模拟电子技术实验报告

合集下载

大学模电实验报告

大学模电实验报告

一、实验目的1. 理解模拟电子技术的基本概念和基本原理。

2. 掌握模拟电路的搭建和调试方法。

3. 培养实验操作能力和数据分析能力。

二、实验原理模拟电子技术是研究模拟信号处理和模拟电路设计的学科。

本实验主要涉及以下原理:1. 基本放大电路:包括共射放大电路、共集放大电路、共基放大电路等。

2. 运算放大器:包括反相比例放大、同相比例放大、加法运算、减法运算等。

3. 滤波电路:包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

三、实验仪器与设备1. 模拟电子技术实验箱2. 函数信号发生器3. 示波器4. 数字多用表5. 绝缘导线6. 插头四、实验步骤1. 搭建共射放大电路:- 根据实验指导书,连接共射放大电路。

- 调整偏置电阻,使晶体管工作在放大区。

- 使用函数信号发生器输入正弦波信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

2. 搭建运算放大器电路:- 根据实验指导书,连接运算放大器电路。

- 输入不同电压信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

3. 搭建滤波电路:- 根据实验指导书,连接滤波电路。

- 输入不同频率的信号,观察输出波形。

- 调整电路参数,观察输出波形的变化。

五、实验结果与分析1. 共射放大电路:- 输入信号频率为1kHz,输出信号频率为1kHz,放大倍数为20。

- 当输入信号频率为10kHz时,输出信号频率为10kHz,放大倍数为10。

2. 运算放大器电路:- 反相比例放大电路:输入电压为1V,输出电压为-2V。

- 同相比例放大电路:输入电压为1V,输出电压为2V。

- 加法运算电路:输入电压分别为1V和2V,输出电压为3V。

- 减法运算电路:输入电压分别为1V和2V,输出电压为-1V。

3. 滤波电路:- 低通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.5V;当输入信号频率为10kHz时,输出信号幅度为0.1V。

- 高通滤波器:当输入信号频率为1kHz时,输出信号幅度为0.1V;当输入信号频率为10kHz时,输出信号幅度为0.5V。

模拟电子技术实验报告

模拟电子技术实验报告

模拟电子技术实验报告模拟电子技术实验报告引言模拟电子技术是电子工程领域中的重要分支,它研究的是电子信号的传输、处理和控制。

在实际应用中,模拟电子技术被广泛应用于通信、娱乐、医疗等领域。

本篇实验报告将介绍我在模拟电子技术实验中的学习和实践经验。

实验一:放大电路设计与实验在这个实验中,我们主要学习了放大电路的设计和实验。

首先,我们通过理论计算和仿真软件的辅助,设计了一个放大电路。

然后,我们按照设计要求,选择合适的电子元件进行实验搭建。

在搭建完成后,我们使用示波器和信号发生器对电路进行测试和分析。

通过实验,我们深入了解了放大电路的工作原理和特性。

实验二:滤波电路设计与实验滤波电路是模拟电子技术中常见的电路之一。

在这个实验中,我们学习了低通滤波器和高通滤波器的设计和实验。

通过理论计算和仿真软件的辅助,我们设计了一个低通滤波器和一个高通滤波器。

然后,我们使用合适的电子元件进行实验搭建,并使用示波器和信号发生器对电路进行测试和分析。

通过实验,我们掌握了滤波电路的设计和调试方法。

实验三:振荡电路设计与实验振荡电路是模拟电子技术中的重要内容之一。

在这个实验中,我们学习了振荡电路的设计和实验。

通过理论计算和仿真软件的辅助,我们设计了一个振荡电路。

然后,我们使用合适的电子元件进行实验搭建,并使用示波器对电路进行测试和分析。

通过实验,我们了解了振荡电路的工作原理和特性,并学会了调试振荡电路的方法。

实验四:运算放大器设计与实验运算放大器是模拟电子技术中常见的电子元件之一。

在这个实验中,我们学习了运算放大器的设计和实验。

通过理论计算和仿真软件的辅助,我们设计了一个运算放大器电路。

然后,我们使用合适的电子元件进行实验搭建,并使用示波器和信号发生器对电路进行测试和分析。

通过实验,我们掌握了运算放大器的工作原理和特性,并学会了调试运算放大器电路的方法。

实验五:电源设计与实验电源是模拟电子技术中不可或缺的一部分。

在这个实验中,我们学习了电源的设计和实验。

模拟电子技术实验报告

模拟电子技术实验报告

模拟电子技术实验报告实验目的评估模拟电子技术的运用和实验结果的分析。

实验器材- 双踪示波器- 函数信号发生器- 直流稳压电源- 万用表- 电阻、电容等元器件实验步骤第一步:直流电压放大1. 按照电路图连接好电路,并将直流稳压电源输出设为10V。

2. 测量放大电路的直流放大倍数。

3. 将输入信号从0.1V逐渐增加到1V,并记录对应输出信号的电压值。

第二步:换流电路1. 按照电路图连接好电路,并将函数信号发生器的输出设为正弦波。

2. 测量换流电路的输出波形,并与输入波形进行比较。

第三步:集成运放1. 按照电路图连接好电路,并将输入信号设为三角波。

2. 测量集成运放输出波形,并与输入波形进行比较。

结果和分析1. 在直流电压放大实验中,测得电路的直流放大倍数为15.4倍,输出信号的失真略微增加。

这是因为理想的运放模拟电路在直流部分可以达到无穷大增益,但实际电路因为存在漏电、器件参数的不同导致实际相对稳定的直流增益不可能太高,而且正负电源电压限制了输出信号的动态范围。

2. 在换流电路实验中,我们通过不同的电容选择和欧姆电阻配合,完成了信号的正弦波变换成半波直流脉冲的效果。

但由于电路的非线性和欧姆电阻的不稳定,导致了输出信号有一定的失真和频率降低的现象。

3. 在集成运放实验中,我们实现了三角波的变幻成矩形波的目的。

理论上,集成运放的输入阻抗无限大,输出阻抗无穷小,所以输出信号理论上等于输入信号。

而实际中,集成运放输出信号会受到负载、电源电压波动等因素的影响,导致实际输出信号与理论信号有一定偏差。

总结通过本次模拟电子技术实验,我们学习了基本的模拟电路设计和调试方法,深入理解了运放的基本原理,对模拟电子技术的应用和实验结果的分析有了更深入的认识。

模拟电子技术标准实验报告

模拟电子技术标准实验报告

实验一常用电子仪器的使用一、实验目的:1、熟悉交流毫伏表、低频信号发生器,双踪示波器主要技术性能和面板开关、旋钮的名称和作用。

2、学会上述仪器的正确使用。

3、初步掌握用示波器观察,测量正弦信号的波形参数及计算方法。

二、实验原理:在电子电路测试和实验中,常用的电子仪器有交流毫伏表,低频信号发生器,双踪示波器,直流稳压电源以及其它仪器,它们与被测(实验)电路的关系,如图2-1.1所示。

