高中数学导数及其应用电子教案
高二数学导数的应用教案
高二数学导数的应用教案
教学目标:
1. 理解导数的概念和性质;
2. 掌握导数的计算方法;
3. 熟练应用导数解决实际问题。
教学步骤:
一、导入(10分钟)
1. 引入导数的概念,与学生讨论导数的意义和应用;
2. 提出今天的学习目标:掌握导数的计算方法,并能够在实际问题中灵活应用。
二、理论讲解与示范(15分钟)
1. 介绍导数的定义:函数在某一点的切线斜率;
2. 解释导数的符号表示和计算方法,如使用极限的概念计算导数;
3. 给出一些导数计算的例题,并详细讲解解题思路和步骤。
三、练习与巩固(20分钟)
1. 给学生分发练习题,并要求他们独立完成;
2. 针对练习题中的难点和疑惑,进行答疑和解释;
3. 鼓励学生互相交流和讨论,加深对导数的理解和应用。
四、拓展应用(15分钟)
1. 引导学生思考导数在实际问题中的应用;
2. 分组讨论,找到不同领域中可以使用导数解决的问题,并汇报给全班;
3. 提出一些挑战性的导数应用问题,激发学生的思维和创造力。
五、综合评价(10分钟)
1. 进行简单的导数应用综合评价;
2. 针对学生的表现,给予及时的反馈和指导;
3. 总结本节课的重点内容和学习方法。
总结:
通过本节课的学习,学生应该对导数的概念和应用有了更深入的理解,能够熟练计算导数,并能够应用导数解决实际问题。
在后续的学习中,我们将进一步拓展导数的应用领域,并提高解题的灵活性和创造性。
导数及其应用教案
导数及其应用教案一、引言在高中数学课程中,导数是一个非常重要的概念。
本教案旨在介绍导数及其应用,帮助学生理解导数的概念和基本性质,并学习如何在实际问题中运用导数进行分析和计算。
二、导数的概念1. 导数的定义:导数表示函数在某一点上的变化率,即函数值随自变量变化而变化的快慢程度。
2. 导数的几何意义:导数等于函数曲线在某一点切线的斜率。
3. 导数的符号表示:通常用f'(x)或dy/dx表示函数f(x)的导数。
三、导数的基本性质1. 常数的导数为0:若f(x) = a(a为常数),则f'(x) = 0。
2. 幂函数的导数:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。
3. 和差的导数:若f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。
4. 乘积的导数:若f(x) = u(x)v(x),则f'(x) = u'(x)v(x) + u(x)v'(x)。
5. 商的导数:若f(x) = u(x)/v(x),则f'(x) = [u'(x)v(x) - u(x)v'(x)] /v(x)^2。
四、导数的应用1. 切线和法线:导数可以用于求函数曲线在某一点的切线和法线方程。
2. 极值问题:导数可以帮助我们判断函数的极值,并求出极值点和极值。
3. 函数图像的画法:导数可以提供函数图像的一些特征,如拐点、极值、单调性等。
4. 物理问题中的应用:导数可以帮助解决一些物理问题,如速度、加速度等。
五、教学活动1. 导数的计算练习:通过给出具体函数的表达式,让学生计算其导数。
2. 导数在几何中的应用:通过给出函数的图像,让学生判断函数的增减性、拐点、极值等。
3. 实际问题解析:将一些实际问题转化为数学模型,并运用导数进行分析和求解。
六、教学反思通过本教案的讲解和练习,学生应能掌握导数的概念和基本性质,具备运用导数进行实际问题分析和计算的能力。
高中数学导数应用问题教案
高中数学导数应用问题教案
主题:导数的应用问题
教学目标:
1.了解导数的定义及其应用;
2.掌握常见的导数应用问题求解方法;
3.能够运用导数解决实际问题。
教学重点:
1.导数的定义及性质;
2.导数在实际问题中的应用。
教学难点:
1.如何将实际问题转化为导数问题求解;
2.如何运用导数解决各类应用问题。
教学准备:
1.教师准备相关教学资料和案例;
2.学生准备笔记和计算工具。
教学步骤:
一、导入(5分钟)
教师用一个实际问题引入导数的应用,引导学生思考导数在解决实际问题中的作用。
二、概念讲解(10分钟)
1.复习导数的定义及性质;
2.介绍导数在实际问题中的应用,如最速下降问题、最大最小问题等。
三、案例分析(15分钟)
教师以实际问题为例,分析导数应用问题的解题思路和方法,并带领学生一起解决一些简单的案例。
四、练习与讨论(15分钟)
1.学生进行导数应用问题的练习,教师提供帮助和指导;
2.学生分组讨论解题过程,分享解题方法和经验。
五、总结(5分钟)
教师总结本节课的重点内容,强调导数在实际问题中的应用重要性。
六、作业布置(5分钟)
布置相关的导数应用问题作业,希望学生能够独立完成并加强对应用问题的理解和掌握。
教学反思:
通过本节课的教学,学生对导数的应用有了更深入的了解,同时也能够更加灵活地应用导数解决各类实际问题。
希望学生能够在课下多加练习,进一步提高解题能力和运用能力。
导数及其应用教案
课题:变化率问题教学目标:1.理解平均变化率的概念; 2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率; 教学难点:平均变化率的概念. 教学过程: 一、情景导入为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线;三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。
导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。
导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度. 二、知识探究探究一:气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?⏹ 气球的体积V (单位:L )与半径r (单位:dm )之间的函数关系是334)(r r V π=⏹ 如果将半径r 表示为体积V 的函数,那么343)(πV V r = ⑴ 当V 从0增加到1时,气球半径增加了)(62.0)0()1(dm r r ≈- 气球的平均膨胀率为)/(62.001)0()1(L dm r r ≈--⑵ 当V 从1增加到2时,气球半径增加了)(16.0)1()2(dm r r ≈- 气球的平均膨胀率为)/(16.012)1()2(L dm r r ≈--可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V 1增加到V 2时,气球的平均膨胀率是多少?1212)()(V V V r V r --探究二:高台跳水:在高台跳水运动中,运动员相对于水面的高度h (单位:m )与起跳后的时间t (单位:s )存在函数关系h (t )= -4.9t 2+6.5t +10.如何用运动员在某些时间段内的平均速v 度粗略地描述其运动状态?思考计算:5.00≤≤t 和21≤≤t 的平均速度在5.00≤≤t 这段时间里,)/(05.405.0)0()5.0(s m h h v =--=; 在21≤≤t 这段时间里,)/(2.812)1()2(s m h h v -=--=探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(0049)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态。
高中数学导数及其应用教案
高中数学导数及其应用教案教学目标:1. 理解导数的定义和性质,能够计算常见函数的导数。
2. 掌握导数在函数求极限、判定函数的增减性和凹凸性等方面的应用。
3. 能够解决实际问题中的优化和相关性问题。
教学内容:1. 导数的定义和性质2. 基本函数的导数3. 高阶导数4. 函数的导数应用:求极限、判定增减性和凹凸性5. 优化问题和相关性问题的求解教学流程:1. 导数的定义和基本性质的介绍(15分钟)- 导数的定义- 导数的性质:线性性、乘积法则、商法则、链式法则2. 基本函数的导数计算(20分钟)- 常数函数、幂函数、指数函数、对数函数的导数计算- 三角函数的导数计算3. 高阶导数和导数的应用(25分钟)- 高阶导数的定义和计算- 导数在函数的极限、增减性和凹凸性判定中的应用4. 优化问题和相关性问题的解决(20分钟)- 优化问题的定义和解决方法- 相关性问题的建模和解决方法教学方法:1. 讲解导数的定义和性质,引导学生理解概念并掌握基本计算方法。
2. 练习基本函数的导数计算,帮助学生巩固知识。
