放大电路分析和步骤

合集下载

第二章 放大电路的基本原理和分析方法

第二章 放大电路的基本原理和分析方法

' uCE iC RL
iC 0 4 4 (mA )
uCE (4 1.5) 6 (V )
交流负载线是放大电路动态工作点移动的轨迹
假设一个输入 电压uI, 在线性范 围内确定uBE、 iB、 iC、和uCE的波形。
估算电压 放大倍数
u0 uCE Au u I u BE
u
B 'E
iE I S e
iE I S e
rb'e uB' E iE
UT
u
B 'E
UT

u B ' E UT
UT 26 iE I CQ
uBE iB rbb' iE rb'e iB rbb' (1 )iB rb'e
rbe rbb ' 26 (1 ) I CQ
Q2
(c) Rc增大,Vcc、 Rb、β不变 直流负载线变平坦
工作点移近饱和区
Q2
(d) β增大,Vcc、 Rc、 Rb不变
IC增大,工作点移近饱和区
2.4.4 微变等效电路法 微变等效电路 在一个微小的工作范围内,用一 个等效的线性电路来代替三极管,使 得从线性电路的三个引出端看进去, 其电压、电流的变化关系和原来的三 极管基本一样。这样的线性电路称为 三极管的微变等效电路
6. 最大输出功率与效率 放大电路的最大输出功率,是指在输出信号不产 生明显失真的前提下,能够向负载提供的最大输出功 率,通常用符号Pom表示。
放大电路的效率η定义为输出功率P o 与直流电 源消耗的功率PV之比, 即 :
η =PO /PV
7. 非线性失真系数 所有的谐波总量与基波成分之比,定义为 非线性失真系数。符号为D

教案-放大电路的基本分析方法

教案-放大电路的基本分析方法

教案放大电路的基本分析方法第一章:放大电路概述1.1 放大电路的定义解释放大电路的基本概念强调放大电路在电子技术中的重要性1.2 放大电路的分类介绍放大电路的常见类型,如放大器、振荡器等分析不同类型放大电路的特点和应用1.3 放大电路的基本组成介绍放大电路的基本组成部分,如电源、输入电阻、输出电阻等强调各个部分在放大电路中的作用和重要性第二章:放大电路的静态分析2.1 静态分析的基本概念解释静态分析和动态分析的区别强调静态分析在放大电路中的重要性2.2 直流静态分析介绍直流静态分析的基本方法分析放大电路的直流工作点选择和稳定性2.3 交流静态分析介绍交流静态分析的基本方法分析放大电路的交流信号传输和响应特性第三章:放大电路的动态分析3.1 动态分析的基本概念解释动态分析和静态分析的区别强调动态分析在放大电路中的重要性3.2 瞬态分析介绍瞬态分析的基本方法分析放大电路在瞬态过程中的响应特性和稳定性3.3 稳态分析介绍稳态分析的基本方法分析放大电路在稳态过程中的信号传输和响应特性第四章:放大电路的频率特性分析4.1 频率特性分析的基本概念解释频率特性分析的含义和重要性强调放大电路在不同频率下的行为差异4.2 放大电路的频率特性介绍放大电路的频率特性的基本方法分析放大电路在不同频率下的增益和相位响应4.3 放大电路的带宽设计介绍放大电路的带宽设计方法和技巧强调带宽设计对放大电路性能的影响和重要性第五章:放大电路的误差分析和补偿5.1 误差分析的基本概念解释误差分析的含义和重要性强调放大电路中误差来源和影响因素5.2 放大电路的误差分析方法介绍放大电路的误差分析的基本方法分析放大电路中的静态误差、动态误差和温度误差等5.3 放大电路的补偿方法介绍放大电路的补偿方法和技巧强调补偿对放大电路性能的改善和稳定性的重要性第六章:放大电路的实际问题分析6.1 热噪声分析解释热噪声的产生原因及其对放大电路的影响介绍热噪声分析的基本方法6.2 闪烁噪声分析解释闪烁噪声的产生原因及其对放大电路的影响介绍闪烁噪声分析的基本方法6.3 非线性失真分析解释非线性失真产生的原因及其对放大电路的影响介绍非线性失真分析的基本方法第七章:放大电路的测试与调整7.1 放大电路的测试方法介绍放大电路的测试方法,如直流参数测试、交流参数测试等强调测试方法在放大电路调试中的重要性7.2 放大电路的调整技巧介绍放大电路调整的基本方法及技巧强调调整对放大电路性能的影响和重要性7.3 放大电路的性能评估介绍放大电路性能评估的基本方法分析评估结果对放大电路性能改进的指导意义第八章:放大电路的设计与应用实例8.1 放大电路的设计流程介绍放大电路设计的基本流程,如需求分析、电路设计、仿真与测试等强调设计流程在放大电路开发中的重要性8.2 放大电路应用实例分析分析放大电路在不同应用领域的实例,如音频放大器、无线通信放大器等强调应用实例在放大电路实际应用中的作用和重要性8.3 放大电路的优化与改进介绍放大电路优化与改进的方法和技巧强调优化与改进对放大电路性能提升的必要性第九章:放大电路的故障诊断与维修9.1 放大电路故障诊断的基本方法介绍放大电路故障诊断的基本方法,如观测法、信号注入法等强调故障诊断方法在放大电路维护中的重要性9.2 放大电路常见故障分析与维修分析放大电路常见故障的原因及其维修方法强调维修对放大电路正常运行的保障作用9.3 放大电路的可靠性提升介绍放大电路可靠性提升的方法和技巧强调可靠性提升对放大电路长期稳定运行的意义第十章:放大电路的未来发展趋势10.1 放大电路技术的发展趋势分析放大电路技术的未来发展趋势,如集成电路、新型材料等强调技术发展趋势对放大电路行业的影响和重要性10.2 放大电路应用领域的拓展分析放大电路在不同应用领域的拓展情况,如物联网、等强调应用领域拓展对放大电路市场需求的影响和重要性10.3 放大电路产业的机遇与挑战分析放大电路产业面临的机遇与挑战,如市场竞争、政策法规等强调应对策略对放大电路产业可持续发展的重要性重点和难点解析一、放大电路的分类及特点理解不同类型放大电路的原理和应用分析放大电路的优缺点二、放大电路的基本组成了解放大电路各组成部分的作用掌握各个元件参数对电路性能的影响三、静态分析和动态分析的方法学会静态和动态分析的基本步骤理解放大电路的工作点和频率响应四、频率特性分析分析放大电路的截止频率和带宽掌握滤波器和补偿技术五、误差分析和补偿方法识别放大电路中的主要误差源学会误差分析和补偿的技术六、实际问题分析探讨放大电路中的噪声问题和失真分析理解非线性失真的影响和测试方法七、测试与调整技巧学习放大电路的测试方法和参数掌握调整技巧以优化电路性能八、设计与应用实例分析分析实际应用中的放大电路设计探讨放大电路在不同领域的应用案例九、故障诊断与维修学习放大电路的故障诊断方法掌握维修技巧以提高电路可靠性十、未来发展趋势探讨放大电路技术的未来发展方向分析新兴应用领域对放大电路的影响本教案围绕放大电路的基本分析方法展开,从放大电路的基本概念、分类、组成到静态和动态分析,再到频率特性、误差分析、测试与调整、设计应用实例、故障诊断与维修,展望未来发展趋势。