图2-1.1 常用电子仪器接线框图在电子测量中,应特别注意各仪器的“共地”问题,即各台仪器与被测电路的“地”应可靠地连接在一起。

合理的接地是抑制干扰的重要措施之一,否则,可能引入外来干扰,导致参数不稳定,测量误差增大。

模电实验室的常用仪器:YJ—44型直流稳压电源;SX2172型交流毫伏表;XD1B型低频信号发生器;SS-5702型双踪示波器;*BS1A型失真度测量仪。

三、实验内容1、用交流毫伏表测量低频信号发生器的输出(衰减)电压。

将信号发生器频率调节在1KHz。

电压“输出衰减”开关分别置于不同的衰减db位置上,调节信号发生器的“幅度”使电表指示在4V,用交流毫伏表测量其输出电压值。

12、用双踪示波器Y轴任一输入通道探头,测量示波器“校正电压”读出荧屏显示波形的U P-P 值和频率ƒ。

3、用交流毫伏表及双踪示波器测量低频信号发生器或稳压电源的输出电压及周期的数值。

记入表2-1.2。

四、思考题:1、示波器荧光屏上的波形不断移动不能稳定,试分析其原因。

调节哪些旋钮才能使波形稳定不变。

答:用示波器观察信号波形,只有当示波器内部的触发信号与所测信号同步时,才能在荧光屏上观察到稳定的波形。

若荧光屏上的波形不断移动不能稳定,说明触发信号与所测信号不同步,即扫描信号(X轴)频率和被测信号(Y轴)频率不成整数倍的关系(ƒx≠nƒy),从而使每一周期的X、Y轴信号的起扫时间不能固定,因而会使荧光屏上显示的波形不断的移动。

此时,应首先检查“触发源”开关(SOURCE)是否与Y轴方式同步(与信号输入通道保持一致);然后调节“触发电平”(LEVEL),直至荧光屏上的信号稳定。

模电实验报告东南大学

模电实验报告东南大学

模电实验报告东南大学
《模电实验报告:东南大学》
模拟电子技术是电子工程中的重要分支,它涉及到模拟信号的处理和传输,是电子工程师必须掌握的重要知识之一。

为了帮助学生更好地理解和掌握模拟电子技术,东南大学开设了模拟电子技术实验课程,通过实验操作来加深学生对模拟电子技术的理解。

在这篇报告中,我们将介绍东南大学模拟电子技术实验的内容和实验结果。

东南大学模拟电子技术实验课程包括基本电路实验、放大电路实验、滤波电路实验等内容。

在基本电路实验中,学生将学习和掌握基本的电子元件的使用方法,包括电阻、电容、电感等元件的特性和应用。

在放大电路实验中,学生将学习和掌握放大电路的设计和调试方法,了解放大电路的工作原理和特性。

在滤波电路实验中,学生将学习和掌握滤波电路的设计和调试方法,了解滤波电路的工作原理和特性。

在实验过程中,学生将亲自动手搭建电路,调试电路,观察电路的工作状态,并记录实验结果。

通过实验操作,学生将更加深入地理解模拟电子技术的理论知识,提高实际操作能力和问题解决能力。

通过模拟电子技术实验,学生将获得以下几方面的收获:一是对模拟电子技术的理论知识有了更深入的理解;二是提高了实际操作能力和问题解决能力;三是培养了团队合作意识和沟通能力。

这些收获将对学生未来的学习和工作产生积极的影响。

总之,东南大学模拟电子技术实验课程为学生提供了一个良好的学习平台,通过实验操作来加深学生对模拟电子技术的理解,提高实际操作能力和问题解决
能力。

相信通过这门课程的学习,学生将更加深入地理解和掌握模拟电子技术,为未来的学习和工作打下坚实的基础。

模拟电子技术基础实验报告

模拟电子技术基础实验报告

模拟电子技术基础实验报告模拟电子技术基础实验报告引言:模拟电子技术是电子工程中的重要分支,它涉及到模拟电路的设计、分析与实验。

本次实验旨在通过实际操作,加深对模拟电子技术的理解,并掌握一些基本的实验技能。

本报告将从实验原理、实验步骤、实验结果和实验总结等方面进行讨论。

实验原理:本次实验主要涉及到放大电路的设计与实现。

放大电路是模拟电子技术中的重要内容,它能够将输入信号放大到所需的幅度。

在本次实验中,我们将使用二极管、电阻和电容等元件来搭建一个简单的放大电路。

实验步骤:1. 准备工作:检查实验仪器和元件是否齐全,并确保实验台面整洁。

2. 搭建电路:按照实验指导书上的电路图,将二极管、电阻和电容等元件连接起来。

注意正确连接元件的正负极性,避免短路或反接。

3. 调试电路:将信号发生器连接到电路的输入端,通过调节信号发生器的频率和幅度,观察输出信号的变化。

根据实验要求,调整电路参数,使得输出信号达到所需的放大倍数。

4. 测量数据:使用示波器测量输入信号和输出信号的幅度、频率和相位等参数。

记录测量结果,并进行数据处理和分析。

5. 总结实验:根据实验结果,总结实验的目的、方法和结果。

分析实验中可能存在的误差和改进的方向。

实验结果:经过调试和测量,我们成功搭建了一个简单的放大电路,并获得了一系列的实验数据。

通过对实验数据的分析,我们发现在一定范围内,输入信号的幅度与输出信号的幅度成线性关系。

同时,我们还观察到输出信号的相位滞后于输入信号,这与放大电路的特性相符合。

实验总结:通过本次实验,我们深入了解了模拟电子技术的基础原理和实验方法。

我们不仅学会了搭建放大电路并调试,还掌握了使用示波器进行信号测量和分析的技巧。

在实验过程中,我们也遇到了一些困难和问题,但通过不断尝试和思考,最终解决了这些难题。

这次实验不仅增加了我们对模拟电子技术的理解,还提高了我们的实验能力和问题解决能力。

结语:模拟电子技术是电子工程中不可或缺的一部分,它在通信、控制、电力等领域有着广泛的应用。

模拟电子技术实验报告

模拟电子技术实验报告

一、实验目的1. 熟悉模拟电子技术实验的基本操作流程;2. 掌握模拟电子技术实验的基本测量方法;3. 理解模拟电子电路的基本原理,提高电路分析能力;4. 培养实验操作技能,提高动手实践能力。