3. 引导学生理解高阶导数和导数在函数中的应用,培养学生应用知识解决问题的能力。
4. 练习优化问题和相关性问题,让学生通过实际问题感受导数在解决问题中的作用。
教学评估:1. 布置作业,巩固学生对导数的理解和应用能力。
2. 定期组织小测验,检验学生对导数相关知识的掌握程度。
3. 课堂中提问和讨论,评估学生对导数的理解程度。
教学资源:1. PowerPoint课件:导数的定义和基本性质、基本函数的导数计算、高阶导数和导数的应用、优化问题和相关性问题的解决。
2. 习题册:导数相关习题,巩固学生对导数的掌握。
教学反思与总结:教师在教学导数及其应用过程中,要注意引导学生理解概念、掌握计算方法,并注重培养学生的问题解决能力。
通过多种教学方法,激发学生的学习兴趣,提高他们的学习效果。
及时总结分析教学过程中出现的问题和不足,不断完善教学内容和方法,提升教学质量。
导数及其应用教案设计
导数及其应用教案设计一、教学目标1.理解导数的定义和概念;2.掌握导数的计算方法;3.了解导数的几何意义和物理意义;4.应用导数解决实际问题。
二、教学重点1.导数的定义和概念;2.导数的计算方法。
三、教学难点1.导数的几何意义和物理意义;2.导数在实际问题中的应用。
四、教学准备1.教学课件;2.教学工具:黑板、彩色笔;3.教学素材:与导数相关的题目和实例。
五、教学过程Step 1 引入导数的概念(10分钟)1.引入问题:小明从家里出发骑自行车到学校,经历了不同的路段,那么他在每个路段上的速度是多少呢?2.学生思考问题,并提出速度的定义。
3.介绍导数的概念:导数是研究函数变化率的工具,它描述了一个函数在其中一点附近的变化速率。
Step 2 导数的计算方法(20分钟)1. 导数的定义:设函数y=f(x),当x在x0处有极限存在,那么函数f(x)在x0处的导数定义为:f'(x0)=lim(x→x0)[f(x)-f(x0)]/(x-x0)。
2.通过例题演示如何计算导数。
3.引入常见导数的计算法则,如幂函数、反函数、指数函数等。
Step 3 导数的几何意义和物理意义(15分钟)1.导数的几何意义:表示函数在其中一点处的切线斜率。
2.通过例题演示导数的几何意义。
3.导数的物理意义:表示物体运动的速度或速度的变化率。
4.通过例题演示导数的物理意义。
Step 4 导数在实际问题中的应用(25分钟)1.介绍导数在实际问题中的应用,如最大值最小值问题、函数的图像判断等。
2.通过例题演示导数在实际问题中的应用。
3.引入微分的概念,并介绍微分的定义和计算方法。
Step 5 拓展与巩固(20分钟)1.指导学生通过课堂练习和课后作业巩固所学知识。
2.引导学生从日常生活中发现和应用导数的问题。
六、教学反思通过引入问题、讲解定义、演示例题等方式,让学生逐步理解导数的概念和计算方法。
在讲解导数的几何意义和物理意义时,通过具体示例,帮助学生更好地理解和应用导数。
导数及其应用教案
导数及其应用教案一、导数的基本概念导数是微积分中的重要概念,用于描述函数在某一点上的变化率。
在计算机科学、物理学、经济学等领域,导数都具有广泛的应用。
在微积分中,函数f(x)在点x=a处的导数可以表示为f'(a),它描述了函数在该点附近的局部行为。
导数可以通过两种方式计算:几何定义和算术定义。
1. 几何定义:导数可以理解为函数图像在某点的斜率,表示为$f'(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$。
2. 算术定义:导数可以理解为函数在某点上的瞬时速度,表示为$f'(a)=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}$。
二、导数的性质及计算方法导数具有以下几个重要的性质:1. 导数的可加性:若函数f(x)和g(x)都在某点上可导,那么它们的和f(x)+g(x)也在该点上可导,且导数满足$(f+g)'(a)=f'(a)+g'(a)$。
2. 导数的乘法规则:若函数f(x)和g(x)都在某点上可导,那么它们的乘积f(x)g(x)也在该点上可导,且导数满足$(fg)'(a)=f'(a)g(a)+f(a)g'(a)$。
3. 导数的链式法则:若函数y=f(g(x))可以分解为两个函数f(u)和g(x),且它们在某点上可导,那么复合函数y也在该点上可导,并且满足$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}\cdot \frac{{du}}{{dx}}$。
计算导数的方法主要有以下几种:1. 利用基本函数的导数公式进行求导。
2. 利用导数的性质,例如可加性、乘法规则和链式法则,对复杂函数进行求导。
3. 利用导数的几何定义,通过极限的方法进行求导。
三、导数的应用导数在实际问题中有着广泛的应用,以下介绍几个常见的应用领域:1. 最优化问题:导数可以帮助我们找到函数的最大值和最小值。
高中数学教案函数的导数与应用
高中数学教案函数的导数与应用高中数学教案:函数的导数与应用导数是数学中一个重要的概念,它在函数研究和应用问题中起着关键的作用。
本教案将介绍函数的导数的概念、求导法则以及导数在各种实际应用中的具体运用。
一、函数的导数的概念及求导法则1.1 函数的导数概念函数的导数描述了函数在某一点的变化率,可用以下定义来表达:对于函数f(x),当自变量x在某点a处有极小的增量Δx时,相应的函数增量为Δf(x)。
如果当Δx趋近于0时,函数增量Δf(x)与Δx之比的极限存在,那么这个极限就是函数f(x)在点a处的导数。
导数用f'(a)或者dy/dx|_(x=a)表示。
1.2 常见函数的导数求法在实际应用中,我们常常需要对各种函数进行求导。
以下是一些常见函数的导数求法:1.2.1 常数函数的导数对于常数函数y = c,其中c为常数,其导数为0。
1.2.2 幂函数的导数对于幂函数y = x^n,其中n为常数,其导数为dy/dx = nx^(n-1)。
1.2.3 指数函数的导数对于指数函数y = a^x,其中a为底数(a>0且a≠1),其导数为dy/dx = a^x·ln(a)。
1.2.4 对数函数的导数对于对数函数y = logₐ(x),其中a为底数(a>0且a≠1),其导数为dy/dx = 1/(x·ln(a))。
1.2.5 三角函数的导数对于三角函数,常见的导数求法如下:- 正弦函数的导数:dy/dx = cos(x)- 余弦函数的导数:dy/dx = -sin(x)- 正切函数的导数:dy/dx = sec^2(x)- 余切函数的导数:dy/dx = -csc^2(x)二、导数在函数研究中的应用2.1 函数的单调性与极值导数可以帮助我们研究函数的单调性与极值。
当函数的导数为正时,函数递增;当函数的导数为负时,函数递减。
函数的极值出现在导数为0的点或者导数不存在的点上。
2.2 函数的凹凸性与拐点导数还可以帮助我们研究函数的凹凸性与拐点。
导数及其应用 教案
导数及其应用教案教案标题:导数及其应用教学目标:1. 理解导数的概念和意义;2. 掌握求函数导数的基本方法;3. 理解导数的几何意义和应用。
教学准备:1. 教材:包含导数概念和求导方法的教材;2. 教具:白板、彩色笔、计算器、投影仪等;3. 课件:包含导数概念、求导方法和应用实例的课件;4. 练习题:包含不同难度的求导练习题。
教学过程:Step 1:导入导数概念(15分钟)1. 利用课件和白板,引导学生回顾函数的变化率概念,并与导数进行对比;2. 解释导数的定义和符号表示,强调导数表示函数在某一点的变化率;3. 通过图示和实例,展示导数的几何意义。
Step 2:求导方法介绍(20分钟)1. 介绍求导的基本方法,包括常数函数、幂函数、指数函数、对数函数和三角函数的求导法则;2. 利用课件和实例,演示不同类型函数的求导过程;3. 强调求导法则的应用和重要性。
Step 3:导数的应用(25分钟)1. 介绍导数在实际问题中的应用,如速度、加速度、最优化问题等;2. 利用课件和实例,展示导数在实际问题中的具体应用过程;3. 引导学生思考导数在其他学科中的应用,如物理、经济等领域。
Step 4:练习与巩固(20分钟)1. 分发练习题,让学生在课堂上完成求导练习;2. 鼓励学生互相讨论和解答问题,提高求导能力;3. 收集学生的答案,进行讲评和指导。
Step 5:课堂总结(10分钟)1. 总结导数的概念、求导方法和应用;2. 强调导数在数学和其他学科中的重要性;3. 鼓励学生继续深入学习和应用导数知识。
教学延伸:1. 鼓励学生进行更多的导数应用实践,如通过编程模拟物体运动、经济模型等;2. 提供更多的挑战性练习题,培养学生的分析和解决问题的能力;3. 拓展导数概念,引入高阶导数和导数的应用领域,如微分方程等。
