(推荐)高中数学导数及其应用专题

合集下载

专题03导数及其应用(解析版)

专题03导数及其应用(解析版)

专题03 导数及其应用1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.2.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立, 令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.3.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则 A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b1−a <0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.5.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ . 【答案】4 【解析】由4(0)y x x x =+>,得241y x'=-, 设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得0x =0x =, ∴曲线4(0)y x x x=+>上,点P 到直线0x y +=4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ . 【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标. 设点()00,A x y ,则00ln y x =. 又1y x'=, 当0x x =时,01y x '=, 则曲线ln y x =在点A 处的切线为0001()y y x x x -=-, 即00ln 1xy x x -=-, 将点()e,1--代入,得00e1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >, 且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增, 注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =, 此时01y =, 故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.7.【2019年高考北京理数】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0x xa -++=对任意的x 恒成立, 则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立, 又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.8.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析.【解析】(1)设()()g x f 'x =,则1()cos 1g x x x =-+,21sin ())(1x 'x g x =-++. 当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减.又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π⎥⎝⎦有唯一零点. (iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.【名师点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在性定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.9.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e x y =的切线. 【答案】(1)函数()f x 在(0,1)和(1,)+∞上是单调增函数,证明见解析; (2)见解析.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x .综上,f (x )有且仅有两个零点. (2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.【名师点睛】本题考查了利用导数求已知函数的单调性、考查了曲线的切线方程,考查了数学运算能力. 10.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1若存在,求出,a b 的所有值;若不存在,说明理由. 【答案】(1)见解析;(2)01a b =⎧⎨=-⎩或41a b =⎧⎨=⎩. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-.(ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =a =-a =0,与0<a <3矛盾. 综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.【名师点睛】这是一道常规的函数导数和不等式的综合题,题目难度比往年降低了不少,考查函数的单调性、最大值、最小值这种基本量的计算. 11.【2019年高考北京理数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ).当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-, 即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-. 由321()4g x x x =-得23()24g'x x x =-.令()0g'x =得0x =或83x =. (),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力. 12.【2019年高考天津理数】设函数()e cos ,()xf x xg x =为()f x 的导函数.(Ⅰ)求()f x 的单调区间;(Ⅱ)当,42x ππ⎡⎤∈⎢⎥⎣⎦时,证明()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭;(Ⅲ)设n x 为函数()()1u x f x =-在区间2,242n n ππ⎛⎫π+π+ ⎪⎝⎭内的零点,其中n ∈N ,证明20022sin c s e o n n n x x x -πππ+-<-. 【答案】(Ⅰ)()f x 的单调递增区间为3ππ2π,2π(),()44k k k f x ⎡⎤-+∈⎢⎥⎣⎦Z 的单调递减区间为π5π2π,2π()44k k k ⎡⎤++∈⎢⎥⎣⎦Z .(Ⅱ)见解析;(Ⅲ)见解析. 【解析】(Ⅰ)由已知,有()e (cos sin )x f 'x x x =-.因此,当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . (Ⅱ)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.依题意及(Ⅰ),有()e (cos sin )x g x x x =-,从而()2e sin x g'x x =-.当,42x ππ⎛⎫∈ ⎪⎝⎭时,0()g'x <,故()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭. 所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭.(Ⅲ)证明:依题意,()()10n n u x f x =-=,即cos e 1n x n x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且()()()22e cos ecos 2e n n yx n n n n n f y y x n n π--π==-π=∈N .由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥.由(Ⅱ)知,当,42x ππ⎛⎫∈ ⎪⎝⎭时,()0g'x <,所以()g x 在,42ππ⎡⎤⎢⎥⎣⎦上为减函数,因此()()004n g y g y g π⎛⎫≤<= ⎪⎝⎭.又由(Ⅱ)知,()()02n n n f y g y y π⎛⎫+-≥ ⎪⎝⎭,故()()()()()022*******2sin cos sin c e e e e os e n n n n n n y n n f y y g y g y g y y y x x -π-π-π-ππ--=-≤=--≤<. 所以,20022sin c s e o n n n x x x -πππ+-<-.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想和化归与转化思想.考查抽象概括能力、综合分析问题和解决问题的能力. 13.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x >(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注:e=…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦. 【解析】(1)当34a =-时,3()ln 04f x x x =-+>.3()4f 'x x =-+=所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a ≤,得0a <≤.当0a <≤()f x ≤2ln 0x -≥. 令1t a=,则t ≥.设()22ln ,g t t x t =≥则2()2ln g t t x =.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==.故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得,11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()10g t g x ⎛+=> ⎝.由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2xf x a .综上所述,所求a 的取值范围是⎛⎝⎦. 【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.14.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数.(1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-.因为(4)8f =,所以3(4)8a -=,解得2a =.(2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=-- ⎪⎝⎭.令()0f 'x =,得x b =或23a b x +=. 因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a ba b +===-. 此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得12x x ==. 列表如下:所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()2321(1)(1)227927b b b b b --+++=++23(1)2(1)(1)2272727b b b b +-+=-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得1x =.列表如下:所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭. 所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.15.【河北省武邑中学2019届高三第二次调研考试数学】函数f(x)=x 2−2lnx 的单调减区间是A .(0,1]B .[1,+∞)C .(−∞,−1]∪(0,1]D .[−1,0)∪(0,1]【答案】A【解析】f′(x)=2x −2x =2x 2−2x(x >0),令f′(x)≤0,解得:0<x ≤1. 故选A .【名师点睛】本题考查了函数的单调性,考查导数的应用,是一道基础题.16.【江西省南昌市2019届高三模拟考试数学】已知f(x)在R 上连续可导,f ′(x)为其导函数,且f(x)=e x +e −x −f ′(1)x ⋅(e x −e −x ),则f ′(2)+f ′(−2)−f ′(0)f ′(1)= A .4e 2+4e −2 B .4e 2−4e −2 C .0D .4e 2【答案】C【解析】∵()e e (1)()(e e ()x x x x f x f x f x --'-=+=---), ∴()f x 是偶函数,两边对x 求导,得()()f x f x -'-=',即()()f x f x '-=-', 则()f x '是R 上的奇函数,则(0)0f '=,(2)(2)f f '-=-',即(2)(2)0f f '+'-=,则(2)(2)(0)(1)0f f f f ''''+--=. 故选C .【名师点睛】本题主要考查函数导数值的计算,根据条件判断函数的奇偶性是解决本题的关键,是中档题.17.【江西省新八校2019届高三第二次联考数学】若3()3()21f x f x x x +-=++对x ∈R 恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为A .5250x y +-=B .10450x y +-=C .540x y +=D .204150x y --=【答案】B 【解析】()()3321f x f x x x +-=++……①,()()3321f x f x x x ∴-+=--+……②,联立①②,解得()31124f x x x =--+,则()2312f x x '=--, ()11511244f ∴=--+=-,()351122f '=--=-,∴切线方程为:()55142y x +=--,即10450x y +-=. 故选B.【名师点睛】本题考查利用导数的几何意义求解在某一点处的切线方程,关键是能够利用构造方程组的方式求得函数的解析式.18.【云南省玉溪市第一中学2019届高三第二次调研考试数学】函数2l ()n f x x x =的最小值为A .1e -B .1eC .12e-D .12e【答案】C【解析】由题得(0,)x ∈+∞,()2ln (2ln 1)f x x x x x x '=+=+, 令2ln 10x +=,解得12ex -=,则当12(0,e )x -∈时,()f x 为减函数,当12(e ,)x -∈+∞时,()f x 为增函数, 所以12e x -=处的函数值为最小值,且121(e )2ef -=-. 故选C.【名师点睛】本题考查用导数求函数最值,解此类题首先确定函数的定义域,其次判断函数的单调性,确定最值点,最后代回原函数求得最值.19.【四川省内江市2019届高三第三次模拟考试数学】若函数f(x)=12ax 2+xlnx −x 存在单调递增区间,则a 的取值范围是 A .1,1e ⎛⎫- ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .()1,-+∞D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B【解析】()ln f x ax x '=+, ∴()0f x '>在x ∈()0+∞,上成立, 即ax+ln x >0在x ∈()0+∞,上成立,即a ln xx->在x ∈()0+∞,上成立. 令g (x )ln x x =-,则g ′(x )21ln xx -=-, ∴g (x )ln xx =-在(0,e )上单调递减,在(e ,+∞)上单调递增,∴g (x )ln x x =-的最小值为g (e )=1e-,∴a >1e-. 故选B .【名师点睛】本题考查学生利用导数研究函数的单调性及转化化归思想的运用,属中档题.20.【山西省太原市2019届高三模拟试题(一)数学】已知定义在(0,+∞)上的函数f(x)满足xf ′(x)−f(x)<0,且f(2)=2,则f (e x )−e x >0的解集是 A .(−∞,ln2) B .(ln2,+∞) C .(0,e 2)D .(e 2,+∞)【答案】A 【解析】令g (x )=f (x )x,g ′(x )=xf ′(x )−f (x )x 2<0,∴g(x)在(0,+∞)上单调递减,且g (2)=f (2)2=1,故f (e x )−e x >0等价为f (e x )e x>f (2)2,即g (e x )>g (2),故e x <2,即x <ln2, 则所求的解集为(−∞,ln2). 故选A.【名师点睛】本题考查导数与单调性的应用,构造函数的思想,考查分析推理能力,是中档题. 21.【河南省焦作市2019届高三第四次模拟考试数学】已知a =ln √33,b =e −1,c =3ln28,则a,b,c 的大小关系为 A .b <c <a B .a >c >b C .a >b >cD .b >a >c【答案】D【解析】依题意,得ln33a ==,1lne e e b -==,3ln2ln888c ==.令f (x )=ln x x,所以f ′(x )=1−ln x x 2.所以函数f (x )在(0,e )上单调递增,在(e,+∞)上单调递减, 所以[f (x )]max =f (e )=1e =b ,且f (3)>f (8),即a >c , 所以b >a >c . 故选D.【名师点睛】本题主要考查了利用导数判断函数的单调性,构造出函数()ln xf x x=是解题的关键,属于中档题.22.【安徽省毛坦厂中学2019届高三校区4月联考数学】已知f (x )=lnx +1−ae x ,若关于x 的不等式f (x )<0恒成立,则实数a 的取值范围是 A .1,e ⎛⎫-∞ ⎪⎝⎭B .(),0-∞C .1,e⎡⎫+∞⎪⎢⎣⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由()0f x <恒成立得ln 1ex x a +>恒成立, 设()ln 1e x x h x +=,则()1ln 1e xx x h x -='-. 设()1ln 1g x x x =--,则()2110g x x x'=--<恒成立,∴g (x )在(0,+∞)上单调递减,又∵g (1)=0,∴当0<x <1时,g (x )>g (1)=0,即ℎ′(x )>0; 当x >1时,g (x )<g (1)=0,即ℎ′(x )<0, ∴ℎ(x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴ℎ(x)max =ℎ(1)=1e ,∴a >1e . 故选D.【名师点睛】本题考查利用导数求函数的最值,不等式恒成立问题,分离参数是常见的方法,属于中档题.23.【辽宁省丹东市2019届高三总复习质量测试】若1x =是函数()3221()(1)33f x x a x a a x =++-+-的极值点,则a 的值为 A .-2 B .3 C .-2或3D .-3或2【答案】B 【解析】()()()()32222113(3)(132)f x x a x a a f x x x a x a a '=++-=++-+-⇒+-,由题意可知(1)0f '=,即()212(1)303a a a a +-=+⇒-=+或2a =-,当3a =时,()222()2(1)389(9)(1)f x x a x a a x x x x +-'=++-=+-=+-,当1x >或9x <-时,()0f x '>,函数单调递增;当91x -<<时,()0f x '<,函数单调递减, 显然1x =是函数()f x 的极值点;当2a =-时,()2222()232(111))(0a a f x x a x x x x +-=-++=-=+-≥',所以函数()f x 是R 上的单调递增函数,没有极值,不符合题意,舍去. 故3a =. 故选B .【名师点睛】本题考查了已知函数的极值,求参数的问题.本题易错的地方是求出a 的值,没有通过单调性来验证1x =是不是函数的极值点,也就是说使得导函数为零的自变量的值,不一定是极值点. 24.【黑龙江省大庆市第一中学2019届高三下学期第四次模拟(最后一卷)考试】已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-【答案】A【解析】设()()2g x x f x =,因为()f x 为R 上的奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上的奇函数对()g x 求导,得()()()2f g f x x x x x '=+'⎡⎤⎣⎦, 而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增,则不等式()()()22018+2018420x f x f +-<+即()()()22018+201842x f x f +<--, 即()()()22018+201842x f x f +<, 即()()20182g x g +<,所以20182x +<,解得2016x <-. 故选A.【名师点睛】本题考查构造函数解不等式,利用导数求函数的单调性,函数的奇偶性,题目较综合,有一定的技巧性,属于中档题.25.【重庆西南大学附属中学校2019届高三第十次月考数学】曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线与直线10ax y --=垂直,则a =________. 【答案】12-【解析】因为21()ln 2f x x x x =+,所以()ln 1f x x x '=++, 因此,曲线21()ln 2f x x x x =+在点(1(1))f ,处的切线斜率为(1)112k f '==+=, 又该切线与直线10ax y --=垂直,所以12a =-. 故答案为12-. 【名师点睛】本题主要考查导数在某点处的切线斜率问题,熟记导数的几何意义即可求解,属于常考题型.26.【广东省深圳市高级中学2019届高三适应性考试(6月)数学】已知函数22,0,()e ,0,x x x f x x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.【答案】3ln 22-【解析】作出函数()f x 的图象如图所示,由()2f x a =⎡⎤⎣⎦,可得()1f x =>, 即1a >,不妨设12x x < ,则2212e x x =(1)t t =>,则12ln x x t ==,12ln x x t ∴+=令()ln g t t =()g t '= ∴当18t <<时,()0g t '>,g t 在()1,8上单调递增;当8t时,()0g t '<,g t 在()8,+∞上单调递减,∴当8t =时,g t 取得最大值,为(8)ln823ln22g =-=-.故答案为3ln 22-.【名师点睛】本题主要考查方程的根与图象交点的关系,考查了利用导数判断函数的单调性以及求函数的极值与最值,属于难题.求函数()f x 的极值与最值的步骤:(1)确定函数的定义域;(2)求导数()f x ';(3)解方程()0,f x '=求出函数定义域内的所有根;(4)判断()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值.(5)如果只有一个极值点,则在该点处取得极值也是最值;(6)如果求闭区间上的最值还需要比较端点处的函数值与极值的大小.27.【山东省烟台市2019届高三3月诊断性测试(一模)数学】已知函数4211()42f x x ax =-,a ∈R . (1)当1a =时,求曲线()f x 在点(2,(2))f 处的切线方程;(2)设函数2()(22)e e ()x g x x x a f x =-+--,其中e 2.71828...=是自然对数的底数,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【答案】(1)6100x y --=;(2)当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞单调递增,在(单调递减,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【解析】(1)由题意3()f x x ax '=-,所以当1a =时,(2)2f =,(2)6f '=, 因此曲线()y f x =在点(2,(2))f 处的切线方程是26(2)y x -=-, 即6100x y --=.(2)因为2()(22)e e ()x g x x x a f x =-+--, 所以2()(22)e (22)e e '()x x g x x x x a f x '=-+-+--232()e e()()(e e )x x x a x ax x a x =---=--,令()e e x h x x =-,则()e e x h x '=-, 令()0h x '=得1x =,当(,1)x ∈-∞时,()0h x '<,()h x 单调递减, 当(1,)x ∈+∞时,()0h x '>,()h x 单调递增, 所以当1x =时,min ()(1)0h x h ==, 也就说,对于x ∀∈R 恒有()0h x ≥. 当0a ≤时,2()()()0g x x a h x '=-≥,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,令()0g x '=,可得x =当x <x >2()()()0g x x a h x '=-≥,()g x 单调递增,当x <<()0g x '<,()g x 单调递减,因此,当x =()g x 取得极大值2e(2)e4g a =+;当x =()g x 取得极小值2e (4g a =-+. 综上所述:当0a ≤时,()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,()g x 在(,-∞和)+∞上单调递增,在(上单调递减, 函数既有极大值,又有极小值,极大值为2e(2)e4g a =+,极小值为2e (4g a =-+. 【名师点睛】本题考查了函数的单调性,极值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.28.【陕西省2019届高三第三次联考数学】已知函数f(x)=lnx −ax ,g(x)=x 2,a ∈R .(1)求函数f(x)的极值点;(2)若f(x)≤g(x)恒成立,求a 的取值范围.【答案】(1)极大值点为1a ,无极小值点.(2)a ≥−1.【解析】(1)()ln f x x ax =-的定义域为(0,+∞),f ′(x )=1x −a , 当a ≤0时,f ′(x )=1x −a >0,所以f (x )在(0,+∞)上单调递增,无极值点;当a >0时,解f ′(x )=1x −a >0得0<x <1a ,解f ′(x )=1x −a <0得x >1a , 所以f (x )在(0,1a )上单调递增,在(1a ,+∞)上单调递减,所以函数f (x )有极大值点,为1a ,无极小值点. (2)由条件可得ln x −x 2−ax ≤0(x >0)恒成立, 则当x >0时,a ≥ln x x−x 恒成立,令ℎ(x )=ln x x−x(x >0),则ℎ′(x )=1−x 2−ln xx 2,令k (x )=1−x 2−ln x(x >0),则当x >0时,k ′(x )=−2x −1x <0,所以k (x )在(0,+∞)上为减函数. 又k (1)=0,所以在(0,1)上,ℎ′(x )>0;在(1,+∞)上,ℎ′(x )<0. 所以ℎ(x )在(0,1)上为增函数,在(1,+∞)上为减函数, 所以ℎ(x )max =ℎ(1)=−1,所以a ≥−1.【名师点睛】对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.29.【山东省济宁市2019届高三二模数学】已知函数f(x)=lnx −xe x +ax(a ∈R).(1)若函数f(x)在[1,+∞)上单调递减,求实数a 的取值范围; (2)若a =1,求f(x)的最大值.【答案】(1)a ≤2e −1;(2)f(x)max =−1.【解析】(1)由题意知,f′(x)=1x −(e x +xe x )+a =1x −(x +1)e x +a ≤0在[1,+∞)上恒成立, 所以a ≤(x +1)e x −1x 在[1,+∞)上恒成立. 令g(x)=(x +1)e x −1x ,则g′(x)=(x +2)e x +1x 2>0,所以g(x)在[1,+∞)上单调递增,所以g(x)min =g(1)=2e −1, 所以a ≤2e −1.(2)当a =1时,f(x)=lnx −xe x +x(x >0). 则f′(x)=1x−(x +1)e x +1=(x +1)(1x−e x ),令m(x)=1x −e x ,则m′(x)=−1x 2−e x <0, 所以m(x)在(0,+∞)上单调递减.由于m(12)>0,m(1)<0,所以存在x 0>0满足m(x 0)=0,即e x 0=1x 0.当x ∈(0,x 0)时,m(x)>0,f′(x)>0;当x ∈(x 0,+∞)时,m(x)<0,f′(x)<0. 所以f(x)在(0,x 0)上单调递增,在(x 0,+∞)上单调递减. 所以f(x)max =f (x 0)=lnx 0−x 0e x 0+x 0, 因为e x 0=1x 0,所以x 0=−lnx 0,所以f(x 0)=−x 0−1+x 0=−1, 所以f(x)max =−1.【名师点睛】本题主要考查利用导数研究函数的单调性,最值,零点存在性定理及其应用,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.30.【福建省龙岩市2019届高三5月月考数学】今年3月5日,国务院总理李克强作的政府工作报告中,提到要“惩戒学术不端,力戒学术不端,力戒浮躁之风”.教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评,2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”.设每篇学位论文被每位专家评议为“不合格”的概率均为(01)p p <<,且各篇学位论文是否被评议为“不合格”相互独立.(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为()f p ,求()f p ;(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元.现以此方案实施,且抽检论文为6000篇,问是否会超过预算并说明理由.【答案】(1)−3p 5+12p 4−17p 3+9p 2;(2)若以此方案实施,不会超过预算.【解析】(1)因为一篇学位论文初评被认定为“存在问题学位论文”的概率为C 32p 2(1−p )+C 33p 3, 一篇学位论文复评被认定为“存在问题学位论文”的概率为C 31p (1−p )2[1−(1−p )2],所以一篇学位论文被认定为“存在问题学位论文”的概率为f (p )=C 32p 2(1−p )+C 33p 3+C 31p (1−p )2[1−(1−p )2]=3p 2(1−p )+p 3+3p (1−p )2[1−(1−p )2] =−3p 5+12p 4−17p 3+9p 2.(2)设每篇学位论文的评审费为X 元,则X 的可能取值为900,1500.P (X =1500)=C 31p (1−p )2, P (X =900)=1−C 31p (1−p )2, 所以E (X )=900×[1−C 31p (1−p )2]+1500×C 31p (1−p )2=900+1800p (1−p )2. 令g (p )=p (1−p )2,p ∈(0,1),g ′(p )=(1−p )2−2p (1−p )=(3p −1)(p −1). 当p ∈(0,13)时,g ′(p )>0,g (p )在(0,13)上单调递增;当p ∈(13,1)时,g ′(p )<0,g (p )在(13,1)上单调递减,所以g (p )的最大值为g (13)=427.所以实施此方案,最高费用为100+6000×(900+1800×427)×10−4=800(万元). 综上,若以此方案实施,不会超过预算.【名师点睛】本题主要考查互斥事件的概率和独立重复试验的概率的求法,考查随机变量的期望的求法,考查利用导数求函数的最大值,意在考查学生对这些知识的理解掌握水平和分析推理能力. 31.【北京市西城区2019届高三4月统一测试(一模)数学】设函数f(x)=m e x −x 2+3,其中m ∈R .(1)当f(x)为偶函数时,求函数ℎ(x)=xf(x)的极值;(2)若函数f(x)在区间[−2 , 4]上有两个零点,求m 的取值范围. 【答案】(1)极小值ℎ(−1)=−2,极大值ℎ(1)=2;(2)−2e <m <13e 4或m =6e 3.【解析】(1)由函数f(x)是偶函数,得f(−x)=f(x), 即m e −x −(−x)2+3=m e x −x 2+3对于任意实数x 都成立, 所以m =0. 此时ℎ(x)=xf(x)=−x 3+3x ,则ℎ′(x)=−3x 2+3. 由ℎ′(x)=0,解得x =±1. 当x 变化时,ℎ′(x)与ℎ(x)的变化情况如下表所示:所以ℎ(x)在(−∞,−1),(1,+∞)上单调递减,在(−1,1)上单调递增. 所以ℎ(x)有极小值ℎ(−1)=−2,极大值ℎ(1)=2. (2)由f(x)=m e x −x 2+3=0,得m =x 2−3e x.所以“f(x)在区间[−2 , 4]上有两个零点”等价于“直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点”.对函数g(x)求导,得g ′(x)=−x 2+2x+3e x.由g ′(x)=0,解得x 1=−1,x 2=3. 当x 变化时,g ′(x)与g(x)的变化情况如下表所示:所以g(x)在(−2,−1),(3,4)上单调递减,在(−1,3)上单调递增. 又因为g(−2)=e 2,g(−1)=−2e ,g(3)=6e 3<g(−2),g(4)=13e 4>g(−1),所以当−2e <m <13e4或m =6e3时,直线y =m 与曲线g(x)=x 2−3e x,x ∈[−2 , 4]有且只有两个公共点.即当−2e <m <13e 4或m =6e3时,函数f(x)在区间[−2 , 4]上有两个零点.【名师点睛】利用函数零点的情况求参数值或取值范围的方法: (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解. (3)转化为两熟悉的函数图象问题,从而构建不等式求解.。