二、实验内容1. 常用电子仪器的使用:示波器、万用表、信号发生器等;2. 晶体管共射极单管放大器实验;3. 射极跟随器实验;4. 差动放大器实验。

三、实验原理1. 常用电子仪器使用:示波器、万用表、信号发生器等是模拟电子技术实验中常用的测量工具,掌握这些仪器的使用方法对于进行实验至关重要。

2. 晶体管共射极单管放大器:晶体管共射极单管放大器是一种基本的模拟放大电路,其原理是利用晶体管的电流放大作用,将输入信号放大。

3. 射极跟随器:射极跟随器是一种具有高输入阻抗、低输出阻抗、电压放大倍数接近1的放大电路,常用于信号传输和阻抗匹配。

4. 差动放大器:差动放大器是一种能有效地抑制共模干扰的放大电路,广泛应用于测量、通信等领域。

四、实验步骤1. 常用电子仪器使用:熟悉示波器、万用表、信号发生器的操作方法,并进行基本测量。

2. 晶体管共射极单管放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。

3. 射极跟随器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。

4. 差动放大器实验:(1)搭建实验电路,包括晶体管、电阻、电容等元件;(2)调整电路参数,使晶体管工作在放大区;(3)使用示波器观察输入信号和输出信号,分析电路放大效果。

五、实验数据及分析1. 常用电子仪器使用:根据实验要求,使用示波器、万用表、信号发生器等仪器进行测量,并记录数据。

2. 晶体管共射极单管放大器实验:(1)输入信号频率为1kHz,幅值为1V;(2)输出信号频率为1kHz,幅值为5V;(3)放大倍数为5。

模电技术实验报告

模电技术实验报告

一、实验目的1. 理解模拟电子技术的基本原理和实验方法。

2. 掌握晶体管放大电路的基本搭建和调试方法。

3. 学习信号的产生、传输和处理的实验技能。

4. 提高对电路性能指标的理解和测试能力。

二、实验原理模拟电子技术是研究模拟信号处理和传输的理论和技术。

本次实验主要涉及以下内容:1. 晶体管放大电路:利用晶体管的放大作用,将微弱的输入信号放大到所需的幅度。

2. 信号发生器:产生不同频率和幅度的正弦波信号,用于测试电路的性能。

3. 示波器:观察和分析信号的波形,测量信号的幅度、频率和相位等参数。

4. 万用表:测量电路中的电压、电流和电阻等参数。

三、实验内容及步骤1. 晶体管共射放大电路(1)搭建共射放大电路,包括输入端、放大电路和输出端。

(2)调整电路参数,使放大电路工作在最佳状态。

(3)使用信号发生器产生输入信号,观察输出信号的波形和幅度。

(4)测量放大电路的增益、带宽和失真等性能指标。

2. RC正弦波振荡器(1)搭建RC正弦波振荡器电路,包括RC振荡网络和放大电路。

(2)调整电路参数,使振荡器产生稳定的正弦波信号。

(3)使用示波器观察振荡信号的波形和频率。

(4)测量振荡器的振荡频率、幅度和相位等性能指标。

3. 差分放大电路(1)搭建差分放大电路,包括两个共射放大电路和公共发射极电阻。

(2)调整电路参数,使差分放大电路抑制共模信号,提高电路的共模抑制比(CMRR)。

(3)使用信号发生器产生差模和共模信号,观察输出信号的波形和幅度。

(4)测量差分放大电路的增益、带宽和CMRR等性能指标。

四、实验数据记录与分析1. 晶体管共射放大电路| 电路参数 | 测量值 || --- | --- || 输入信号幅度 | 0.1V || 输出信号幅度 | 5V || 增益 | 50 || 带宽 | 10kHz || 失真 | <1% |2. RC正弦波振荡器| 电路参数 | 测量值 || --- | --- || 振荡频率 | 1kHz || 振荡幅度 | 2V || 相位| 0° |3. 差分放大电路| 电路参数 | 测量值 || --- | --- || 差模增益 | 20 || 共模抑制比(CMRR) | 60dB |五、实验结论1. 通过本次实验,加深了对模拟电子技术基本原理的理解。

模拟电子技术实验报告

模拟电子技术实验报告

模拟电子技术基础实验实验报告目录一、共射放大电路二、集成运算放大器三、RC正弦波振荡器四、方波发生器五、多级负反馈放大电路六、有源滤波器七、复合信号发生器一、共射放大电路1.实验目的(1)掌握用Multisim 13仿真软件分析单极放大电路主要性能指标的方法。

(2)熟悉常用电子仪器的使用方法,熟悉基本电子元器件的作用。

(3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。

(4)分析静态工作点对放大器性能的影响,学会调试放大器的静态工作点。

(5)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

(6)测量放大电路的频率特性。

2.实验器材(1)双路直流稳压电源一台;(2)函数信号发生器一台;(3)示波器一台;(4)毫伏表一台;(5)万用表一台;(6)三极管一个;(7)电阻电位器;(8)模拟电路实验箱;3.实验原理及电路实验电路如下图所示,采用基极固定分压式偏置电路。

电路在接通直流电源Vcc而未加入输入信号(Vi=0)时,三极管三个极电压和电流称为静态工作点。

根据XSC1的显示,按如下方法进行操作:现象出现截止失真出现饱和失真操作减小R7 增大R7当滑动变阻器R7设置为11%时,有最大不失真电压。

静态工作点测量将交流电源置零,用万用表测量静态工作点。

理论估算值实际测量值BQ U CQ U EQ U CEQ UCQ I BQ U CQ U EQ U CEQUCQ I3.98V 6.03V 3.28V 2.75V 2.98m A 3.904V6.253V3.186V3.067V2.873m A1. Q 点过低——信号进入截止区2. Q 点过高——信号进入饱和区二、集成运算放大器1.实验目的(1)加深对集成运算放大器的基本应用电路和性能参数的理解。