教学评估:1. 课堂练习题的完成情况和答案准确性;2. 学生对导数概念、求导方法和应用的理解程度;3. 学生在实际问题中应用导数的能力和创造性。
高中数学选修系列2选修22《导数及其应用》教案
导数及其应用教学目标:理解导数的概念,导数的某些实际背景(如瞬时速度,光滑曲线的切线斜率等)熟记函数y=c,y=x n 的导数公式,并能灵活应用。
重点和难点:利用导数会求某些函数的单调区间,极值,最值问题教学过程:一基础训练1x x y 33-=在R 上的单间递减区间是2.x x y +=3在A 处的切线斜率4,则点A 的坐标为3,一物体的运动方程是s=t t 21+- 其中的s 单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是(A )7米/秒 (B )6米/秒 (C )5米/秒 (D )8米/秒4.=)(x f )(122+x 求=)(0/f . 5,已知mx mx x x f ++=23)(在R 上的增函数,则实数m 的取值范围6,y=x x 3223-在区间[-1,2]上的最大值是( )(A )5- (B )0 (C )1- (D )4二例题例1 从长32cm 的矩形簿铁板的四角截去相等的正方形,做一个无盖的箱子,问截去的正方形边长为多少时,箱子容积最大?最大容积是多少?例2 已知曲线x y 515=上一点处的切线与x y -=3垂直,求此切线方程。
例3 抛物线x y 24-=与直线x y 3=的交点为A,B 。
点P 在抛物线的弧上的A 到B 运动,求使△PAB 的面积为最大值时, P 点的坐标P(a,b)三练习1.曲线x x y +=2在点A (1,2)处的切线斜率是 ( )(A )1 (B )2 (C )3 (D )42.曲线x y 2=上一点A (2,4),则曲线在点A 处的切线斜率是,此切线的方程是。
3.一作直线运动的物体,它的运动方程是t t s 21++=,其中s 的单位是米,t 的单位是秒,则该物体在时间t=a 时瞬时速度是4.曲线x x y 24-=上两点A (4,0),B (2,4),若曲线上一点P 处的切线恰好平行于弦AB ,则点P 的坐标是 ( )(A )(3,3) (B )(1,3) (c )(6,-12) (d )(2,4)5.设函数5223++-=x x x x f )(,若00/=)(x f ,则=x 0四作业1若函数d cx bx x y +++=23的单调递减区间是[-1,2],则b=,c=。
高中数学第3章导数及其应用3.13.1.3导数的几何意义教师用书教案新人教A版选修1
3.1.3 导数的几何意义学习目标核心素养1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念,会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点) 1.通过学习导数的几何意义,培养学生数学抽象的素养.2.借助导数的几何意义解题,培养学生的数学运算素养.1.导数的几何意义(1)切线的概念:如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P处的切线.(1)(2)(3)(4)(2)导数的几何意义:函数f(x)在x=x0处的导数就是切线PT的斜率k,则k=limΔx→0 f(x0+Δx)-f(x0)Δx=f′(x0).(3)切线方程:曲线y=f(x)在点(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)(x-x0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示]不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.已知曲线y=f(x)在点(1,f(1))处的切线方程为2x-y+2=0,则f′(1)=()A.4 B.-4C.-2 D.2D[由导数的几何意义知f′(1)=2,故选D.]2.已知函数f(x)在x0处的导数为f′(x0)=1,则函数f(x)在x0处切线的倾斜角为________.45°[设切线的倾斜角为α,则tan α=f′(x0)=1,又α∈[0°,180°),∴α=45°.]3.若函数f(x)在点A(1,2)处的导数是-1,那么过点A的切线方程是________.x+y-3=0[切线的斜率为k=-1.∴点A(1,2)处的切线方程为y-2=-(x-1),即x+y-3=0.]导数的几何意义A BA.f′(x A)>f′(x B)B.f′(x A)<f′(x B)C.f′(x A)=f′(x B)D.不能确定(2)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1 D.a=-1,b=-1(1)B(2)A[(1)由导数的几何意义,f′(x A),f′(x B)分别是切线在点A,B处切线的斜率,由图象可知f ′(x A )<f ′(x B ).(2)由题意,知k =y ′|x =0=lim Δx →(0+Δx )2+a (0+Δx )+b -bΔx =1,∴a =1.又(0,b )在切线上,∴b =1,故选A .]1.本例(2)中主要涉及了两点:①f ′(0)=1,②f (0)=b . 2.解答此类问题的关键是理解导数的几何意义.3.与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.[跟进训练]1.(1)设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B .12C .-12D .-1(2)如图所示,函数y =f (x )的图象在点P (2,y )处的切线是l ,则f (2)+f ′(2)等于( )A .-4B .3C .-2D .1(1)A (2)D [(1)由题意可知,f ′(1)=2. 又lim Δx →0f (1+Δx )-f (1)Δx =lim Δx →a (1+Δx )2-aΔx=lim Δx →0(a Δx +2a )=2a .故由2a =2得a =1.(2)直线l 的方程为x 4+y4=1,即x +y -4=0.又由题意可知f (2)=2,f ′(2)=-1, ∴f (2)+f ′(2)=2-1=1.]求切点坐标(1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路点拨] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x 2Δx =lim Δx →(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4). (2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝⎛⎭⎫-32,94. (3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝⎛⎭⎫-12,14.解答此类题目时,所给直线的倾斜角或斜率是解题的关键,由这些信息得知函数在某点处的导数,进而可求此点的横坐标.解题时要注意解析几何知识的应用,如直线的倾斜角与斜率的关系,平行,垂直等.[跟进训练]2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0?[解]设切点坐标为(x0,y0),则Δy=2(x0+Δx)2+1-2x20-1=4x0·Δx+2(Δx)2,∴ΔyΔx=4x0+2Δx,∴y′|x=x0=limΔx→0ΔyΔx=limΔx→0(4x0+2Δx)=4x0.(1)∵抛物线的切线平行于直线4x-y-2=0,∴斜率为4,即f′(x0)=4x0=4,得x0=1,该点为(1,3).(2)∵抛物线的切线与直线x+8y-3=0垂直,∴斜率为8,即f′(x0)=4x0=8,得x0=2,该点为(2,9).求曲线的切线方程1.如何求曲线f(x)在点(x0,f(x0))处的切线方程?提示:根据导数的几何意义,求出函数y=f(x)在点(x0,f(x0))处的导数,即曲线在该点处的切线的斜率,再由直线方程的点斜式求出切线方程.2.曲线f(x)在点(x0,f(x0))处的切线与曲线过点(x0,y0)的切线有什么不同?提示:曲线f(x)在点(x0,f(x0))处的切线,点(x0,f(x0))一定是切点,只要求出k=f′(x0),利用点斜式写出切线方程即可;而曲线f(x)过某点(x0,y0)的切线,给出的点(x0,y0)不一定在曲线上,即使在曲线上也不一定是切点.