最新人教版六年级数学上册知识点整理与复习(全套)
六年级上册数学概念归纳与整理(人教版)
六年级数学上册知识点整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:〔7,9〕表示第七列第九行。
4、两个数对,前一个数一样,说明它们所表示物体位置在同一列上。
如:〔2,4〕和〔2,7〕都在第2列上。
5、两个数对,后一个数一样,说明它们所表示物体位置在同一行上。
如:〔3,6〕和〔1,6〕都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法〔一〕、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义一样,就是求几个一样加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数〔小数、分数、整数〕乘分数:一个数乘分数的意义与整数乘法的意义不一样,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
〔二〕、分数乘法的计算法那么:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进展乘法计算时,要先把带分数化成假分数再进展计算。
〔三〕、分数大小的比拟:1、一个数〔0除外〕乘以一个真分数,所得的积小于它本身。
一个数〔0除外〕乘以一个假分数,所得的积等于或大于它本身。
一个数〔0除外〕乘以一个带分数,所得的积大于它本身。
2、假如几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
〔四〕、解决实际问题。
1分数应用题一般解题步行骤。
〔1〕找出含有分率的关键句。
六年级上册数学人教版知识点归纳总结
六年级上册数学知识点归纳总结一、整数1. 整数的概念整数组成了正整数、负整数和0三部分。
整数的定义包括自然数和自然数的相反数。
2. 整数的比较与加减整数比较时,绝对值大的整数可能正也可能负,需要根据正负号进行判断。
整数的加减法根据正负数的规律进行计算,同号相加为同号,异号相加为取绝对值相减并确定正负号。
3. 整数的乘除整数的乘法和除法同样遵循正负数的规律,同号相乘和除得正,异号相乘和除得负。
二、分数1. 分数的概念分数由分子和分母组成,分子表示几等份中的几份,分母表示被分为几等份。
2. 分数的加减和乘除分数的加减需要先通分,再按照通分后的分母进行计算。
分数的乘除则可以将其转化为乘法或除法进行计算,最后将结果化成最简形式。
三、小数1. 小数的概念小数是分数的一种表示方法,是指在整数部分以外还有小数部分表示的数。
2. 小数的加减和乘除小数的加减需要对齐小数点,然后按照小学数学四则运算进行计算。
小数的乘除可以先将小数化成分数,再按照分数的乘除法进行计算。
四、时间1. 时间的基本单位时间的基本单位包括年、月、日、小时、分钟、秒等。
2. 时间的计算时间的计算分为同年处理和跨年处理两种情况,需要根据具体情况进行计算。
五、长方形、正方形与三角形1. 长方形、正方形和三角形的周长和面积计算长方形的周长和面积分别为2×(长+宽)和长×宽,正方形的周长和面积分别为4×边长和边长的平方,三角形的周长为三条边的和,面积为底边乘以高后再除以2。
六、平行线与相交线1. 平行线的特性平行线是指不相交的两条直线,它们之间的距离始终相等。
2. 相交线的特性相交线是指相交的两条直线,相交形成角的种类有直角、钝角和锐角等。
以上就是六年级上册数学人教版的知识点归纳总结,学生需要认真学习这些知识点,并且进行不同类型的练习,才能更好地掌握数学知识。
希望大家在学习过程中能够加强对这些知识点的理解和掌握,夯实基础,为学习更深层次的数学知识打下坚实的基础。
人教版六年级数学上册(全)复习知识点【精品】
小学数学六年级上册期末复习知识点归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
人教版六年级数学上册各单元知识点汇总
第一单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质易错探析分数乘整数及整数乘分数用分敛的分子和整数相乘的积作分子,分母不变。
易错点:单位“1”的选取容易出错。
举例探析:判断:甲数比乙数多[,则5乙敛匕甲教少1O(X)S探析:甲数比乙数多1,则S乙数;匕甲数少】°6分数乘分数分敛乘分敛,用分子相乘的积作分子、分母相乘的积作分母。
小数乘分数可以把小数化成分数,也可以把分数化成小数,再计算a分数乘法混合运算和简便计算1.分数乘法混合运算,没有括号的先算束法,后算加、减法;有括号的,先算括号里面的,再算括号外面的。