高中数学专题 微专题4 导数的几何意义及函数的单调性

高中数学专题 微专题4 导数的几何意义及函数的单调性
所以函数f(x)是增函数,
由 f(3x-2)<f(x2)可得x32x>-3x2->02,, 解得23<x<1 或 x>2, 因此不等式 f(3x-2)<f(x2)的解集为23,1∪(2,+∞).
跟踪训练3 (1)(2023·玉林模拟)设函数f(x)=ex-e1x-2x,若f(a-3)+ f(2a2)≤0,则实数a的取值范围是
专题一 函数与导数
微专题4
导数的几何意义及函数的单调性
考情分析
1.此部分内容是高考命题的热点内容.在选择题、填空题中多考 查导数的计算、几何意义,难度较小. 2.应用导数研究函数的单调性多在选择题、填空题靠后的位置 考查,难度中等偏上,属综合性问题.
思维导图
内容索引
典型例题
热点突破
PART ONE
则 f(x)的单调递增区间为12,-1a,单调递减区间为0,12,-1a,+∞. 2x-12
当 a=-2 时,f′(x)=- x ≤0 恒成立, f(x)的单调递减区间为(0,+∞),无单调递增区间. 当 a<-2 时,-1a<12, 由 f′(x)>0,得-1a<x<12;
由 f′(x)<0,得 0<x<-1a或 x>12,
则直线 l 的方程为 y-(3+ln x2)=x12(x-x2), 即 y=x12x+ln x2+2.
所以 ex1=x12,且 x1ex1+ex1+1=ln x2+2,
消去x2得(x1-1)( ex1-1)=0,
故x1=1或x1=0,
所以直线l的方程为y=ex+1或y=x+2.
跟踪训练1 (1)(2023·常德模拟)已知l为曲线y=a+xln x 在(1,a)处的切线,

_高中数学第一章导数及其应用2

_高中数学第一章导数及其应用2

f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.

专题导数及其应用(解答题)(原卷版)(文科专用)-五年(18-22)高考数学真题分项汇编(全国通用)

专题导数及其应用(解答题)(原卷版)(文科专用)-五年(18-22)高考数学真题分项汇编(全国通用)

专题04 导数及其应用(解答题)(文科专用) 1.【2022年全国甲卷】已知函数f(x)=x 3−x,g(x)=x 2+a ,曲线y =f(x)在点(x 1,f (x 1))处的切线也是曲线y =g(x)的切线.(1)若x 1=−1,求a ;(2)求a 的取值范围.2.【2022年全国乙卷】已知函数f(x)=ax −1x −(a +1)lnx . (1)当a =0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a 的取值范围.3.【2021年甲卷文科】设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围. 4.【2021年乙卷文科】已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 5.【2020年新课标1卷文科】已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.6.【2020年新课标2卷文科】已知函数f (x )=2ln x +1.(1)若f (x )≤2x +c ,求c 的取值范围;(2)设a >0时,讨论函数g (x )=()()f x f a x a--的单调性. 7.【2020年新课标3卷文科】已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.8.【2019年新课标2卷文科】已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.9.【2019年新课标3卷文科】已知函数32()22f x x ax =-+. (1)讨论()f x 的单调性;(2)当0<<3a 时,记()f x 在区间[]0,1的最大值为M ,最小值为m ,求M m -的取值范围.10.【2018年新课标1卷文科】【2018年新课标I 卷文】已知函数()e 1x f x a lnx =--.(1)设2x =是()f x 的极值点.求a ,并求()f x 的单调区间;(2)证明:当1ea ≥时,()0f x ≥. 11.【2018年新课标2卷文科】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.12.【2018年新课标3卷文科】已知函数()21x ax x f x e +-=. (1)求曲线()y f x =在点()0,1-处的切线方程; (2)证明:当1a ≥时,()0f x e +≥.。

导数应用八个专题汇总

导数应用八个专题汇总

1.导数应用之函数单调性题组1:1.求函数32()3912f x x x x =--+的单调区间.2.求函数2()3ln f x x x x =-+的单调区间.3.求函数2()3ln f x x x x =+-的单调区间.4.求函数1()ln f x x x=的单调区间.5.求函数ln ()ln ln(1)1xf x x x x=-+++的单调区间. 题组2:1.讨论函数4322411()(0)43f x x ax a x a a =+-+>的单调区间.2.讨论函数32()3912f x x ax x =+--的单调区间.3.求函数321()(2)4132mf x mx x x =-+++(0)m >的单调递增区间.4.讨论函数1ln )1()(2+++=ax x a x f 的单调性.5.讨论函数1()ln 1af x x ax x-=-+-的单调性. 题组3:1.设函数32()1f x x ax x =+++. (1)讨论函数()f x 的单调区间;(2)设函数()f x 在区间21()33--,是减函数,求a 的取值围.2.(1)已知函数2()ln f x ax x x =++在区间(1,3)上单调递增,数a 的取值围. (2)已知函数2()ln f x ax x x =++在区间(1,3)上单调递减,数a 的取值围.3.已知函数32()(3)xf x x x ax b e -=+++. (1)若3a b ==-,求()f x 的单调区间;(2)若()f x 在(,),(2,)αβ-∞单调递增,在(,2),(,)αβ+∞单调递减,证明:6βα->.解:(1)当a="b=" -3时,f (x )=(x+3x-3x-3)e ,故= (3)分当x<-3或0<x<3时,>0; 当-3<x<0或x>3时,<0,从而f(x)在(-,-3),(0,3)上单调递增,在(-3,0),(3,+)上单调递减………. 6分 (2)…..7分…………….……………8分将……..…..…………….10分………………………………………………..11分 .由此可得a<-6,于是>6。

专题16 导数及其应用小题综合(学生卷)-十年(2015-2024)高考真题数学分项汇编(全国通用)

专题16 导数及其应用小题综合(学生卷)-十年(2015-2024)高考真题数学分项汇编(全国通用)

专题16导数及其应用小题综合考点十年考情(2015-2024)命题趋势考点1导数的基本计算及其应用(10年4考)2020·全国卷、2018·天津卷2016·天津卷、2015·天津卷1.掌握基本函数的导数求解,会导数的基本计算,会求切线方程,会公切线的拓展,切线内容是新高考的命题热点,要熟练掌握2.会利用导数判断函数的单调性及会求极值最值,会根据极值点拓展求参数及其他内容,极值点也是新高考的命题热点,要熟练掌握3.会用导数研究函数的零点和方程的根,会拓展函数零点的应用,会导数与函数性质的结合,该内容也是新高考的命题热点,要熟练掌握4.会构建函数利用导数判断函数单调性比较函数值大小关系,该内容也是新高考的命题热点,要熟练掌握考点2求切线方程及其应用(10年10考)2024·全国甲卷、2023·全国甲卷、2022·全国新Ⅱ卷2022·全国新Ⅰ卷、2021·全国甲卷、2021·全国新Ⅱ卷2021·全国新Ⅰ卷、2020·全国卷、2020·全国卷2020·全国卷、2019·江苏卷、2019·全国卷2019·天津卷、2019·全国卷、2019·全国卷2018·全国卷、2018·全国卷、2018·全国卷2018·全国卷、2017·全国卷、2016·全国卷2016·全国卷、2015·全国卷、2015·陕西卷2015·陕西卷考点3公切线问题(10年3考)2024·全国新Ⅰ卷、2016·全国卷、2015·全国卷考点4利用导数判断函数单调性及其应用(10年6考)2024·全国新Ⅰ卷、2023·全国新Ⅱ卷、2023·全国乙卷2019·北京卷、2017·山东卷、2016·全国卷2015·陕西卷、2015·福建卷、2015·全国卷考点5求极值与最值及其应用(10年5考)2024·上海卷、2023·全国新Ⅱ卷、2022·全国乙卷2022·全国甲卷、2021·全国新Ⅰ卷、2018·全国卷2018·江苏卷考点6利用导数研究函数的极值点及其应用(10年5考)2022·全国新Ⅰ卷、2022·全国乙卷、2021·全国乙卷、2017·全国卷、2016·四川卷5.要会导数及其性质的综合应用,加强复习考点7导数与函数的基本性质结合问题(10年6考)2024·全国新Ⅰ卷、2023·全国新Ⅰ卷、2022·全国新Ⅰ卷2021·全国新Ⅱ卷、2017·山东卷、2015·四川卷考点8利用导数研究函数的零点及其应用(10年6考)2024·全国新Ⅱ卷、2023·全国乙卷、2021·北京卷、2018·江苏卷、2017·全国卷、2015·陕西卷考点9利用导数研究方程的根及其应用(10年3考)2024·全国甲卷、2021·北京卷、2015·安徽卷2015·全国卷、2015·安徽卷考点10构建函数利用导数判断函数单调性比较函数值大小关系(10年3考)2022·全国甲卷、2022·全国新Ⅰ卷、2021·全国乙卷考点01导数的基本计算及其应用1.(2020·全国·高考真题)设函数e ()xf x x a=+.若(1)4e f '=,则a =.2.(2018·天津·高考真题)已知函数f (x )=exlnx ,()'f x 为f (x )的导函数,则()'1f 的值为.3.(2016·天津·高考真题)已知函数()(2+1)e ,()x f x x f x '=为()f x 的导函数,则(0)f '的值为.4.(2015·天津·高考真题)已知函数()()ln ,0,f x ax x x =∈+∞,其中a 为实数,()f x '为()f x 的导函数,若()13f '=,则a 的值为.考点02求切线方程及其应用1.(2024·全国甲卷·高考真题)设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在点()0,1处的切线与两坐标轴所围成的三角形的面积为()A .16B .13C .12D .232.(2023·全国甲卷·高考真题)曲线e 1xy x =+在点e 1,2⎛⎫ ⎪⎝⎭处的切线方程为()A .e4y x =B .e 2y x =C .e e 44y x =+D .e 3e24y x =+3.(2022·全国新Ⅱ卷·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为,.4.(2022·全国新Ⅰ卷·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是.5.(2021·全国甲卷·高考真题)曲线2x 1y x 2-=+在点()1,3--处的切线方程为.6.(2021·全国新Ⅱ卷·高考真题)已知函数12()1,0,0x f x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是.7.(2021·全国新Ⅰ卷·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a <B .e a b <C .0e ba <<D .0e ab <<8.(2020·全国·高考真题)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +129.(2020·全国·高考真题)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为()A .21y x =--B .21y x =-+C .23y x =-D .21y x =+10.(2020·全国·高考真题)曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为.11.(2019·江苏·高考真题)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是.12.(2019·全国·高考真题)已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则A .,1a eb ==-B .,1a eb ==C .1,1a eb -==D .1,1a eb -==-13.(2019·天津·高考真题)曲线cos 2xy x =-在点()0,1处的切线方程为.14.(2019·全国·高考真题)曲线23()e x y x x =+在点(0,0)处的切线方程为.15.(2019·全国·高考真题)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为A .10x y --π-=B .2210x y --π-=C .2210x y +-π+=D .10x y +-π+=16.(2018·全国·高考真题)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为()A .2y x=-B .y x=-C .2y x=D .y x=17.(2018·全国·高考真题)曲线()1e xy ax =+在点()01,处的切线的斜率为2-,则=a .18.(2018·全国·高考真题)曲线2ln y x =在点()1,0处的切线方程为.19.(2018·全国·高考真题)曲线2ln(1)y x =+在点(0,0)处的切线方程为.20.(2017·全国·高考真题)曲线21y x x=+在点(1,2)处的切线方程为.21.(2016·全国·高考真题)已知()f x 为偶函数,当0x ≤时,1()e x f x x --=-,则曲线()y f x =在点(1,2)处的切线方程是.22.(2016·全国·高考真题)已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是.23.(2015·全国·高考真题)已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则=a .24.(2015·陕西·高考真题)设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为.25.(2015·陕西·高考真题)函数x y xe =在其极值点处的切线方程为.考点03公切线问题1.(2024·全国新Ⅰ卷·高考真题)若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .2.(2016·全国·高考真题)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b =.3.(2015·全国·高考真题)已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=.考点04利用导数判断函数单调性及其应用1.(2024·全国新Ⅰ卷·高考真题)(多选)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023·全国新Ⅱ卷·高考真题)已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A .2eB .eC .1e -D .2e -3.(2023·全国乙卷·高考真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是.4.(2019·北京·高考真题)设函数f (x )=e x +a e −x (a 为常数).若f (x )为奇函数,则a =;若f (x )是R 上的增函数,则a 的取值范围是.5.(2017·山东·高考真题)若函数()e xf x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是A .()2xf x -=B .()2f x x=C .()-3xf x =D .()cos f x x=6.(2016·全国·高考真题)若函数()1sin 2sin 3f x x x a x =-+在R 上单调递增,则a 的取值范围是A .[]1,1-B .11,3⎡⎤-⎢⎥⎣⎦C .11,33⎡⎤-⎢⎥⎣⎦D .11,3⎡⎤--⎢⎣⎦7.(2015·陕西·高考真题)设()sin f x x x =-,则()f x =A .既是奇函数又是减函数B .既是奇函数又是增函数C .是有零点的减函数D .是没有零点的奇函数8.(2015·福建·高考真题)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是()A .11f k k ⎛⎫<⎪⎝⎭B .111f k k ⎛⎫>⎪-⎝⎭C .1111f k k ⎛⎫<⎪--⎝⎭D .111k f k k ⎛⎫>⎪--⎝⎭9.(2015·全国·高考真题)设函数'()f x 是奇函数()f x (x R ∈)的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是A .(,1)(0,1)-∞-B .(1,0)(1,)-È+¥C .(,1)(1,0)-∞-- D .(0,1)(1,)⋃+∞考点05求极值与最值及其应用1.(2024·上海·高考真题)已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈-<R ,在使得[]1,1M =-的所有()f x 中,下列成立的是()A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x -处取到极小值2.(2023·全国新Ⅱ卷·高考真题)若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A .0bc >B .0ab >C .280b ac +>D .0ac <3.(2022·全国乙卷·高考真题)函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为()A .ππ22-,B .3ππ22-,C .ππ222-+,D .3ππ222-+,4.(2022·全国甲卷·高考真题)当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=()A .1-B .12-C .12D .15.(2021·全国新Ⅰ卷·高考真题)函数()212ln f x x x =--的最小值为.6.(2018·全国·高考真题)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是.7.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为.考点06利用导数研究函数的极值点及其应用1.(2022·全国新Ⅰ卷·高考真题)(多选)已知函数3()1f x x x =-+,则()A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线2.(2022·全国乙卷·高考真题)已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是.3.(2021·全国乙卷·高考真题)设0a ≠,若a 为函数()()()2f x a x a x b =--的极大值点,则()A .a b<B .a b>C .2ab a <D .2ab a >4.(2017·全国·高考真题)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为.A .1-B .32e --C .35e -D .15.(2016·四川·高考真题)已知a 为函数f (x )=x 3–12x 的极小值点,则a=A .–4B .–2C .4D .2考点07导数与函数的基本性质结合问题1.(2024·全国新Ⅰ卷·高考真题)(多选)设函数2()(1)(4)f x x x =--,则()A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x -<-<D .当10x -<<时,(2)()f x f x ->2.(2023·全国新Ⅰ卷·高考真题)(多选)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点3.(2022·全国新Ⅰ卷·高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=4.(2021·全国新Ⅱ卷·高考真题)写出一个同时具有下列性质①②③的函数():f x .①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.5.(2017·山东·高考真题)若函数()x y e f x = 2.71828...e =(是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质,下列函数中所有具有M 性质的函数的序号为①=2xf x -()②=3xf x -()③3=f x x ()④2=2f x x +()6.(2015·四川·高考真题)已知函数f (x )=2x ,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ;④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n.其中真命题有(写出所有真命题的序号).考点08利用导数研究函数的零点及其应用1.(2024·全国新Ⅱ卷·高考真题)(多选)设函数32()231f x x ax =-+,则()A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2023·全国乙卷·高考真题)函数()32f x x ax =++存在3个零点,则a 的取值范围是()A .(),2-∞-B .(),3-∞-C .()4,1--D .()3,0-3.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.4.(2018·江苏·高考真题)若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为.5.(2017·全国·高考真题)已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则=a A .12-B .13C .12D .16.(2015·陕西·高考真题)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是A .1-是()f x 的零点B .1是()f x 的极值点C .3是()f x 的极值D .点(2,8)在曲线()y f x =上考点09利用导数研究方程的根及其应用1.(2024·全国甲卷·高考真题)曲线33y x x =-与()21y x a =--+在()0,∞+上有两个不同的交点,则a 的取值范围为.2.(2021·北京·高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论:①若0k =,()f x 恰有2个零点;②存在负数k ,使得()f x 恰有1个零点;③存在负数k ,使得()f x 恰有3个零点;④存在正数k ,使得()f x 恰有3个零点.其中所有正确结论的序号是.3.(2015·安徽·高考真题)函数()32f x ax bx cx d =+++的图象如图所示,则下列结论成立的是()A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d <4.(2015·全国·高考真题)设函数()(21)x f xe x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是()A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭D .3,12e ⎡⎫⎪⎢⎣⎭5.(2015·安徽·高考真题)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==.考点10构建函数利用导数判断函数单调性比较函数值大小关系1.(2022·全国甲卷·高考真题)已知3111,cos ,4sin 3244a b c ===,则()A .c b a>>B .b a c>>C .a b c >>D .a c b>>2.(2022·全国新Ⅰ卷·高考真题)设0.110.1e ,ln 0.99a b c ===-,则()A .a b c <<B .c b a <<C .c<a<bD .a c b<<3.(2021·全国乙卷·高考真题)设2ln1.01a =,ln1.02b =,1c =-.则()A .a b c<<B .b<c<aC .b a c<<D .c<a<b。