【例3】已知曲线C:y=x3.(1)求曲线C在横坐标为x=1的点处的切线方程;(2)求曲线C过点(1,1)的切线方程.[思路点拨](1)求y′|x=1―→求切点―→点斜式方程求切线(2)设切点(x 0,y 0)―→求y ′|x =x 0―→由y ′|x =x 0=y 0-1x 0-1求(x 0,y 0)―→写切线方程[解] (1)将x =1代入曲线C 的方程得y =1, ∴切点P (1,1).y ′|x =1=lim Δx →0ΔyΔx =lim Δx →(1+Δx )3-1Δx=lim Δx →0[3+3Δx +(Δx )2]=3.∴k =y ′|x =1=3.∴曲线在点P (1,1)处的切线方程为y -1=3(x -1),即3x -y -2=0.(2)设切点为Q (x 0,y 0),由(1)可知y ′|x =x 0=3x 20,由题意可知k PQ =y ′|x =x 0,即y 0-1x 0-1=3x 20,又y 0=x 30,所以x 30-1x 0-1=3x 20,即2x 20-x 0-1=0,解得x 0=1或x 0=-12. ①当x 0=1时,切点坐标为(1,1),相应的切线方程为3x -y -2=0.②当x 0=-12时,切点坐标为⎝⎛⎭⎫-12,-18,相应的切线方程为y +18=34⎝⎛⎭⎫x +12,即3x -4y +1=0.(变结论)本例第(1)小题中的切线与曲线C 是否还有其他的公共点?[解] 由⎩⎪⎨⎪⎧y =3x -2,y =x 3,解得⎩⎪⎨⎪⎧ x =1,y =1,或⎩⎪⎨⎪⎧x =-2,y =-8,从而求得公共点为P (1,1)或M (-2,-8),即切线与曲线C 的公共点除了切点外,还有另一公共点(-2,-8).1.求曲线在某点处的切线方程的步骤2.求过点(x1,y1)的曲线y=f(x)的切线方程的步骤(1)设切点(x0,y0);(2)求f′(x0),写出切线方程y-y0=f′(x0)(x-x0);(3)将点(x1,y1)代入切线方程,解出x0,y0及f′(x0);(4)写出切线方程.1.导数f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处的切线的斜率,即k=limΔx→0 f(x0+Δx)-f(x0)Δx=f′(x0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f(x)在点x0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f′(x0)是其导数y=f′(x)在x=x0处的一个函数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则以该点为切点的切线方程为y-f(x0)=f′(x0)(x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.1.判断正误(1)函数y=f(x)在x=x0处的导数f′(x0)的几何意义是曲线y=f(x)在点x=x0处切线的斜率.()(2)若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在.()(3)f′(x0)(或y′|x=x0)是函数f′(x)在点x=x0处的函数值.()(4)直线与曲线相切,则直线与已知曲线只有一个公共点.()[答案](1)√(2)×(3)√(4)×2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-12,∴f ′(x 0)=-12<0.]3.曲线f (x )=2x 在点(-2,-1)处的切线方程为________.x +2y +4=0 [f ′(-2)=lim Δx →f (-2+Δx )-f (-2)Δx=lim Δx →02-2+Δx +1Δx =lim Δx →1-2+Δx =-12,∴切线方程为y +1=-12(x +2),即x +2y +4=0.]4.已知直线y =4x +a 和曲线y =x 3-2x 2+3相切,求切点坐标及a 的值. [解] 设直线l 与曲线相切于点P (x 0,y 0),则f ′(x )=lim Δx →(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx =3x 2-4x .由导数的几何意义,得k =f ′(x 0)=3x 20-4x 0=4, 解得x 0=-23或x 0=2,∴切点坐标为⎝⎛⎭⎫-23,4927或(2,3). 当切点为⎝⎛⎭⎫-23,4927时,有4927=4×⎝⎛⎭⎫-23+a , ∴a =12127.当切点为(2,3)时,有3=4×2+a , ∴a =-5,因此切点坐标为⎝⎛⎭⎫-23,4927或(2,3),a 的值为12127或-5.。
高中导数及其应用教案
4.4,3212='∴='∴+==x y x y x y即过点P 的切线的斜率为4,故切线为:14+=x y .设过点Q 的切线的切点为),(00y x T ,则切线的斜率为04x ,又2900--=x y k PQ ,故00204262x x x =--,3,1.06820020=∴=+-∴x x x 。
即切线QT 的斜率为4或12,从而过点Q 的切线为:1512,14-=-=x y x y★ 热 点 考 点 题 型 探 析★考点1: 导数概念题型1.求函数在某一点的导函数值 [例1] 设函数()f x 在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于A .)('0x fB .0'()f x -C .0()f xD .0()f x - 【解题思路】由定义直接计算 [解析]0000000()()[()]()limlim ()()x x f x x f x f x x f x f x x x ∆→∆→-∆-+-∆-'=-=-∆-∆.故选B【名师指引】求解本题的关键是变换出定义式00()()lim ()x f x x f x f x x∆→+∆-'=∆考点2.求曲线的切线方程[例2](高明一中2009届高三上学期第四次月考)如图,函数)(x f y =的图象在点P 处的切线方程是 8+-=x y ,则)5()5(f f '+= . 【解题思路】区分过曲线P 处的切线与过P 点的切线的不同,后者的P 点不一定在曲线上. 解析:观察图形,设(5,(5))P f ,过P 点的切线方程为(5)'(5)(5)y f f x -=-即'(5)(5)5'(5)y f x f f =+-它与8+-=x y 重合,比较系数知:'(5)1,(5)3f f =-= 故)5()5(f f '+=2【名师指引】求切线方程时要注意所给的点是否是切点.若是,可以直接采用求导)cos x y e =)2tan ,y x x =+∴x'1(1)1x x =⋅+=+【名师指引】 注意复合函数的求导方法(分解2. (广东省2008届六校第二次联考)cos y x x =在3x π=处的导数值是.解析:'cos sin y x x x =-故填1326π-3. 已知直线2y -4=0与抛物线y 2=4x 相交于A 、B 两点,O 是坐标原点,P 是抛物线的弧上求一点P ,当△面积最大时,P 点坐标为 .解析:为定值,△面积最大,只要P 到的距离最大,只要点P 是抛物线的平行于的切线的切点,设P ().由图可知,点P 在x 轴下方的图象上∴-2x ,∴y ′=-x 1,∵-21,∴-211-=x∴4,代入y 2=4x (y <0)得-4. ∴P (4,-4)4.(广东省深圳市2008年高三年级第一次调研考试)已知()ln f x x =,217()22g x x mx =++(0m <),直线l 与函数()f x 、()g x 的图像都相切,且与函数()f x 的图像的切点的横坐标为1.求直线l 的方程与m 的值;解:依题意知:直线l 是函数()ln f x x =在点(1,0)处的切线,故其斜率1(1)11k f '===,所以直线l 的方程为1y x =-.又因为直线l 与()g x 的图像相切,所以由22119(1)0172222y x x m x y x mx =-⎧⎪⇒+-+=⎨=++⎪⎩,得2(1)902m m ∆=--=⇒=-(4m =不合题意,舍去); 5.