2.整数乘法的交换律、结合律和分配津,对于分数乘法也适用,解决问题1.连续求一个歇的儿分之几是多少,用连乘。
2.求比一个数多几分之几的数是多少,列式为ax(1+儿分之几)©3.求比一个数少几分之几的数是多少,列式为q x(1-几分之几)。
第二单元考点梳理总结归纳一览表单元考点基本概念与性质位置与方向1.描述物休的位丑与观浏点有关,说浏点不同,物休位置的描述洸不同,物体的位置关系具有相对性勺2.描述物体位丑的三要素:观测点、方向、距离口简单的路线图描述路线图时,要先按行走的路线确定每一个观测点,然后,以每一个观测点为参照,描述到下一个目标行走的方向和路程口-1-第三单元考点梳理及易错探析总结归纳一览表单元考点基本概念与性质倒数的认识1.乘积是1的两个数互为例数。
2.1的倒数是1,0没有倒敬。
分数除法除以一个数(0除外),等于乘这个数的倒数。
整数可以寿成分母是1的分数,分数四则混合运算分数混合运角和整数混合运算的运算顺序相同,,解决问题1.巳知一个数的几分之几是多少,求这个数。
1.方程法:(1)找出单位“1”,设未知堇为心(2)我出题中的等量关系式;(3)列方程.2.算术法:(1)我出单位“T;(2)找出题中的对应关系;(3)列出算式。
2.已知一个数以及这个数比另一个数多(少)几分之几,求另一个数,要找准单位“1”,若设另一个数为心列方程:(1±几分之几*=b或列算式:b-r(1土几分之几)〉3.求两分量:找一个未知量设心用两分量的关系列出等式即可。
2022年人教版小学数学六年级(上下册)知识点梳理归纳
人教版小学数学六年级(上下册)知识点梳理归纳上册第一单元《分数乘法》知识点归纳(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。
(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b>1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。
人教版六年级上册数学总复习知识点和典型例题
小学六年级上册数学复习资料第一单元:位置与方向(一)用数对表示位置 如:第三列第二行 表示为(3,2)。
一般情况下表示为(列,行) 位置与方向(二)用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北30°方向上,距离15米。
也可以说成:小明在小华的 方向上,距离 。
相对位置:小明在小华的东偏北30°方向上,距离15米。
小华在小明的 方向上,距离 。
第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(如:75×4表示4个75是多少或75的4倍是多少。
) 2、一个数乘分数的意义就是求这个数的几分之几是多少。
(如:6×53表示6的53是多少; 65×52表示65的52是多少。
) 分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分) 4、 小于1的数,积小于这个数,一个数(0除外) 乘 等于1的数,积等于这个数, 大于1的数,积大于这个数。
5、乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
[典型练习题](1)38 +38 +38 +38 =( )×( )=( ) (2)12个 56 是( );24的 23 是( )。
(3)边长 12 分米的正方形的周长是( )分米。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、分数除法的计算法则:被除数除以除数(0除外)等于被除数乘除数的倒数。
3、一个数除以真分数,商大于这个数(如:4÷21﹥4); 一个数除以大于1 的假分数,商小于这个数 (如:3÷ 23﹤3)。
4、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比 的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。
小学人教版六年级数学上册知识整理与复习资料(合集)
小学人教版六年级数学上册知识整理与复习一数与代数一、分数乘法(一)分数乘整数1.分数乘整数的意义:表示求几个相同加数的和的简便运算,与整数乘法的意义相同。
2.计算方法:分母不变,分子乘整数。
(二)分数乘分数1.意义:表示求一个分数的几分之几是多少。
2.计算方法:分子乘分子,分母乘分母,能约分的要先约分。
(三)分数乘加、乘减混合运算及简算1.分数混合运算的运算顺序与整数混合运算的运算顺序相同。
2.整数乘法的运算定律对于分数乘法也同样适用。
