统计常用公式汇总.

合集下载

(完整版)统计学公式大全

(完整版)统计学公式大全

(完整版)统计学公式大全统计学公式大全本文档旨在提供统计学领域常用的公式大全,便于大家在研究和实践中进行参考和应用。

描述统计学公式中心趋势度量1. 平均数(Mean):$\bar{x} =\frac{{\sum_{i=1}^{n}x_i}}{n}$2. 中位数(Median):若数据个数为奇数,中位数为排序后的中间值;若数据个数为偶数,中位数为排序后的中间两个值的平均值。

3. 众数(Mode):出现频率最高的数值。

离散趋势度量1. 方差(Variance):$Var(x) = \frac{{\sum_{i=1}^{n}(x_i - \bar{x})^2}}{n}$2. 标准差(Standard Deviation):$SD(x) = \sqrt{Var(x)}$3. 极差(Range):$Range(x) = \max(x) - \min(x)$分布形状度量1. 偏度(Skewness):$\text{Skewness} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^3}}{n \cdot SD(x)^3}$2. 峰度(Kurtosis):$\text{Kurtosis} =\frac{{\sum_{i=1}^{n}(x_i - \bar{x})^4}}{n \cdot SD(x)^4}$ 推断统计学公式参数估计1. 样本均值的抽样分布标准差(Standard Error of the Mean):$SE(\bar{x}) = \frac{{SD(x)}}{\sqrt{n}}$2. 双侧置信区间公式(Confidence Interval):$\bar{x} \pm Z\cdot SE(\bar{x})$3. 样本比例的抽样分布标准差(Standard Error of Proportion):$SE(p) = \sqrt{\frac{{p(1-p)}}{n}}$4. 双侧置信区间公式(Confidence Interval):$p \pm Z \cdotSE(p)$假设检验1. 样本均值和总体均值的差异(t检验):$t = \frac{{\bar{x} -\mu}}{{SE(\bar{x})}}$2. 双侧拒绝域临界值(t分布):$t_{\text{critical}} = \pmt_{\alpha/2, df}$3. 样本比例和总体比例的差异(z检验):$z = \frac{{\hat{p} - p}}{{SE(p)}}$4. 双侧拒绝域临界值(z分布):$z_{\text{critical}} = \pmz_{\alpha/2}$回归分析公式简单线性回归模型1. 回归方程(Simple Linear Regression):$y = \beta_0 +\beta_1x + \epsilon$2. 线性预测公式(Simple Linear Regression):$\hat{y} =\hat{\beta}_0 + \hat{\beta}_1x$3. 斯皮尔曼秩相关系数(Spearman's Rank Correlation Coefficient):$r_s = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$4. 相关系数的显著性检验(t检验):$t = \frac{r}{\sqrt{\frac{1 - r^2}{n-2}}}$结论本文档列举了统计学领域常用的公式,包括描述统计学中的中心趋势度量、离散趋势度量和分布形状度量,推断统计学中的参数估计和假设检验,以及回归分析中的简单线性回归模型等相关公式。

统计学常用公式

统计学常用公式

统计学常用公式统计学是一门研究数据收集、分析、解释和表达的科学。

在统计学中,有许多常用的公式被广泛应用于数据处理和推断分析。

本文将介绍一些统计学常用公式,并对其进行说明和用途解释。

一、描述统计学公式1. 平均值(Mean)平均值是一组数据的总和除以数据的个数,即:$\bar{X} = \frac{X_1 + X_2 + \cdots + X_n}{n}$其中,$\bar{X}$表示平均值,$X_i$表示第i个数据,n表示数据的个数。

2. 中位数(Median)中位数是将一组数据按照大小排列后,处于中间位置的数值。

当数据个数为奇数时,中位数即为排列后正中间的数;当数据个数为偶数时,中位数为排列后中间两个数的平均值。

3. 众数(Mode)众数是一组数据中出现频率最高的数值。

4. 标准差(Standard Deviation)标准差衡量数据的离散程度,其计算公式为:$SD = \sqrt{\frac{(X_1 -\bar{X})^2 + (X_2 -\bar{X})^2 + \cdots + (X_n -\bar{X})^2}{n-1}}$5. 方差(Variance)方差是标准差的平方,即:$Var = SD^2$6. 百分位数(Percentile)百分位数是指一组数据中某个特定百分比处的数值。

比如,第25百分位数是将一组数据从小到大排列后,处于前25%位置的数值。

二、概率与统计公式1. 随机变量期望(Expectation)随机变量期望是描述随机变量平均值的指标,也称为均值。

对于离散型随机变量X,其期望计算公式为:$E(X) = \sum_{i=1}^{n} X_i \cdot P(X_i)$对于连续型随机变量X,其期望计算公式为:$E(X) = \int_{-\infty}^{\infty} x \cdot f(x)dx$其中,$X_i$表示随机变量X的取值,$P(X_i)$表示对应取值的概率,$f(x)$表示X的概率密度函数。