(湛江市实验中学2009届高三第四次月考)已知函数)(),(),(21)(,ln )(2x g x f l a a x x g x x f 与函数直线为常数+==的图象都相切,且l 与函数)(x f 图象的切点的横坐标为1,求直线l 的方程与a 的值;解析:()'=f x'=f x ax()31a≥-3【名师指引】:本题主要考查函数的单调性与导数正负值的关系()f x '=,()f x '∴=0)0=,f ∴【名师指引】若要证的不等式两边是两类不同的基本函数,往往构造函数,借助于2(1)4y x =-++在[,2]a 上的最大值为154,1a ∴>-且在x a =时,215234y a a =--+=最大,解之12a =或32a =-(舍去),∴12a =选B.5.32()32f x x x =-+在区间[1,1]-上的最大值是A .2-B .0C .2D .4[解析]2()363(2)f x x x x x '=-=-,令()0f x '=可得0x =或2(2舍去),当10x -≤<时,()f x '0,当01x <≤时,()f x '0,所以当0x =时,f (x )取得最大值为2.选C6.已知函数3()(0)f x ax cx d a =++≠是R 上的奇函数,当1x =时()f x 取得极值2-.(1)求()f x 的单调区间和极大值;(2)证明对任意12,x x (1,1),∈-不等式12|()()|4f x f x -<恒成立. [解析](1)由奇函数定义,有()(),f x f x x R -=-∈. 即33,0.ax cx d ax cx d d --+=---∴=因此,3(),f x ax cx =+ 2'()3.f x ax c =+由条件(1)2f =-为()f x 的极值,必有'(1)0,f =故 230a c a c +=-⎧⎨+=⎩,解得 1, 3.a c ==-因此3()3,f x x x =-2'()333(1)(1),f x x x x =-=+- '(1)'(1)0.f f -== 当(,1)x ∈-∞-时,'()0f x >,故()f x 在单调区间(,1)-∞-上是增函数. 当(1,1)x ∈-时,'()0f x <,故()f x 在单调区间(1,1)-上是减函数. 当(1,)x ∈+∞时,'()0f x >,故()f x 在单调区间(1,)+∞上是增函数. 所以,()f x 在1x =-处取得极大值,极大值为(1) 2.f -= (2)由(1)知,3()3([1,1])f x x x x =-∈-是减函数,且()f x 在[1,1]-上的最大值为(1)2,M f =-=最小值为(1) 2.m f ==-所以,对任意12,(1,1),x x ∈-恒有12|()()|2(2) 4.f x f x M m -<-=--=[方法技巧]善于用函数思想不等式问题,如本题12max min |()()|()()-≤-f x f x f x f x . ★ 抢 分 频 道 ★基础巩固训练1.(广东省六校2009届高三第二次联考试卷) 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 值内的图象如图所示,则函数)(x f 在),(b a 内有极小点共有( )A .1个B .2个C .3个D . 4个 解析:观察图象可知,只有一处是先减后增的,选A 2.、函数313y x x =+-有( )A. 极小值-1,极大值1B. 极小值-2,极大值3C. 极小值-2,极大值2D. 极小值-1,极大值3解析:2333(1)(1)y x x x '=-=-+,令0y '=得 1,1x x ==-当1x <-时,0y '>;当11x -<<时,0y '<;当1x >,0y '<∴ 1x =-时,1y =-极小,当1x =3y =极大,故选D.3.函数(x )-x ,在区间(0]上的最大值为A.1-eB.-1C.-eD.0解析:y ′=x1-1,令y ′=0,即1,在(0,e ]上列表如下:x (0,1) 1 (1) ey ′ + 0 -y增函数极大值-1减函数1-e由于f (e)=1-e,而-1>1-e,从而y 最大(1)=-1.答案:B4.(广东深圳外国语学校2008—2009学年高三第二次月考)若1>a ,求函数)),0()(ln()(+∞∈+-=x a x x x f 的单调区间.[解析],121)(ax x x f +-='y=f '(x)bao yx图2图1即在相同的时间内,生产第9档次的产品的总利润最大,最大利润为864元.10分解法二:由上面解法得到-6x 2+108378. 求导数,得y ′=-12108,令y ′=-12108=0,解得9.因9∈[1,10]只有一个极值点,所以它是最值点,即在相同的时间内,生产第9档次的产品利润最大,最大利润为864元.【名师指引】一般情况下,对于实际生活中的优化问题,如果其目标函数为高次多项式函数、简单的分式函数简单的无理函数、简单的指数、对数函数,或它们的复合函数,均可用导数法求其最值.由此也可见,导数的引入,大大拓宽了中学数学知识在实际优化问题中的应用空间.题型2:几何模型的最优化问题【名师指引】与最值有关的问题应合理解模,使问题获解.例3. (07上海春季高考)某人定制了一批地砖. 每块地砖 (如图1所示)是边长为4.0米的正方形ABCD ,点E 、F 分别在边和上, △CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格之比依次为3:2:1. 若将此种地砖按图2所示的形式铺设,能使中间的深色阴影部分成四边形EFGH .(1) 求证:四边形EFGH 是正方形;费用最(2) F E 、在什么位置时,定制这批地砖所需的材料省?【解题思路】图2是由四块图1所示地砖绕点C 按顺时针旋转90后得到,△CFE 为等腰直角三角形, ∴ 四边形EFGH 是正方形. [解析] (2) 设x CE =,则x BE -=4.0,每块地砖的费用为W ,制成△CFE 、△ABE 和四边形AEFD 三种材料的每平方米价格依次为3a 、2a 、a (元), a x x a x a x W ⎥⎦⎤⎢⎣⎡-⨯⨯--+⨯-⨯⨯+⋅=)4.0(4.0212116.02)4.0(4.02132122 ()24.02.02+-=x x a[]4.00,23.0)1.0(2<<+-=x x a .由0>a ,当1.0=x 时,W 有最小值,即总费用为最省.答:当1.0==CF CE 米时,总费用最省.【名师指引】 处理较复杂的应用题审题时要逐字逐句地去啄磨. 题型3:三角模型的最优化问题例4. 若电灯B 可在桌面上一点O 的垂线上移动,桌面上有与点O 距离为a 的另一点A ,问电灯与点0的距离怎样,可使点A 处有最大的照度?(,,r BA BAO ==∠ϕ照度与ϕsin 成正比,与2r 成反比)2r 成反比,【解题思路】如图,由光学知识,照度y 与ϕsin 成正比,与即2sin rCy ϕ=(C 是与灯光强度有关的常数)要想点A 处有最大的照度,只需求y 的极值就可以了. 解析:设O 到B 的距离为x ,则rx=ϕsin ,22a x r += 于是)0()(sin 232232∞<≤+===x a x xCrxC r C y ϕ,0)(2252222=+-='a x x a Cy .当0='y 时,即方程0222=-x a 的根为21a x -=(舍)与22a x =,在我们讨论的半闭区间[)+∞,0内,所以函数)(x f y =在点2a 取极大值,也是最大值。
导数专题及其应用教案
导数专题及其应用教案教案标题:导数专题及其应用教案教案目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法;3. 熟悉导数在实际问题中的应用。
教学重点:1. 导数的定义和计算方法;2. 导数在函数图像、极值和曲线的切线方程中的应用。
教学难点:1. 理解导数的概念和意义;2. 运用导数解决实际问题。
教学准备:1. 教师准备:教学课件、教学素材、计算工具;2. 学生准备:教材、笔记、计算器。
教学过程:一、导入(5分钟)1. 引入导数的概念,提问学生对导数的理解;2. 通过一个简单的例子,引导学生思考导数的意义。
二、导数的定义和计算方法(15分钟)1. 介绍导数的定义和符号表示;2. 讲解导数的计算方法,包括用极限定义导数和使用导数公式计算导数;3. 通过示例演示导数的计算过程。
三、导数在函数图像中的应用(15分钟)1. 讲解导数与函数图像的关系,包括导数与函数的增减性、极值和拐点;2. 指导学生根据导数的正负判断函数的增减性,并绘制函数图像;3. 引导学生通过导数的零点判断函数的极值和拐点,并绘制函数图像。
四、导数在曲线的切线方程中的应用(15分钟)1. 引入导数与曲线的切线方程的关系;2. 讲解切线方程的一般形式和求解步骤;3. 指导学生根据导数和给定点求解曲线的切线方程,并进行实际问题的应用练习。