高考数学最新真题专题解析—导数及其应用(新高考卷)

高考数学最新真题专题解析—导数及其应用(新高考卷)

高考数学最新真题专题解析—导数及其应用(新高考卷)【母题来源】2022年新高考I 卷【母题题文】已知函数f(x)=x 3−x +1,则( ) A. f(x)有两个极值点 B. f(x)有三个零点C. 点(0,1)是曲线y =f(x)的对称中心D. 直线y =2x 是曲线y =f(x)的切线 【答案】AC 【分析】本题考查利用导数研究函数的极值与零点以及曲线上一点的切线问题,函数的对称性,考查了运算能力以及数形结合思想,属于中档题. 【解答】解: f(x)=x 3−x +1⇒f′(x)=3x 2−1 ,令 f′(x)=0 得: x =±√33,f′(x)>0⇒x <−√33 或 x >√33 ; f′(x)<0⇒−√33<x <√33,所以 f(x) 在 (−∞,−√33) 上单调递增,在 (−√33,√33) 上单调递减,在 (√33,+∞)上单调递增,所以 f(x) 有两个极值点 (x =−√33 为极大值点, x =√33为极小值点 ) ,故 A正确 ;又 f(−√33)=−√39−(−√33)+1=1+2√39>0 , f(√33)=√39−√33+1=1−2√39>0 ,所以 f(x) 仅有 1 个零点 ( 如图所示 ) ,故 B 错 ;又 f(−x)=−x 3+x +1⇒f(−x)+f(x)=2 ,所以 f(x) 关于 (0,1) 对称,故 C 正确 ;对于 D 选项,设切点 P(x 0,y 0) ,在 P 处的切线为 y −(x 03−x 0+1)=(3x 02−1)(x −x 0) ,即 y =(3x 02−1)x −2x 03+1 ,若 y =2x 是其切线,则 {3x 02−1=2−2x 03+1=0,方程组无解,所以 D 错. 【母题来源】2022年新高考II 卷【母题题文】曲线y =ln|x|经过坐标原点的两条切线方程分别为 , . 【答案】y =x e y =−xe 【分析】本题考查函数切线问题,设切点坐标,表示出切线方程,带入坐标原点,求出切点的横坐标,即可求出切线方程,为一般题. 【解答】解:当 x >0 时,点 (x 1,lnx 1)(x 1>0) 上的切线为 y −lnx 1=1x 1(x −x 1).若该切线经过原点,则 lnx 1−1=0 ,解得 x =e , 此的切线方程为 y =xe .当 x <0 时,点 (x 2,ln(−x 2))(x 2<0) 上的切线为 y −ln (−x 2)=1x 2(x −x 2) .若该切线经过原点,则 ln(−x 2)−1=0 ,解得 x =−e , 此时切线方程为 y =−xe . 【命题意图】考察导数的概念,考察导数的几何意义,考察导数求导法则求导公式,导数的应用,考察数学运算和逻辑推导素养,考察分类讨论思想,函数和方程思想,化归与转化的数学思想,分析问题与解决问题的能力。