(2)了解集成运算放大器的特点,掌握集成运算放大器的正确使用方法和基本应用电路。

(3) 掌握由运算放大器组成的比例、加法、减法、积分和微分等基本运算电路的功能。

模电实验报告

模电实验报告

模电实验报告引言:模拟电子技术是电子工程中的重要分支,通过对电压、电流、电子元器件等进行模拟仿真,实现电子系统的设计、分析和测试。

本实验旨在通过实际操作,加深对模拟电子技术的理解和掌握,以及培养实验能力和动手能力。

一、实验目的本实验的主要目的是通过以下几个方面的实验,掌握模拟电子技术的基本原理和实际应用:1. 学习并掌握放大器的工作原理及其电路结构;2. 理解并掌握放大器的特性参数,如增益、带宽等;3. 了解并掌握反馈电路对放大器性能的影响;4. 学习并掌握滤波器的工作原理和电路结构;5. 理解并掌握滤波器的频率响应和滤波特性。

二、实验内容本实验分为两个部分,第一部分为放大器实验,第二部分为滤波器实验。

1. 放大器实验1.1 非反馈放大器实验通过搭建非反馈放大器电路,测量并计算其电压增益,并对其频率响应进行分析。

1.2 反馈放大器实验通过搭建反馈放大器电路,测量并计算其电压增益,并对其频率响应进行分析。

2. 滤波器实验通过搭建低通滤波器和高通滤波器电路,测量并计算其频率响应,并分析其滤波特性。

三、实验步骤以下为放大器实验和滤波器实验的基本步骤,具体实验步骤请参考实验手册。

1. 放大器实验1.1 非反馈放大器实验步骤:a) 搭建非反馈放大器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算电压增益;d) 分析电路的频率响应。

1.2 反馈放大器实验步骤:a) 搭建反馈放大器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算电压增益;d) 分析电路的频率响应。

2. 滤波器实验步骤:a) 搭建低通滤波器电路;b) 连接信号源和示波器,调节信号源输出频率和幅度;c) 测量输入信号和输出信号的电压,并计算频率响应;d) 分析滤波器的滤波特性。

四、实验结果与分析根据实验步骤所得的测量数据,进行数据处理和分析。

计算放大器的电压增益、带宽等参数,并绘制频率响应曲线和滤波特性曲线。

模拟电子技术实验报告

模拟电子技术实验报告

桂林电子科技大学模拟电子技术实验报告实验一单级放大电路5、查找三极管9013 资料,在下图中标出9013 的三个引脚(E、B、C),并写出3~5 项你认为重要的参数?四.实验步骤及注意事项1. 测量导线、信号线、电源线好坏。

注意事项:使用台式万用表蜂鸣器档测量导线,不测量将可能导致实验失败!2.检查实验所用的A1 电路板上三极管所在位置的背面是否焊接有三极管。

注意事项:若有则第3、4 步可跳过不做,在表2 中β记为100。

3. 测量三极管9013 的直流放大系数β记录在表2 中。

注意事项:使用UT8803N 台式数字万用表HFE 档位,将三极管插到NPN 一边。

4.将已经测过值的三极管插入A1 电路板对应的三极管插孔中。

注意事项:三极管必须按照正确顺序插入A1 电路板中,不插入或插错将导致实验测量数据全错!5. 连接电路,接通12V 直流电源,但不接入信号源!注意事项:(1)单级放大电路的输入端暂时不能接入信号源。

(2)检查电路无误后,才能接通电源。

(3)所用的12V 要用万用表测量校准。

6. 设置静态工作点。

注意事项:(1)用台式万用表DCV(直流电压)档位监测UEQ电压变化(电路中三极管发射极与“地” 之间的电压,万用表黑表笔接“地”)。

(2)调节电位器RP 的大小,使得UEQ调到约为1.9V,不用非常精确。

7.测量静态工作点注意事项:UBQ、UEQ、UCQ分别表示电路中三极管基极、发射极、集电极与“地”之间的电压,而“ Q”表示的是“静态”而不是“地”,UBEQ= UBQ- UEQ,UCEQ= UCQ- UEQ。

8.测量RP的阻值。

注意事项:测量RP的阻值时,应把RP与电路断开,测完RP后再接回!9.电路输入端接入信号源,输出端将5.1KΩ 负载接上,用示波器双通道同时测量输入输出波形,观察ui、uoL的相位关系,并在一个坐标系上画出波形图。

注意事项:(1)信号源和示波器必须共地,即黑夹子要接地。

模拟电子技术实验报告

模拟电子技术实验报告

模拟电子技术实验报告实验目的,通过模拟电子技术实验,加深对电子技术原理的理解,掌握基本的电路设计和调试方法。

实验仪器和材料,集成电路实验箱、示波器、电源、电阻、电容、电感等元器件。

实验一,直流电路实验。

1. 实验内容,搭建一个简单的直流电路,测量电压、电流、电阻等参数。

2. 实验步骤,首先将电源连接到实验箱上,然后依次连接电阻、电压表和电流表,调节电源电压,记录电路中各个元件的参数。

3. 实验结果,根据测量结果,绘制电压-电流特性曲线,计算电路中的电阻值。

实验二,交流电路实验。

1. 实验内容,搭建一个简单的交流电路,观察交流电压的变化规律。

2. 实验步骤,将交流电源接入实验箱,连接电阻、电容等元件,利用示波器观察电压波形的变化。

3. 实验结果,根据示波器显示的波形,分析电路中的相位差、频率等参数。

实验三,放大电路实验。

1. 实验内容,搭建一个简单的放大电路,观察输入信号和输出信号的变化。

2. 实验步骤,连接放大电路的输入和输出端,输入不同幅度和频率的信号,观察输出信号的变化。

3. 实验结果,根据实验结果,分析放大电路的增益、频率响应等特性。

实验四,滤波电路实验。

1. 实验内容,搭建一个简单的滤波电路,观察不同频率信号的滤波效果。

2. 实验步骤,连接滤波电路的输入和输出端,输入不同频率的信号,观察输出信号的变化。

3. 实验结果,根据实验结果,分析滤波电路的通频带、阻带等特性。

实验五,振荡电路实验。

1. 实验内容,搭建一个简单的振荡电路,观察输出信号的振荡特性。

2. 实验步骤,连接振荡电路的输入和输出端,调节电路参数,观察输出信号的频率和幅度。

3. 实验结果,根据实验结果,分析振荡电路的频率稳定性、波形失真等特性。

实验总结,通过以上实验,加深了对模拟电子技术原理的理解,掌握了基本的电路设计和调试方法,为今后的电子技术应用奠定了基础。

模拟电子技术实验报告

模拟电子技术实验报告

桂林电子科技大学模拟电子技术实验报告实验一单级放大电路5、查找三极管9013 资料,在下图中标出9013 的三个引脚(E、B、C),并写出3~5 项你认为重要的参数?四.实验步骤及注意事项1. 测量导线、信号线、电源线好坏。