五、导数在实际问题中的应用(15分钟)1. 介绍导数在实际问题中的应用领域,如物理、经济等;2. 提供一些实际问题,引导学生运用导数解决问题;3. 学生个别或小组完成导数应用问题的解答和讨论。
六、总结(5分钟)1. 简要回顾导数的概念和计算方法;2. 强调导数在实际问题中的应用;3. 鼓励学生继续深入学习导数的相关知识。
教学延伸:1. 提供更多的导数计算练习题,巩固学生的计算能力;2. 引导学生在实际生活中寻找更多导数的应用案例,并进行讨论和分享。
教学评估:1. 教师观察学生在课堂上的参与和表现;2. 学生完成课后作业,包括导数计算和应用题目;3. 学生进行小组或个人报告,展示导数在实际问题中的应用案例。
导数及其应用全章教学案
课题:3.1.1平均变化率学习目标1、知识目标:通过实例直观感知、构建平均变化率的概念,并初步运用和加深理解平均变化率的实际意义和数学意义.2、能力目标:由平均变化率的实际意义到数学意义,体现实际问题数学化的过程,并渗透“以直代曲”、“数形结合”的思想方法,培养学生分析问题、解决问题的能力.3、情感目标:经历运用数学模型刻画客观世界的“数学化”过程,感受数学产生和发展的规律,培养学生勇于探索、创新的个性品质.重点:平均变化率概念的建构和平均变化率的实际意义.难点:平均变化率的实际意义和数学意义的互相转化.学习过程、问一题情境1.在经营高邮双黄蛋的生意中,甲挣到10万元,乙挣到2万元,谁的经2.观察:高邮市3月18日到4月18日与4月18日到4月20日的温度变化曲线图问题1:观察图象,AB段与BC段气温的变化有什么特点?问题2:如何量化曲线的陡峭程度呢?二、学生活动围绕“如何量化曲线的陡峭程度”这一问题展开活动:1.讨论仅仅yC -yB的大小能否量化BC段陡峭程度,为什么?2.讨论用c bc by yx x--刻画曲线陡峭程度的合理性.三、建构数学1.通过讨论,给出平均变化率的定义:一般地,给出函数f(x)在区间[x1,x2]上的平均变化率为2121()()f x f xx x--.2.通过比较气温在区间[1,32]上的变化率0.5与气温[32,34]上的变化率7.4,感知曲线陡峭程度的量化.3.回到气温曲线图中,从数和形两方面对平均变化率进行意义建构.四、数学应用1、例题分析例1 在经营高邮双黄蛋的生意中,甲挣到10万元,乙挣到2万元,谁的经营成果好?变:在经营高邮双黄蛋的生意中,甲用5年时间挣到10万元,乙用5个月时间挣到2万元,谁的经营成果好?小结:解释经营成果的数学意义,说明仅考虑一个变量的变化是不形的.0.1()5tV t e-=⨯(单位:3cm),计算第一个10s内V的平均变化率.函数f(x)=2x+1,g(x)=-2x,分别计算在区间[-3,-1],[]5,0上f(x)及g(x)的平均变化率.思考:一次函数y=kx+b在区间[m,n]上的平均变化率有什么特点?例4 已知函数2()f x x=,分别计算()f x在下列区间上的平均变化率:(1)[1,3];(2)[1,2];(3)[1,1.1];(4)[1,1.001].2、练习:教材P59练习1、3五、回顾小结1.平均变化率一般的,函数()f x在区间[x1,x2]上的平均变化率为2121()()f x f xx x--.2.平均变化率是曲线陡峭程度的“数量化”,是一种粗略的刻画,有待进一步精确化,随之而来的便是新的数学模型的建立.例2 水经过虹吸管从容器甲中流向容器乙,t s后容器甲中水的体积六、作业:P59练习2、4 课题:3.1.2瞬时变化率——导数(1)学习目标:1、知识与技能:理解并掌握曲线在某一点处的切线的概念;会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;理解导数概念实际背景,培养学生解决实际问题的能力.2、过程与方法:掌握在一点处的导数的定义及其几何意义.3、情感态度与价值观:培养学生研究探索问题的能力,共同协作的精神,培养学生转化问题的能力及数形结合思想.学习重点:“以直带曲”的思想方法学习难点:“以直带曲”的思想方法的产生一、问题提出:1、什么叫做平均变化率;2、“曲线上两点的连线(割线)的斜率”与“函数f(x)在区间[xA,xB]上的平均变化率”有怎样的关系?3、如何精确地刻画曲线上某一点处的变化趋势呢?二、学生活动:下面我们来看一个动画.观察这个动画,在点P沿曲线向点Q运动时,随着点P 无限逼近点Q,观察割线PQ的斜率的变化趋势与曲线在点Q处的切线的斜率的关系.三、建构数学:1、曲线上一点处的切线斜率不妨设P(x1,f(x1)),Q(x,f(x)),则割线PQ的斜率为11)()(xxxfxfkPQ--=,设x1-x=△x,则x1=△x+x,∴xxfxxfkPQ∆-∆+=)()(当点P沿着曲线向点Q无限靠近时,割线PQ的斜率就会无限逼近点Q处切线斜率,即当△x无限趋近于0时,xxfxxfkPQ∆-∆+=)()(0无限趋近点Q处切线斜率.2、曲线上任一点(x,f(x))切线斜率的求法:xxfxxfk∆-∆+=)()(0,当△x无限趋近于0时,k值即为(x,f(x))处切线的斜率.3、瞬时速度与瞬时加速度(1)平均速度: 物理学中,运动物体的位移与所用时间的比称为平均速度(2)位移的平均变化率:tt s t t s ∆-∆+)()(00(3)瞬时速度:当无限趋近于0 时,tt s t t s ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时速度(4)求瞬时速度的步骤:①先求时间改变量t ∆和位置改变量)()(00t s t t s s -∆+=∆②求平均速度tsv ∆∆=③求瞬时速度:当t ∆无限趋近于0,ts∆∆无限趋近于常数v 为瞬时速度(5)速度的平均变化率:tt v t t v ∆-∆+)()(00(6)瞬时加速度:当t ∆无限趋近于0 时,tt v t t v ∆-∆+)()(00无限趋近于一个常数,这个常数称为t=t 0时的瞬时加速度注:瞬时加速度是速度对于时间的瞬时变化率 四、数学应用1、例题分析:例1、已知f(x)=x 2,求曲线在x=2处的切线的斜率.变式:1.求21()f x x =过点(1,1)的切线方程2.曲线y=x 3在点P 处切线斜率为k,当k=3时,求P 点的坐标. 3.已知曲线()f x =P(0,0)的切线斜率是否存在?例2.一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么当t ∆无限趋近于0零时,ts∆∆无限趋近于(1)从时间t 到t t +∆时,物体的平均速度; (2)在t 时刻时该物体的瞬时速度; (3)当时间为t ∆时物体的速度; (4)从时间t 到t t +∆时物体的平均速度例 3 设一辆轿车在公路上做加速直线运动,假设t s 时的速度为3)(2+=t t v .求0t t =s 时轿车的加速度.变式:自由落体运动的位移s(m)与时间t(s)的关系为s=221gt(1)求t=t 0s 时的瞬时速度 (2)求t=3s 时的瞬时速度 (3)求t=3s 时的瞬时加速度2、练习:P62练习、P64练习五、课堂小结:1、当点Q 沿曲线C 向点P 运动,并无限靠近点P 时,割线PQ 逼近点P的切线l ,从而割线的斜率逼近切线的斜率,即当x ∆无限趋近于0时,xx f x x f ∆-∆+)()(无限趋近于点P ))(,(x f x 处的切线的斜率.2、当t ∆无限趋近于0时,tt s t t s ∆-∆+)()(00无限趋近于物体在0t 时刻的速度;当t ∆无限趋近于0时,tt v t t v ∆-∆+)()(00无限趋近于物体在0t 时刻的加速度.课题:3.1.2瞬时变化率——导数(2)学习目标:1、知识与技能:理解导数的概念、掌握简单函数导数符号表示和求解方法;理解导数的几何意义;理解导函数的概念和意义;2、过程与方法:先理解概念背景,培养解决问题的能力;再掌握定义和几何意义,培养转化问题的能力;最后求切线方程,培养转化问题的能力;3、情感态度及价值观;让学生感受事物之间的联系,体会数学的美;学习重点:导数的概念的建立;学习难点:导数的概念. 学习过程: 一、创设情景1、平均变化率2、探究:计算运动员在49650≤≤t 这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h (t )= -4.9t 2+6.5t +10的图像,结合图形可知,)0()4965(h h =,所以)/(004965)0()4965(m s h h v =--=,虽然运动员在49650≤≤t 这段时间里的平均速度为)/(0m s ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态. 