统计学公式汇总

统计学公式汇总

统计学公式汇总统计学是研究数据收集、分析、解释和预测的一门学科。

在统计学中,有许多重要的公式被广泛应用于数据的处理和分析过程中。

本文将汇总一些常见的统计学公式,并简要介绍其应用场景和使用方法。

1. 均值(Mean)均值是统计学中最常用的概念之一,用于衡量一组数据的集中趋势。

对于一个样本集合,均值可以通过将所有观测值相加,然后除以样本容量来计算。

其数学公式如下:均值= ∑(观测值) / 样本容量2. 方差(Variance)方差是用于衡量一组数据的离散程度的指标。

方差越大,表示数据的离散程度越高;方差越小,表示数据的离散程度越低。

方差的计算公式如下:方差= ∑((观测值-均值)^2) / 样本容量3. 标准差(Standard Deviation)标准差是方差的平方根,用于衡量数据的离散程度,并且具有和原始数据相同的单位。

标准差的计算公式如下:标准差 = 方差的平方根4. 相关系数(Correlation Coefficient)相关系数用于衡量两组变量之间的线性关系强度和方向。

相关系数的取值范围在-1到1之间,其中-1表示完全的负相关,1表示完全的正相关,0表示无相关。

相关系数的计算公式如下:r = Cov(X,Y) / (σX * σY)5. 回归方程(Regression Equation)回归方程用于建立一个或多个自变量与因变量之间的线性关系。

回归方程的一般形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示模型的误差项。

6. 样本容量和置信水平(Sample Size and Confidence Level)在统计学中,样本容量和置信水平是决定实验或调查结果可靠性的重要因素。

样本容量是指从总体中抽取的样本大小,而置信水平是指对总体参数的估计值的信任程度。

数理统计常用公式

数理统计常用公式

数理统计常用公式1.样本均值的公式:样本均值(x̄)是在一组样本数据中,所有数据的总和除以样本数量的结果。

即:x̄=(x₁+x₂+x₃+...+x̄)/n其中,x₁、x₂、x₃等为样本数据,n为样本数量。

2.总体均值的公式:总体均值(μ)是在一个总体中,所有数据的总和除以总体数量的结果。

在样本数据无法覆盖总体数据的情况下,可以通过样本均值来估计总体均值。

即:μ=(x₁+x₂+x₃+...+x̄)/N其中,x₁、x₂、x₃等为样本数据,N为总体数量。

3.样本方差的公式:样本方差(s²)是一组样本数据与其均值之差的平方和除以样本数量减一的结果。

即:s²=((x₁-x̄)²+(x₂-x̄)²+(x₃-x̄)²+...+(x̄-x̄)²)/(n-1)其中,x₁、x₂、x₃等为样本数据,x̄为样本均值,n为样本数量。

4.总体方差的公式:总体方差(σ²)是一组数据与其均值之差的平方和除以总体数量的结果。

在样本数据无法覆盖总体数据的情况下,可以通过样本方差来估计总体方差。

即:σ²=((x₁-μ)²+(x₂-μ)²+(x₃-μ)²+...+(x̄-μ)²)/N其中,x₁、x₂、x₃等为样本数据,μ为总体均值,N为总体数量。

5.样本标准差的公式:样本标准差(s)是样本方差的平方根。

即:s=√(s²)其中,s²为样本方差。

6.总体标准差的公式:总体标准差(σ)是总体方差的平方根。

即:σ=√(σ²)其中,σ²为总体方差。

7.相关系数的公式:相关系数(r)衡量了两个变量之间线性关系的强度和方向。

其计算公式为:r=Σ((x-x̄)*(y-ȳ))/(√(Σ(x-x̄)²)*√(Σ(y-ȳ)²))其中,x、y为两个变量的取值,x̄、ȳ分别为两个变量的均值,Σ表示求和。

统计学常用公式汇总

统计学常用公式汇总

《统计学原理》常用公式汇总组距=上限-下限组中值=(上限+下限)÷2 缺下限开口组组中值=上限-1/2邻组组距缺上限开口组组中值=下限+1/2邻组组距111平均指标 1.简单算术平均数:2.加权算术平均数或iii.变异指标1.全距=最大标志值-最小标志值2.标准差: 简单σ=;加权σ= 3.标准差系数:第五章抽样估计1.平均误差:重复抽样:不重复抽样:2.抽样极限误差3.重复抽样条件下:平均数抽样时必要的样本数目成数抽样时必要的样本数目4.不重复抽样条件下:平均数抽样时必要的样本数目第七章相关分析 1.相关系数2.配合回归方程y=a+bx3.估计标准误:第八章指数分数一、综合指数的计算与分析(1)数量指标指数此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(-)此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。

(-)此差额说明由于质量指标的变动对价值量指标影响的绝对额。

加权算术平均数指数=加权调和平均数指数=(3)复杂现象总体总量指标变动的因素分析相对数变动分析:=×绝对值变动分析:-= (-)×(-)第九章动态数列分析一、平均发展水平的计算方法:(1)由总量指标动态数列计算序时平均数①由时期数列计算②由时点数列计算在间断时点数列的条件下计算:a.若间断的间隔相等,则采用“首末折半法”计算。