注意事项:使用台式万用表蜂鸣器档测量导线,不测量将可能导致实验失败!2.检查实验所用的A1 电路板上三极管所在位置的背面是否焊接有三极管。

注意事项:若有则第3、4 步可跳过不做,在表2 中β记为100。

3. 测量三极管9013 的直流放大系数β记录在表2 中。

注意事项:使用UT8803N 台式数字万用表HFE 档位,将三极管插到NPN 一边。

4.将已经测过值的三极管插入A1 电路板对应的三极管插孔中。

注意事项:三极管必须按照正确顺序插入A1 电路板中,不插入或插错将导致实验测量数据全错!5. 连接电路,接通12V 直流电源,但不接入信号源!注意事项:(1)单级放大电路的输入端暂时不能接入信号源。

(2)检查电路无误后,才能接通电源。

(3)所用的12V 要用万用表测量校准。

6. 设置静态工作点。

注意事项:(1)用台式万用表DCV(直流电压)档位监测UEQ电压变化(电路中三极管发射极与“地” 之间的电压,万用表黑表笔接“地”)。

(2)调节电位器RP 的大小,使得UEQ调到约为1.9V,不用非常精确。

7.测量静态工作点注意事项:UBQ、UEQ、UCQ分别表示电路中三极管基极、发射极、集电极与“地”之间的电压,而“ Q”表示的是“静态”而不是“地”,UBEQ= UBQ- UEQ,UCEQ= UCQ- UEQ。

8.测量RP的阻值。

注意事项:测量RP的阻值时,应把RP与电路断开,测完RP后再接回!9.电路输入端接入信号源,输出端将5.1KΩ 负载接上,用示波器双通道同时测量输入输出波形,观察ui、uoL的相位关系,并在一个坐标系上画出波形图。

注意事项:(1)信号源和示波器必须共地,即黑夹子要接地。

北理模拟电子技术实验报告

北理模拟电子技术实验报告

北理模拟电子技术实验报告实验目的:本实验旨在加深对模拟电子电路原理的理解,通过实际操作掌握模拟电路的搭建、测试与分析方法,培养学生的实践能力和创新思维。

实验原理:模拟电子技术是电子工程领域中的基础,涉及对连续信号的处理。

本次实验主要围绕基本放大电路、滤波器、振荡器等模拟电路的设计与测试。

实验设备与材料:1. 面包板2. 电阻、电容、电感等电子元件3. 信号发生器4. 万用表5. 示波器6. 模拟电路实验箱实验步骤:1. 根据实验要求设计电路图,并列出所需元件清单。

2. 在面包板上搭建电路,注意元件的连接顺序和方向。

3. 使用信号发生器提供测试信号,观察示波器上波形的变化。

4. 调整电路参数,记录不同参数下电路的性能。

5. 使用万用表测量电路中关键节点的电压和电流,验证理论分析与实际测量的一致性。

实验结果:在本次实验中,我们成功搭建了基本放大电路,并测试了不同增益设置下的放大效果。

通过调整电阻和电容的值,实现了低通、高通和带通滤波器的设计。

此外,还搭建了简单的振荡器电路,观察到了稳定的振荡波形。

实验分析:通过对电路的搭建和测试,我们发现电路的实际性能与理论设计存在一定的偏差。

这可能是由于元件参数的不准确、电路搭建中的连接问题或信号源的干扰等因素造成的。

通过调整和优化,可以提高电路的性能。

实验结论:通过本次模拟电子技术实验,我们不仅掌握了模拟电路的设计与测试方法,还学会了如何分析和解决实验中遇到的问题。

实验结果表明,理论与实际相结合是提高电路性能的关键。

实验心得:在实验过程中,我们深刻体会到了理论与实践相结合的重要性。

通过动手实践,我们对模拟电子技术有了更深入的理解。

此外,实验过程中遇到的问题也锻炼了我们分析问题和解决问题的能力。

安全注意事项:1. 实验前应仔细阅读实验指导书,了解实验原理和操作步骤。

2. 使用仪器设备时,应遵循操作规程,注意人身安全。

3. 实验结束后,应及时清理实验台,关闭电源,确保实验室的安全。

最新模电实验二实验报告

最新模电实验二实验报告

最新模电实验二实验报告实验目的:1. 理解并掌握模拟电子技术中的基本概念和原理。

2. 学习使用常见的模拟电子实验仪器和设备。

3. 通过实验验证基本的模拟电路设计和分析方法。

4. 培养学生的动手能力和解决实际问题的能力。

实验内容:1. 设计并搭建基本的放大电路,包括共射放大器、共集放大器和共基放大器。

2. 测量并记录不同配置下放大器的输入阻抗、输出阻抗、增益和频率响应。

3. 实验中使用示波器观察放大器对不同输入信号的响应特性。

4. 搭建滤波电路,包括低通、高通、带通和带阻滤波器,并测量其频率特性。

5. 分析实验数据,与理论值进行比较,探讨误差来源。

实验设备和材料:1. 模拟电子技术实验箱。

2. 示波器。

3. 万用表。

4. 信号发生器。

5. 电阻、电容、二极管、晶体管等基本电子元件。

实验步骤:1. 根据实验指导书的要求,正确连接电路元件,搭建放大电路。

2. 调整信号发生器,产生所需频率和幅度的输入信号。

3. 使用示波器观察并记录放大器的输出波形,调整电路直至达到预期效果。

4. 改变电路配置,重复步骤2和3,测量不同放大器类型的特性。

5. 搭建滤波电路,并使用示波器和信号发生器测试其性能。

6. 使用万用表测量电路的输入阻抗、输出阻抗和增益。

7. 记录所有实验数据,并进行整理分析。

实验结果与分析:1. 列出实验中测量到的输入阻抗、输出阻抗、增益等参数,并与理论值进行对比。

2. 分析滤波电路的频率响应特性,验证其设计的有效性。

3. 讨论实验中遇到的问题及其解决方案,分析可能的误差来源。

4. 根据实验结果,提出改进电路设计的建议。

结论:通过本次实验,我们成功地搭建并测试了不同类型的放大器和滤波电路。

实验结果与理论预测相符,验证了模拟电路设计的基本原理。

同时,实验过程中遇到的问题和挑战也加深了我们对模拟电子技术的理解。

通过动手实践,我们的实验技能和问题解决能力得到了提升。

模拟电子技术实验报告

模拟电子技术实验报告

模拟电子技术实验报告
模拟电子技术是当今通信、计算机、射频技术及类似技术中一项基础性领域。

从功能上看,模拟电子技术可以将输入信号从一种形式转换成另一种形式,用以表示被处理信号的性质和大小;也可以调整、稳定、放大和控制信号强度特性,从而可以将输出信号大小改变而又无与伦比的质量。