二、学生活动:我们把物体在某一时刻的速度称为瞬时速度.运动员的平均速度不能反映他在某一时刻的瞬时速度,那么,如何求运动员的瞬时速度呢?比如,2t =时的瞬时速度是多少?考察2t =附近的情况:当t ∆趋近于0时,平均速度v 有什么样的变化趋势?三、建构数学1、导数的概念从函数)(x f y =在区间),(b a 上有定义,),(0b a x ∈,当x ∆无限趋近于0时,比值xx f x x f x y ∆-∆+=∆∆)()(00 无限趋近于一个常数A ,则称)(x f 在0x x =处可导,并称常数A 为函数)(x f 在点0x x =处的导数,记作)('0x f .0000()()lim lim x x f x x f x f x x ∆→∆→+∆-∆=∆∆ 2、导数的几何意义3、导函数的概念4、导数的物理意义四、数学应用 1、例题分析:例1.(1)求函数23x y =在1=x 处的导数.(2)求函数f (x )=x x +-2在1x =-附近的平均变化率,并求出在该点处的导数.变式:已知函数23)(2+=x x f ,(1)求函数)(x f 在2=x 处的导数;(2)求函数)(x f 在a x =处的导数.例2.(课本例1)将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热,如果第xh 时,原油的温度(单位:C )为2()715(08)f x x x x =-+≤≤,计算第2h 时和第6h 时,原油温度的瞬时变化率,并说明它们的意义.2、课堂练习:P66练习 五.回顾总结1、导数的概念;导数的几何意义与物理意义;2、导函数的概念.六.布置作业:P67习题4、81.质点运动规律为32+=t s ,求质点在3t =的瞬时速度为 .2.曲线221y x =+在点(1,3)的切线斜率为 ,切线方程为3.当h 无限趋近于0时, 22(3)3h h +-无限趋近于,无限趋近4(4,6)处的切线的方程为5.函数2y x =的图像在点39(,)416P 处切线的斜率是多少?写出该切线的方程.6.曲线2yx =的一条切线的斜率是4-,求切点的坐标.7.已知y ,求''1,x y y =8.求曲线y =f (x )=x 2+1在点P (1,2)处的切线方程.9.求函数y =3x 2在点(1,3)处的导数.10.求曲线y =f (x )=x 3在点(1,1)处的切线;11.求曲线y =f (x )=x 3在1x =时的导数.12.例2中,计算第3h 时和第5h 时,原油温度的瞬时变化率,并说明它们的意义.课题:3.2.1常见函数的导数学习目标:1)知识与技能目标:能根据导数的定义求几个简单函数的导数;加深对导数概念的理解;掌握初等函数的求导公式;2)过程与方法目标: 体会建立数学理论的过程,感受学习数学和研究数学的一般方法; 体会算法的思想,熟悉具体的操作步骤;3)情感与价值观:让学生再现知识的发生过程,发展学生的思维能力。
导数及其应用教案
导数及其应用教案导数及其应用教案一、教学目标:1. 了解导数的定义和性质;2. 掌握导数的计算方法;3. 了解导数的应用领域及其作用。
二、教学内容:1. 导数的定义和性质;2. 导数的计算方法;3. 导数在函数图像研究中的应用;4. 导数在物理、经济等领域的应用。
三、教学过程:1. 导入导数的概念,引出导数的定义:导数是函数在某一点处的变化率,用极限表示。
给出导数的定义:若函数在点a处的导数存在,则称函数在点a处可导,记为f'(a)。
2. 介绍导数的计算方法:a. 用导数定义法计算:根据导数的定义,利用极限运算求出导数;b. 用基本导数公式计算:介绍常见函数的导数公式,如常数函数、幂函数、指数函数、对数函数等;c. 用导数运算法则计算:介绍导数的四则运算法则,包括常数倍、和差、积、商。
3. 导数在函数图像研究中的应用:a. 求函数的增减区间:根据函数的导数求出函数的增减性和极值点;b. 求函数的凹凸区间和拐点:根据函数的导数求出函数的凹凸性和拐点。
4. 导数在物理、经济等领域的应用:a. 导数表示速度和加速度:介绍物理学中速度和加速度的概念,并利用导数计算速度和加速度;b. 导数表示边际效应和弹性:介绍经济学中边际效应和弹性的概念,并利用导数计算边际效应和弹性。
5. 总结导数的应用:导数在数学、物理、经济等领域中都有广泛的应用,帮助我们研究函数的性质、分析物体的运动和评估经济的效益等。
四、教学方法:1. 讲授导数的定义和性质,引导学生思考导数的计算方法;2. 结合例题和实际问题,让学生动手计算导数和应用导数;3. 培养学生的分析和解决问题的能力,引导学生思考导数的实际应用。
五、教学评价:1. 练习题:布置一些导数计算和应用题目,要求学生独立完成;2. 口头回答问题:提问学生导数的定义和应用,检查学生对导数的理解程度;3. 个案分析:根据学生的学习情况,进行个别辅导和评价。
六、板书设计:导数的概念:导数是函数在某一点处的变化率,用极限表示。
高中数学-导数及其应用教案
个性化教学辅导教案设函数 在点 处可导, 求对于 上可导的任意函数 , 若满足 ≥ , 则必有.A (0)(2)f f +()21f < .B (0)(2)f f +≤()21f.C (0)(2)f f +≥()21f .D (0)(2)f f +()21f >设函数 , 在 上均可导, 且 , 则当 时, 有.A ()()f x g x > .B ()()f x g x <.C ()()()()f x g a g x f a +>+ .D ()()()()f x g b g x f b +>+问题2. 的导函数 的图象如图所示, 则 的图象最有可能的是问题3. 求下列函数的导数:()1()21sin y x =+; ()411x x e y e +=-;.A [)3,2]1,31[ - .B ]38,34[]21,1[ - .C [)2,1]21,23[ -.D ⎪⎭⎫⎢⎣⎡⎥⎦⎤ ⎝⎛--3,38]34,21[1,23设 均是定义在 上的奇函数, 当 时, , 且 , 则不等式 的解集是.A ()()2,02,-+∞ .B ()2,2- .C ()(),22,-∞-+∞ .D ()(),20,2-∞-问题2. 如果函数 在区间 上单调递增, 并且方程 的根都在区间 内, 则 的取值范围为已知 , 那么在区间 上单调递增 在 上单调递增.C 在()1,1-上单调递增 .D 在()1,2上单调递增函数 ,(Ⅰ)求)(x f 的单调区间和极值;(Ⅱ)若关于 的方程 有 个不同实根, 求实数 的取值范围.(Ⅲ)已知当 时, ≥ 恒成立, 求实数 的取值范围.2[,)3ππ2[,)3ππ的大致图像, 则 等于.910。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学导数及其应用一、知识网络二、高考考点1、导数定义的认知与应用;2、求导公式与运算法则的运用;3、导数的几何意义;4、导数在研究函数单调性上的应用;5、导数在寻求函数的极值或最值的应用;6、导数在解决实际问题中的应用。
三、知识要点(一)导数1、导数的概念(1)导数的定义(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比,叫做函数在点到这间的平均变化率。
如果时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作,即。
(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即。
认知:(Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。
(Ⅱ)求函数在点处的导数的三部曲:①求函数的增量;②求平均变化率;③求极限上述三部曲可简记为一差、二比、三极限。
(2)导数的几何意义:函数在点处的导数,是曲线在点处的切线的斜率。
(3)函数的可导与连续的关系函数的可导与连续既有联系又有区别:(Ⅰ)若函数在点处可导,则在点处连续;若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。
事实上,若函数在点处可导,则有此时,记 ,则有即在点处连续。
(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。
反例:在点处连续,但在点处无导数。
事实上,在点处的增量当时,,;当时,,由此可知,不存在,故在点处不可导。
2、求导公式与求导运算法则(1)基本函数的导数(求导公式)公式1 常数的导数:(c为常数),即常数的导数等于0。
公式2 幂函数的导数:。