三极管放大电路分析方法

三极管放大电路分析方法

三极管放大电路分析方法1.直流分析法:首先需要对三极管的直流工作点进行分析,确定三极管的偏置电流及偏置电压。

偏置电流的大小决定了三极管的放大倍数,偏置电压的大小决定了输出信号的工作范围。

直流分析法的步骤如下:-根据电路图,将三极管放大电路简化为三极管模型,剔除输入和输出耦合电容等影响。

-利用基本电路分析技巧,根据电路中的电阻、电压和电流关系,列出基于基尔霍夫定律的电路方程。

-解电路方程,计算出各个节点和元件的电流和电压值。

-利用得到的结果,确定三极管的工作状态和偏置电流。

2.小信号分析法:在直流偏置条件下,对三极管的输入信号进行小信号分析,得到输入端和输出端的端口等效电路,从而计算三极管的增益和带宽等性能指标。

小信号分析法的步骤如下:-对三极管放大电路进行小信号模型化处理,即将电路中的大信号元件(如三极管和电容等)线性化为小信号源和等效电路。

-根据放大电路的小信号模型,利用基本电路分析技巧,建立输入端和输出端的等效电路。

-根据等效电路,计算放大电路的增益和带宽等性能参数。

3.负反馈法:-确定三极管放大电路的基本参数,如放大倍数、输入和输出阻抗等。

-控制负反馈系统的增益,确定电压比例器的比例关系。

-根据反馈系统的特性和电路的参数,确定电压比例器的阻值,从而实现所需的放大倍数。

-在确定了电压比例器的阻值后,通过计算反馈回路的频率响应、相移等参数,来进一步优化电路性能。

以上是三极管放大电路分析的几种常用方法,每种方法都有其独特的优势和适用范围。

通过综合运用这些方法,可以对三极管放大电路进行全面的分析和优化,实现设计要求。

第17讲放大电路动态分析

第17讲放大电路动态分析

Q
晶体管的电 流放大系数
β
IC IB
U CE
ic ib
U
晶体管的输出回路(C、E之
CE
O
间)可用一受控电流源 ic= ib 输出特性 UCE 等效代替,即由来确定ic和
ib之间的关系。
一般在20~200之间,在手册中常用hfe表示。
晶体管的
输出电阻 rce
UCE IC
IB
uce ic
rce愈大,恒流特性愈好 因rce阻值很高,一般忽 IB 略不计。
大电路的微变等效电 路。
eS-
-
E
-
分析时假设输入为
微变等效电路
Ii B Ib
Ic C
正弦交流,所以等效 电路中的电压与电流
RS
可用相量表示。
E
+ S-
+ U i -
RB
βIb
rbe
RC
E
+ RL Uo
-
3.电压放大倍数的计算
定义 : Au
分三种情况:
U o U i
(1). 当 Rs=0 , RL=∞时
微变等效电路法:利用放大电路的微变等效电路分 析计算放大电路电压放大倍数Au、输入电阻ri、输出 电阻ro等。
1. 晶体管的微变等效电路
晶体管的微变等效电路可从晶体管特性曲线求出。
(1) 输入回路
当信号很小时,在静态工作点
附近的输入特性在小范围内可近
IB
似线性化。
Q IB
晶体管的 输入电阻
rbe
U B E IB
U i Ibrbe
Ii B Ib
Ic C
RS
E
+ S-