此外,模拟电子技术也可以实现模拟信号的各种处理,如滤波、数字转换和信号传递等。

本实验是以模拟电子技术为主题,主要分为三部分:电阻桥、电感测量和三极管配置。

首先,介绍了电阻桥作用,研究分析了一个电阻桥的设计工作方法,讨论了桥角和电阻的内在关系。

其次,利用电感表和脉冲发生器,测量电感的值,并解释了将电感用于滤波的原理。

最后,介绍了电路结构,介绍了三极管的特点,讨论了三极管配置的实际应用。

实验结果表明,电阻桥的设计可以达到最佳效果,有效利用桥角和桥电阻的关系可以改善桥的性能。

在电感测量中,本实验成功地测量了电感的参数,证明了电感可以有效地发挥过滤功能。

三极管配置方面,三极管的输出电流和输出电压与预设的参数相一致,可以准确控制电路的运行状态。

总的来说,本实验验证了模拟电子技术在模拟信号处理上的有效性,通过电阻桥、电感测量和三极管配置等实验,得出了良好的实验结果,证明了模拟电子技术在模拟信号处理上的有效性及其重要性。

本实验可以作为深入研究或实施模拟电子技术有效性为基础的
更多实验的基础,也可以为之后的通信设备、计算机系统和射频系统的设计提供参考。

综上所述,本实验中设计的模拟电子技术的结构及性能都达到了预期的效果。

由此可见,这项技术对于实现模拟信号的处理以及拓展相关技术的发展具有重要的意义。

模电实验报告实验现象

模电实验报告实验现象

一、实验背景模拟电子技术是电子工程和电气工程中的重要基础课程,旨在使学生掌握模拟电路的基本原理、分析方法及实验技能。

本次实验旨在通过实际操作,观察模拟电子电路的实验现象,加深对理论知识的理解。

二、实验目的1. 观察并分析模拟电子电路的实验现象。

2. 掌握实验操作技能,提高实验分析能力。

3. 培养团队合作精神,提高实验报告撰写能力。

三、实验内容本次实验主要包括以下内容:1. 晶体管单级放大器2. 单极共射放大器3. 负反馈放大电路4. RC文氏电桥振荡器5. 直流稳压电源设计6. 场效应管放大电路四、实验现象以下是对各个实验内容的实验现象描述:1. 晶体管单级放大器(1)当输入信号为正弦波时,输出信号为放大后的正弦波,且幅度随输入信号幅度的增大而增大。

(2)当输入信号为方波时,输出信号为放大后的方波,且幅度随输入信号幅度的增大而增大。

(3)当输入信号为三角波时,输出信号为放大后的三角波,且幅度随输入信号幅度的增大而增大。

2. 单极共射放大器(1)当输入信号为正弦波时,输出信号为放大后的正弦波,且幅度、相位均随输入信号幅度的增大而增大。

(2)当输入信号为方波时,输出信号为放大后的方波,且幅度、相位均随输入信号幅度的增大而增大。

(3)当输入信号为三角波时,输出信号为放大后的三角波,且幅度、相位均随输入信号幅度的增大而增大。

3. 负反馈放大电路(1)引入负反馈后,放大电路的带宽变宽,稳定性提高。

(2)负反馈可降低放大电路的增益,提高线性度。

(3)负反馈可改善放大电路的频率响应。

4. RC文氏电桥振荡器(1)当电路参数满足振荡条件时,输出信号为正弦波。

(2)调节振荡电路的参数,可改变振荡频率。

(3)加入稳幅电路,可改善输出信号的波形。

5. 直流稳压电源设计(1)变压器输出电压经整流、滤波、稳压后,输出稳定的直流电压。

(2)输出电压的稳定性受负载、温度等因素的影响。

(3)稳压电源的设计需满足实际应用的需求。

实验报告模板模电(3篇)

实验报告模板模电(3篇)

第1篇一、实验目的1. 熟悉模拟电子技术的基本原理和实验方法;2. 掌握常用电子元器件的测试方法;3. 培养学生动手能力、分析问题和解决问题的能力;4. 理解模拟电路的基本分析方法。

二、实验原理(此处简要介绍实验原理,包括相关公式、电路图等。

)三、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 模拟电子实验箱5. 连接线四、实验步骤1. 按照实验原理图连接实验电路;2. 使用数字万用表测量相关元器件的参数,如电阻、电容等;3. 使用信号发生器产生不同频率、幅值的信号;4. 使用示波器观察电路输出波形,分析电路性能;5. 根据实验要求,调整电路参数,观察波形变化;6. 记录实验数据,分析实验结果;7. 撰写实验报告。

五、实验数据与分析(此处列出实验数据,包括测量结果、波形图等。

)1. 电路参数测量结果:(列出电阻、电容等元器件的测量值)2. 电路输出波形分析:(分析电路输出波形,如幅度、频率、相位等)3. 实验结果与理论分析对比:(对比实验结果与理论分析,分析误差原因)六、实验结论1. 总结实验过程中遇到的问题及解决方法;2. 总结实验结果,验证理论分析的正确性;3. 对实验电路进行改进,提高电路性能;4. 对实验过程进行反思,提高实验技能。

七、实验报告1. 实验目的;2. 实验原理;3. 实验仪器与设备;4. 实验步骤;5. 实验数据与分析;6. 实验结论;7. 参考文献。

八、注意事项1. 实验过程中注意安全,遵守实验室规章制度;2. 操作实验仪器时,轻拿轻放,避免损坏;3. 严谨实验态度,认真记录实验数据;4. 实验结束后,清理实验场地,归还实验器材。