高中数学【导数及其应用】

高中数学【导数及其应用】

第三章导数及其应用第一节导数的概念及运算新课程标准考向预测1.了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.2.通过函数图象直观地理解导数的几何意义.3.能根据导数定义,求函数y=c,y=x,y=x2,y=1x的导数.4.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.命题角度1.导数的运算2.导数的几何意义及应用核心素养数学运算、数学抽象[知识梳理]1.导数的概念(1)函数y=f(x)在x=x0处的导数:函数y=f(x)在x=x0处的瞬时变化率Δx→0limΔyΔx=Δx→0limf(x0+Δx)-f(x0)Δx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′x=x0,即f′(x0)=Δx→0limΔyΔx=Δx→0limf(x0+Δx)-f(x0)Δx.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.(2)导数的几何意义:函数f(x)在x=x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点P(x0,y0)处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-y0=f′(x0)(x-x0).曲线y=f(x)在点P(x0,y0)处的切线是指P为切点,斜率为k=f′(x0)的切线,是唯一的一条切线.(3)函数f(x)的导函数f′(x)=Δx→0lim f(x+Δx)-f(x)Δx.(4)f′(x)是一个函数,f′(x0)是函数f′(x)在x0处的函数值(常数),[f′(x0)]′=0.2.基本初等函数的导数公式3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).[常用结论]1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.熟记以下结论:(1)⎝⎛⎭⎫1x ′=-1x 2; (2)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x ).[基础自测]一、走进教材1.(选修2-2P 19B 组T 2改编)曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15解析:选C 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9.故选C.2.(选修2-2P 3例题改编)在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =__________m /s ,加速度a =__________m/s 2.解析:v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8.答案:(-9.8t +6.5) -9.8 二、走出误区常见误区:①对导数概念的理解不清致误;②运算法则的运用不正确致误.3.函数f (x )=x 2在区间[1,2]上的平均变化率为________,在x =2处的导数为________. 解析:函数f (x )=x 2在区间[1,2]上的平均变化率为22-122-1=3.因为f ′(x )=2x ,所以f (x )在x =2处的导数为2×2=4.答案:3 44.函数y =ln xx 的导数________.答案:y ′=1-ln xx 2考点一[基础自学过关]导数的运算1.f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B f ′(x )=2 018+ln x +x ×1x =2 019+ln x ,故由f ′(x 0)=2 019,得2 019+lnx 0=2 019,则ln x 0=0,解得x 0=1.2.已知f ′(x )是函数f (x )的导数,f (x )=f ′(1)·2x +x 2,则f ′(2)=( ) A.12-8ln 21-2ln 2 B.21-2ln 2 C.41-2ln 2D .-2解析:选C 因为f ′(x )=f ′(1)·2x ln 2+2x ,所以f ′(1)=f ′(1)·2ln 2+2,解得f ′(1)=21-2ln 2,所以f ′(x )=21-2ln 2·2x ln 2+2x ,所以f ′(2)=21-2ln 2×22ln 2+2×2=41-2ln 2.3.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________. 解析:f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数且f ′(1)=2, ∴f ′(-1)=-2. 答案:-24.求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos x ex .解:(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x -cos x (e x)′(e x )2=-sin x +cos x e x . [解题技法]1.求函数导数的总原则:先化简解析式,再求导. 2.常见形式及具体求导6种方法连乘形式 先展开化为多项式形式,再求导三角形式 先利用三角函数公式转化为和或差的形式,再求导 分式形式 先化为整式函数或较为简单的分式函数,再求导 根式形式 先化为分数指数幂的形式,再求导 对数形式 先化为和、差形式,再求导复合函数先确定复合关系,由外向内逐层求导,必要时可换元[提醒] 对解析式中含有导数值的函数,即解析式类似于f (x )=f ′(x 0)g (x )+h (x )(x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,解关于f ′(x 0)的方程,即可得到f ′(x 0)的值,进而得到函数解析式,求得所求导数值.考点二[定向精析突破]导数的几何意义及其应用考向(一) 求切线方程[例1] (2019·全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________. [解析] y ′=3(2x +1)e x +3(x 2+x )e x =e x (3x 2+9x +3),∴ 斜率k =e 0×3=3,∴ 切线方程为y=3x.[答案]y=3x[解题技法]求曲线过点P的切线方程的方法(1)当点P(x0,y0)是切点时,切线方程为y-y0=f′(x0)·(x-x0).(2)当点P(x0,y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P′(x1,f(x1));第二步:写出过点P′(x1,f(x1))的切线方程y-f(x1)=f′(x1)(x-x1);第三步:将点P的坐标(x0,y0)代入切线方程求出x1;第四步:将x1的值代入方程y-f(x1)=f′(x1)(x-x1)可得过点P(x0,y0)的切线方程.考向(二)求切点坐标[例2](2019·江苏高考)在平面直角坐标系xOy中,点A在曲线y=ln x上,且该曲线在点A处的切线经过点(-e,-1)(e为自然对数的底数),则点A的坐标是________.[解析]设A(m,n),则曲线y=ln x在点A处的切线方程为y-n=1m(x-m).又切线过点(-e,-1),所以有n+1=1m(m+e).再由n=ln m,解得m=e,n=1.故点A的坐标为(e,1).[答案](e,1)[解题技法]求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.考向(三)由曲线的切线(斜率)求参数的值(范围)[例3](1)(2019·全国卷Ⅲ)已知曲线y=a e x+x ln x在点(1,a e)处的切线方程为y=2x+b,则()A.a=e,b=-1 B.a=e,b=1C.a=e-1,b=1 D.a=e-1,b=-1(2)设曲线f(x)=-e x-x(e为自然对数的底数)上任意一点处的切线为l1,总存在曲线g(x)=3ax+2cos x上某点处的切线l2,使得l1⊥l2,则实数a的取值范围是()A .[-1,2]B .(3,+∞) C.⎣⎡⎦⎤-23,13 D.⎣⎡⎦⎤-13,23 [解析] (1)y ′=a e x +ln x +1,k =y ′|x =1=a e +1, ∴ 切线方程为y -a e =(a e +1)(x -1), 即y =(a e +1)x -1.又∵ 切线方程为y =2x +b ,∴ ⎩⎪⎨⎪⎧a e +1=2,b =-1,即a =e -1,b =-1.故选D. (2)由f (x )=-e x -x ,得f ′(x )=-e x -1,∵e x +1>1,∴1e x +1∈(0,1).由g (x )=3ax +2cos x ,得g ′(x )=3a -2sin x ,又-2sin x ∈[-2,2],∴3a -2sin x ∈[-2+3a ,2+3a ].要使过曲线f (x )=-e x -x 上任意一点的切线l 1,总存在过曲线g (x )=3ax +2cos x 上某点处的切线l 2,使得l 1⊥l 2,则⎩⎪⎨⎪⎧-2+3a ≤0,2+3a ≥1,解得-13≤a ≤23.[答案] (1)D (2)D[解题技法]1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上. 考向(四) 两曲线的公切线问题[例4] 已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.[解析] 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎪⎨⎪⎧-ln x 0-14=ax 0,①a =-1x, ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e 34=-e -34.[答案] -e -34[解题技法]解决此类问题通常有两种方法:一是利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;二是设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.[跟踪训练]1.(2019·安徽江南十校3月综合素质检测)曲线f (x )=1-2ln xx在点P (1,f (1))处的切线l 的方程为( )A .x +y -2=0B .2x +y -3=0C .3x +y +2=0D .3x +y -4=0解析:选D 因为f (x )=1-2ln x x ,所以f ′(x )=-3+2ln xx 2,所以f ′(1)=-3,又f (1)=1,所以所求切线方程为y -1=-3(x -1),即3x +y -4=0.2.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________.解析:设与直线y =x 平行且与曲线g (x )=ln x 相切的直线的切点坐标为(x 0,ln x 0),因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x的距离,即为|1-0|1+1=22. 答案:223.(2019·安徽宣城八校联考)若曲线y =a ln x +x 2(a >0)的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,则a =________. 解析:因为y =a ln x +x 2(a >0),所以y ′=ax +2x ≥22a ,因为曲线的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,所以斜率k ≥ 3,因此 3=22a ,所以a =38. 答案:38微专题 核心素养(五)数学运算——辨明求切线方程中“在”与“过”的不同数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程.主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等.[典例] 若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切则a 的值为________.[解析] 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a得x 2-2x +a =0, 依题意,Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,k =y ′|x =x 0=3x 20-6x 0+2,① 又k =y 0x 0=x 20-3x 0+2,②联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a 得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.[答案] 1或164[点评]求曲线的切线问题时,要明晰所运算的对象(切线)涉及的点是“在”还是“过”,然后利用求切线方程的方法进行求解.(1)“在”曲线上一点处的切线问题,先对函数求导,代入点的横坐标得到斜率. (2)“过”曲线上一点的切线问题,此时该点未必是切点,应先设切点,求切点坐标.[对点训练](2020·江西吉安一模)过点P (1,1)且与曲线y =x 3相切的直线的条数为( ) A .0 B .1 C .2D .3解析:选C 当点P 为切点时,∵y ′=3x 2,∴y ′|x =1=3,则曲线y =x 3在点P 处的切线方程为y -1=3(x -1),即3x -y -2=0.当点P 不是切点时,设直线与曲线切于点(x 0,y 0)(x 0≠1),则k =y 0-1x 0-1=x 30-1x 0-1=x 20+x 0+1.∵y ′=3x 2,∴y ′|x =x 0=3x 20,∴2x 20-x 0-1=0,∴x 0=1(舍)或x 0=-12,∴过点P (1,1)与曲线y =x 3相切的直线方程为3x -4y +1=0.综上,过点P 的切线有2条,故选C.[课时过关检测]A 级——夯基保分练1.已知函数f (x )=x sin x +ax ,且f ′⎝⎛⎭⎫π2=1,则a =( )A .0B .1C .2D .4解析:选A 因为f ′(x )=sin x +x cos x +a ,且f ′⎝⎛⎭⎫π2=1,所以sin π2+π2cos π2+a =1,即a =0.故选A.2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.3.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上, 所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.4.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 因为f ′(x )=3x 2+2ax ,所以f ′(x 0)=3x 20+2ax 0=-1.又因为切点P 的坐标为(x 0,-x 0),所以x 30+ax 20=-x 0.联立两式得⎩⎪⎨⎪⎧ 3x 20+2ax 0=-1,x 30+ax 20=-x 0,解得⎩⎪⎨⎪⎧a =2,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=1.所以点P 的坐标为(-1,1)或(1,-1).5.(多选)下列求导数运算正确的有( ) A .(sin x )′=cos x B.⎝⎛⎭⎫1x ′=1x 2 C .(log 3x )′=13ln xD .(ln x )′=1x解析:选AD 因为(sin x )′=cos x ,⎝⎛⎭⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x ,所以A 、D 正确.6.(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( )A .f (x )=x 2B .f (x )=e -x C .f (x )=ln xD .f (x )=tan x解析:选AC 若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,得x =0或x =2,方程显然有解,故A 符合要求;若f (x )=e -x ;则f ′(x )=-e -x ,令e -x =-e -x ,此方程无解,故B 不符合要求;若f (x )=ln x ,则f ′(x )=1x ,令ln x =1x ,在同一直角坐标系内作出函数y =ln x 与y =1x 的图象(作图略),可得两函数的图象有一个交点,所以方程f (x )=f ′(x )存在实数解,故C 符合要求;若f (x )=tan x ,则f ′(x )=⎝⎛⎭⎫sin x cos x ′=1cos 2x ,令tan x =1cos 2x ,化简得sin x cos x =1,变形可得sin 2x =2,无解,故D 不符合要求.故选A 、C.7.(一题两空)(2019·湖南益阳期末改编)已知函数f (x )为奇函数,当x <0时,f (x )=e -x +1x ,则x >0时,f (x )=________;f (1)+f ′(1)=________.解析:∵函数f (x )为奇函数,当x <0时,f (x )=e -x +1x ,∴令x >0,则-x <0,∴f (-x )=e x-1x=-f (x ), ∴f (x )=-e x +1x ,x >0.∴f ′(x )=-e x -1x 2,x >0,∴f ′(1)=-e -1,f (1)=-e +1, ∴f (1)+f ′(1)=-e -1-e +1=-2e. 答案:-e x +1x-2e8.(2019·广东六校第一次联考)已知函数f (x )=x 3+ax +1的图象在点(1,f (1))处的切线过点(-1,1),则a =________.解析:由题意,得f ′(x )=3x 2+a ,所以f ′(1)=3+a ,所以函数f (x )的图象在点(1,f (1))处的切线方程为y -(2+a )=(3+a )(x -1),又切线过点(-1,1),所以1-2-a =-6-2a ,解得a =-5.答案:-59.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),则曲线g (x )在x =3处的切线方程为________.解析:由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,即f ′(3)=-13.又g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝⎛⎭⎫-13=0,则曲线g (x )在x =3处的切线方程为y -3=0.答案:y -3=010.(2019·安徽安庆期末改编)已知函数y =f (x )对任意的x ∈R 都有f (1-x )-2f (x )=x 2-1,则曲线y =f (x )在点(-1,f (-1))处的切线方程为__________.解析:由题可得⎩⎪⎨⎪⎧f (1-x )-2f (x )=x 2-1,f (x )-2f (1-x )=(1-x )2-1,解得f (x )=-x 2+23x +23.所以f (-1)=-1,f ′(x )=-2x +23,所以f ′(-1)=83,所以曲线y =f (x )在点(-1,f (-1))处的切线方程为y +1=83(x +1),即8x -3y +5=0. 答案:8x -3y +5=0 11.求下列函数的导数. (1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x. (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π) =-12x sin 4x ,∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .12.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4. 又∵点P 0在第三象限, ∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.B 级——提能综合练13.(2019·湖南衡阳联考)已知a -ln b =0,c -d =1,则(a -c )2+(b -d )2的最小值是( ) A .1 B. 2 C .2D .2 2解析:选C 设(b ,a )是曲线C :y =ln x 上的点,(d ,c )是直线l :y =x +1上的点,则(a-c )2+(b -d )2可看成曲线C 上的点到直线l 上的点的距离的平方.对函数y =ln x 求导得y ′=1x ,令y ′=1,得x =1,则y =0,所以曲线C 上到直线y =x +1的距离最小的点为(1,0),该点到直线y =x +1的距离为|1-0+1|12+(-1)2= 2.因此(a -c )2+(b -d )2的最小值为(2)2=2.故选C.14.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a =________.解析:因为y =x 3,所以y ′=3x 2,设过点(1,0)的直线与y =x 3相切于点(x 0,x 30), 则在该点处的切线斜率为k =3x 20,所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30.又点(1,0)在切线上,所以x 0=0或x 0=32.当x 0=0时,切线方程为y =0.由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,切线方程为y =274x -274,由y =274x -274与y =ax 2+154x -9相切,可得a =-1.综上,a 的值为-1或-2564.答案:-1或-256415.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0,所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. C 级——拔高创新练16.已知函数f (x )=ln x -a (x +1)x -1,曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 图象上任意一点A (x 0,y 0)处的切线,问:在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x 也相切?若存在,满足条件的 x 0有几个?解:(1)∵函数f (x )=ln x -a (x +1)x -1(x >0且x ≠1),∴f ′(x )=1x +2a(x -1)2,∵曲线y =f (x )在点⎝⎛⎭⎫12,f ⎝⎛⎭⎫12处的切线平行于直线y =10x +1,∴f ′⎝⎛⎭⎫12=2+8a =10,∴a =1, ∴f ′(x )=x 2+1x (x -1)2.∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞),无单调递减区间. (2)在区间(1,+∞)上存在唯一一个满足条件的x 0. ∵g (x )=ln x ,∴g ′(x )=1x,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1.①设直线l 与曲线h (x )=e x 相切于点(x 1,e x 1), ∵h ′(x )=e x ,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0.②由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0= x 0+1x 0-1.下证在区间(1,+∞)上存在唯一一个满足条件的x 0. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增,又∵f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,∴结合零点存在性定理,知方程f (x )=0在区间(e ,e 2)上有唯一的实数根,这个根就是所求的唯一满足条件的x 0.第二节导数的应用新课程标准考向预测1.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.2.结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及在给定区间上不超过三次的多项式函数的最大值、最小值.3.通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用.命题角度1.导数与函数的单调性2.导数与函数的极值、最值3.导数与不等式4.导数与函数的零点核心素养数学运算、逻辑推理[知识梳理]1.函数的单调性与导数的关系函数y=f(x)在区间(a,b)内可导,(1)若f′(x)>0,则f(x)在区间(a,b)内是单调递增函数;(2)若f′(x)<0,则f(x)在区间(a,b)内是单调递减函数;(3)若恒有f′(x)=0,则f(x)在区间(a,b)内是常数函数.讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.2.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f (x )在x 0处有极值的必要不充分条件是f ′(x 0)=0,极值点是f ′(x )=0的根,但f ′(x )=0的根不都是极值点(例如f (x )=x 3,f ′(0)=0,但x =0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[常用结论]1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件. 2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.3.若函数f (x )的图象连续不断,则f (x )在[a ,b ]上一定有最值.4.若函数f (x )在[a ,b ]上是单调函数,则f (x )一定在区间端点处取得最值.5.若函数f (x )在区间(a ,b )内只有一个极值点,则相应的极值点一定是函数的最值点.[基础自测]一、走进教材1.(选修2-2P 32A 组T 4改编)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .当x =2时,f (x )取到极小值解析:选C 在(4,5)上f ′(x )>0恒成立,∴f (x )是增函数. 2.(选修2-2P 28例4改编)设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D f ′(x )=-2x 2+1x =x -2x 2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, ∴x =2为f (x )的极小值点.3.(选修2-2P 24例2改编)函数f (x )=x 3-6x 2的单调递减区间为________. 解析:f ′(x )=3x 2-12x =3x (x -4), 由f ′(x )<0,得0<x <4,∴函数f (x )的单调递减区间为(0,4). 答案:(0,4)4.(选修2-2P 30例5改编)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________. 解析:∵y ′=1-2sin x ,∴当x ∈⎣⎡⎭⎫0,π6时,y ′>0; 当x ∈⎝⎛⎦⎤π6,π2时,y ′<0. ∴当x =π6时,y max =π6+ 3.答案:π6+ 3二、走出误区常见误区:①利用导数求单调区间易忽视原函数的定义域致误;②求参数范围易忽视等号成立致误;③混淆极值与极值点的概念致误;④连续函数在区间(a ,b )上不一定存在最值.5.函数f (x )=x -ln x 的单调递减区间为( ) A .(0,1) B .(0,+∞)C .(1,+∞)D .(-∞,0),(1,+∞)解析:选A 函数的定义域是(0,+∞),且f ′(x )=1-1x =x -1x ,令f ′(x )<0,得0<x <1,故f (x )的单调递减区间为(0,1).6.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.7.函数 g (x )=-x 2的极值点是________,函数f (x )=(x -1)3的极值点________(填“存在”或“不存在”).解析:结合函数图象可知g (x )=-x 2的极值点是x =0.因为f ′(x )=3(x -1)2≥0,所以f ′(x )=0无变号零点,故函数f (x )=(x -1)3不存在极值点.答案:0 不存在8.函数g (x )=x 2在[1,2]上的最小值和最大值分别是________,在(1,2)上的最小值和最大值均________(填“存在”或“不存在”).解析:根据函数的单调性及最值的定义可得. 答案:1,4 不存在第一课时 导数与函数的单调性考点一[师生共研过关]证明(判断)函数的单调性[例1] 已知函数f (x )=a2(x -1)2-x +ln x (a >0).讨论f (x )的单调性.[解] 函数f (x )的定义域为(0,+∞), f ′(x )=a (x -1)-1+1x =(x -1)(ax -1)x ,令f ′(x )=0,则x 1=1,x 2=1a,(ⅰ)若a =1,则f ′(x )≥0恒成立,所以f (x )在(0,+∞)上是增函数. (ⅱ)若0<a <1,则1a>1,当x ∈(0,1)时,f ′(x )>0,f (x )是增函数,当x ∈⎝⎛⎭⎫1,1a 时,f ′(x )<0,f (x )是减函数, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )>0,f (x )是增函数. (ⅲ)若a >1,则0<1a<1,当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,f (x )是增函数, 当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0,f (x )是减函数, 当x ∈(1,+∞)时,f ′(x )>0,f (x )是增函数. 综上所述,当a =1时,f (x )在(0,+∞)上是增函数;当0<a <1时,f (x ) 在(0,1)上是增函数,在⎝⎛⎭⎫1,1a 上是减函数,在⎝⎛⎭⎫1a ,+∞上是增函数; 当a >1时,f (x )在⎝⎛⎭⎫0,1a 上是增函数,在⎝⎛⎭⎫1a ,1上是减函数,在(1,+∞)上是增函数. [解题技法]讨论函数f (x )单调性的步骤(1)确定函数f (x )的定义域;(2)求导数f ′(x ),并求方程f ′(x )=0的根;(3)利用f ′(x )=0的根将函数的定义域分成若干个子区间,在这些子区间上讨论f ′(x )的正负,由符号确定f (x )在该区间上的单调性.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.[跟踪训练]1.下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e x C .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z );对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,故选B.2.已知函数f (x )=x 2+mx +1e x(m ≥0),其中 e 为自然对数的底数.讨论函数 f (x )的单调性.解:由题得f ′(x )=-x 2+(m -2)x +1-m e x =-[x -(1-m )](x -1)e x ,当m =0,即1-m =1时,f ′(x )=-(x -1)2e x≤0,f (x )在R 上单调递减;当m >0,即1-m <1时,令f ′(x )<0得x <1-m 或x >1,令f ′(x )>0得1-m <x <1, ∴f (x )在(-∞,1-m ),(1,+∞)上单调递减,在(1-m,1)上单调递增.[例2] 已知函数f (x )=(ln x -k -1)x (k ∈R ).当x >1时,求f (x )的单调区间. [解] f ′(x )=1x·x +ln x -k -1=ln x -k ,①当k ≤0时,因为x >1,所以f ′(x )=ln x -k >0,所以函数f (x )的单调递增区间是(1,+∞),无单调递减区间. ②当k >0时,令ln x -k =0,解得x =e k , 当1<x <e k 时,f ′(x )<0;当x >e k 时,f ′(x )>0.所以函数f (x )的单调递减区间是(1,e k ),单调递增区间是(e k ,+∞).综上所述,当k ≤0时,函数f (x )的单调递增区间是(1,+∞),无单调递减区间;当k >0时,函数f (x )的单调递减区间是(1,e k ),单调递增区间是(e k ,+∞).[解题技法]利用导数求函数单调区间的方法(1)当导函数不等式可解时,解不等式f ′(x )>0或f ′(x )<0求出单调区间.(2)当方程f ′(x )=0可解时,解出方程的实根,依照实根把函数的定义域划分为几个区间,确定各区间f ′(x )的符号,从而确定单调区间.(3)若导函数对应的方程、不等式都不可解,根据f ′(x )结构特征,利用图象与性质确定f ′(x )的符号,从而确定单调区间.[提醒] 若所求函数的单调区间不止一个,这些区间之间不能用并集“∪”及“或”连接,只能用“,”“和”字隔开.[跟踪训练]1.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为( ) A .(-∞,0) B .(-∞,-2) C .(-2,-1)D .(-2,0)解析:选D 设幂函数f (x )=x α,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x (x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).2.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32(x >0),则f ′(x )=x 2-4x -54x 2,令f ′(x )=0,解得x =-1或x =5,因为x =-1不在f (x )的定义域(0,+∞)内,所以舍去. 当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内单调递减;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内单调递增. 故f (x )的单调递减区间是(0,5),单调递增区间是(5,+∞).考向(一) 比较大小或解不等式[例3] (2019·南昌摸底调研)已知函数f (x )是定义在R 上的偶函数,设函数f (x )的导函数为f ′(x ),若对任意x >0都有2f (x )+xf ′(x )>0成立,则( )A .4f (-2)<9f (3)B .4f (-2)>9f (3)C .2f (3)>3f (-2)D .3f (-3)<2f (-2)[解析] 根据题意,令g (x )=x 2f (x ),其导数g ′(x )=2xf (x )+x 2f ′(x ),又对任意x >0都有2f (x )+xf ′(x )>0成立,则当x >0时,有g ′(x )=x (2f (x )+xf ′(x ))>0恒成立,即函数g (x )在(0,+∞)上为增函数,又由函数f (x )是定义在R 上的偶函数,则f (-x )=f (x ),则有g (-x )=(-x )2f (-x )=x 2f (x )=g (x ),即函数g (x )也为偶函数,则有g (-2)=g (2),且g (2)<g (3),则有g (-2)<g (3),即有4f (-2)<9f (3).故选A.[答案] A[解题技法]一般地,在不等式中如同时含有f (x )与f ′(x ),常需要通过构造含f (x )与另一函数的积或商的新函数来求解,再借助导数考查新函数的性质,继而获得解答.如本题已知条件“2f (x )+xf ′(x )>0”,需构造函数g (x )=x 2f (x ),求导后得x >0时,g ′(x )>0,即函数g (x )在(0,+∞)上为增函数,从而问题得以解决.考向(二) 根据函数单调性求参数[例4] 设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.[解] (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)知f (x )=13x 3-a2x 2+1,则g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1), 使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时,a <⎝⎛⎭⎫x +2x max =-22,当且仅当x =2x ,即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).[对点变式]1.(变条件)本例(2)变为:若g (x )在(-2,-1)内为减函数,其他条件不变,求实数a 的取值范围.解:∵g ′(x )=x 2-ax +2,且g (x )在(-2,-1)内为减函数, ∴x 2-ax +2≤0在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧ g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解得a ≤-3. 即实数a 的取值范围是(-∞,-3].2.(变条件)本例(2)变为:若g (x )的单调递减区间为(-2,-1),其他条件不变,求实数a 的值.解:∵g (x )的单调递减区间为(-2,-1), ∴x 1=-2,x 2=-1是g ′(x )=0的两个根, ∴(-2)+(-1)=a ,即a =-3.3.(变条件)本例(2)变为:若g (x )在(-2,-1)内不单调,其他条件不变,求实数a 的取值范围.解:由1题知g (x )在(-2,-1)内为减函数时,实数a 的取值范围是(-∞,-3]. 若g (x )在(-2,-1)内为增函数,则a ≥x +2x 在(-2,-1)内恒成立,又∵y =x +2x 在(-2,-2)内单调递增,在(-2,-1)内单调递减,∴y =x +2x 的值域为(-3,-22),∴实数a 的取值范围是[-22,+∞),∴函数g (x )在(-2,-1)内单调时,a 的取值范围是(-∞,-3]∪[-22,+∞), 故g (x )在(-2,-1)上不单调时,实数a 的取值范围是(-3,-22).[解题技法]已知函数单调性求参数范围(1)已知可导函数f (x )在区间D 上单调递增,则在区间D 上f ′(x )≥0恒成立; (2)已知可导函数f (x )在区间D 上单调递减,则在区间D 上f ′(x )≤0恒成立; (3)已知可导函数f (x )在区间D 上存在增区间,则f ′(x )>0在区间D 上有解; (4)已知可导函数f (x )在区间D 上存在减区间,则f ′(x )<0在区间D 上有解.[跟踪训练]1.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.解析:由题意构造函数F (x )=f (x )-12x ,则F ′(x )=f ′(x )-12.因为f ′(x )<12,所以F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.因为f (x 2)<x 22+12,f (1)=1,所以f (x 2)-x 22<f (1)-12,所以F (x 2)<F (1),又函数F (x )在R 上单调递减,所以x 2>1,即x ∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪(1,+∞)2.已知函数f (x )=3xa -2x 2+ln x (a >0),若函数f (x )在[1,2]上为单调函数,求实数a 的取值范围.解:f ′(x )=3a -4x +1x,若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立,即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x ,则h (x )在[1,2]上单调递增,所以3a ≥h (2)或3a≤h (1),即3a ≥152或3a ≤3,又a >0,所以0<a ≤25或a ≥1. 微专题 核心素养(六)数学运算——构造法解f (x )与f ′(x )共存问题高考中有一难点,即不给出具体的函数解析式,而是给出函数f (x )及其导数满足的条件,需要据此条件构造抽象函数,再根据条件得出构造函数的单调性,应用单调性解决问题的题目,该类题目具有一定的难度,下面总结其基本类型及其处理方法.类型一 f ′(x )g (x )±f (x )g ′(x )型[典例1] (1)设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是________________.[解析] (1)令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,由题意知,当x >0时,g ′(x )<0 ,∴g (x )在(0,+∞)上是减函数.∵f (x )是奇函数,f (-1)=0,∴f (1)=-f (-1)=0, ∴g (1)=f (1)1=0,∴当x ∈(0,1)时,g (x )>0,从而f (x )>0; 当x ∈(1,+∞)时,g (x )<0,从而f (x )<0. 又∵f (x )是奇函数,∴当x ∈(-∞,-1)时,f (x )>0; 当x ∈(-1,0)时,f (x )<0.综上,所求x 的取值范围是(-∞,-1)∪(0,1).(2)借助导数的运算法则,f ′(x )g (x )+f (x )g ′(x )>0⇔[f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增.又由分析知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(0,0),(3,0).数形结合可求得不等式f (x )g (x )<0的解集是(-∞,-3)∪(0,3).[答案] (1)A (2)(-∞,-3)∪(0,3) [点评](1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x ); (2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x );(4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x )(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f (x )x (x ≠0).类型二 xf ′(x )±nf (x )型[典例2] (1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)[解析] (1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ),。