放大电路基本原理和分析方法

放大电路基本原理和分析方法
b) 空载时,交流 负载线与直流负 载线重合
RL // RC)
交流负载线
iB=100μA
80
60
Q
40 20
0
0
直流负载线
VCC
UCE/V
Δui
ΔuBE
ΔiB
ΔiC
ΔiCRC
iC
ΔuCE
ΔuO
各点波形:
+ VCC
Cb 2
+
R b1 Cb 1
+
Rc
iB
+
+
ui
_
uEB
_
uCE
uo
_
_
uo比ui幅度放大且相位相反
(2) 交流放大工作情况 iB ib Q ui uBE
0
(mA)
iC/mA
iB=100μA 80
ic
60
40 20 0
ib
UCE/V
uce
假设在静态工作点的基 础上输入一微小的正弦信 号ui。
结论:
a) 放大电路中的信号是交直 流共存,可表示成:
ui
t uBE UBEQ
iB IBQ iC ICQ uCE UCEQ t uo t t
一般来说,Ri 越大越好。
五、输出电阻
ii
+
io
+
RS uS 信号源
放大电路 Ri
+
+
ui +
Ro uo
+
uo +
RL
Ri
Ro
负载
从放大电路的输出端看进去的等效电阻。
RO UO U S 0, RL IO
输出电阻表明放大电路带负载的能力。 Ro越小,放大电路带负载的能力越强,反 之则差。

放大电路的基本分析方法

放大电路的基本分析方法

学校工作总结本学期,我校工作在全体师生的大力支持下,按照学校工作计划及行事历工作安排,紧紧围绕提高教育教学质量的工作思路,不断强化学校内部管理,着力推进教师队伍建设,进一步提高学校办学水平,提升学校办学品位,取得了显著的成绩。

现将我校一学期来的工作总结如下:一、德育工作本学期我校德育工作围绕学校工作中心,精心安排了“文明守纪”、“良好习惯养成”、“光辉的旗帜”、“争先创优”等主题教育月活动,从培养学生的行为规范,狠抓养成教育入手,注重务实,探索途径,加强针对性、实效性和全面性,真正把德育工作落到实处。

1.强化学生养成教育,培养学生良好习惯。

本学期,我校德育工作十分注重学生的常规管理,尤其重视对学生的养成教育。

一是利用班队会、红领巾广播站、国旗下演讲对学生进行品德熏陶。

二是以文明监督岗为阵地,继续强化了“文明班集体”的创建评比活动,通过卫生、纪律、两操等各项常规的评比,增强了学生的竞争意识,同时也规范了学生的行为。

三是继续加大值周检查的力度,要求值周领导、教师、学生按时到岗,在校门口检查、督促学生有秩序出入校园,从而使学生的行为规范时时有人抓,处处有人管,形成了良好的局面。

2.抓好班主任队伍建设,营造全员育人氛围。

班主任是学校德育工作最重要的力量,为了抓好班主任队伍建设,提高班主任素质水平,学校在第十二周组织开展了班主任工作讲座,在学期末举行了班主任工作交流,在活动中探索行之有效的工作方法,总结经验,交流心得,使班级管理工作更上新台阶。

3.充分发挥主题班队会的教育功能。

主题班队会,是对学生进行德育教育的一种特殊而卓见成效的方式之一。

为了充分发挥主题班队会的教育意义,第十三周,四(3)中队举行了“祖国美,家乡好”主题队会观摩活动,有效规范了我校主题中队会程序,强化了主题队会对学生的思想教育作用。

二、学校管理工作1.建立健全规章制度。

学期初,学校制定了出明确的目标计划及管理措施,做到了目标明确、工作具体,有效地增强了全体教师参与学校管理的主人翁意识,充分调动了全体教师的工作积极性,保障了教育教学工作的顺利开展。