注:本模板仅供参考,具体实验内容和要求请根据实际课程安排进行调整。

第2篇实验名称:____________________实验日期:____________________实验地点:____________________一、实验目的1. 理解并掌握____________________的基本原理和操作方法。

模拟电子技术课程设计实验报告

模拟电子技术课程设计实验报告

模拟电子技术课程设计计算机科学与技术系12网络工程(2)本**:**学号:***********课题:OTL功率放大器一、设计任务书1、应用意义音频功率放大器是音响系统中不可缺少的重要部分,其主要任务是将音频信号放大到足以推动外接负载,如扬声器、音响等。

功率放大器的主要要求是获得不失真或较小失真的输出功率,讨论的主要指标是输出功率、电源提供的功率。

本课题主要设计一个OCL功率放大器,来满足设计要求。

OCL功率放大器即为无输出电容功率放大器。

采用两组电源供电,使用了正负电源,在电压不太高的情况下,也能获得比较大的输出功率,省去了输出端的耦合电容。

使放大器低频特性得到扩展。

OC功放电路也是定压式输出电路,其电路由于性能比较好,所以广泛地应用在高保真扩音设备中。

OTL功率放大器,它具有非线性失真小,频率响应宽,电路性能指标较高等优点,也是目前OTL 电路在各种高保真放大器应用电路中较为广泛采用的电路之一。

2、设计要求(1)分析电路的组成及工作原理。

(2)分析单元电路设计计算。

(3)采用衰减式音调控制电路。

(4)说明电路调试的基本方法。

(5)画出完整电路图。

(6)小结和讨论。

3、音频放大器的共组原理4、极限参数5、功率的计算6、具体实现7、在实验中遇到的问题及解决方法在实验过程中输出信号往往会产生较大的失真,对此我调解了电阻的阻值,经过多次调解输出波形的失真度渐渐减小;同时还应更改二极管的型号以及三极管的型号已达到减小失真度的目的。

最好是事先通过合理的计算得出各个电阻的大小以及各个二极管和三极管的型号,这样会使用仿真软件仿真的时候会方便快捷的多。

在焊接电路板时往往会和电路图不一样,由于平时一直都在看电路图,对电路板接触较少,不能及时转换思维,造成焊接时错误频繁发生。

对此我多次试验,积极分析,把电路图与电路板有效的联系起来,最终发现电路图和电路板其实是一样的。

不过在焊接电路板时把电路图中的元件符号换成实际的原件而已。

模拟电子技术实验报告

模拟电子技术实验报告

模拟电子技术实验报告篇一:模拟电子技术实验报告模版《模拟电子技术》实验报告学院:信息技术学院系别:专业:班级:姓名:实验题目:实验类型(演示□验证□设计□其它□)实验日期:年月日篇二:模拟电路实验报告模拟电路实验报告系:电子信息与机电工程学院班别:07电气第二组 16 号姓名:胡鉴中学号:XX 日期:XX.3.一、实验目的:1、认识电路常用的电阻器、电容器、电感器、变压器二极管、三极管、的类型和规格。

2、掌握用万用表检查这些元件好坏的方法。

二、实验器材:电阻两个、电位器一个、电容三个、电感一个、变压器一个、二极管两个、三极管两个。

三:实验原理:1、电阻器电阻器按阻值可不可调分为固定式电阻器、可变式电阻器。

电阻器的特性指标主要有额定功率,阻值和容许误差。

额定功率的选用应比其在电路中实际消耗功率大1.5至2倍为宜,以提高设备可靠性,延长使用寿命。

由于生产工艺的影响允许电阻实测值和标称值之间有一定的误差范围,选用者在成本允许的情况下应选用误差小的高精度电阻。

数,其它色环代表有效数字。

注:一般色环电阻的最后两个色环间距较大,而且金银色环不会是第一个色环电阻好坏的判别方法:看其实测值是否在标称值的容许误差范围内电位器好坏的判别方法:测其两定片间应为标称值,测动片和定片间阻值,且将电位器从一个极端慢慢旋转到另一个极端,其阻值应在零和标称值之间连续变化,整个过程表针不应有跳动现象。

2、电容器电容器按介质分类时,常用的有瓷介电容、涤纶电容、铝电解电容。

电容器的特性指标主要要工作电压、容量、及容许误差。

电路中电容器两端的电压不要超过电容器的工作电压,使用电解电容时,除注意耐压值外,还要注意正负极不要接反,否则电容器会破坏,甚至发生爆炸。

电容器的容量及容许误差,一般有数字直标发法和色环法,有时候将电容标称值省了单位,数值诺大于等于1,则单位为pF,数值小于1则为ǖF色环电容的容量标称值和容许误差表示法同色环电阻表示法此外,技术要求不同的电路应选不同类型的电容器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业:电气工程及其自动化班级:学号:姓名:指导教师:开课时间:2011至2012学年第一学期成绩:开课学院:电气信息学院实验室:实验楼415室姓名:专业:电气工程及其自动化学号:实验三单级低频放大器实验时间:2011年11月1日一、实验目的:1.进一步熟悉几种常用低频电子仪器的使用方法。

2.掌握单级放大器静态工作点的调测方法。

3.观察静态工作点的变化对输出波形的影响。

4.学习电压放大倍数及最大不失真输出电压幅度的测试方法。

二、实验原理:放大器的的基本任务是不失真大的放大信号,即实现输入变化量的控制作用。

要使放大器正常工作,除了必须有保证晶体管正常工作的偏置电压外,还须有合理的电路结构形式和配置恰当的元器件参数,使得放大器工作在放大区内,即必须设置合适的静态工作点Q。

静态工作点设置过高,会引起饱和失真。

对于小信号单级放大器而言,由于输出交流信号幅度很小,非线性失真不是主要问题,可根据具体要求设置静态工作点。

例如希望交流信号幅度很小,噪声低工作点Q可适当选得低一些:如希望放大器增益高,工作点可适当选得高些。

如果输入信号幅度较大,则要保证输出波形不失真,此时的工作点应先在交流负载线的中点,以获得最大不失真的输出电压幅度。

图2.3.5为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u o,从而实现了电压放大。

图2.3.5 共射极单管放大器实验电路在图2.3.5电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B时(一般5~10倍),则它的静态工作点可用下式估算CCB2B1B1B U R R R U +≈U CE =U CC -I C (R C +Re ) 电压放大倍数be LC V r R R βA // -=输入电阻R i =R B1 // R B2 // r be 输出电阻 R O ≈R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1、 放大器静态工作点的测量与调试 1) 静态工作点的测量测量放大器的静态工作点,应在输入信号ui =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用E E E C R U I I =≈算出I C (也可根据CCCCC R U U I -=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。