公式为:b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。

公式为:(2)由相对指标或平均指标动态数列计算序时平均数基本公式为:式中:代表相对指标或平均指标动态数列的序时平均数;代表分子数列的序时平均数;代表分母数列的序时平均数;逐期增长量之和累积增长量二. 平均增长量=─────────=─────────逐期增长量的个数逐期增长量的个数(1)计算平均发展速度的公式为:(2)平均增长速度的计算平均增长速度=平均发展速度-1(100%)。

常用数理统计公式

常用数理统计公式

1.∑==ni ix nx 11 y n21221)(xn x x xL ni i ni ixx -=-=∑∑==21221)(yn y y yL ni i ni iyy -=-=∑∑==yx n y x y y x x L i ni i i ni i xy -=--=∑∑==11)()(x b y a ˆˆ-= xxxy L L b /ˆ= )(ˆˆˆˆx x b y x b a y-+=+= 2.b 的显著性检验0:,0:10≠=b H b H拒)2(-≥=n r L L L r a yyxx xy3. b 的区间估计)2(ˆ)ˆ(-=-=n t b bL t exx σ)/)2(ˆˆ(2/1xx e L n t b b -±∈-ασ 2ˆˆ2--=n b L yy eσ 4. 预测y 0)2()(11ˆˆ2/12000-→-++--n t L x x nyy xxe ασ5. 控制)ˆˆ(ˆ12/1a u y bx e -+'='-ασ)ˆˆ(ˆ12/1a u y bx e --''=''-ασ6. 点估计2σn L b L xxyy 22ˆˆ-=σ其他:))1(,(ˆ22xxL xna N a+→σ),(ˆ2xxL b N bσ→2)ˆ,ˆc o v (σxxL x b a-= 0)ˆ,c o v (=by r i n 求i x ,2i s ,x方差来源(A, e, S T ) 平方和(S A , S e , S T ) 自由度(r-1, n-r ) 方差(e A S S ,)F 值(e A S S /)),1(1r n r F ---α大否小接受区间估计(单) 1.1 μσ已知,求2)1,0(/U N nx →-=σμ)(21ασμ-±∈unx1.2 μσ未知,求2)1(/U *-→-=n t ns x μ ))1((21*-±∈-n tnsx αμ2.12σμ已知,求)()(22212n u xni iχσχ→-=∑=))()(,)()((22/21022/12102n x u xn x u xni ini iαασ∑∑=-=--∈2.22σμ未知,求)1-(S1222*2n n χσχ→-=)( ))1(S 1,)1(S 1(22/2*22/12*2----∈-n x n n x n αασ)()( 区间估计(双) 3.1 212221,u -μσσ已知,求)1,0()()(U 22212121N n n u y x →+---=σσμ))(()(2122212121ασσμ-+±-∈-un n y x u3.22122212u -=μσσσ,求未知)2(11)()(U 212121-+→+---=n n t n n S u y x Wμ2212*12)12()1(*-+-+-=n n n Sn S SW))2(11)(()(21212121-++±-∈--n n tn n S y x u Wαμ0-1分布 B (1,p ) EX=P DX= p(1-p){}()k n k p p k X P --==1 it x pe p -1(t)+=ϕ 二项分布B (n ,p ) EX=nP DX=n p(1-p){}()k n kkn p pC k X P --==1 n)pe p -1((t)it x +=ϕ几何分布(n 重伯努利分布) EX=1/p DX= (1-p)/p 2{}()11--==n p p n X P泊松分布p(λ)(k=0,1,2…) EX=λ DX=λ{}λλ-==ek k X P k!))1e (exp((t)it x -=λϕ均匀分布U (a,b ) EX=(b+a )/2 DX=(b-a)2/12{}ab XP -=1 )()ee((t)aitbitxa b it --=ϕ指数分布 EX=1/λ DX=1/λ2{}x e XP λλ-= 1x )1((t)--=λϕit正态分布N ⎭⎬⎫⎩⎨⎧-=2exp (t)22xt iut σϕ 伽玛分布Γ分布{}xexX P βαααβ--Γ=1)( αβϕ--=)1((t )x itβα=EX 2βα=DX2χ分布 EX=n DX=2n{}22122)2(x nnen x X P --Γ=2x )21((t)n it --=ϕF 分布)2(2222>-=n n n EX )4()4()2()2(2222212122>---+=n n n n n n n DX。