放大电路分析方法、图解法分析放大电路

放大电路分析方法、图解法分析放大电路

放⼤电路分析⽅法、图解法分析放⼤电路放⼤电路分析⽅法、图解法分析放⼤电路⼀、本⽂介绍的定义⼆、放⼤电路分析⽅法三、图解法⼀、本⽂介绍的定义放⼤电路分析、图解法、微变等效电路法、静态分析、动态分析、直流通路、交流通路、单管共射放⼤电路的直流和交流通路、静态⼯作点、图解法分析静态、直流负载线、交流负载线、电压放⼤倍数公式、交直流并存状态、电压放⼤作⽤、倒相作⽤、⾮线性失真、截⽌失真、饱和失真、最⼤输出幅度、电路参数对静态⼯作点的影响、⼆、放⼤电路分析⽅法放⼤电路分析:放⼤电路主要器件如双极型三极管、场效应管,特性曲线是⾮线性的,对放⼤电路定量分析,需要处理⾮线性问题,常⽤⽅法,图解法和微变等效电路法。

图解法:在放⼤管特性曲线上⽤作图的⽅法对放⼤电路求解。

微变等效电路法:将⾮线性问题转化成线性问题,也就是,在较⼩变化范围内,近似认为特性曲线是线性的,导出放⼤器件等效电路和微变等效参数,利⽤线性电路适⽤的定律定理对放⼤电路求解。

静态分析:讨论对象是直流成分,分析未加输⼊信号时,电路中各处的直流电压、直流电流。

动态分析:讨论对象是交流成分,加上交流输⼊信号,估算动态技术指标,电压放⼤倍数、输⼊电阻、输出电阻、通频带、最⼤输出功率。

直流通路:电容所在路视为开路;电感所在路视为短路。

交流通路:电容容抗为1/(wC),电容值⾜够⼤,电容所在路视为短路;电感感抗为wL;理想直流电压源Vcc视为短路(因为电压恒定不变);理想电流源,视为开路(因为电流变化量为0) 。

单管共射放⼤电路的直流和交流通路:如下图,直流通路,将隔直电容开路;交流通路,将隔直电容短路,直流电源Vcc短路。

静态⼯作点:三极管基极回路和集电极回路存在着直流电流和直流电压,这些电流电压在三极管输⼊输出特性曲线上对应⼀个点,称为静态⼯作点,静态⼯作点的基极电流Ibq、基极与发射极之间的电压Ubeq、集电极电流Icq、集电极与发射极电压Uceq。