为了减小误差,提高测量精度,应选用内阻较高的直流电压表。

2) 静态工作点的调试放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。

静态工作点是否合适,对放大器的性能和输出波形都有很大影响。

如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。

这些情况都不符合不失真放大的要求。

所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。

如不满足,则应调节静态工作点的位置。

C EBE B E I R U U I ≈-≈(a) (b) 图2-2 静态工作点对u O 波形失真的影响改变电路参数U CC 、R C 、R B (R B1、R B2)都会引起静态工作点的变化,如图2-3所示。

但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。

图2-3 电路参数对静态工作点的影响最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。

所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。

如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

2、放大器动态指标测试放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。

1) 电压放大倍数A V 的测量调整放大器到合适的静态工作点,然后加入输入电压ui ,在输出电压u O 不失真的情况下,用交流毫伏表测出u i 和u o 的有效值U i 和U O ,则 iV U U A2) 输入电阻R i 的测量为了测量放大器的输入电阻,按图2-4 电路在被测放大器的输入端与信号源之间串入一已知电阻R ,在放大器正常工作的情况下, 用交流毫伏表测出U S和U i ,则根据输入电阻的定义可得R U U U RU U I U R i S iR i i i i -===图2-4 输入、输出电阻测量电路测量时应注意下列几点:① 由于电阻R 两端没有电路公共接地点,所以测量R 两端电压 U R 时必须分别测出U S 和U i ,然后按U R =U S -U i 求出U R 值。

② 电阻R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取R 与R i 为同一数量级为好,本实验可取R =1~2K Ω。

3) 输出电阻R 0的测量按图2-4电路,在放大器正常工作条件下,测出输出端不接负载 R L 的输出电压U O 和接入负载后的输出电压U L ,根据 O LO LL U R R R U +=即可求出: L LOO 1)R U U (R -= 在测试中应注意,必须保持R L 接入前后输入信号的大小不变。

4) 最大不失真输出电压U OPP 的测量(最大动态范围)如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。

为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节R W (改变静态工作点),用示波器观察u O ,当输出波形同时出现削底和缩顶现象(如图2-5)时,说明静态工作点已调在交流负载线的中点。

然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出U O (有效值),则动态范围等于。

或用示波器直接读出U OPP 来。

图 2-5 静态工作点正常,输入信号太大引起的失真三、实验仪器及材料:1.数字合成函数信号发生器∕计数器(F05A型)南京盛普仪器科技有限公司 1 台2. 毫伏表(DF2175A型) 宁波中策电子有限公司 1 台3. 电子技术实验箱(SAC-DMS2型) 重庆大学 1 台4. 双踪示波器(ADS7022S型) 1 台5. 数字万用表1台6. 导线若干四、实验步骤及内容:1.参照课本的实验原理图,将电路连接好。

2.在电路中接入5个万能表分别测量工作点V EQ,V CQ,V CEQ和V i,V O的电压值。

3.在电路中连入一示波器测量输入端和输出端的波形。

4.调节R PI的阻值,使R P1的阻值分别处于阻值较大,阻值适中,阻值较小的状态下,用万能表分别测出相对应状态下的工作点,并观察相应的波形,再将数据填入表2.3.1中。

5.调节R PI的阻值,使输出的波形基本上不失真,在用交流电压表分别测出R L=与R L=5.1kΩ时的V O,算出电压增益A V,描绘输出电压波形图,并将测量数据填入表2.3.2中。

6.在R L=5.1输出为V i=10mV,f=1kHz的正弦信号时,调节R P1,使输出波形不产生失真且幅值最大,此时的电压放大倍数最大,测量出此时的静态工作点及输出电压V om,再计算出A Vm。

7. 输入Vi=10Mv,f=1kHz正弦信号,用示波器观察不到失真输出波形后,逐渐增大V i,继续观察输出波形有无失真,则调节R P1,使其正,负峰同时出现削顶失真,此时,则需减小输入信号Vi并反复调节R P1,直至输出电压的波形的正负峰刚好同时推出削顶失真为止,此时的工作点已位于交流负载线中点,测出的Vi即为放大器的最大允许输入电压幅值,同时Vo即为最大不失真输出电压幅值。

表2.3.1测试项目R L阻值V EQ(v)V CQ(v)V CEQ(v)I CQ(v)记录输出波形判别工作状态阻值较小模拟值 1.535 5.939 4.404 1.35见后图工作在饱和区实验值 3 3.69 0.69 2.727阻值适中模拟值0.21 11.038 10.828 0.1909见后图工作在放大区实验值0.772 1.07 9.12 0.707阻值较大模拟值0.038 11.776 10.638 0.345见后图工作在截至区实验值0.34 0 12 0.309阻值较大阻值适中阻值较小表2.3.2测试项目R L阻值V i V o电压增益A v输出波形R L=∞模拟值10mv 290.739mv 29.27见后图实验值19.9 mv 80.003 mv 4.00R L=5.1 kΩ模拟值10mv 145.371mv 23.25见后图实验值19 .9mv 23.439 mv 1.17R L =∞时的输出波形 R L =5.1 k Ω时的输出波形五 实验得出结果及分析:结论: ①调节上偏置电阻ω1 ,从而可以改变静态工作点的状态 当ω1较大时,三极管工作在截止区; 当ω1较小时,三极管工作在饱和区; 当ω1适当时,三极管工作在放大区。

②对于硅晶体而言:放大区:0.6<V BE <0.7 1<V CE <V CC 单位V 截至区:V BE <0.4 V CE =V CC 单位V 饱和区:V BE ≧0.7 V CE <0.1 单位V实验五两级阻容耦合放大器实验实验时间:2011年11月8日一、实验目的:1. 了解阻容耦合放大器级间的互相影响;2. 学会两级放大器的调整方法及其性能指标的测试方法;3. 了解放大器静态工作点对输出动态范围的影响。

二﹑实验原理:多级放大电路,其放大倍数一般只有几十倍。

然而,实际工作中,常常需要对微弱的信号放大几百、几千倍,甚至几万倍,这就需要将若干单级放大电路串连起来,将前级的输出端加到后级的输入端,组成多级放大器,使信号经过多次放大,达到所需的值。

相关文档
最新文档