统计学常用公式

统计学常用公式

统计学常用公式统计学是一门研究数据收集、整理、分析和解释的学科。

在统计学中,公式是非常重要的工具,用于计算和推导各种统计指标和结果。

下面是一些统计学中常用的公式,它们可以帮助我们理解和应用统计学的基本概念和方法。

1. 数据的中心趋势度量在统计分析中,我们经常需要了解数据的中心趋势,即数据的集中程度或平均水平。

以下是几个常用的中心趋势度量公式:- 平均值(Mean):一组数据中所有观测值的总和除以观测值的个数。

- 中位数(Median):将一组数据按照大小排序,位于中间位置的观测值。

- 众数(Mode):出现次数最多的观测值。

- 加权平均值(Weighted Mean):将每个观测值乘以相应的权重,然后求和并除以总的权重和。

2. 数据的离散程度度量除了了解数据集中在哪里,我们还需要了解数据的离散程度,即数据分散的程度。

以下是几个常用的离散程度度量公式:- 方差(Variance):一组数据与其平均值之差的平方的平均值。

- 标准差(Standard Deviation):方差的算术平方根。

- 平均绝对偏差(Mean Absolute Deviation):一组数据与其平均值之差的绝对值的平均值。

3. 数据的相关性度量在统计分析中,我们常常需要了解两个或多个变量之间的相关性。

以下是几个常用的相关性度量公式:- 协方差(Covariance):一组数据中两个变量之间的协方差。

协方差的正负表示两个变量是正相关还是负相关。

- 相关系数(Correlation Coefficient):协方差除以两个变量各自的标准差的乘积。

相关系数的取值范围为-1到1,越接近-1或1表示相关性越强。

4. 抽样误差估计在统计学中,我们通常只能对样本数据进行分析,从而推断总体的特征。

以下是几个常用的抽样误差估计公式:- 样本标准差(Sample Standard Deviation):类似于总体标准差,但在计算时使用样本数据。

- 样本均值(Sample Mean):类似于总体均值,但在计算时使用样本数据。

统计学原理常用公式

统计学原理常用公式

统计学原理常用公式1.样本均值公式:样本均值是用来估计总体均值的一种方法,公式为:\bar{x} = \frac{{\sum_{i=1}^n x_i}}{n}\]其中,\(\bar{x}\) 是样本均值,\(x_i\) 是第 \(i\) 个观察值,\(n\) 是样本容量。

2.样本方差公式:样本方差是用来估计总体方差的一种方法,公式为:s^2 = \frac{{\sum_{i=1}^n (x_i - \bar{x})^2}}{n-1}\]其中,\(s^2\) 是样本方差,\(x_i\) 是第 \(i\) 个观察值,\(\bar{x}\) 是样本均值,\(n\) 是样本容量。

计算样本方差时使用的是无偏估计公式。

3.标准差公式:标准差是样本方差的平方根,公式为:s = \sqrt{s^2}\]其中,\(s\)是样本标准差。

4.离差平方和公式:离差平方和是指每个观察值与均值之差的平方的总和,公式为:\sum_{i=1}^n (x_i - \bar{x})^2\]5.切比雪夫不等式:切比雪夫不等式给出了随机变量与其均值之间的关系,公式为:P(,X-\mu,\geq k\sigma) \leq \frac{1}{k^2}\]其中,\(X\) 是随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(k\) 是大于零的常数。

6.二项分布的期望值和方差公式:二项分布用于描述在\(n\)次独立重复试验中成功的次数的概率分布。

其期望值和方差分别为:E(X) = np\]Var(X) = np(1-p)\]其中,\(X\)是二项分布随机变量,\(n\)是试验次数,\(p\)是单次试验成功的概率。

7.正态分布的概率密度函数和累积分布函数公式:正态分布描述了大部分自然现象中的连续性随机变量的分布。

f(x) = \frac{1}{{\sqrt{2\pi}\sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\]F(x) = \frac{1}{2}\left[1 + \text{erf}\left(\frac{x -\mu}{\sqrt{2}\sigma}\right)\right]\]其中,\(x\) 是正态分布的随机变量,\(\mu\) 是均值,\(\sigma\) 是标准差,\(\text{erf}\) 是误差函数。

统计学常用公式

统计学常用公式

统计学常用公式在我们的日常生活和各种研究领域中,统计学都发挥着至关重要的作用。

它帮助我们从大量的数据中提取有价值的信息、发现规律,并做出合理的推断和决策。

而要进行准确的统计分析,就离不开一系列常用的公式。

接下来,让我们一起了解一些常见的统计学公式。

首先,我们来谈谈平均数。

平均数是最基本也是最常用的统计量之一。

对于一组数据$x_1, x_2, \cdots, x_n$,算术平均数的公式为:$\bar{x} =\frac{x_1 + x_2 +\cdots + x_n}{n}$。

例如,一组学生的考试成绩分别为 85、90、75、80、95,那么这组成绩的平均数就是:$(85 + 90 + 75 + 80 + 95) \div 5 = 85$ 。

平均数能够反映数据的集中趋势,让我们对一组数据的大致水平有一个直观的了解。

方差也是一个重要的统计量,它衡量的是数据的离散程度。

方差的公式为:$S^2 =\frac{\sum_{i=1}^{n}(x_i \bar{x})^2}{n}$。

还是以上面那组学生成绩为例,先算出平均数 85,然后分别计算每个成绩与平均数的差值的平方,再求和并除以 5,就得到了方差。

方差越大,说明数据的离散程度越大,即数据分布越分散;方差越小,数据越集中。

标准差则是方差的平方根,公式为:$S =\sqrt{\frac{\sum_{i=1}^{n}(x_i \bar{x})^2}{n}}$。

标准差与方差的作用类似,但由于它与原始数据的单位相同,所以在实际应用中更加直观。

接下来是样本比例的公式。

在抽样调查中,如果我们关心某个具有特定特征的个体在总体中所占的比例,设样本中具有该特征的个体数为$x$,样本容量为$n$,则样本比例为:$p =\frac{x}{n}$。