三、图解法图解法分析静态:⽤作图的⽅法分析放⼤电路静态⼯作点。

实验报告多级放大电路

实验报告多级放大电路

实验报告多级放大电路引言多级放大电路是电子工程学中非常常见且重要的实验之一。

在本次实验中,我们将设计和搭建一个多级放大电路,然后测试并分析其性能。

多级放大电路在信号处理、音频放大等领域具有广泛的应用。

实验目的1. 学习多级放大电路的基本工作原理。

2. 设计和搭建一个多级放大电路,并测试其信号放大性能。

实验原理多级放大电路是由多个级联的放大器构成的,每个放大器被称为一个放大级。

每个放大级的输出作为下一个放大级的输入,因此输出信号将会经过多次放大。

多级放大电路的基本工作原理如下:1. 输入信号经过第一级放大器放大,得到一级放大信号。

2. 一级放大信号作为输入信号,经过第二级放大器放大,得到二级放大信号。

3. 二级放大信号作为输入信号,经过第三级放大器放大,得到三级放大信号,以此类推。

4. 最后一级的输出信号即为多级放大电路的输出信号。

多级放大电路通常由两种类型的放大器组成:电压放大器和功率放大器。

电压放大器用于放大输入信号的电压大小,而功率放大器用于放大信号的功率。

实验步骤与结果1. 根据实验要求,设计和搭建一个三级放大电路,其中第一级为电压放大器,后两级为功率放大器。

2. 连接实验电路,并检查电路连接是否正确。

3. 输入一个信号,测试多级放大电路的输出信号大小。

4. 使用示波器监测电路的频率、相位等性能指标,并进行记录。

5. 分析实验结果,并与理论计算进行比较。

实验结果显示,多级放大电路能够将输入信号的电压和功率进行相应的放大。

输出信号的大小与输入信号的幅度差异很大,从而实现了对信号的放大处理。

同时,电路的频率和相位表现良好,没有明显的失真或偏移现象。

实验分析与讨论1. 多级放大电路的放大倍数会随着级数的增加而增加,从而达到更大的信号放大效果。

2. 电路中的放大器应具有足够的带宽,以确保输入信号的频率范围能够得到充分的放大。

3. 多级放大电路中放大器的稳定性对于整个电路的性能至关重要,应注意稳定性分析与设计。

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告

单极晶体管放大电路实验报告单极晶体管放大电路实验报告摘要:本实验通过搭建单极晶体管放大电路,探究晶体管的放大特性。

实验结果表明,单极晶体管放大电路能够实现信号的放大,但存在一定的失真和功耗。

1. 引言单极晶体管放大电路是一种常见的放大电路,广泛应用于各种电子设备中。

本实验旨在通过搭建单极晶体管放大电路,研究其放大特性和工作原理。

2. 实验原理单极晶体管放大电路由晶体管、电阻和电容组成。

晶体管的三个引脚分别为基极、发射极和集电极。

当基极电流变化时,晶体管的放大特性会使得集电极电流和电压发生变化,从而实现信号的放大。

3. 实验步骤3.1 搭建电路根据实验原理,搭建单极晶体管放大电路。

将晶体管的基极连接到信号源,发射极接地,集电极连接到负载电阻。

3.2 测量输入输出特性曲线通过改变输入信号的幅度,测量输出信号的幅度,并绘制输入输出特性曲线。

实验结果表明,随着输入信号的增大,输出信号也相应增大,但存在一定的失真。

3.3 测量直流工作点通过测量晶体管的电压和电流,确定晶体管的直流工作点。

直流工作点的选择对于放大电路的稳定性和线性度有重要影响。

4. 实验结果与分析通过实验测量,得到了单极晶体管放大电路的输入输出特性曲线。

曲线表明,随着输入信号的增大,输出信号也相应增大,但在较大幅度时,出现了失真现象。

这是因为晶体管的非线性特性导致的。

另外,通过测量直流工作点,我们可以确定晶体管的偏置电压和电流。

偏置电压和电流的选择对于放大电路的性能有重要影响。

如果偏置电压过高或过低,都会导致信号失真和功耗增加。

5. 结论单极晶体管放大电路能够实现信号的放大,但存在一定的失真和功耗。

通过合理选择直流工作点,可以提高放大电路的稳定性和线性度。

6. 讨论与展望本实验只研究了单极晶体管放大电路的基本特性,还可以进一步研究其他类型的放大电路,如共射放大电路和共基放大电路。

此外,可以通过改变电路参数和组件,优化放大电路的性能。

总之,单极晶体管放大电路是一种常见的放大电路,具有重要的应用价值。

放大电路的实验实训报告

放大电路的实验实训报告

一、实验目的1. 熟悉放大电路的基本组成和原理。

2. 掌握放大电路静态工作点的调试方法。

3. 学习放大电路动态性能的测试方法。

4. 了解放大电路频率响应的特性。

5. 熟悉常用电子仪器的使用方法。

二、实验原理放大电路是模拟电子技术中的基础,它通过三极管等电子器件对输入信号进行放大,输出一个与输入信号相位相反、幅度放大的信号。

本实验主要研究共射极放大电路,其基本原理如下:1. 共射极放大电路:输入信号加在基极与发射极之间,输出信号从集电极取出。

2. 静态工作点:放大电路在没有输入信号时的工作状态,通常通过调整偏置电阻来设置。

3. 动态性能:放大电路在有输入信号时的性能,包括电压放大倍数、输入电阻、输出电阻等。

4. 频率响应:放大电路对不同频率信号的放大能力,受电路元件和三极管频率特性的影响。

三、实验仪器与材料1. 模拟电路实验箱2. 函数信号发生器3. 双踪示波器4. 交流毫伏表5. 万用电表6. 连接线若干四、实验内容与步骤1. 搭建共射极放大电路:根据实验原理图,搭建共射极放大电路,包括三极管、电阻、电容等元件。

2. 调试静态工作点:调整偏置电阻,使放大电路达到合适的静态工作点,通常通过观察集电极电流和集电极电压的变化来实现。

3. 测试动态性能:- 输入不同频率和幅度的信号,观察输出信号的幅度和相位变化。

- 测量电压放大倍数、输入电阻、输出电阻等参数。

4. 测试频率响应:- 改变输入信号的频率,观察输出信号的幅度变化。

- 绘制频率响应曲线。

五、实验结果与分析1. 静态工作点调试:通过调整偏置电阻,使放大电路达到合适的静态工作点,集电极电流和集电极电压满足设计要求。

2. 动态性能测试:- 电压放大倍数:根据输入信号和输出信号的幅度比值计算得出,符合理论预期。

- 输入电阻:根据输入信号和基极电流的比值计算得出,符合理论预期。

- 输出电阻:根据输出信号和集电极电流的比值计算得出,符合理论预期。

3. 频率响应测试:- 频率响应曲线:随着输入信号频率的增加,输出信号的幅度逐渐减小,符合理论预期。

晶体管单级放大电路的测试与分析

晶体管单级放大电路的测试与分析

实验4 晶体管单级放大电路的测试与分析一、实验目的:1.掌握对共发射级放大电路的静态工作地的分析2.掌握晶体管放大电路的动态分析的交流分析和瞬态分析3.会分析放大电路的指标测量4.掌握输入电阻和输出电阻的测量二、实验仪器设备:Multisim10.0仿真电路软件三、实验原理:如图所示。

偏置电路采用由7.0712.42.948iiiU mVR KL uA===Ω、2R和2R组成的基极分压电路,发射极接有5R,以稳定放大器的静态工作点。

放大器的输入端加入信号Ui后,输出端得到一个相位相反幅值放大的信号Uo,实现电压放大。

四、实验内容和步骤1.放大电路的静态工作点分析1)输入输出波形信号源设置为10mV kHz,调整1R在合适位置,使输入输出波形不失真。

2)放大电路的其它分析都是建立在输出波形不失真的基础上3)直流工作点分析求解电路仅受直流电压源或电流源作用时,每个节点上的电压与流过电源的电流。

4)电路直流扫描分析某一节点的直流工作点随电路的一个或两个电源变化的情况5) 参数扫描分析检测某个元件的参数在一定的取值范内变化时对直流工作点、瞬态特性、交流频率特性的影响。