高中数学专题复习-函数、导数及其应用

高中数学专题复习-函数、导数及其应用

第三章⎪⎪⎪函数、导数及其应用第一节函数及其表示1.函数与映射的概念函数映射两集合A ,B设A ,B 是两个非空的数集 设A ,B 是两个非空的集合 对应关系f :A →B如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应 名称 称f :A →B 为从集合A 到集合B 的一个函数称对应f :A →B 为从集合A 到集合B 的一个映射记法 y =f (x ),x ∈A对应f :A →B 是一个映射2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法. 3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.[小题体验]1.(台州模拟)下列四组函数中,表示相等函数的是( ) A .f (x )=x 2,g (x )=x 2 B .f (x )=(x )2x ,g (x )=x (x )2C .f (x )=1,g (x )=(x -1)0D .f (x )=x 2-9x +3,g (x )=x -3解析:选B 选项A 中,f (x )=x 2与g (x )=x 2的定义域相同,但对应关系不同;选项B 中,二者的定义域都为{x |x >0},对应关系也相同;选项C 中,f (x )=1的定义域为R ,g (x )=(x -1)0的定义域为{x |x ≠1};选项D 中,f (x )=x 2-9x +3的定义域为{x |x ≠-3},g (x )=x -3的定义域为R . 2.若函数y =f (x )的定义域为{x |-3≤x ≤8,x ≠5},值域为{y |-1≤y ≤2,y ≠0},则y =f (x )的图象可能是( )解析:选B 根据函数的概念,任意一个x 只能有唯一的y 值和它对应,故排除C 项;由定义域为{x |-3≤x ≤8,x ≠5}排除A 、D 两项,故选B.3.函数f (x )=2x -1+1x -2的定义域为________. 解析:由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0且x ≠2.答案:[0,2)∪(2,+∞)4.若函数f (x )=⎩⎪⎨⎪⎧e x -1,x ≤1,5-x 2,x >1,则f (f (2))=________. 解析:由题意知,f (2)=5-4=1,f (1)=e 0=1, 所以f (f (2))=1. 答案:15.已知函数f (x )=ax 3-2x 的图象过点(-1,4),则f (2)=________. 解析:∵函数f (x )=ax 3-2x 的图象过点(-1,4), ∴4=-a +2,∴a =-2,即f (x )=-2x 3-2x , ∴f (2)=-2×23-2×2=-20. 答案:-201.求函数的解析式时要充分根据题目的类型选取相应的方法,同时要注意函数的定义域.2.分段函数无论分成几段,都是一个函数,不要误解为是“由几个函数组成”.求分段函数的函数值,如果自变量的范围不确定,要分类讨论.[小题纠偏]1.(嘉兴模拟)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,x 2+x ,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________,方程f (x )=2的解为________.解析:f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫log 212=f (-1)=0. 当x >0时,log 2x =2,得x =4;当x ≤0时,x 2+x =2,得x =-2或x =1(舍去). 所以f (x )=2的解为-2或4. 答案:0 -2或42.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________. 解析:令t =1x ,∴x =1t . ∴f (t )=1t 2+5t.∴f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)考点一 函数的定义域(基础送分型考点——自主练透)[题组练透]1.y =x -12x-log 2(4-x 2)的定义域是( ) A .(-2,0)∪(1,2) B .(-2,0]∪(1,2) C .(-2,0)∪[1,2)D .[-2,0]∪[1,2]解析:选C 要使函数有意义,则⎩⎪⎨⎪⎧x -12x ≥0,x ≠0,4-x 2>0,解得x ∈(-2,0)∪[1,2),即函数的定义域是(-2,0)∪[1,2).2.已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________.解析:因为y =f (x 2-1)的定义域为[-3,3],所以x ∈[-3, 3 ],x 2-1∈[-1,2],所以y =f (x )的定义域为[-1,2].答案:[-1,2]3.若函数f (x )=x 2+ax +1的定义域为实数集R ,则实数a 的取值范围为________. 解析:若函数f (x )=x 2+ax +1的定义域为实数集R , 则x 2+ax +1≥0恒成立,即Δ=a 2-4≤0,解得-2≤a ≤2,即实数a 的取值范围为[-2,2]. 答案:[-2,2][谨记通法]函数定义域的求解策略(1)已知函数解析式:构造使解析式有意义的不等式(组)求解. (2)实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)抽象函数:①若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 考点二 求函数的解析式(重点保分型考点——师生共研)[典例引领](1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式. 解:(1)(配凑法)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2.(2)(换元法)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.(3)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R .(4)(解方程组法)由f (-x )+2f (x )=2x ,① 得f (x )+2f (-x )=2-x ,② ①×2-②,得,3f (x )=2x +1-2-x .即f (x )=2x +1-2-x3.所以f (x )的解析式是f (x )=2x +1-2-x3.[由题悟法]求函数解析式的4种方法[即时应用]1.已知函数f (x -1)=xx +1,则函数f (x )的解析式为( ) A .f (x )=x +1x +2B .f (x )=x x +1 C .f (x )=x -1xD .f (x )=1x +2解析:选A 令x -1=t ,则x =t +1,∴f (t )=t +1t +2,即f (x )=x +1x +2. 2.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )=________. 解析:设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x .答案:3x 2-2x3.已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x .②联立①②可得⎩⎨⎧2f (x )+f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f (x )=3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x(x ≠0)考点三 分段函数(题点多变型考点——多角探明) [锁定考向]高考对分段函数的考查多以选择题、填空题的形式出现,试题难度一般较小. 常见的命题角度有: (1)分段函数的函数求值问题;(2)分段函数与方程、不等式问题.[题点全练]角度一:分段函数的函数求值问题1.(浙江五校联考)已知函数f (x )=⎩⎪⎨⎪⎧4-x ,x ≥0,3x ,x <0,则f (-2)+f (4)=( )A.109 B.19 C .87D.7309解析:选B 由题意可得,f (-2)+f (4)=3-2+4-4=19.角度二:分段函数与方程、不等式问题2.(浙江考前冲刺卷)已知f (x )=⎩⎪⎨⎪⎧log 2(1-x ),x <1,3x -7,x ≥1,则不等式f (x )<2的解集为( )A .(-3,2)B .(-2,3)C .(2,3)D .(-3,-2)解析:选A 当x <1时,f (x )<2可化为log 2(1-x )<2,即0<1-x <4,解得-3<x <1;当x ≥1时,f (x )<2可化为3x -7<2,即3x <9,得1≤x <2.综上,不等式f (x )<2的解集为(-3,2).3.(嘉兴高三基础测试)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x ,x ≥1,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=________,若f (f (a ))=1,则实数a 的值为________.解析:∵f ⎝⎛⎭⎫23=1,∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫23=f (1)=2.对f (f (a ))=⎩⎪⎨⎪⎧3f (a )-1,f (a )<1,2f (a ),f (a )≥1,当a <23时,f (a )=3a -1<1;当23≤a<1时,f (a )=3a -1≥1;当a ≥1时,f (a )=2a≥2>1,∴f (f (a ))=⎩⎪⎨⎪⎧3(3a -1)-1,a <23,23a -1,23≤a <1,22a,a ≥1,由f (f (a ))=1,得3(3a-1)-1=1,∴a =59<23,符合题意;23a -1=1,a =13<23,舍去;22a =1不成立,舍去.故所求实数a 的值为59.答案:259[通法在握]1.分段函数的求值问题的解题思路求分段函数的函数值先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.2.分段函数与方程、不等式问题的求解思路依据不同范围的不同段分类讨论求解,最后将讨论结果并起来.[演练冲关]1.已知f (x )=⎩⎪⎨⎪⎧1x +1+2x -2,x ≥0,f (x +3),x <0,则f (-2 019)=________.解析:因为当x <0时,f (x )=f (x +3),所以f (-2 019)=f (-3×673)=f (0)=10+1+20-2=0. 答案:02.(浙江十校联盟适考)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值为________.解析:当a >0时,由f (a )+f (1)=0得2a +2=0,无解;当a ≤0时,由f (a )+f (1)=0得a +1+2=0,解得a =-3.答案:-33.(杭州七校联考)已知函数f (x )=⎩⎪⎨⎪⎧12x ,x ≥0,2x -x 2,x <0,若f (2-a 2)>f (|a |),则实数a 的取值范围是________.解析:由题意知,f (x )=⎩⎪⎨⎪⎧12x ,x ≥0,-(x -1)2+1,x <0,作出函数f (x )的大致图象如图所示,由图象可知,函数f (x )在R 上单调递增,由f (2-a 2)>f (|a |),得2-a 2>|a |.当a ≥0时,有2-a 2>a ,即(a +2)(a -1)<0,解得-2<a <1,所以0≤a <1;当a <0时,有2-a 2>-a ,即(a -2)(a +1)<0,解得-1<a <2,所以-1<a <0.综上所述,实数a 的取值范围是(-1,1).答案:(-1,1)一抓基础,多练小题做到眼疾手快 1.(杭州调研)函数y =log 2(2x -4)+1x -3的定义域是( ) A .(2,3) B .(2,+∞) C .(3,+∞)D .(2,3)∪(3,+∞)解析:选D 由题意,得⎩⎪⎨⎪⎧2x -4>0,x -3≠0,解得x >2且x ≠3,所以函数y =log 2(2x -4)+1x -3的定义域是(2,3)∪(3,+∞).2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A .-74B .74C .43D .-43解析:选B 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.3.(萧山质检)已知函数f (x )=⎩⎪⎨⎪⎧x +1x -2,x >2,x 2+2,x ≤2,则f (f (1))=( )A .-12B .2C .4D .11解析:选C ∵f (1)=12+2=3,∴f (f (1))=f (3)=3+13-2=4. 4.已知f (x )满足f ⎝⎛⎭⎫3x -1=lg x ,则f ⎝⎛⎭⎫-710=________. 解析:令3x -1=-710,得x =10,∴f ⎝⎛⎭⎫-710=lg 10=1. 答案:15.(绍兴模拟)设函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=________,方程f (f (x ))=1的解集为____________. 解析:∵f ⎝⎛⎭⎫12=ln 12<0, ∴f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫ln 12=eln 12=12. ∵x <0时,0<e x <1,x =0时,e x =1, ∴当f (x )≤0时,由方程f (f (x ))=1,可得f (x )=0, 即ln x =0,解得x =1.当f (x )>0时,由方程f (f (x ))=1, 可得ln f (x )=1,f (x )=e, 即ln x =e,解得x =e e . 答案:12{1,e e }二保高考,全练题型做到高考达标1.已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2D . 2解析:选B 当x ≥0时,f (x )=x 2,f (x 0)=4,即x 20=4,解得x 0=2. 当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2,故选B.2.(台州模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3解析:选B 由题意得,f (-2)=a -2+b =5,① f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2.3.(金华模拟)函数f (x )=4-|x |+lg x 2-5x +6x -3的定义域为( )A .(2,3)B .(2,4]C .(2,3)∪(3,4]D .(-1,3)∪(3,6]解析:选C 要使函数有意义,则⎩⎪⎨⎪⎧4-|x |≥0,x 2-5x +6x -3>0,即⎩⎪⎨⎪⎧-4≤x ≤4,x >2且x ≠3,∴3<x ≤4或2<x <3,即函数的定义域为(2,3)∪(3,4].4.(金华联考)若函数f (x )的定义域是[1,2 019],则函数g (x )=f (x +1)x -1的定义域是( ) A .[0,2 018] B .[0,1)∪(1,2 018] C .(1,2 019]D .[-1,1)∪(1,2 018]解析:选B 由题知,1≤x +1≤2 019,解得0≤x ≤2 018,又x ≠1,所以函数g (x )=f (x +1)x -1的定义域是[0,1)∪(1,2 018].5.(义乌质检)已知函数f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是( ) A .(-∞,-1] B.⎝⎛⎭⎫-1,12 C.⎣⎡⎭⎫-1,12 D.⎝⎛⎭⎫0,12 解析:选C 由题意知y =ln x (x ≥1)的值域为[0,+∞),故要使f (x )的值域为R ,则必有y =(1-2a )x +3a 为增函数,且1-2a +3a ≥0,所以1-2a >0,且a ≥-1,解得-1≤a <12,故选C.6.(湖州月考)定义在R 上的函数g (x )满足:g (x )+2g (-x )=e x +2e x -9,则g (x )=________.解析:∵g (x )+2g (-x )=e x +2e x -9, ①∴g (-x )+2g (x )=e -x +2e -x-9, 即g (-x )+2g (x )=2e x +1e x -9,②由①②联立解得g (x )=e x -3. 答案:e x -37.(嘉兴高三测试)已知a 为实数,设函数f (x )=⎩⎪⎨⎪⎧x -2a ,x <2,log 2(x -2),x ≥2,则f (2a +2)的值为________.解析:∵函数f (x )=⎩⎪⎨⎪⎧x -2a ,x <2,log 2(x -2),x ≥2,而2a +2>2,∴f (2a +2)=log 2(2a +2-2)=a . 答案:a8.(稽阳联考)已知f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,x +4x -a ,x >0,若f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=12,则a =________;若f (x )的值域为R ,则实数a 的取值范围是________.解析:∵f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,x +4x -a ,x >0,∴f ⎝⎛⎭⎫-12=-12+1=12, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫12=12+412-a =12+8-a =12,得a =8. 由y =x +1,x ≤0,得y ≤1; 由y =x +4x -a ,x >0,得y ≥4-a ,∵f (x )的值域为R ,∴4-a ≤1,解得a ≥3. 答案:8 [3,+∞)9.记[x ]为不超过x 的最大整数,如[-1.2]=-2,[2.3]=2,已知函数f (x )=⎩⎪⎨⎪⎧2[x ]-1,x ≥1,x 2+1,x <1,则f (f (-1.2))=________,f (x )≤3的解集为________.解析:根据[x ]的定义,得f (f (-1.2))=f (2.44)=2[2.44]-1=3. 当x ≥1时,由f (x )=2[x ]-1≤3, 得[x ]≤2,所以x ∈[1,3); 当x <1时,由f (x )=x 2+1≤3,得-2≤x <1.故原不等式的解集为[-2,3). 答案:3 [-2,3)10.如图,已知A (n ,-2),B (1,4)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的解析式; (2)求△AOC 的面积.解:(1)因为B (1,4)在反比例函数y =mx上,所以m =4,又因为A (n ,-2)在反比例函数y =m x =4x 的图象上,所以n =-2,又因为A (-2,-2),B (1,4)是一次函数y =kx +b 上的点,联立方程组⎩⎪⎨⎪⎧ -2k +b =-2,k +b =4,解得⎩⎪⎨⎪⎧k =2,b =2.所以y =4x ,y =2x +2.(2)因为y =2x +2,令x =0,得y =2,所以C (0,2),所以△AOC 的面积为:S =12×2×2=2.三上台阶,自主选做志在冲刺名校1.已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为( )A .-32B .-34C .-32或-34D .32或-34解析:选B 当a >0时,1-a <1,1+a >1.由f (1-a )=f (1+a )得2-2a +a =-1-a -2a ,解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )得-1+a -2a =2+2a +a ,解得a =-34,所以a 的值为-34,故选B.2.设函数f (x )=⎩⎪⎨⎪⎧ln (-x ),x <0,-ln x ,x >0,若f (m )>f (-m ),则实数m 的取值范围是________.解析:函数f (x )=⎩⎪⎨⎪⎧ln (-x ),x <0,-ln x ,x >0,当m >0时,f (m )>f (-m ),即-ln m >ln m ,即ln m <0,解得0<m <1;当m <0时,f (m )>f (-m ),即ln(-m )>-ln(-m ), 即ln(-m )>0,解得m <-1. 综上可得,m <-1或0<m <1. 答案:(-∞,-1)∪(0,1)3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0, ∴y =x 2200+x100(x ≥0).(2)令x2200+x100≤25.2,得-72≤x≤70.∵x≥0,∴0≤x≤70.故行驶的最大速度是70千米/时.第二节函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0)=M①对于任意x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M结论M为函数y=f(x)的最大值M为函数y=f(x)的最小值[小题体验]1.给定函数①y=x 12,②y=log12(x+1),③y=|x-1|,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是()A .①②B .②③C .③④D .①④解析:选B ①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,∴y =log 12(x +1)在(0,1)上递减;③结合图象(图略)可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,∴y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.(绍兴调研)函数f (x )=⎝⎛⎭⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.解析:由于y =⎝⎛⎭⎫13x 在R 上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.答案:33.(丽水模拟)已知函数 f (x )=⎩⎪⎨⎪⎧log 13x ,x >1,-x 2-2x +3,x ≤1,则f (f (3))=________,f (x )的单调递减区间是________.解析:∵f (3)=log 133=-1,∴f (f (3))=f (-1)=-1+2+3=4.当x ≤1时,f (x )=-x 2-2x +3=-(x +1)2+4, 对称轴x =-1,f (x )在[-1,1]上单调递减,且f (1)=0, 当x >1时,f (x )单调递减,且f (x )<f (1)=0, ∴f (x )在[-1,+∞)上单调递减. 答案:4 [-1,+∞)1.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x.3.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案:[-1,1],[5,7]2.函数f (x )=2x -1在[-6,-2]上的最大值是________,最小值是________.解析:因为f (x )=2x -1在[-6,-2]上是减函数,所以当x =-6时,f (x )取得最大值-27.