再来说说正态分布的概率密度函数公式。

正态分布是一种非常常见的连续型概率分布,其概率密度函数为:$f(x) =\frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(x \mu)^2}{2\sigma^2}}$,其中$\mu$ 是均值,$\sigma$ 是标准差。

统计学常用公式总结

统计学常用公式总结

心理统计常用公式总结1 、组数 K(总体分布为正态)( N 为数据个数, K 取近似整数)2 、算术平均数3 、中数4 、众数5 、加权平均数,其中 W i 为权数,其中为各小组的平均数, n i 为各小组人数6 、几何平均数,其中 n 为数据个数, X i 为数据的值7 、调和平均数8 、方差与标准差,其中9 、变异系数,其中 S 为标准差, M 为平均数10 、标准分数,其中 X 为原始数据,为平均数, S 为标准差11 、全距R=最大数-最小数12 、平均差13 、四分差,其中 L b 为该四分点所在组的精确下限, F b 为该四分点所在组以下的累加次数,和为该四分点所在组的次数, i 为组距, N 为数据个数14 、积差相关基本公式:,其中N 为成对数据的数目, S x 、 S y 分别为 X 和 Y 的标准差变形:差法公式:用估计平均数计算:用相关表计算:15 、斯皮尔曼等级相关,其中 D 为各对偶等级之差直接用等级序数计算:,其中 R X 、 R Y 分别为二变量各等级数有相同等级时:16 、肯德尔等级相关有相同等级:17 、点二列相关,其中是两个二分变量对偶的连续变量的平均数, p 、 q 是二分变量各自所占的比率, p+q=1 , S t 是连续变量的标准差18 、二列相关,其中 S T 与是连续变量的标准差与平均数, y 为 P 的正态曲线的高度19 、多系列相关,其中 P i 为每系列的次数比率, y 1 为每一名义变量下限的正态曲线高度,y h 为每一名义变量上线的正态曲线高度,为每一名义变量对偶的连续变量的平均数, S t 为连续变量的标准差20 、总体为正态,σ 2 已知:21 、总体为正态,σ 2 未知:22 、23 、24 、。

统计学常用公式

统计学常用公式

公式一1. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。

(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。

下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。

上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。

2.中位数【MEDIAN 】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。

设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 当N 为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值:式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。

3.均值的计算【AVERAGE 】(1)未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…(2)分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i k kii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为: 式中:G 表示几何平均数;∏表示连乘符号。

数理统计常用公式整理

数理统计常用公式整理

数理统计常用公式整理一、概率公式1. 概率的加法公式:P(A∪B) = P(A) + P(B) - P(A∩B)2. 条件概率公式:P(A|B) = P(A∩B) / P(B)3. 乘法公式:P(A∩B) = P(B) × P(A|B) = P(A) × P(B|A)4. 全概率公式:P(B) = ΣP(Ai) × P(B|Ai),其中Ai为样本空间的划分。

5. 贝叶斯公式:P(Ai|B) = P(Ai) × P(B|Ai) / ΣP(Aj) × P(B|Aj),其中Ai为样本空间的划分。

二、随机变量公式1. 期望:E(X) = Σx×P(X=x),其中x为随机变量X的取值,P(X=x)为其概率。

2. 方差:Var(X) = E((X-E(X))^2) = E(X^2) - [E(X)]^23. 协方差:Cov(X,Y) = E((X-E(X))(Y-E(Y)))4. 两个随机变量X和Y的相关系数:ρ(X,Y) = Cov(X,Y) / (σ(X) × σ(Y)),其中σ(X)和σ(Y)分别为X和Y的标准差。

三、常见分布公式1. 二项分布:P(X=k) = C(n,k) × p^k × (1-p)^(n-k),其中n为试验次数,k为成功次数,p为单次试验成功的概率。

2. 泊松分布:P(X=k) = (λ^k × e^(-λ)) / k!,其中λ为单位时间(或单位面积)内随机事件发生的平均次数。

3. 正态分布:f(x) = (1 / (σ×√(2π))) × e^(-(x-μ)^2 / (2σ^2)),其中μ为均值,σ为标准差。

4. t分布:f(t) = (Γ((v+1)/2) / (√(vπ) × Γ(v/2))) × (1 + t^2/v)^(-((v+1)/2)),其中v为自由度。

(完整word版)统计学常用公式

(完整word版)统计学常用公式

公式一1. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。

(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。

下限公式: 1012M =L++i ∆⨯∆∆ 式中:0M 表示众数;L 表示众数的下线;1∆表示众数组次数与上一组次数之差;2∆表示众数组次数与下一组次数之差;i 表示众数组的组距。

上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 表示众数组的上限。

2.中位数【MEDIAN 】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。

设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 当N 为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采用下面的公式计算中位数的近似值:N=1m-1e m-S 2M =L+ii fd f ⨯∑式中:e M 表示中位数;L 表示中位数所在组的下限;m-1S 表示中位数所在组以下各组的累计次数;m f 表示中位数所在组的次数;d 表示中位数所在组的组距。