2. 电压源激励下放大电路的输入和输出情况3. 放大电路的动态分析1) 交流分析对电路进行交流频率响应分析。

2) 瞬态分析4. 放大电路的动态指标测量1) 放大倍数的测量 O V iU A U 可用瞬态分析法或幅频特性的测量来实现放大倍数的测量2) 输入电阻的测量五、实验数据与分析通过示波器观察输入输出波形不失真,且输入输出信号反相。

静态工作点的测量,由仿真得出电路中个节点的电压分析电压电源对发射极的影响参数扫描分析由数据可知,集电极电压和发射极电压会随电阻R1的增大而减小。

当阻值较小时,(4)(3)CEO U V V =-较小,此时工作点偏高,易进入饱和区,当阻值较大时,(4)(3)CEO U V V =-较大,工作点较低,易进入截止区,从扫描参数可知1R 在40K 左右。

放大电路分析方法

放大电路分析方法

放大电路分析方法放大电路是一种用于提高信号幅度的电路,广泛应用于各种电子设备中。

对于放大电路的分析,有许多不同的方法可供选择。

本文将介绍放大电路的几种常用分析方法,并重点讨论小信号模型法和大信号模型法。

一、小信号模型法小信号模型法是一种基于线性近似的方法,适用于分析非线性电路以及在其中一工作点附近的放大电路。

该方法的基本思想是将非线性电路视为线性电路的叠加,通过线性电路的分析求解非线性电路的行为。

以下是使用小信号模型法进行分析时需要遵循的步骤:1.选取工作点:首先,需要确定放大电路的工作点。

这通常涉及使用直流偏置电路来确定电路的直流工作条件。

2.建立小信号模型:其次,需要将放大电路线性化为小信号模型。

这涉及将非线性的器件(如晶体管)进行局部分析,并简化为线性等效电路。

3.求解等效电路:然后,需要对等效电路进行分析。

这通常涉及使用网络理论和线性系统的分析技巧来求解电路的响应。

4.评估放大性能:最后,需要根据等效电路的分析结果评估放大电路的性能。

这通常涉及计算增益、输入阻抗、输出阻抗等指标。

小信号模型法的优点是可以提供对放大电路行为的定量分析。

然而,由于其基于线性近似,只适用于工作点附近的小信号分析。

二、大信号模型法大信号模型法是一种基于非线性分析的方法,适用于分析工作点偏离很远的放大电路,或者涉及大信号激励的情况。

该方法的基本思想是直接分析非线性放大电路的行为,忽略器件的非线性特性。

以下是使用大信号模型法进行分析时需要遵循的步骤:1.建立非线性模型:首先,需要建立器件的非线性模型。

这可以通过等效电路、传输特性等方式实现。

2.求解非线性方程:其次,需要根据非线性模型和电路拓扑关系,建立非线性方程。

这通常涉及使用基本的电路分析技巧,如基尔霍夫定律。

3.进行数值模拟:然后,可以使用数值模拟工具,如SPICE软件,来求解非线性方程。

这可以提供对电路行为的详细分析。

4.评估放大性能:最后,可以根据数值模拟结果评估放大电路的性能。

(最新整理)第6讲放大电路的分析方法wang

(最新整理)第6讲放大电路的分析方法wang

RC IB IC
+UCC +
IC IB 3 7 .5 0 .0 4 m A 1 .5 m A U+B–ETU–CE
UC EUC CICRC
121.54V6V
注意:电路中IB 和 IC 的数量级不同
例2:用估算法计算图示电路的静态工作点。
+UCC 由KVL可得:
RB
RC IB IC
+
U C CIB R B U B EIE R E
适,晶体管进入截
• 截止失真
止区或饱和区工作, 将造成非线性失真。
Q'
Q设置过低,
t
截止失真是在输入回路首先产生失真! 消除方法:增大VBB,即向上平移输入回路负载线。
• 饱和失真
若Q设置过高
晶体管进入饱 和区工作,造成 饱和失真。
饱和失真产生于晶体管的输出回路!
消除饱和失真的方法
Rc↓或VCC↑
5. 放大电路输出电阻的计算
放大电路对负载(或对后级放大电路)来说,是一个信
号源,可以将它进行戴维南等效,等效电源的内阻即为放
大电路的输出电阻。
RS
E
+ S_
Au 放大 电路
+
RL _U o
输出电阻是 动态电阻,与 负载无关。
ro
定义:
输 出 电 阻 Ro :UIoo
E
+
o_
+
RL _U o
输出电阻是表明放大电路带负载能力的参数。电路
rbe
60
4. 放大电路输入电阻的计算
放大电路对信号源(或对前级放大电路)来说,是一个负载, 可用一个电阻来等效代替。这个电阻是信号源的负载电阻,也 就是放大电路的输入电阻。