公式3 正弦函数的导数:。
公式4 余弦函数的导数:公式5 对数函数的导数:(Ⅰ);(Ⅱ)公式6 指数函数的导数:(Ⅰ);(Ⅱ)。
(2)可导函数四则运算的求导法则设为可导函数,则有法则1 ;法则2 ;法则3 。
3、复合函数的导数(1)复合函数的求导法则设,复合成以x为自变量的函数,则复合函数对自变量x的导数,等于已知函数对中间变量的导数,乘以中间变量u对自变量x的导数,即。
引申:设,复合成函数,则有(2)认知(Ⅰ)认知复合函数的复合关系循着“由表及里”的顺序,即从外向内分析:首先由最外层的主体函数结构设出,由第一层中间变量的函数结构设出,由第二层中间变量的函数结构设出,由此一层一层分析,一直到最里层的中间变量为自变量x的简单函数为止。
于是所给函数便“分解”为若干相互联系的简单函数的链条:;(Ⅱ)运用上述法则求复合函数导数的解题思路①分解:分析所给函数的复合关系,适当选定中间变量,将所给函数“分解”为相互联系的若干简单函数;②求导:明确每一步是哪一变量对哪一变量求导之后,运用上述求导法则和基本公式求;③还原:将上述求导后所得结果中的中间变量还原为自变量的函数,并作以适当化简或整理。
二、导数的应用1、函数的单调性(1)导数的符号与函数的单调性:一般地,设函数在某个区间内可导,则若为增函数;若为减函数;若在某个区间内恒有,则在这一区间上为常函数。
(2)利用导数求函数单调性的步骤(Ⅰ)确定函数的定义域;(Ⅱ)求导数;(Ⅲ)令,解出相应的x的范围当时,在相应区间上为增函数;当时在相应区间上为减函数。
(3)强调与认知(Ⅰ)利用导数讨论函数的单调区间,首先要确定函数的定义域D,并且解决问题的过程中始终立足于定义域D。
若由不等式确定的x的取值集合为A,由确定的x 的取值范围为B,则应用;(Ⅱ)在某一区间内(或)是函数在这一区间上为增(或减)函数的充分(不必要)条件。
因此方程的根不一定是增、减区间的分界点,并且在对函数划分单调区间时,除去确定的根之外,还要注意在定义域内的不连续点和不可导点,它们也可能是增、减区间的分界点。
举例:(1)是R上的可导函数,也是R上的单调函数,但是当x=0时,。
(2)在点x=0处连续,点x=0处不可导,但在(-∞,0)内递减,在(0,+∞)内递增。
2、函数的极值(1)函数的极值的定义设函数在点附近有定义,如果对附近的所有点,都有,则说是函数的一个极大值,记作;如果对附近的所有点,都有,则说是函数的一个极小值,记作。
极大值与极小值统称极值认知:由函数的极值定义可知:(Ⅰ)函数的极值点是区间内部的点,并且函数的极值只有在区间内的连续点处取得;(Ⅱ)极值是一个局部性概念;一个函数在其定义域内可以有多个极大值和极小值,并且在某一点的极小值有可能大于另一点处的极大值;(Ⅲ)当函数在区间上连续且有有限个极值点时,函数在内的极大值点,极小值点交替出现。
(2)函数的极值的判定设函数可导,且在点处连续,判定是极大(小)值的方法是(Ⅰ)如果在点附近的左侧,右侧,则为极大值;(Ⅱ)如果在点附近的左侧,右侧,则为极小值;注意:导数为0的不一定是极值点,我们不难从函数的导数研究中悟出这一点。
(3)探求函数极值的步骤:(Ⅰ)求导数;(Ⅱ)求方程的实根及不存在的点;考察在上述方程的根以及不存在的点左右两侧的符号:若左正右负,则在这一点取得极大值,若左负右正,则在这一点取得极小值。
3、函数的最大值与最小值(1)定理若函数在闭区间上连续,则在上必有最大值和最小值;在开区间内连续的函数不一定有最大值与最小值。
认知:(Ⅰ)函数的最值(最大值与最小值)是函数的整体性概念:最大值是函数在整个定义区间上所有函数值中的最大值;最小值是函数在整个定义区间上所有函数值中的最小值。
(Ⅱ)函数的极大值与极小值是比较极值点附近的函数值得出的(具有相对性),极值只能在区间内点取得;函数的最大值与最小值是比较整个定义区间上的函数值得出的(具有绝对性),最大(小)值可能是某个极大(小)值,也可能是区间端点处的函数值。
(Ⅲ)若在开区间内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值。
(2)探求步骤:设函数在上连续,在内可导,则探求函数在上的最大值与最小值的步骤如下:( I )求在内的极值;( II )求在定义区间端点处的函数值,;( III )将的各极值与,比较,其中最大者为所求最大值,最小者为所求最小值。
引申:若函数在上连续,则的极值或最值也可能在不可导的点处取得。
对此,如果仅仅是求函数的最值,则可将上述步骤简化:( I )求出的导数为0的点及导数不存在的点(这两种点称为可疑点);( II )计算并比较在上述可疑点处的函数值与区间端点处的函数值,从中获得所求最大值与最小值。
(3)最值理论的应用解决有关函数最值的实际问题,导数的理论是有力的工具,基本解题思路为:( I )认知、立式:分析、认知实际问题中各个变量之间的联系,引入变量,建立适当的函数关系;( II )探求最值:立足函数的定义域,探求函数的最值;( III )检验、作答:利用实际意义检查(2)的结果,并回答所提出的问题,特殊地,如果所得函数在区间内只有一个点满足,并且在点处有极大(小)值,而所给实际问题又必有最大(小)值,那么上述极大(小)值便是最大(小)值。
四、经典例题例1、设函数在点处可导,且,试求(1);(2);(3);(4)(为常数)。
解:注意到当)(1);(2)=A+A=2A(3)令,则当时,∴(4)点评:注意的本质,在这一定义中,自变量x在处的增量的形式是多种多样的,但是,不论选择哪一种形式,相应的也必须选择相应的形式,这种步调的一致是求值成功的保障。
若自变量x在处的增量为,则相应的,于是有;若令,则又有例2、(1)已知,求;(2)已知,求解:(1)令,则,且当时,。
注意到这里∴(2)∵∴①注意到,∴由已知得②∴由①、②得例3、求下列函数的导数(1);(2);(3);(4);(5);(6)解:(1)(2),∴(3),∴(4),∴(5),∴(6)∴当时,;∴当时,∴即。
点评:为避免直接运用求导法则带来的不必要的繁杂运算,首先对函数式进行化简或化整为零,而后再实施求导运算,特别是积、商的形式可以变为代数和的形式,或根式可转化为方幂的形式时,“先变后求”的手法显然更为灵巧。
例4、在曲线C:上,求斜率最小的切线所对应的切点,并证明曲线C关于该点对称。
解:(1)∴当时,取得最小值-13又当时,∴斜率最小的切线对应的切点为A(2,-12);(2)证明:设为曲线C上任意一点,则点P关于点A的对称点Q的坐标为且有①∴将代入的解析式得,∴点坐标为方程的解∴注意到P,Q的任意性,由此断定曲线C关于点A成中心对称。
例5、已知曲线,其中,且均为可导函数,求证:两曲线在公共点处相切。
证明:注意到两曲线在公共点处相切当且仅当它们在公共点处的切线重合,设上述两曲线的公共点为,则有,,∴,∴,∴,∴于是,对于有;①对于,有②∴由①得,由②得∴,即两曲线在公共点处的切线斜率相等,∴两曲线在公共点处的切线重合∴两曲线在公共点处相切。
例6、(1)是否存在这样的k值,使函数在区间(1,2)上递减,在(2,+∞)上递增,若存在,求出这样的k值;(2)若恰有三个单调区间,试确定的取值范围,并求出这三个单调区间。
解:(1)由题意,当时,当x∈(2,+∞) 时,∴由函数的连续性可知,即整理得解得或验证:(Ⅰ)当时,∴若,则;若,则,符合题意;(Ⅱ)当时,,显然不合题意。
于是综上可知,存在使在(1,2)上递减,在(2,+∞)上递增。
(2)若,则,此时只有一个增区间,与题设矛盾;若,则,此时只有一个增区间,与题设矛盾;若,则并且当时,;当时,∴综合可知,当时,恰有三个单调区间:减区间;增区间点评:对于(1),由已知条件得,并由此获得k的可能取值,进而再利用已知条件对所得k值逐一验证,这是开放性问题中寻求待定系数之值的基本策略。
例7、已知函数,当且仅当时,取得极值,并且极大值比极小值大4.(1)求常数的值;(2)求的极值。
解:(1),令得方程∵在处取得极值∴或为上述方程的根,故有∴,即①∴又∵仅当时取得极值,∴方程的根只有或,∴方程无实根,∴即而当时,恒成立,∴的正负情况只取决于的取值情况当x 变化时,与的变化情况如下表:(1,+∞)1+ 0 —0 +极大值极小值∴在处取得极大值,在处取得极小值。
由题意得整理得②于是将①,②联立,解得(2)由(1)知,点评:循着求函数极值的步骤,利用题设条件与的关系,立足研究的根的情况,乃是解决此类含参问题的一般方法,这一解法体现了方程思想和分类讨论的数学方法,突出了“导数”与“在处取得极值”的必要关系。
例8、(1)已知的最大值为3,最小值为-29,求的值;(2)设,函数的最大值为1,最小值为,求常数的值。