3.均值的计算【A VERAGE 】(1)未经分组均值的计算未经分组数据均值的计算公式为: 112n ++==nii x x x x x n n=∑…(2)分组数据均值计算分组数据均值的计算公式为: 11221121+++==+ki ik k i k kii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为:式中:G 表示几何平均数;∏表示连乘符号。

excel 统计 字段 公式

excel 统计 字段 公式

excel 统计字段公式
在Excel中,可以使用多种公式来统计字段。

以下是一些常用的公式:
1. COUNT:统计包含数字的单元格数量。

格式:=COUNT(数据区域)
2. SUM:求和计算。

格式:=SUM(数据区域)
3. AVERAGE:计算平均值。

格式:=AVERAGE(数据区域)
4. MAX:找出最大值。

格式:=MAX(数据区域)
5. MIN:找出最小值。

格式:=MIN(数据区域)
6. IF:根据条件进行计算。

格式:=IF(条件, 条件成立时运算的值, 条件不成立时运算的值)
7. COUNTIF:根据条件统计单元格数量。

格式:=COUNTIF(数据区域, 条件)
8. SUMIF:根据条件求和计算。

格式:=SUMIF(数据区域, 条件, 求和范围)
9. AVERAGEIF:根据条件计算平均值。

格式:=AVERAGEIF(数据区域, 条件, 平均值范围)
10. VLOOKUP:根据指定值在数据中查找并返回指定列的值。

格式:=VLOOKUP(查找值, 数据区域, 返回列号, 排序)
以上是一些常用的统计字段公式,在具体使用时,根据实际需求和数据类型选择合适的公式进行计算。

统计常用公式函数大全

统计常用公式函数大全

统计常用公式函数大全一、描述统计函数1. 平均值:用于计算一组数据的平均值。

公式为:$mean =\frac{1}{n}\sum_{i=1}^{n}x_i$2. 中位数:用于计算一组有序数据的中间值。

公式为:$median = \begin{cases}X[\frac{n+1}{2}], & \text{if n is odd} \\\frac{X[\frac{n}{2}] + X[\frac{n}{2}+1]}{2}, & \text{if n is even} \end{cases}$3. 众数:用于寻找一组数据中出现次数最多的值。

4. 极差:用于计算一组数据中最大值和最小值之间的差值。

公式为:$range = max(X) - min(X)$5. 方差:用于衡量一组数据的离散程度。

公式为:$variance = \frac{\sum_{i=1}^{n}(x_i - mean)^2}{n}$6. 标准差:用于衡量一组数据的离散程度,是方差的平方根。

公式为:$standard \ deviation = \sqrt{variance}$7. 百分位数:用于划分一组有序数据,表示小于某个特定百分比的值。

公式为:$percentile = \frac{(p/100)(n+1)}{100}$8. 相关系数:用于衡量两个变量之间的线性相关关系。

公式为:$correlation \ coefficient = \frac{cov(X, Y)}{nX_{std}Y_{std}}$9. 协方差:用于衡量两个变量之间的线性相关关系。

公式为:$cov(X, Y) = \frac{\sum_{i=1}^{n}(x_i - \overline{X})(y_i -\overline{Y})}{n}$10. 四分位数:用于将一组数据分为四个部分,每个部分包含相同数量的数据。

公式为:第1四分位数= $X[\frac{1}{4}(n+1)]$,第2四分位数 = $X[\frac{1}{2}(n+1)]$,第3四分位数 =$X[\frac{3}{4}(n+1)]$二、假设检验函数1. t检验:用于比较两组样本之间的平均值是否具有统计学差异。

统计学常用公式

统计学常用公式

统计学常用公式在我们的日常生活和各种研究领域中,统计学发挥着至关重要的作用。

它帮助我们从大量的数据中提取有价值的信息,做出合理的决策,并揭示隐藏在现象背后的规律。

而要进行有效的统计分析,就离不开一系列常用的公式。

接下来,让我们一起了解一些统计学中常见且重要的公式。

首先,不得不提的是均值(平均数)的计算公式。

对于一组数据$x_1, x_2, \cdots, x_n$ ,均值$\bar{x}$的计算公式为:$\bar{x} =\frac{x_1 + x_2 +\cdots + x_n}{n}$。

均值是描述数据集中趋势的最常用指标之一,它能让我们对数据的中心位置有一个直观的了解。

方差也是一个重要的统计量,用于衡量数据的离散程度。

其公式为:$s^2 =\frac{\sum_{i=1}^{n}(x_i \bar{x})^2}{n 1}$。

方差越大,说明数据的分布越分散;方差越小,数据越集中在均值附近。

标准差是方差的平方根,公式为:$s =\sqrt{\frac{\sum_{i=1}^{n}(x_i \bar{x})^2}{n 1}}$。

标准差在实际应用中更为常见,因为它与原始数据的单位相同,更便于理解和比较。

在概率统计中,经常会用到条件概率的公式。

假设事件 A 和事件B ,条件概率$P(A|B)$表示在事件 B 发生的条件下,事件 A 发生的概率,其计算公式为:$P(A|B) =\frac{P(A \cap B)}{P(B)}$。

全概率公式在解决复杂的概率问题时非常有用。

如果事件 B 可以被分解为互斥的事件$B_1, B_2, \cdots, B_n$ ,那么对于事件 A ,全概率公式为:$P(A) =\sum_{i=1}^{n}P(A|B_i)P(B_i)$。