当x =-2时,f (x )取得最小值-23.答案:-27 -23考点一 函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数; 当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数. 2.试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解:法一:(定义法)设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f (x 1)-f (x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增. 法二:(导数法)f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上递增. 3.判断函数y =x +2x +1在(-1,+∞)上的单调性.解:法一:任取x 1,x 2∈(-1,+∞),且x 1<x 2, 则y 1-y 2=x 1+2x 1+1-x 2+2x 2+1=x 2-x 1(x 1+1)(x 2+1).∵x 1>-1,x 2>-1,∴x 1+1>0,x 2+1>0, 又x 1<x 2,∴x 2-x 1>0, ∴x 2-x 1(x 1+1)(x 2+1)>0,即y 1-y 2>0.∴y 1>y 2,∴函数y =x +2x +1在(-1,+∞)上单调递减.法二:y =x +2x +1=1+1x +1. ∵y =x +1在(-1,+∞)上是增函数, ∴y =1x +1在(-1,+∞)上是减函数,∴y =1+1x +1在(-1,+∞)上是减函数.即函数y =x +2x +1在(-1,+∞)上单调递减.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞). (2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.函数f (x )=⎝⎛⎭⎫122x x -的单调递增区间为( )A.⎝⎛⎦⎤-∞,12 B.⎣⎡⎦⎤0,12 C.⎣⎡⎭⎫12,+∞D.⎣⎡⎦⎤12,1解析:选D 令t =x -x 2,由x -x 2≥0,得0≤x ≤1,故函数的定义域为[0,1].因为g (t )=⎝⎛⎭⎫12t 是减函数,所以f (x )的单调递增区间即t =x -x 2的单调递减区间.利用二次函数的性质,得t =x -x 2的单调递减区间为⎣⎡⎦⎤12,1,即原函数的单调递增区间为⎣⎡⎦⎤12,1. 2.(温州十校联考)函数f (x )=lg(9-x 2)的定义域为________;其单调递增区间为________.解析:对于函数f (x )=lg(9-x 2),令t =9-x 2>0,解得-3<x <3,可得函数的定义域为(-3,3). 令g (x )=9-x 2,则函数f (x )=lg(g (x )),又函数g (x )在定义域内的增区间为(-3,0]. 所以函数f (x )=lg(9-x 2)在定义域内的单调递增区间为(-3,0]. 答案:(-3,3) (-3,0]考点三 函数单调性的应用(题点多变型考点——多角探明) [锁定考向]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中. 常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.(台州三区适应性考试)已知函数f (x )=2x +ax 3+b sin x (a >0,b >0),若x ∈[0,1]时,f (x )的最大值为3,则x ∈[-1,0)时,f (x )的最小值是________.解析:因为函数f (x )=2x +ax 3+b sin x 在区间[-1,1]上为单调递增函数.所以当x ∈[0,1]时,f (x )的最大值为f (1)=2+a ·13+b sin 1=3,a +b sin 1=1,当x ∈[-1,0)时,f (x )的最小值为f (-1)=2-1+a ·(-1)3+b sin(-1)=12-(a +b sin 1)=-12. 答案:-12角度二:比较两个函数值或两个自变量的大小2.(杭州模拟)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( ) A .c >a >b B .c >b >a C .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称. 由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52. 由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减. ∵1<2<52<e,∴f (2)>f ⎝⎛⎭⎫52>f (e),∴b >a >c . 角度三:解函数不等式3.已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1),得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎪⎨⎪⎧|x |<1,x ≠0. ∴-1<x <0或0<x <1.故选C.角度四:利用单调性求参数的取值范围或值4.若f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围是( )A.⎣⎡⎭⎫18,13 B.⎣⎡⎦⎤0,13 C.⎝⎛⎭⎫0,13 D.⎝⎛⎦⎤-∞,13 解析:选A 由题意知, ⎩⎪⎨⎪⎧3a -1<0,(3a -1)×1+4a ≥-a ,a >0,解得⎩⎪⎨⎪⎧a <13,a ≥18,a >0,所以a ∈⎣⎡⎭⎫18,13,故选A.[通法在握]函数单调性应用问题的常见类型及解题策略 (1)求函数最值(2)比较大小比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决. (3)解不等式在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.[演练冲关]1.设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)解析:选D 作出函数f (x )的图象如图所示,由图象可知,若f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4,故选D.2.已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)解析:选D ∵当x =0时,两个表达式对应的函数值都为零,∴函数的图象是一条连续的曲线.∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.3.(浙江名校高考联盟联考)若函数f (x )=a |x +b |-1在(1,+∞)上是减函数,则实数a 的取值范围是________,实数b 的取值范围是________.解析:当a >0时,函数f (x )=a |x +b |-1在(-∞,-b ]上是减函数,在(-b ,+∞)上是增函数,不满足函数f (x )=a |x +b |-1在(1,+∞)上是减函数;当a =0时,f (x )=-1,不满足函数f (x )=a |x +b |-1在(1,+∞)上是减函数;当a <0时,函数f (x )=a |x +b |-1在(-∞,-b ]上是增函数,在(-b ,+∞)上是减函数,因为函数f (x )=a |x +b |-1在(1,+∞)上是减函数,所以a <0且-b ≤1,即a <0且b ≥-1.答案:(-∞,0) [-1,+∞)一抓基础,多练小题做到眼疾手快1.(珠海摸底)下列函数中,定义域是R 且为增函数的是( ) A .y =2-x B .y =x C .y =log 2 xD .y =-1x解析:选B 由题知,只有y =2-x与y =x 的定义域为R ,且只有y =x 在R 上是增函数.2.(绍兴模拟)已知函数f (x )的图象关于(1,0)对称,当x >1时,f (x )=log a (x -1),且f (3)=-1,若x 1+x 2<2,(x 1-1)(x 2-1)<0,则( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)+f (x 2)可能为0D .f (x 1)+f (x 2)可正可负解析:选B ∵当x >1时,f (x )=log a (x -1), f (3)=log a 2=-1,∴a =12,故函数f (x )在(1,+∞)上为减函数, 若x 1+x 2<2,(x 1-1)(x 2-1)<0, 不妨令x 1<1,x 2>1,则x 2<2-x 1, f (x 2)>f (2-x 1),又∵函数f (x )的图象关于(1,0)对称, ∴f (x 1)=-f (2-x 1),此时f (x 1)+f (x 2)=-f (2-x 1)+f (x 2)>0,故选B.3.已知函数f (x )=log 4(4-|x |),则f (x )的单调递增区间是________;f (0)+4f (2)=________.解析:令y =log 4u ,其中u =4-|x |,且u =4-|x |>0,由于函数y =log 4u 是单调递增函数,故要求f (x )的单调递增区间,只需求u =4-|x |的单调递增区间,得⎩⎪⎨⎪⎧4-|x |>0,x ≤0,解得-4<x ≤0,所以f (x )的单调递增区间是(-4,0];易得f (0)+4f (2)=log 44+4log 42=1+2=3.答案:(-4,0] 34.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14. 答案:145.(杭州十二校联考)设min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,若定义域为R 的函数f (x ),g (x )满足f (x )+g (x )=2xx 2+8,则min{f (x ),g (x )}的最大值为____________.解析:设min{f (x ),g (x )}=m ,∴⎩⎪⎨⎪⎧m ≤f (x ),m ≤g (x )⇒2m ≤f (x )+g (x )⇒m ≤xx 2+8,显然当m 取到最大值时,x >0,∴x x 2+8=1x +8x ≤12x ·8x =28,∴m ≤28,当且仅当⎩⎪⎨⎪⎧f (x )=g (x ),x =8x ,x >0时等号成立,即m 的最大值是28. 答案:28二保高考,全练题型做到高考达标1.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞).2.(浙江名校协作体联考)函数y =x +x 2-2x +3的值域为( ) A .[1+2,+∞) B .(2,+∞) C .[3,+∞)D .(1,+∞)解析:选D 因为函数y =x +x 2-2x +3=x +(x -1)2+2,所以当x ≥1时,函数为增函数,所以y ≥2+1;当x <1时,设x -1=t ,则t <0,函数y =t +t 2+2+1=2t 2+2-t+1,所以函数在(-∞,0)上为增函数,当t →0时,y →2+1,当t →-∞时,y →1,所以1<y <2+1.综上所述,函数y =x +x 2-2x +3的值域为(1,+∞).3.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.4.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎡⎭⎫14,12 B.⎣⎡⎦⎤14,12 C.⎝⎛⎦⎤0,12 D.⎣⎡⎭⎫12,1解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,则二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎡⎦⎤14,12.5.(湖州模拟)若f (x )是定义在(-1,1)上的减函数,则下列不等式正确的是( ) A .f (sin x )>f (cos x ) B .f⎝⎛⎭⎫x 2+12>f (x ) C .f ⎝⎛⎭⎫13x +1≥f ⎝⎛⎭⎫12x +1D .f ⎝⎛⎭⎫13x +3-x ≥f ⎝⎛⎭⎫12x +2-x解析:选D A .x ∈⎝⎛⎭⎫π4,1时,sin x >cos x , ∵f (x )在(-1,1)上为减函数, ∴f (sin x )<f (cos x ),∴该选项错误; B .x ∈(-1,1),∴x 2+12-x =12(x -1)2>0,∴x 2+12>x ,且f (x )在(-1,1)上单调递减,∴f⎝⎛⎭⎫x 2+12<f (x ),∴该选项错误;C.13x +1-12x +1=2x-3x(3x +1)(2x +1)=3x ⎣⎡⎦⎤⎝⎛⎭⎫23x -1(3x +1)(2x +1), ∵x ∈(-1,1),∴x ∈(-1,0)时,⎝⎛⎭⎫23x>1, ∴13x+1>12x +1,且f (x )在(-1,1)上为减函数, ∴f ⎝⎛⎭⎫13x +1<f ⎝⎛⎭⎫12x +1,∴该选项错误;D.13x +3-x -12x +2-x =3x ⎣⎡⎦⎤⎝⎛⎭⎫23x -1⎣⎡⎦⎤1-⎝⎛⎭⎫16x (3x +3-x )(2x +2-x ), ∴①x ∈(-1,0]时,⎝⎛⎭⎫23x -1≥0,1-⎝⎛⎭⎫16x ≤0, ∴13x+3-x ≤12x +2-x.②x ∈(0,1)时,⎝⎛⎭⎫23x -1<0,1-⎝⎛⎭⎫16x >0, ∴13x +3-x <12x +2-x,∴综上得,13x +3-x ≤12x +2-x ,∵f (x )为(-1,1)上的减函数,∴f ⎝⎛⎭⎫13x +3-x ≥f ⎝⎛⎭⎫12x +2-x ,∴该选项正确.6.(金华四校联考)若函数f (x )=x 2+a |x -2|在(0,+∞)上单调递增,则实数a 的取值范围是________. 解析:∵f (x )=x 2+a |x -2|,∴f (x )=⎩⎪⎨⎪⎧x 2+ax -2a ,x ≥2,x 2-ax +2a ,x <2.又∵f (x )在(0,+∞)上单调递增,∴⎩⎨⎧-a2≤2,a2≤0,∴-4≤a ≤0,∴实数a 的取值范围是[-4,0]. 答案:[-4,0]7.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是________.解析:因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1.画出函数y =f (x )的大致图象如图所示,观察图象可知,当纵坐标在[0,+∞)上时,横坐标在(-∞,-1]∪[0,+∞)上变化. 而f (x )的值域是(-1,+∞), f (g (x ))的值域是[0,+∞), 因为g (x )是二次函数, 所以g (x )的值域是[0,+∞). 答案:[0,+∞)8.若函数f (x )=a x (a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.解析:函数g (x )在[0,+∞)上为增函数,则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:149.(杭州五校联考)函数y =f (x )的定义域为R ,若存在常数M >0,使得|f (x )|≥M |x |对一切实数x 均成立,则称f (x )为“圆锥托底型”函数.(1)判断函数f (x )=2x ,g (x )=x 3是否为“圆锥托底型”函数?并说明理由. (2)若f (x )=x 2+1是“圆锥托底型”函数,求出M 的最大值.解:(1)函数f (x )=2x .∵|2x |=2|x |≥2|x |,即对于一切实数x 使得|f (x )|≥2|x |成立, ∴函数f (x )=2x 是“圆锥托底型”函数. 对于g (x )=x 3,如果存在M >0满足|x 3|≥M |x |, 而当x =M 2时,由⎪⎪⎪⎪ M 23≥M ⎪⎪⎪⎪M 2, ∴M2≥M ,得M ≤0,矛盾, ∴g (x )=x 3不是“圆锥托底型”函数.(2)∵f (x )=x 2+1是“圆锥托底型”函数,故存在M >0,使得|f (x )|=|x 2+1|≥M |x |对于任意实数恒成立. ∴x ≠0时,M ≤⎪⎪⎪⎪x +1x =|x |+1|x |,此时当x =±1时,|x |+1|x |取得最小值2, ∴M ≤2.而当x =0时,也成立. ∴M 的最大值等于2. 10.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. 解:(1)证明:当x ∈(0,+∞)时,f (x )=a -1x , 设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0,f (x 2)-f (x 1)=⎝⎛⎭⎫a -1x 2-⎝⎛⎭⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0, 所以f (x )在(0,+∞)上是增函数. (2)由题意a -1x <2x 在(1,+∞)上恒成立, 设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.任取x 1,x 2∈(1,+∞)且x 1<x 2, h (x 1)-h (x 2)=(x 1-x 2)⎝⎛⎭⎫2-1x 1x 2.因为1<x 1<x 2,所以x 1-x 2<0,x 1x 2>1,所以2-1x 1x 2>0, 所以h (x 1)<h (x 2),所以h (x )在(1,+∞)上单调递增. 故a ≤h (1),即a ≤3,所以实数a 的取值范围是(-∞,3]. 三上台阶,自主选做志在冲刺名校1.已知减函数f (x )的定义域是实数集R ,m ,n 都是实数.如果不等式f (m )-f (n )>f (-m )-f (-n )成立,那么下列不等式成立的是( )A .m -n <0B .m -n >0C .m +n <0D .m +n >0解析:选A 设F (x )=f (x )-f (-x ), 由于f (x )是R 上的减函数,∴f (-x )是R 上的增函数,-f (-x )是R 上的减函数, ∴F (x )是R 上的减函数, ∴当m <n 时,有F (m )>F (n ), 即f (m )-f (-m )>f (n )-f (-n )成立.因此,当f (m )-f (n )>f (-m )-f (-n )成立时,不等式m -n <0一定成立,故选A. 2.已知函数f (x )=lg ⎝⎛⎭⎫x +ax -2,其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解:(1)由x +ax -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞); 当a =1时,定义域为{x |x >0且x ≠1};当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x -2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax 2>0恒成立,所以g (x )=x +ax -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +ax -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2.(3)对任意x ∈[2,+∞)恒有f (x )>0, 即x +ax -2>1对任意x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在[2,+∞)上是减函数,所以h (x )max =h (2)=2,所以a >2. 即a 的取值范围为(2,+∞).第三节函数的奇偶性及周期性1.函数的奇偶性奇偶性 定义图象特点 偶函数如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数关于y 轴对称奇函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数关于原点对称2.函数的周期性 (1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. [小题体验]1.(杭州模拟)已知函数f (x )是奇函数,且当x <0时,f (x )=2x 2-1x ,则f (1)的值是( ) A .-3 B .-1 C .1D .3解析:选A 因为函数f (x )为奇函数,所以f (1)=-f (-1)=-⎣⎡⎦⎤2×(-1)2-1(-1)=-3,故选A.2.(台州月考)偶函数y =f (x )在区间[0,4]上单调递减,则有( ) A .f (-1)>f ⎝⎛⎭⎫π3>f (-π)B .f ⎝⎛⎭⎫π3>f (-1)>f (-π)C .f (-π)>f (-1)>f ⎝⎛⎭⎫π3D .f (-1)>f (-π)>f ⎝⎛⎭⎫π3解析:选A 由题意得,0<1<π3<π<4⇒f (-1)=f (1)>f ⎝⎛⎭⎫π3>f (π)=f (-π),故选A. 3.(金华模拟)已知函数y =f (x )为R 上的偶函数,当x ≥0时,f (x )=log 2(x +2)-3,则f (6)=____________,f (f (0))=________________.解析:∵当x ≥0时,f (x )=log 2(x +2)-3, ∴f (6)=log 2(6+2)-3=3-3=0, f (0)=1-3=-2,∵函数y =f (x )为R 上的偶函数, ∴f (f (0))=f (-2)=f (2)=2-3=-1. 答案:0 -11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是( ) A .-13 B.13 C.12 D .-12解析:选B ∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b=0,∴a +b =13.2.(宁波模拟)若函数f (x )=⎩⎪⎨⎪⎧x 2+2x +1,x >0,a ,x =0,g (2x ),x <0为奇函数,则a =________,f (g (-2))=________.解析:由题意a =f (0)=0,g (2x )=f (x ), 所以g (-2)=f (-1)=-f (1)=-4, 所以f (g (-2))=f (-4)=-f (4)=-25. 答案:0 -25考点一 函数奇偶性的判断(基础送分型考点——自主练透)[题组练透]判断下列函数的奇偶性: (1)f (x )=(x +1)1-x1+x; (2)f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x >0,x 2+2x -1,x <0;(3)f (x )=4-x 2x 2;(4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x1+x ≥0,所以-1<x ≤1,所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法)当x >0时,f (x )=-x 2+2x +1,-x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1,-x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ). 所以f (x )为奇函数. 法二:(图象法)作出函数f (x )的图象,由奇函数的图象关于原点对称的特征知函数f (x )为奇函数.(3)因为⎩⎪⎨⎪⎧4-x 2≥0,x 2≠0,所以-2≤x ≤2且x ≠0,所以定义域关于原点对称. 又f (-x )=4-(-x )2(-x )2=4-x 2x 2,所以f (-x )=f (x ).故函数f (x )为偶函数. (4)函数的定义域为R ,。