3.合理地应用运算定律,可以使一些分数计算变得简便。
(四)求一个数的几分之几是多少的问题解题规律:一个数×几分之几二、分数除法(一)倒数的认识1.乘积是1的两个数互为倒数。
2.求一个数(0除外)的倒数的方法:把这个数的分子、分母调换位置;也可以用1除以这个数来求。
(二)分数除法1.意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2.计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。
(三)已知一个数的几分之几是多少,求这个数的问题的解法1.除法:多少÷一个数2,方程解法:设这个数为x,几分之几×x=多少(四)已知比一个数多(或少)几分之几的数是多少,求这个数的问题的解法1.组合除法:多少÷(1±几分之几)2.方程解法:设这个数为x,x±几分之几×x=多少三、比(一)比的意义1.比的意义:两个数相除又叫两个数的比。
2.比与分数、除法的关系:比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商。
3.求比值:用比的前项除以后项,求出商。
(二)比的基本性质1.比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2.化简比:把两个数的比化成最简单的整数比。
全册人教版数学六年级上册知识点总结1-8单元
第1单元分数乘法一、分数乘整数的意义及计算方法分数乘整数的意义与整数乘法的意义相同, 都是求几个相同加数的和的简便运算。
计算时用分数的分子和整数相乘的积作分子,分母不变,能约分的要先约分。
二、一个数乘分数的意义一个数乘分数的意义就是求这个数的几分之几是多少。
三、分数乘分数的计算方法分数乘分数,用分子相乘的积作分子,分母相乘的积作分母,能约分的要先约分。
四、小数乘分数的计算方法小数乘分数,可以把小数化成分数再计算,也可以把分数化成小数再计算,还可以直接将小数与分数的分母进行约分,再计算。
五、分数混合运算的运算顺序没有括号的,先算乘除法,再算加减法;有括号的,先算括号里面的,再算括号外面的。
六、整数乘法运算律推广到分数乘法整数乘法的运算律对于分数乘法同样适用。
应用乘法的运算律进行计算,可以使一些计算简便。
七、连续求一个数的几分之几是多少的实际问题解答这类实际问题的关键是弄清楚单位“1”是谁,要求的量是单位“1”的几分之几,再根据分数乘法的意义进行解答。
八、求比一个数多(或少)几分之几的数是多少的问题解题方法:①单位“1”的量±单位“1”的量×比单位“1”多(或少)的几分之几=另一个量;②单位“1”的量×(1±比单位“1”多(或少)的几分之几)=另一个量。
第2单元位置与方向(二)一、根据平面示意图确定某个点的位置在平面图上描述某个点的位置时,需要描述清楚方向和距离这两个条件。
二、在平面图上确定某个点的位置在平面图上确定某个点的位置时,先确定方向,再确定距离。
三、描述简单的路线图先按行走路线确定每一个观测点, 然后以每一个观测点为起点,再描述到下一个目标行走的方向和距离。
四、绘制简单的路线图根据描述,从起点出发,确定方向和距离,第一段以起点为观测点,后面每段都要以前一段的终点为观测点。
以谁为观测点,就以谁为中心画出“十”字方向标,然后判断下一段的方向和距离。
第3单元分数除法一、倒数的意义积是1的两个数互为倒数。
2024(新插图)人教版六年级数学上册整理和复习[002]-课件
7. 2015年我国国内游客共计39.9亿人次,2019 年
达到了60.1 亿人次。2019年我国国内游客人次比
2015年增加了百分之多少?
【教材P93 练习二十 第3题】
(60.1-39.9)÷60.1×100% ≈33.61%
答: 2019年我国国内游客人次比2015年增加 了33.61%。
小数 0.45 0.85 1.25
分数
9 20 17 20 5 4
百分数 45% 85% 125%
说一说,小数、分数和百分数怎样互化?
百分数与小数、 分数的互化
百分数
小数
先写成分母是10、100······的分数,再约分 分子÷分母
分数
4. 李平家用600kg稻谷加工出420kg大米,他家稻谷 的出米率是多少? 【教材P92 整理和复习 第2题】
8. 2021年年末全国私人汽车保有量约为2.62亿辆, 比2020年年末增长7.3%。2020年年末全国私人汽车 保有量大约为多少亿辆? (得数保留两位小数。)
【教材P93 练习二十 第4题】
2.62÷(1+7.3%) ≈2.44(亿辆)
答:2020年年末全国私人汽车保有量大约为 2.44亿辆。
R·六年级上册
6 整理和复习
整理回顾,构建网络
本单元你学习了百分数的哪些知识?这些知识 对你来说是完全陌生的吗?