贝叶斯公式则是基于条件概率和全概率公式推导出来的。

它在已知先验概率和条件概率的情况下,计算后验概率。

贝叶斯公式为:$P(B_i|A) =\frac{P(A|B_i)P(B_i)}{\sum_{j=1}^{n}P(A|B_j)P(B_j)}$。

统计学常用公式

统计学常用公式

公式一之欧侯瑞魂创作1.2. 众数【MODE 】(1) 未分组数据或单变量值分组数据众数的计算未分组数据或单变量值分组数据的众数就是出现次数最多的变量值。

(2) 组距分组数据众数的计算对于组距分组数据,先找出出现次数最多的变量值所在组,即为众数所在组,再根据下面的公式计算计算众数的近似值。

下限公式:1012M =L++i ∆⨯∆∆ 式中:0M 暗示众数;L 暗示众数的下线;1∆暗示众数组次数与上一组次数之差;2∆暗示众数组次数与下一组次数之差;i 暗示众数组的组距。

上限公式:2012M =U-+i ∆⨯∆∆ 式中:U 暗示众数组的上限。

2.中位数【MEDIAN 】(1)未分组数据中中位数的计算根据未分组数据计算中位数时,要先对数据进行排序,然后确定中位数的位置。

设一组数据按从小到大排序后为12N X X X ,,…,,中位数e M ,为则有:e N+M =X1()2当N 为奇数e N N +1221M =X +X 2⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭ 当N为偶数(2)分组数据中位数的计算分组数据中位数的计算时,要先根据公式N / 2 确定中位数的位置,并确定中位数所在的组,然后采取下面的公式计算中位数的近似值:式中:e M 暗示中位数;L 暗示中位数所在组的下限;m-1S 暗示中位数所在组以下各组的累计次数;m f 暗示中位数所在组的次数;d 暗示中位数所在组的组距。

3.均值的计算【AVERAGE 】 (1)未经分组均值的计算未经分组数据均值的计算公式为:112n ++==nii x x x x x n n=∑… (2)分组数据均值计算分组数据均值的计算公式为:11221121+++==+ki ik k i kkii x f x f x f x f x f f f f==+∑∑+4.几何平均数【GEOMEAN 】几何平均数是N 个变量值乘积的N 次方根,计算公式为: 式中:G 暗示几何平均数;∏暗示连乘符号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用公式
第三章统计整理
a)组距=上限-下限
b)组中值=(上限+下限)÷2
c)缺下限开口组组中值=上限-1/2邻组组距
d)缺上限开口组组中值=下限+1/2邻组组距
第四章综合指标
i.相对指标
1.结构相对指标=各组(或部分)总量/总体总量
2.比例相对指标=总体中某一部分数值/总体中另一部分数值
3.比较相对指标=甲单位某指标值/乙单位同类指标值
4.强度相对指标=某种现象总量指标/另一个有联系而性质不同的现象总量指

5.计划完成程度相对指标=实际数/计划数
=实际完成程度(%)/计划规定的完成程度(%)
ii.平均指标
1.简单算术平均数:
2.加权算术平均数或
iii.变异指标
1.全距=最大标志值-最小标志值
2.标准差: 简单σ= ;加权σ=
3.标准差系数:
第五章抽样估计
1.平均误差:
重复抽样:
不重复抽样:
2.抽样极限误差
3.重复抽样条件下:
平均数抽样时必要的样本数目
成数抽样时必要的样本数目
4.不重复抽样条件下:
平均数抽样时必要的样本数目
第七章相关分析
1.相关系数
2.配合回归方程y=a+bx
3.估计标准误:
第八章指数分数
一、综合指数的计算与分析
(1)数量指标指数
此公式的计算结果说明复杂现象总体数量指标综合变动的方向和程度。

(-)
此差额说明由于数量指标的变动对价值量指标影响的绝对额。

(2)质量指标指数
此公式的计算结果说明复杂现象总体质量指标综合变动的方向和程度。

(-)
此差额说明由于质量指标的变动对价值量指标影响的绝对额。

加权算术平均数指数=
加权调和平均数指数=
(3)复杂现象总体总量指标变动的因素分析
相对数变动分析:
= ×
绝对值变动分析:
-= (-)×(-)第九章动态数列分析
一、平均发展水平的计算方法:
(1)由总量指标动态数列计算序时平均数
①由时期数列计算
②由时点数列计算
在间断时点数列的条件下计算:
a.若间断的间隔相等,则采用“首末折半法”计算。

公式为:
b.若间断的间隔不等,则应以间隔数为权数进行加权平均计算。

公式为:
(2)由相对指标或平均指标动态数列计算序时平均数
基本公式为:
式中:代表相对指标或平均指标动态数列的序时平均数;
代表分子数列的序时平均数;
代表分母数列的序时平均数;
逐期增长量之和累积增长量
二. 平均增长量=─────────=─────────
逐期增长量的个数逐期增长量的个数
(1)计算平均发展速度的公式为:
(2)平均增长速度的计算
平均增长速度=平均发展速度-1(100%)
第二部分计算题分析
要求写出公式和计算过程,结果保留两位小数。