专题21 导数及其应用(解答题)-备战2022年高考数学(理)母题题源解密(全国甲卷)(原卷版)

专题21 导数及其应用(解答题)-备战2022年高考数学(理)母题题源解密(全国甲卷)(原卷版)

专题21 导数及其应用(解答题)1.已知0a >且1a ≠,函数()(0)ax x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【试题来源】2021年全国高考甲卷(理)【答案】(1)20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,e e ⋃+∞. 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性; (2)利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x ax a =有两个不同的实数根,即曲线()y g x =与直线ln a y a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【解析】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x ⋅-⋅-⋅===', 令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, 所以函数()f x 在20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x -'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增;在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==, 又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点, 即曲线()y g x =与直线ln a y a =有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,e e +∞.【名师点睛】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,关键是将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.1.【2020年高考全国Ⅰ卷理数】已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 2.【2020年高考全国Ⅰ卷理数】已知函数2() sin sin2f x x x =.(1)讨论f (x )在区间(0,π)的单调性; (2)证明:33()8f x ≤; (3)设*n ∈N ,证明:2222sin sin 2sin 4sin 234nn nx x xx ≤.3.【2020年高考全国Ⅰ卷理数】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求B .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 4.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.5.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线.6.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.1.从全国看,高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义; (2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题.2.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而得参数的取值范围; (2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围. 4.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 5.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 6.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.7.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.1.已知函数321()23f x ax x x =+-+,其中a R ∈.(1)若函数()f x 恰好有三个单调区间,求实数a 的取值范围;(2)已知函数()f x 的图象经过点()1,3,且[2,2]x ∈-,求()f x 的最大值.2.已知函数()()ln 1xf x e ax =+-.(1)若函数()y f x =在点()()0,0f 处切线的斜率为0,求a 的值; (2)在第(1)问的前提下,讨论函数()y f x =的单调性及最值.3.已知函数21()2ln (2)2f x x a x a x =-+-. (1)当1a =-时,求函数()f x 的单调区间;(2)是否存在实数a ,使函数()()g x f x ax =-在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.4.已知函数()ln f x x a x =-. (1)讨论()f x 的单调性;(2)若()f x 有两个相异零点12,x x ,求证:212x x e ⋅>.5.已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围. 6.定义在()0,∞+上的关于x 的函数2()(1)2x ax f x x e =--. (1)若a e =,讨论()f x 的单调性;(2)()3f x ≤在(]0,2上恒成立,求a 的取值范围.7.已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 8.设函数()()22ln f x x a x a x =---(1)求函数()f x 的单调区间;(2)若函数()f x 有两个零点,求正整数a 的最小值. 9.已知函数()ln ()f x ax x a a R =--∈. (1)求函数()f x 的极值;(2)当1,22x ⎡∈⎤⎢⎥⎣⎦|时,函数()f x 有两个不同的零点,求实数a 的取值范围.10.已知函数2()cos f x x a x =+,且曲线()y f x =在6x π=处的切线方程为6y x b π=-+.(1)求实数a ,b 的值;(2)若对任意(0,)x ∈+∞,都有2()0f x m -恒成立,求m 的取值范围.11.已知函数()xe f x x=,()ln g x x =.(1)当0a >时,讨论函数1()()()=--F x af x g x x的单调性;(2)当1a >时,求证:()()(1)1->-+axf x g ax e x . 12.已知函数2()e x f x mx =-.(1)若x 轴是曲线()y f x =的一条切线,求m 的值; (2)若当0x ≥时,()2sin 1f x x x ≥-+,求m 的取值范围.13.已知函数()2xf x xe ax a =-+()a R ∈.(1)当0a =时,求()f x 在[]22-,上的最值; (2)设()22x g x e ax =-,若()()()h x f x g x =-有两个零点,求a 的取值范围.14.已知函数()2ln f x ax x x =-+-.(1)讨论()f x 的单调性:(2)若()f x 在定义城上有两个极值点12x x ,,求证:()()1232ln 2f x f x +>-.15.已知函数()31ln 2f x x x x a =-+,()13212x a g x xe x x --=+-(a R ∈,e 为自然对数的底数). (1)若函数()f x 在1,1e ⎛⎫⎪⎝⎭上有零点,求a 的取值范围;(2)当1≥x 时,不等式()()f x g x ≤恒成立,求实数a 的取值范围. 16.已知函数()()23312x f x x e ax =--,其中实数()0,a ∈+∞.(1)讨论函数()f x 的单调性; (2)当12a >时,证明:关于x 的方程()233322f x ax x +=-有唯一实数解. 17.已知函数()ln f x a x x a =-+,()lng x kx x x b =--,其中,,a b k R ∈. (1)讨论函数()f x 的单调区间;(2)若1a =,任意[1,e]x ∈,不等式()()f x g x ≥恒成立时最大的k 记为c ,当[1,]b e ∈时,求b c +的取值范围.18.已知2()46ln f x x x x =--,(1)求()f x 在(1,(1))f 处的切线方程以及()f x 的单调性;(2)令()()4(6)ln g x f x x a x =+--,若()g x 有两个零点分别为1x ,2x ()12x x <且0x 为()g x 唯一极值点,求证:12034x x x +>.19.已知函数()ln f x a x x =-.(1)若0a ≥,讨论函数()f x 的零点个数;(2)设1x ,2x 是函数()f x 的两个零点,证明:122eln 0x x a +->.20.已知函数()2ln f x x ax a x =+-.(1)若函数()f x 在[2,5]上单调递增,求实数a 的取值范围;(2)当2a =时,若方程()22f x x m =+有两个不等实数根12,x x ,求实数m 的取值范围,并证明121x x <.21.已知函数()ln (0)f x a x x a =+≠,2()e ()x g x bx b =+∈R . (1)记2()()h x f x x =+,试讨论函数()h x 的单调性;(2)若曲线()y f x =与曲线()y g x =在1x =处的切线都过点(0,1).求证:当0x >时,()1()e 1g x f x x-+≥-. 22.已知函数()ln 1f x a x x =++(其中0a ≠, 2.71828e =⋅⋅⋅⋅⋅⋅) (1)当34a =-时,求函数()f x 的单调区间; (2)对任意的21,x e ⎡⎫∈+∞⎪⎢⎣⎭均满足()f x x≤,试确定a 的取值范围.。

高中数学公式大全导数的计算与应用公式

高中数学公式大全导数的计算与应用公式

高中数学公式大全导数的计算与应用公式高中数学公式大全:导数的计算与应用公式1. 导数的定义与计算在微积分中,导数是用来描述函数变化率的重要工具。

对于函数f(x),导数可以用极限来定义,并可以使用以下公式进行计算:(1) 一阶导数:f'(x) = lim (h→0) [f(x+h) - f(x)] / h(2) 高阶导数:f''(x) = (d/dx) [f'(x)](3) 链式法则:若函数f(x)和g(x)都可导,则复合函数 (f(g(x))) 的导数可以计算为:(f(g(x)))' = f'(g(x)) * g'(x)2. 常用导数公式(1) 常数函数导数:如果f(x)是一个常数c,则f'(x) = 0(2) 幂函数导数:对于函数f(x) = x^n,其中n是实数常数,则f'(x) = n * x^(n-1)(3) 指数函数导数:对于函数f(x) = a^x,其中a是常数且a>0且a≠1,则f'(x) = a^x * ln(a)(4) 对数函数导数:对于函数f(x) = log_a(x),其中a是常数且a>0且a≠1,则f'(x) = 1 / (x * ln(a))(5) 三角函数导数:sin'(x) = cos(x)cos'(x) = -sin(x)tan'(x) = sec^2(x)cot'(x) = -csc^2(x)sec'(x) = sec(x) * tan(x)csc'(x) = -csc(x) * cot(x)3. 导数的应用导数在数学中有广泛的应用,以下介绍几个常见的应用领域。

(1) 切线与法线:导数可以用来求解函数在某一点的切线和法线。

函数在某一点的导数即为该点切线的斜率,法线的斜率为切线斜率的负倒数。

(2) 极值点与拐点:通过求解函数的导数为零的点,可以判断函数的极大值和极小值。

专题04 导数及其应用(解答题)-三年(2017-2019)高考真题数学(文)分项汇编(解析版)

专题04 导数及其应用(解答题)-三年(2017-2019)高考真题数学(文)分项汇编(解析版)

x1

x0
1,故 ex1x0

x02 x1 1 x1 1
x02 ,两边取对数,得 ln ex1x0 ln x02 ,
于是
x1 x0 2 ln x0 2 x0 1 ,
整理得 3x0 x1 2 .
【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法. 考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.
f
(2)

ln
2

1 2

ln
4 1 2

0
,故存在唯一
x0
(1, 2)
,使得
f
x0


0.
又当 x x0 时, f (x) 0 , f (x) 单调递减;当 x x0 时, f (x) 0 , f (x) 单调递增.
因此, f (x) 存在唯一的极值点.
(2)由(1)知 f x0 f (1) 2 ,又 f e2 e2 3 0 ,所以 f (x) 0 在 x0, 内存在唯一根
6.【2019 年高考浙江】已知实数 a 0 ,设函数 f (x)=a ln x x 1, x 0.
(1)当 a 3 时,求函数 f (x) 的单调区间; 4
(2)对任意
x

[
1 e2
, ) 均有
f
(x)
x 2a
,
求 a 的取值范围.
注:e=2.71828…为自然对数的底数.
【解析】(Ⅰ)解:由已知, f (x) 的定义域为 (0, ) ,且
f (x)

1 x

2024年高考数学总复习第三章《导数及其应用》导数的概念及运算

2024年高考数学总复习第三章《导数及其应用》导数的概念及运算

2024年高考数学总复习第三章《导数及其应用》§3.1导数的概念及运算最新考纲1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.2.通过函数图象直观理解导数的几何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =1x 的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|0x x =,即f ′(x 0)=lim Δx →ΔyΔx =lim Δx →0f (x 0+Δx )-f (x 0)Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区间(a ,b )内的导函数.记作f ′(x )或y ′.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数)f ′(x )=0f (x )=x α(α∈Q *)f ′(x )=αx α-1f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=e xf ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln a f (x )=ln xf ′(x )=1xf(x)=log a x(a>0,a≠1)f′(x)=1 x ln a4.导数的运算法则若f′(x),g′(x)存在,则有(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)f(x)g(x)′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).概念方法微思考1.根据f′(x)的几何意义思考一下,|f′(x)|增大,曲线f(x)的形状有何变化?提示|f′(x)|越大,曲线f(x)的形状越来越陡峭.2.直线与曲线相切,是不是直线与曲线只有一个公共点?提示不一定.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)f′(x0)=[f(x0)]′.(×)(3)(2x)′=x·2x-1.(×)题组二教材改编2.若f(x)=x·e x,则f′(1)=.答案2e解析∵f′(x)=e x+x e x,∴f′(1)=2e.3.曲线y=1-2x+2在点(-1,-1)处的切线方程为.答案2x-y+1=0解析∵y′=2(x+2)2,∴y′|x=-1=2.∴所求切线方程为2x-y+1=0.题组三易错自纠4.如图所示为函数y=f(x),y=g(x)的导函数的图象,那么y=f(x),y=g(x)的图象可能是()答案D解析由y =f ′(x )的图象知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故可排除B.故选D.5.若f (x )=sin xx ,则f ′π2=________.答案-4π2解析∵f ′(x )=x cos x -sin xx 2,∴f ′π2=-4π2.6.(2017·天津)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为.答案1解析∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ),∴切线l 的方程为y -a =(a -1)(x -1).令x =0,得y =1,故l 在y 轴上的截距为1.题型一导数的计算1.已知f (x )=sin x 21-2cos 2x4f ′(x )=.答案-12cos x 解析因为y =sin x 2-cos x2=-12sin x ,所以y ′=-12sin x ′=-12(sin x )′=-12cos x .2.已知y =cos xe x,则y ′=________.答案-sin x +cos x e x解析y ′=cos xe x ′=(cos x )′e x -cos x (e x )′(e x )2=-sin x +cos xe x.3.f (x )=x (2019+ln x ),若f ′(x 0)=2020,则x 0=.答案1解析f ′(x )=2019+ln x +x ·1x=2020+ln x ,由f ′(x 0)=2020,得2020+ln x 0=2020,∴x 0=1.4.若f (x )=x 2+2x ·f ′(1),则f ′(0)=.答案-4解析∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2,∴f ′(x )=2x -4,∴f ′(0)=-4.思维升华1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,尽量避免不必要的商的求导法则,这样可以减少运算量,提高运算速度减少差错.2.(1)若函数为根式形式,可先化为分数指数幂,再求导.(2)复合函数求导,应由外到内逐层求导,必要时可进行换元.题型二导数的几何意义命题点1求切线方程例1(1)(2018·湖北百所重点高中联考)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为()A .1B .-1C .2D .-2答案A解析由f (x +1)=2x +1x +1,知f (x )=2x -1x =2-1x .∴f ′(x )=1x2,∴f ′(1)=1.由导数的几何意义知,所求切线的斜率k =1.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为.答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴0=x 0ln x 0,0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0.命题点2求参数的值例2(1)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b =.答案1解析由题意知,y =x 3+ax +b 的导数为y ′=3x 2+a ,3+a +b =3,×12+a =k ,+1=3,由此解得k =2,a =-1,b =3,∴2a +b =1.(2)已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m =.答案-2解析∵f ′(x )=1x,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,∴m =-2.命题点3导数与函数图象例3(1)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是()答案B解析由y =f ′(x )的图象是先上升后下降可知,函数y =f (x )图象的切线的斜率先增大后减小,故选B.(2)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=.答案0解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+30.思维升华导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),1=f (x 1),0-y 1=f ′(x 1)(x 0-x 1)求解即可.(3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况.跟踪训练(1)(2018·全国Ⅰ)已知f (x )=x 2,则曲线y =f (x )过点P (-1,0)的切线方程是.答案y =0或4x +y +4=0解析设切点坐标为(x 0,x 20),∵f ′(x )=2x ,∴切线方程为y -0=2x 0(x +1),∴x 20=2x 0(x 0+1),解得x 0=0或x 0=-2,∴所求切线方程为y =0或y =-4(x +1),即y =0或4x +y +4=0.(2)设曲线y =1+cos xsin x 在点x -ay +1=0平行,则实数a =.答案-1解析∵y ′=-1-cos xsin 2x,∴y ′π2x ==-1.由条件知1a=-1,∴a =-1.(3)(2018·开封模拟)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是.答案(-∞,2)解析函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).1.已知函数f (x )=1x cos x ,则f (π)+f ()A .-3π2B .-1π2C .-3πD .-1π答案C解析因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f =-1π+2π×(-1)=-3π.2.(2018·衡水调研)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为()A .e 2B .e C.ln 22D .ln 2答案B解析由f (x )=x ln x ,得f ′(x )=ln x +1.根据题意知,ln x 0+1=2,所以ln x 0=1,即x 0=e.3.曲线y =sin x +e x 在点(0,1)处的切线方程是()A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0答案C解析y ′=cos x +e x ,故切线斜率k =2,切线方程为y =2x +1,即2x -y +1=0.4.设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数f ′(x )的图象可能是()答案C解析原函数的单调性是当x <0时,f (x )单调递增;当x >0时,f (x )的单调性变化依次为增、减、增,故当x <0时,f ′(x )>0;当x >0时,f ′(x )的符号变化依次为+,-,+.故选C.5.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是()A.3π4, B.π4,,3π4 D.0答案A解析求导可得y ′=-4e x +e -x +2,∵e x +e -x +2≥2e x ·e -x +2=4,当且仅当x =0时,等号成立,∴y ′∈[-1,0),得tan α∈[-1,0),又α∈[0,π),∴3π4≤α<π.6.(2018·广州调研)已知曲线y =ln x 的切线过原点,则此切线的斜率为()A .eB .-e C.1eD .-1e答案C解析y =ln x 的定义域为(0,+∞),且y ′=1x,设切点为(x 0,ln x 0),则y ′|0x x ==1x 0,切线方程为y -ln x 0=1x 0(x -x 0),因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e ,故此切线的斜率为1e.7.(2018·鹰潭模拟)已知曲线f (x )=2x 2+1在点M (x 0,f (x 0))处的瞬时变化率为-8,则点M 的坐标为.答案(-2,9)解析∵f (x )=2x 2+1,∴f ′(x )=4x ,令4x 0=-8,则x 0=-2,∴f (x 0)=9,∴点M 的坐标是(-2,9).8.已知曲线y =14x 2-3ln x 的一条切线的斜率为-12,则切点的横坐标为________.答案2解析设切点坐标为(m ,n )(m >0),对y =14x 2-3ln x 求导得y ′=12x -3x ,可令切线的斜率为12m-3m =-12,解方程可得m =2(舍去负值).9.若曲线y =ln x 的一条切线是直线y =12x +b ,则实数b 的值为.答案-1+ln 2解析由y =ln x ,可得y ′=1x,设切点坐标为(x 0,y 0),由曲线y =ln x 的一条切线是直线y=12x +b ,可得1x 0=12,解得x 0=2,则切点坐标为(2,ln 2),所以ln 2=1+b ,b =-1+ln 2.10.(2018·云南红河州检测)已知曲线f (x )=x ln x 在点(e ,f (e))处的切线与曲线y =x 2+a 相切,则a =______.答案1-e解析因为f ′(x )=ln x +1,所以曲线f (x )=x ln x 在x =e 处的切线斜率为k =2,则曲线f (x )=x ln x 在点(e ,f (e))处的切线方程为y =2x -e.由于切线与曲线y =x 2+a 相切,故y =x 2+a 可联立y =2x -e ,得x 2-2x +a +e =0,所以由Δ=4-4(a +e)=0,解得a =1-e.11.已知f ′(x ),g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,且它们在同一平面直角坐标系内的图象如图所示.(1)若f (1)=1,则f (-1)=;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为.(用“<”连接)答案(1)1(2)h (0)<h (1)<h (-1)解析(1)由题图可得f ′(x )=x ,g ′(x )=x 2,设f (x )=ax 2+bx +c (a ≠0),g (x )=dx 3+ex 2+mx +n (d ≠0),则f ′(x )=2ax +b =x ,g ′(x )=3dx 2+2ex +m =x 2,故a =12,b =0,d =13,e =m =0,所以f (x )=12x 2+c ,g (x )=13x 3+n ,由f (1)=1,得c =12,则f (x )=12x 2+12,故f (-1)=1.(2)h(x)=f(x)-g(x)=12x2-13x3+c-n,则有h(-1)=56+c-n,h(0)=c-n,h(1)=16+c-n,故h(0)<h(1)<h(-1).12.已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.解(1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线在点(2,f(2))处的切线方程为y+2=x-2,即x-y-4=0.(2)设曲线与经过点A(2,-2)的切线相切于点P(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)·(x-2),又切线过点P(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或1,∴经过点A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.13.已知函数f(x)=e x-mx+1的图象为曲线C,若曲线C存在与直线y=e x垂直的切线,则实数m的取值范围是()D.(e,+∞)答案B解析由题意知,方程f′(x)=-1e有解,即ex-m=-1e有解,即ex=m-1e有解,故只要m-1e>0,即m>1e即可,故选B.14.(2018·泰安模拟)若曲线f(x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,求a+b的值.解依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,f ′(0)=g ′(0),即-a sin 0=2×0+b ,得b =0.又m =f (0)=g (0),即m =a =1,因此a +b =1.15.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=5x +4sin x -cos x 的“拐点”是M (x 0,f (x 0)),则点M ()A .在直线y =-5x 上B .在直线y =5x 上C .在直线y =-4x 上D .在直线y =4x 上答案B 解析由题意,知f ′(x )=5+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由f ″(x 0)=0,知4sin x 0-cos x 0=0,所以f (x 0)=5x 0,故点M (x 0,f (x 0))在直线y =5x 上.16.已知函数f (x )=x -3x.(1)求曲线f (x )过点(0,-3)的切线方程;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解(1)f ′(x )=1+3x2,设切点为(x 0,y 0),则曲线y =f (x )在点(x 0,y 0)处的切线方程为y -y 0x -x 0),∵切线过(0,-3),∴-30-x 0),解得x 0=2,∴y 0=12,∴所求切线方程为y -12=74(x -2),即y =74x -3.(2)设P (m ,n )为曲线f (x )上任一点,由(1)知过P 点的切线方程为y -n x -m ),即y x -m ),令x =0,得y =-6m,从而切线与直线x =0令y =x ,得y =x =2m ,从而切线与直线y =x 的交点为(2m,2m ),∴点P (m ,n )处的切线与直线x =0,y =x 所围成的三角形的面积S =12·|-6m |·|2m |=6,为定值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题 导数及其应用考点精要1.了解导数概念的实际背景. 2.理解导数的几何意义.3.了解函数的单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次). 4.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 5.会利用导数解决某些实际问题.热点解析导数的几何意义及其应用,基本初等函数的导数公式及导数运算的四则运算法则是高考的重点与热点,要会利用导数求曲线的切线,注意区分在.某点处的切线与过.某点的曲线的切线. 求函数在点(x 0,)(0x f )处的切线方程或切线斜率;求函数)(x f 的单调增区间或单调减区间;求函数在(a ,b ) 上的极值,求)(x f 在[a ,b ]上的最大值、最小值等等,在近几年高考试题中频频出现.知识梳理1.一般地,函数y=()f x 在x =x 0处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆=0lim ,x fx ∆→∆∆我们称它为函数y =()f x 在x =x 0处的导数,记作0()f x '或y ′|x =x 0,即0()f x '=000()()limx f x x f x x∆→+∆-∆2.函数()f x 在x =x 0处的导数就是切线PT 的斜率k ,即k =000()()limx f x x f x x∆→+∆-∆=0()f x '3.导函数()f x '= y ′=0()()limx f x x f x x∆→+∆-∆4.c ′=0,(x 1)′=1,(x 2)′=2x ,211x x '⎛⎫=- ⎪⎝⎭,()2x x '=5.基本初等函数的导数公式: (1)若()f x =c ,则()f x '=0;(2)若()f x =x n (n *∈Ν),则()f x '=nxn 1;(3)若()f x =sin x ,则()f x '=cos x ; (4)若()f x =cos x ,则()f x '=-sin x ; (5)若()f x =a x ,则()f x '=a x ln a ;(6)若()f x =e x ,则()f x '=e x ;(7)若()f x =log a x ,则()f x '=1ln x a;(8)若()f x =ln x ,则()f x '=1x;6.导数运算法则:(1)[()f x ±()g x ]′=()f x '±()g x '(2)[()f x ⋅()g x ]′=()f x '⋅()g x +()f x ()g x ';(3)[]2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-⋅=⎢⎥⎣⎦ 7.导数的应用体现在三个方面:(1)求曲线的切线:其方法是,先求函数在某点处的导数得切线斜率,再用点斜式建立切线方程,后化为一般式.求曲线的切线时要注意两种不同的要求:一种是求“函数在某点处的切线”,这个点就是切点;一种是求“函数过某点的切线”,则这个点可以是切点,也可以不是切点。