放大电路的三种基本分析方法

放大电路的三种基本分析方法

放大电路的三种基本分析方法i c =0,U CE =V CC =12vu CE =0,ic=123CC c V R k==4mA (3)连接两点,得直流负载线。

(4)列基极输入回路,计算I BQI BQ =CC BE b V U R -=120.7280k-≈0.04mA=40μA(5)找出直流负载线与i B = I BQ =40μA 的交点,即为Q 点,从图上查出I BQ =40μA 、I CQ =2mA 、U CEQ =6v 。

(与上例结果一致)2、电路参数对静态工作点的影响 (1) R b 对Q 点的影响R b 增大,I BQ 减小,Q 点沿直流负载线下移,易产生截至失真。

R b 减小,I BQ 增大,Q 点沿直流负载线上移,易产生饱和失真。

非线性失真分为截止失真和饱和失真两种。

① 饱和失真当放大电路的静态工作点Q 选取比较高时,I BQ 较大,U CEQ 较小,输入信号的正半周进入饱和区而造成的失真称为饱和失真。

图2.10所示为放大电路的饱和失真。

u i 正半周进入饱和区造成i c 失真,从而使u o 失真。

图2.10饱和失真消除饱和失真的方法是:增大R b ,即减小I BQ ,使Q 点下移至中心位置。

板书饱和失真与截至失真i c/m AM u CE/v I BQ1IBQI BQ2图2.9 R b 对Q 点的影响aQ 1R b1>R bQ 2R b2<R bN② 截至失真当放大电路的静态工作点Q 选取比较低时,I BQ 较小,输入信号的负半周进入截止区而造成的失真称为截止失真。

图2.11所示为放大电路的截止失真。

图2.11截至失真消除截至失真的方法是:减小R b ,即增大I BQ ,使Q 点上移至中心位置。

(2)Rc 对Q 点的影响R c 的变化,仅改变直流负载线的斜率。

R c ↓,Q 点↑,i B = I BQ 曲线右移;R c ↑,Q 点↓,i B = I BQ曲线左移。

放大电路的静态分析方法三

放大电路的静态分析方法三

二、放大电路的静态分析方法
1.估算法确定静态工作点
I BQ
I CQ I BQ
U CC U BE U CC = Rb Rb
U CEQ U CC I CQ Rc
根据图中的参数可求出: I B Q 40A
I CQ 1.5mA U CEQ 6V
二、放大电路的静态分析方法 U Ro I来自图3-13 求输出电阻
0 R L ,U S
Rc
三、放大电路的动态分析方法
(二)微变等效电路法—共射极基本放大器微变等效分析
(4)源电压放大倍数 A us
考虑信号源内阻影响时,电 压放大倍数下降。
考虑信号源内阻影响时:
U Ri o Aus Au Us Ri Rs
三、放大电路的动态分析方法 适用范围:小信号工作状态
(二)微变等效电路法—三极管的微变等效
图3-11 三极管的微变等效电路
26 rbe 300 (1 ) () I EQ
三、放大电路的动态分析方法
在交流通路中,将三极管用等效 (二)微变等效电路法—放大电路的微变等效 电路替代。
图3-12 放大器的微变等效电路
(2)在输出特性曲线上,根据 相应的 iC 和 u CE 波形。 (3)在输出特性曲线上根据
u CE波形读出输出电压幅值:
U cem 9 6 3(V )
三、放大电路的动态分析方法
(一)图解分析法—不带负载 RL 时的图解分析
U cem 3 图3-10 放大电路的图解法动态分析 Au
I CQ 1.5mA
U CEQ 6V
三、放大电路的动态分析方法
(一)图解分析法 图解分析法是利用放大器的特性曲线,通过作 图分析放大器的工作情况。 用途:正确设置静态工作点,分析信号波形,解决 非线性失真问题。 优点:直观、形象,可清楚了解放大电信号的物理 过程。 图解法动态分析的对象是交流通路,关键是 作交流负载线。

放大电路的静态分析

放大电路的静态分析

VCC
IC UCE
说明:1)求直流负载线两点坐标作出直 流负载线, (VCC, 0 ), (0 ,VCC /Rc);
2)直流负载线和输出特性曲线有多个交 点,只有与IB=IBQ对应的那条曲线的交 点才是静态工作点。
57/131
小结:改变IBQ,即可改变静态工作点的位置,静态工作点的 位置将直接影响放大电路的放大质量。
Ci
iB
iC+
+
+
Rs +
ui
T1
+
uBE
uC RL
uo
us
-
-
-
-
-
54/131 1)解析法 (即计算法 )
条件:已知发射结压降UBEQ和CE电流增益 β
步骤:(1) 画直流通;
VCC
(2)求静态值,求解顺序为: IBQ→ICQ→UCEQ
IB UBE
IC UCE
分析:IBQ