计算参考作业及期末复习指导。

1、根据所给资料分组并计算出各组的频数和频率,编制次数分布表;根据整理表计算、算术平均数.
例:某单位40名职工业务考核成绩分别为:
68 89 88 84 86 87 75 73 72 68
75 82 97 58 81 54 79 76 95 76
71 60 90 65 76 72 76 85 89 92
64 57 83 81 78 77 72 61 70 81
单位规定:60分以下为不及格,60─70分为及格,70─80分为中,80─90 分为良,90─100分为优。

要求:
1.将参加考试的职工按考核成绩分组并编制一张考核成绩次数分配表;
2.指出分组标志及类型及采用的分组方法;
3.根据整理表计算职工业务考核平均成绩;
4.分析本单位职工业务考核情况。

解:(1)
(2) 分组标志为"成绩",其类型为"数量标志
";分组方法为:变量分组中的开放组距式分组,组限表示方法是重叠组限;
(3)平均成绩:
(分)
2、根据资料计算算术平均数指标、计算变异指标比较平均指标的代表性。

例:某车间有甲、乙两个生产组,甲组平均每个工人的日产量为36件,
成 绩
职工人数 频率(%) 60分以下
60-70
70-80 80-90 90-100 3 6 15 12 4 7.5 15 37.5 30 10 合 计
40
100
标准差为9.6件;乙组工人日产量资料如下:
日产量(件)工人数(人)
15
25
35
45
15
38
34
13
要求:⑴计算乙组平均每个工人的日产量和标准差;
⑵比较甲、乙两生产小组哪个组的日产量更有代表性?
解:(1)
(件)
(件)
(2)利用标准差系数进行判断:
因为0.305 >0.267
故甲组工人的平均日产量更有代表性
3、采用简单重复抽样的方法计算平均数(成数)的抽样平均误差;根据要求进行平均数(成数)的区间估计。

例:采用简单随机重复抽样的方法,在2000件产品中抽查200件,其中合格品190件.
要求:(1)计算合格品率及其抽样平均误差
(2)以95.45%的概率保证程度(t=2)对合格品率和合格品数量进行区间估计。

(3)如果极限误差为2.31%,则其概率保证程度是多少?
解:(1)样本合格率
p = n1/n = 190/200 = 95% 企业产品销售额(万元)销售利润(万元)
抽样平均误差:
= 1.54%
(2)抽样极限误差Δp= t·μp = 2×1.54% = 3.08%
下限: △p=95%-3.08% = 91.92%
上限: △p=95%+3.08% = 98.08%
则:总体合格品率区间:(91.92% 98.08%)
总体合格品数量区间(91.92%×2000=1838件 98.08%×2000=1962件)
(3)当极限误差为2.31%时,则概率保证程度为86.64% (t=Δ/μ)
4、计算相关系数;建立直线回归方程并指出回归系数的含义;利用建立的方程预测因
变量的估计值。

例:
从某行业随机抽取6家企业进行调查,所得有关数据如上:
要求:(1)拟合销售利润(y)对产品销售额(x)的回归直线,并说明回归系数的实际意义。

(2)当销售额为100万元时,销售利润为多少? 解:(1)配合回归方程 y=a+b

=
=
回归方程为:y=-4.1343+0.3950x
回归系数b=0.3950,表示产品销售额每增加1万元,销售利润平均增加0.3950万元。

(2)当销售额为100万元时,即x=100,代入回归方程: y=-4.1343+0.3950×100=35.37(万元)
5、计算总指数、数量指数及质量指数并同时指出变动绝对值、计算平均数指数。

例:某商店两种商品的销售资料如下:
商品 单位 销售量 单价(元) 基期 计算期 基期 计算期
甲 乙

公斤 50
150
60 160
8 12
10 14
要求: (1)计算两种商品销售额指数及销售额变动的绝对额;
(2)计算两种商品销售量总指数及由于销售量变动影响销售额的绝对额; (3)计算两种商品销售价格总指数及由于价格变动影响销售额的绝对额。

解:(1)商品销售额指数=
1 2 3
4 5 6
50 15 25 37 48 65 12 4 6 8 15 25
销售额变动的绝对额:元(2)两种商品销售量总指数=
销售量变动影响销售额的绝对额元
(3)商品销售价格总指数=
价格变动影响销售额的绝对额:元
6、根据资料计算各种发展速度(环比、定基)及平均增长量指标;根据资料利用平均发展速度指标公式计算期末水平。

例:有某地区粮食产量如下:
年份2000 2001 2002 2003 2004 2005
粮食产量(万吨200 220 251 291 305.5 283.6
要求:(1)计算2001年-2005年该地区粮食产量的环比发展速度、年平均增长量和年平均发展速度;
(2)如果从2005年以后该地区的粮食产量按8%的增长速度发展,2010年该地区的粮食产量将达到什么水平?
解:(1)
时间2000 2001 2002 2003 2004 2005
粮食产量(万吨)逐期增长量(万吨)环比发展速度(%)200
-
-
220
20
110
251
31
114.0
291
40
115.9
305.5
14.55
104.98
283.6
-21.9
92.83
年平均增长量==16.73(万吨)
(或年平均增长量)
年平均发展速度=
(2)=431.44(万斤)
1。

相关文档
最新文档