这两种要求的切线的求法有区别. (2)求函数的极大(小)值与最大(小值)求可导函数)(x f y =的极值的步骤:①求导数)(x f y '=';这一步是基础,要求利用导数公式及运算法则正确地求出导函数)(x f '.②求方程)(x f '=0的根;这一步用到方程知识,注意)(x f '=0的根应在y =)(x f 的定义域中.③检验)(x f '在方程)(x f '=0的根(又叫函数驻点)的左、右侧的符号是否发生变化:如果)(x f '在根的左侧附近为正,右侧附近为负,那么函数y =)(x f 在这个根处取得极大值;如果相反,)f 在这个根的左侧附近为负,右侧附近为正,(x那么函数y =)(x f 在这个根处取得极小值.④如果求闭区间[a ,b ]上函数的最值,则应在)(a f 、)(b f 及开区间(a ,b )内的极值中间作比较,最大的就是最大值,最小的就是最小值. (3)研究函数的单调性设函数y =)(x f 在某个区间D 内可导,且)(x f '0≥,则)(x f 在这个区间上为增函数;若)(x f '0≤,则)(x f 在这个区间上为减函数.(注意:这里)(x f '=0在D 的任意一个子区间内不能恒.成立,否则,函数在这个子区间内为常函数,为水平线段,不具有单调性)(4)不等式的恒成立问题与能成立(存在性)问题 ①不等式的恒成立问题若,x D ∈()f x m >在D 上恒成立,等价于()f x 在D 上的最小值min ()f x m >成立,若,x D ∈()f x m <在D 上恒成立,等价于()f x 在D 上的最大值max ()f x m <成立对任意12,x x D ∈,都有12()()f x g x ≤成立的充要条件是max min ()()f x g x ≤ ②不等式的能成立(存在性)问题若,x D ∈()f x m >在D 上能成立,等价于()f x 在D 上的最大值m ()ax f x m >成立若,x D ∈()f x m <在D 上能成立,等价于()f x 在D 上的最小值min ()f x m <成立。

例题精讲:例1. 曲线y =x ⋅e x +2x +1在点(0,1)处的切线方程为________________例2. 有下列命题:①x =0是函数y =x 3的极值点②三次函数)(x f =ax 3+bx 2+cx +d 有极值点的充要条件是b 23ac >0③奇函数)(x f =mx 3+(m 1)x 2+48(m 2)x +n 在区间(4,4)上是单调函数其中假命题的序号是_______________例3. 已知函数)(x f =x 3+bx 2+cx +d 的图像过点P (0,2),且在点M (1,f (1))处的切线方程为6xy +7=0(1)求函数y =)(x f 的解析式; (2)求函数y =)(x f 的单调区间.例4. (没有图像) 已知函数∈+=a xax x f (ln )(R ). (1)若曲线)(x f y =在点))1(,1(f 处的切线与直线01=--y x 平行,求a 的值;(2)求函数)(x f 的单调区间和极值;(3)当1=a ,且1≥x 时,证明:.1)(≤x f解:(I )函数(){|0},f x x x >的定义域为 所以21ln ().x af x x --'=又曲线()(1,(1))y f x f =在点处的切线与直线10x y --=平行, 所以(1)11,0.f a a '=-==即 ………………4分 (II )令1()0,.a f x x e -'==得当x 变化时,(),()f x f x '的变化情况如下表:x1(0,)ae-1a e -1(,)a e -+∞()f x ' + 0 — ()f x极大值由表可知:()f x 的单调递增区间是1(0,)a e -,单调递减区间是1(,)a e -+∞ 所以1()a f x x e -=在处取得极大值,11()().a n f x f e e --==极大值…………9分 (III )当ln 11,().x a f x x +==时 由于[)ln 11,,()1,x x f x x+∈+∞=≤要证 只需证明ln 1.x x +≤令11()ln 1,()1.x h x x x h x x x-'=--=-=则 因为1≥x ,所以[)+∞≥,1)(,0)('在故x h x h 上单调递增,当,0)1()(,1=≥≥h x h x 时即x x ≤+1ln 成立。

故当1≥x 时,有.1)(,11ln ≤≤+x f xx 即…………13分例5 18.(本小题共14分) 已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.解:(I )因为2211'()a ax f x x x x -=-+=,……………2分 当1a =, 21'()x f x x -=,令'()0f x =,得 1x =,……………3分 又()f x 的定义域为(0,)+∞,()f x ',()f x 随x 的变化情况如下表:所以1x =时,的极小值为1 .…5分 的单调递增区间为(1,)+∞,单调递减区间为(0,1);……6分 (II )解法一:因为2211'()a ax f x x x x-=-+= ,且0a ≠, 令'()0f x =,得到1x a=, 在区间(0,]e 存在一点0x ,使得0()0f x <成立,充要条件是()f x 在区间(0,]e 上的最小值小于0即可.…7分(1)当10x a=<,即0a <时,'()0f x <对(0,)x ∈+∞成立,所以,()f x 在区间(0,]e 上单调递减,故()f x 在区间(0,]e 上的最小值为11()ln f e a e a e e=+=+, 由10a e +<,得1a e <-,即1(,)a e∈-∞-…………9分 (2)当10x a=>,即0a >时, ① 若1e a ≤,则'()0f x ≤对(0,]x e ∈成立,所以()f x 在区间(0,]e 上单调递减, 所以,()f x 在区间(0,]e 上的最小值为11()ln 0f e a e a e e=+=+>,显然,()f x 在区间(0,]e 上的最小值小于0不成立……………11分 ② 若10e a <<,即1a e>时,则有所以()f x 在区间(0,]e 上的最小值为11()ln f a a a a=+,由11()ln (1ln )0f a a a a a a=+=-<, 得 1ln 0a -<,解得a e >,即(,)a e ∈+∞.………13分综上,由(1)(2)可知:1(,)(,)a e e∈-∞-+∞符合题意.………14分解法二:若在区间(0,]e 上存在一点0x ,使得0()0f x <成立, 即001ln 0a x x +<, 因为00x >, 所以,只需001ln 0ax x +<…………7分令()1ln g x ax x =+,只要()1ln g x ax x =+在区间(0,]e 上的最小值小于0即可因为'()ln (ln 1)g x a x a a x =+=+,令'()(ln 1)0g x a x =+=,得1x e= (9)分(1)当0a <时:因为(0,)x e ∈时,()1ln 0g x ax x =+>,而()1ln 1g e ae e ae =+=+,只要10ae +<,得1a e <-,即1(,)a e∈-∞-…………11分(2)当0a >时:所以,当 (0,]x e ∈时,()g x 极小值即最小值为11()1ln 1ag a e e e e=+⋅=-,由10ae-<, 得 a e >,即(,)a e ∈+∞.…13分 综上,由(1)(2)可知,有1(,)(,)a e e∈-∞-+∞…14分例 6 已知函数2()l n 20)f x a x a x=+-> (.(Ⅰ)若曲线()y f x =在点(1,(1))P f 处的切线与直线2y x =+垂直,求函数()y f x =的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,试求a 的取值范围; 解: (I) 直线2y x =+的斜率为1.函数()f x 的定义域为(0,)+∞, 因为22()a f x x x '=-+,所以22(1)111af '=-+=-,所以1a =. 所以2()ln 2f x x x =+-. 22()x f x x-'=.由()0f x '>解得2x >;由()0f x '<解得02x <<.所以()f x 的单调增区间是(2,)+∞,单调减区间是(0,2). ………4分 (II) 2222()a ax f x x x x -'=-+=,由()0f x '>解得2x a>;由()0f x '<解得20x a<<. 所以()f x 在区间2(, )a +∞上单调递增,在区间2(0, )a上单调递减.所以当2x a =时,函数()f x 取得最小值,min 2()y f a=.因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a >-即可.则22ln 22(1)2a a a a+->-. 由2ln a a a >解得20a e<<.所以a 的取值范围是2(0, )e.……………8分例7 18.(本小题共14分)已知函数321().3f x x ax bx =-+ (,)a b ∈R(I )若'(0)'(2)1f f ==,求函数()f x 的解析式;(II )若2b a =+,且()f x 在区间(0,1)上单调递增,求实数a 的取值范围.解:(Ⅰ)因为2'()2f x x ax b =-+ ,…2分 由'(0)'(2)1f f ==即1441b a b =⎧⎨-+=⎩得11a b =⎧⎨=⎩,…4分所以()f x 的解析式为321()3f x x x x =-+.…………5分(Ⅱ)若2b a =+,则2'()22f x x ax a =-++,244(2)a a ∆=-+ ,………6分 (1)当0∆≤,即12a -≤≤时,'()0f x ≥恒成立,那么()f x 在R 上单调递增, 所以,当12a -≤≤时,()f x 在区间(0,1)上单调递增;………8分(2)解法1:当0∆>,即2a >或1a <-时, 令2'()220f x x ax a =-++=解得1x a =,2x a =+9分 列表分析函数()f x 的单调性如下:…………………10分要使函数()f x 在区间(0,1)上单调递增,只需210'(0)0a a a f ><-⎧⎪<⎨⎪≥⎩或或211'(1)0a a a f ><-⎧⎪>⎨⎪≥⎩或,解得21a -≤<-或23a <≤ (13)分解法2:当0∆>,即2a >或1a <-时, 因为2'()22f x x ax a =-++的对称轴方程为x a =……9分要使函数()f x 在区间(0,1)上单调递增,需1'(0)0a f <-⎧⎨≥⎩或2'(1)0a f >⎧⎨≥⎩解得21a -≤<-或23a <≤.…13分 综上:当[2,3]a ∈-时,函数()f x 在区间(0,1)上单调递增.…14分例 8 (12北京东城期末) 已知函数1331(223+-+=x m mx x x f )(0)m >.(Ⅰ)若1=m ,求曲线)(x f y =在点))2(,2(f 处的切线方程;(Ⅱ)若函数)(x f 在区间(21,1)m m -+上单调递增,求实数m 的取值范围.解析解:(Ⅰ)当1=m 时,1331(23+-+=x x x x f ),35164382(=+-+=)f . 32('2-+=x x x f ),53442('=-+=)f . ………3分所以所求切线方程为)2(535-=-x y 即025315=--y x . ......5分 (Ⅱ)2232('m mx x x f -+=).令0('=)x f ,得m x m x =-=或3. (7)分由于0>m ,)(x f ',)(x f 的变化情况如下表:所以函数)(x f 的单调递增区间是(,3)m -∞-和(,)m +∞. …………9分要使)(x f 在区间(21,1)m m -+上单调递增,应有 1+m ≤m 3- 或12-m ≥m ,解得m ≤41-或m ≥1.………11分 又 0m > 且121m m +>-,………12分所以 1≤2m <. 即实数m 的取值范围 {}21<≤m m .…………13分例9.已知函数322()(1),,,3mx f x ax b x m a b =++-∈R .⑴求函数()f x 的导函数()f x '; ⑵当1m =时,若函数()f x 是R 上的增函数,求z a b =+的最小值;⑶当1,a b ==()f x 在()2,+∞上存在单调递增区间,求m 的取值范围.【解析】 ⑴22()2(1)f x mx ax b '=++-. ……3分⑵因为函数()f x 是R 上的增函数,所以()0f x '≥在R 上恒成立, 则有2244(1)0a b ∆=--≤,即221a b +≤.设cos ,(sin a r b r θθθ=⎧⎨=⎩为参数,01)r ≤≤.则π(cos sin )sin()4z a b r θθθ=+=+=+.当πsin()14θ+=-,且1r =时,z a b =+取得最小值(可用圆面的几何意义解得z a b =+的最小值8分⑶①当0m >时2()21f m mx x '=+-是开口向上的抛物线,显然()f x '在()2,+∞上存在子区间使得()0f x '>,所以m 的取值范围是()0,+∞.②当0m =时,显然成立. ③当0m <时,2()21f m mx x '=+-是开口向下的抛物线,要使()f x '在()2,+∞上存在子区间使()0f x '>,应满足012,1()0,m mf m ⎧⎪<⎪⎪-⎨⎪⎪'->⎪⎩≥或0,12,(2)0.m m f <⎧⎪⎪-<⎨⎪'⎪>⎩解得102m -<≤,或3142m -<-,所以m 的取值范围是3,04⎛⎫- ⎪⎝⎭. 则m 的取值范围是3,4⎛⎫-+∞ ⎪⎝⎭.………13分例10 18.(本小题满分13分)已知函数1()ln f x a x x=-,a ∈R .⑴若曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直,求a 的值;⑵求函数()f x 的单调区间;⑶当1a =,且2x ≥时,证明:(1)25f x x --≤.【解析】 ⑴函数()f x 的定义域为{}|0x x >,21()a f x x x '=+. 又曲线()y f x =在点(1,(1))f 处的切线与直线20x y +=垂直,所以(1)12f a '=+=,即1a =. ⑵由于21()ax f x x +'=.当0a ≥时,对于(0,)x ∈+∞,有()0f x '>在定义域上恒成立, 即()f x 在(0,)+∞上是增函数.当0a <时,由()0f x '=,得1(0,)x a=-∈+∞. 当1(0,)x a ∈-时,()0f x '>,()f x 单调递增;当1(,)x a∈-+∞时,()0f x '<,()f x 单调递减.⑶当1a =时,1(1)ln(1)1f x x x -=---,[)2,x ∈+∞.令1()ln(1)251g x x x x =---+-. 2211(21)(2)()21(1)(1)x x g x x x x --'=+-=----.当2x >时,()0g x '<,()g x 在(2,)+∞单调递减.又(2)0g =,所以()g x 在(2,)+∞恒为负.所以当[2,)x ∈+∞时,()0g x ≤. 即1ln(1)2501x x x ---+-≤.故当1a =,且2x ≥时,(1)25f x x --≤成立.1.函数y =x 2+2x +1在x =1处的导数等于A .2B .3C .4D .52.函数ln ()xf x x=的导数是()f x '= A .21ln xxx -B .21ln xx x +C .221ln xx x +D .221ln xx x -3.曲线y =x 33x 2+1在点(1,1)处的切线方程为 A .y =3x 4B .y=3x +2C .y=4x +3D .y =4x +34.)(x f =x 33x 2+1是减函数的区间为A .(2,+∞)B .(-∞,2)C .(-∞,0)D .(0,2)5.函数)(x f =ax 3+x +1有极值的充分必要条件是A .a >0B .0a ≥C .a <0D .0a ≤ 6.设)(x f '是函数)(x f 的导函数,y =)(x f '的图像如下右图所示,则y =)(x f 的图像最有可能是7.函数)(x f =x 3+ax 2+3x9,已知)(x f 在x =3时取得极值,则a = A .2 B .3 C .4D .58.函数)(x f =x 33x +1,在闭区间[3,0]上的最大值、最小值分别是A .1,1B .1,17C .3,17D .9,199.函数y =)(x f 在其定义域内可导,则“)(0x f '=0”是函数y =)(x f 在点x =x 0处有极值的A.充分不必要条件B.必要不充分条件C .充要条件D .既非充分又非必要条件10.函数)(x f =(x3)e x 的单调递增区间是 A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)11.过原点作曲线y =e x 的切线,则切点的坐标为__________;切线的斜率为_________ 12.曲线y =x 33x 2+1在点(1,1)处的切线方程为_____________13.若可导函数()f x 的导函数为()f x ',且满足()f x =3x 2+2x (2)f ',则(5)f '=________14.点P 在曲线y =x 3x +23上移动,设以点P 为切点的切线的倾斜角为α,求α的取值范围________15.()f x '是()f x =13x 3+2x +1的导函数,则(1)f '-的值是_____________16.如图,函数()f x 的图像是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则[](0)f f =_______;函数()f x 在x =1处的导数(1)f '=___________17.若曲线()f x =ax 2+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是_________18.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为________ 19.函数)(x f =ln x 的图像在点(e ,f (e ))处的切线方程是_________20.函数y =xe x的单调减区间是________________________21.若函数)(x f =x 33a 2x +1的图象与直线y =3只有一个公共点,则实数a 的取值范围是_____________22.若函数)(x f =1)1(213123+-+-x a ax x 在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.23.已知函数)(x f =ax 3+bx 2+cx 在点x 0处取得极大值5,其导函数y =)(x f '的图像经过点(1,0),(2,0),如右上图所示.求: (Ⅰ)x 0的值; (Ⅱ) a ,b ,c 的值; (Ⅲ))(x f 的极小值. 答案:例1. y =3x +1 例2 ① 例3.(1)()f x =x 33x 23x +2(2)(-∞,12)上单调递增,(12,1+2)上单调递减,在(1+2,+∞)上单调递增针对训练1.C 2.D 3.B 4.D 5.C 6.D 7.D 8.C 9.B 10. D11.(1,e ), e 12.3x +y -2=013.6 14.3ππ,π0,42α⎡⎫⎡⎫∈⎪⎪⎢⎢⎣⎭⎣⎭15.3 16.2 17.a <0 18.ln2 1 19.y =1x e20.(-∞,0)和(0,1) 21.1<a <1 22.57a ≤≤ 23.(Ⅰ)x 0=1(Ⅱ)a =2,b =9,c =12 (Ⅲ)4高考链接1(09北京)设()f x 是偶函数,若曲线()y f x =在点(1,(1))f 处的切线的斜率为1,则该曲线在点(1,(1))f --处的切线的斜率为______________。

相关文档
最新文档