VCC
UBEQ Rb
I
B

f
U
UBE VCC
BE


IB
→ Rb→
输入特性曲线 输入直流负载线
IBQ
Q
UBE
UBEQ VCC
56/131 步骤③:由输出特性曲线和输出直流负载线交点求ICQ、UCEQ
输出特性曲线 IC f UCE IBIBQ
输出直流负载线 UCE VCC ICRC
IB UBE
ICQ βIBQ
UCEQ=VCC-ICQRC
其中:Si管一般取UBEQ≈0.7V Ge管一般取UBEQ≈0.3V
55/131 2) 图解法 (即作图的方法)

基本放大电路实验报告

基本放大电路实验报告

基本放大电路实验报告引言:在电子学领域中,放大电路是非常重要的一部分。

它们被广泛用于信号处理、通信系统和音频应用等领域。

本文将介绍一个基本的放大电路实验,并对实验结果进行分析和讨论。

一、实验目的本实验的主要目的是通过搭建和测试一个基本的放大电路,了解放大电路的基本工作原理和性能指标。

二、实验材料和方法实验所需材料有电源、电阻、电容、运放芯片,实验仪器有万用表、示波器等。

以下是具体的实验步骤:1. 按照实验电路图搭建电路,运放芯片的引脚和电阻、电容的连接需要按照正确的顺序和极性进行。

2. 连接电源并适当调节工作电压,确保电路正常供电。

3. 使用万用表测量并记录各个元件的参数值,例如电阻的阻值、电容的容值等。

4. 将电压输入信号连接到放大电路的输入端,观察输出信号在示波器上的波形。

5. 根据实验结果,对放大电路进行分析并进行必要的调整。

三、实验结果与数据分析通过搭建和测试基本放大电路,我们得到了以下的实验结果和数据:1. 输入信号的幅度为1V,频率为1kHz。

2. 经过放大电路放大后,输出信号的幅度为5V,频率保持不变。

通过分析实验结果,我们可以得出以下结论和解释:1. 放大电路能够将低幅度的输入信号放大到较高的输出幅度。

2. 放大电路能够保持输入信号的频率不变。

四、实验讨论在这个基本放大电路实验中,我们观察到了信号的放大效果,并通过实验数据进行了分析。

然而,这只是一个简单的实验,还有很多其他因素需要考虑。

1. 噪声:实际电子系统中会存在各种噪声源,这些噪声会降低放大电路的性能。

我们在实验中没有对噪声进行特别的考虑,但在实际应用中,需要采取合适的方法来降低噪声水平。

2. 频率响应:不同的放大电路在频率响应方面可能会有所差异。

在实验中,我们只测试了一个特定的频率,但在实际应用中,需要对放大电路的频率响应范围进行充分的考虑。

五、结论通过这个基本放大电路实验,我们对放大电路的基本工作原理和性能指标有了一定的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、分析电路中各元器件的作用
交直流通路等效原则
一、直流通路 电容为开路,电感为短路 二、交流通路 电容为短路,电感为开路, 直流电源为短路
放大器交、直流电路分析示意图
常用的基极偏置电路(基极-发射极回路)
❖ 一、固定式偏置电路 ❖ 二、分压式偏置电路 ❖ 三、集电极-基极反馈式电路
分压式偏置电路1
❖ 5、共发射极放大器主要特性 ❖ (1)放大电流和电压 ❖ (2)输入和输出信号电压相位相反 ❖ (3)输入电阻大小一般 ❖ (4)输出电阻大小一般
共集电极放大器电路分析
共集电极放大器电路具体分析
❖ 1、放大器类型判别方法 ❖ 2、直流电路分析 ❖ (1)基极-发射极回路;集电极-发射极回路
(判断放大器工作状态) ❖ (2)电源电路 ❖ 3、交流电路分析 ❖ (1)交流信号输入回路 ❖ (2)交流信号输出回路 ❖ (3)信号传输线路分析 ❖ (4)信号处理过程分析 ❖ 4、元器件作用分析
❖ 5、共集电极放大器主要特性 ❖ (1)只有放大电流的能力 ❖ (2)电压跟随(射极输出器、射极跟随器) ❖ (2)输入和输出信号电压相位相同 ❖ (3)输入电阻大 ❖ (4)输出电阻小
放大器电路正确判断一
放大器断三极管构成的组态
共发射极放大电路、共集电极放大电路、共基极放大电路
二、分析放大器电路的直流电路
直流工作电压如何加到三极管各个电极上,即通过什么电路加 到集电极、基极和发射极上;
三、分析放大器电路的交流电路
(1)交流信号的传输线路分析; (2)信号在传输过程中经受了哪些处理环节,如放大、衰减等。
分压式偏置电路2
共发射极放大电路的具体分析
共发射极放大器电路具体分析
❖ 1、放大器类型判别方法 ❖ 2、直流电路分析 ❖ (1)基极-发射极回路;集电极-发射极回
路(判断放大器工作状态)
❖ (2)电源电路 ❖ 3、交流电路分析 ❖ (1)交流信号输入回路 ❖ (2)交流信号输出回路 ❖ (3)信号传输线路分析 ❖ (4)信号处理过程分析 ❖ 4、元器件作用分析
相关文档
最新文档