
x
b
左开右闭区间:(a,b]={x|a<x≤b}
O a
b
x
微积分
函数-集合

[a, + ∞)={x|a≤x}
O

a
区 (-∞ ,b]={x|x≤b}

O
(a, +∞)={x|a<x}
O
a
x x
b
x
(-∞ ,b)={x|x<b}
O
x
b
实数集 R=(-∞ ,+∞)={x | - ∞ <x<+ ∞}
函数值全体组成的数集
Z{yy f (x),xD}称为函数的.值域
微积分
函数-函数概念
函数的两要素: 定义域与对应法则.
( x D x0)
对应法则f
(
W
y f (x0)
自变量
)
因变量
约定:如果不考虑函数的实际意义,函数的定义域 就是自变量所能取的使算式有意义的一切实数值 ,称为函数的自然定义域。
例如 y, 1x2 D:[1,1]
相关文档
最新文档