百分数的意义和读、写法
百
求百分率
分 数
百分数和分数、小数的互化
求一个数的百分之几是多少
用百分数 求一个数比另一个数多(或少)百分之几
解决问题
求比一个数多(或少)百分之几的数是多少
深化理解,沟通联系
新人教版数学六年级上册总复习知识点整理归纳整理
新人教版数学六年级上册总复习知识点整理归纳整理研究必备,欢迎下载。
第一单元分数乘法一、分数乘法意义:1.分数乘整数的意义与整数乘法相同,即求几个相同加数的和的简便运算。
分数乘整数指的是第二个因数必须是整数,不能是分数。
例如,333/555×7表示求7个333/555的和是多少?或者表示333/555的7倍是多少?2.一个数乘分数的意义是求一个数的几分之几是多少。
一个数乘分数指的是第二个因数必须是分数,不能是整数。
第一个因数是什么都可以。
例如,×A/B表示求A的分之B是多少?二、分数乘法计算法则:1.分数乘整数的运算法则是分子与整数相乘,分母不变。
2.分数乘分数的运算法则是用分子相乘的积做分子,分母相乘的积做分母。
为了计算简便,能约分的先约分再计算。
3.分数的基本性质是分子、分母同时乘或者除以一个相同的数(除外),分数的大小不变。
三、积与因数的关系:1.一个数(除外)乘大于1的数,积大于这个数。
即a×b=c,当b>1时,c>a。
2.一个数(除外)乘小于1的数,积小于这个数。
即a×b=c,当b<1时,c<a(b≠0)。
3.一个数(除外)乘等于1的数,积等于这个数。
即a×b=c,当b=1时,c=a。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
四、分数混合运算:1.分数合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的。
2.整数乘法运算定律对分数乘法同样适用。
运算定律可以使一些计算简便。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c五、分数乘法应用题——用分数乘法解决问题:已知单位“1”的量,求它的几分之几是多少,用单位“1”的量与分数相乘。
人教版六年级上册数学全册知识点归纳
一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。
2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。
3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。
4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。
6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。
二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。
2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。
3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。
4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。
2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。
3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。
最新人教版六年级数学上册 期末复习知识点归纳
最新人教版六年级数学上册期末复习知识点归纳第一单元分数乘法1.分数乘整数分数乘整数表示求几个相同加数的和,计算方法是分子乘整数的积作分子,分母不变,能先约分的先约分再计算。
2.求一个数的几分之几是多少求一个数的几分之几是多少,用乘法计算,即这个数乘以几分之几,注意这个数可以是分数、小数或整数。
3.分数乘分数分数乘分数的表示意义与一个数乘几分之几的表示意义相同,计算方法是分子乘分子的积作分子,分母乘分母的积作分母。
4.分数乘法的简便计算为了计算简便,可以先约分再乘。
5.分数乘小数分数乘小数可以把分数化成小数再乘,也可以把小数化成分数再乘,但一般采用把小数化成分数再乘,因为有些分数化不成有限小数。
6.分数混合运算分数混合运算的顺序和整数混合运算的顺序相同,即有括号的先算括号里面的,再算括号外面的;没有括号的先算乘法,再算加减法;如果只有加减法,按从左往右的顺序计算。
7.利用运算定律计算分数混合运算对于分数乘法,乘法交换律、结合律和分配律同样适用。
8.连续求一个数的几分之几是多少(连乘)连续求一个数的几分之几是多少,即连乘,可以用乘法计算,根据题目中给出的条件,连续乘以各个分数即可求出答案。
就要重新建立坐标,更换方向,画出对应的线段。
最后将所有线段连起来,形成完整的路线图。
9.假设乙数为10,甲数比乙数多15,求甲数是多少?解析:根据题目中的比例关系,甲数是乙数的1+15/10=1.5倍。
因此,甲数可以表示为乙数乘以1.5,即甲数=10×1.5=15.因此,甲数为15.补充:在分数乘法中,一个数乘以真分数的积小于这个数,一个数乘以假分数的积大于或等于这个数。
1.根据平面示意图描述点的位置,需要确定观测点、方向和距离。
点的位置是相对的,因此观测点的改变会导致方向和距离的改变。
描述点的位置通常是以“在”字左面的点为确定点,以“在”字右面的点为观测点。
方向通常包括八个“偏”,而度数一般不超过45度。
六年级上册数学知识点(概念)归纳与整理(人教版)
六年级数学上册概念整理第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
2、一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
注意:能约分的先约分,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)根据已知条件和问题列式解答。
2.乘法应用题。
(1)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
(2).找到单位“1”后,分析问题,已知单位“1”用乘法,未知单位“1”用除法(注意:求单位“1”是最后一步用除法,其余计算应在前)。
最全面人教版数学六年级上册知识点归纳总结
最全面人教版数学六年级上册知识点归纳总结人教版数学六年级上册知识点是学生在初中数学学习过程中的基本知识,需要学生认真掌握和理解。
下面是数学六年级上册知识点的详细归纳总结。
第一章分类整数知识点1.1 整数和自然数自然数:1, 2, 3, 4, 5,…….(不包括0)整数:…….-2, -1, 0, 1, 2, ……(自然数和负整数)知识点1.2 整数的相加法则同号两数相加,绝对值相加,符号不变;异号两数相加,绝对值相减,结果的符号与绝对值较大的数的符号相同。
知识点1.3 整数减法整数减法可以转化为加法,即a - b = a + (-b)知识点1.4 绝对值数轴上数a的绝对值,表示为|a|,表示a到0的距离。
知识点1.5 整数的大小比较两个整数比较大小,可以先比较绝对值,再根据符号确定大小。
知识点1.6 整数的拓展绝对值可以是小数或分数,小数或分数的绝对值用绝对值符号表示。
第二章十进制小数知识点2.1 小数的意义小数是指有小数点的数,小数点是整数位和小数位的分界线。
知识点2.2 小数的读法从小数点左起第一位到最后一位依次读出,小数点可以读作“点”.知识点2.3 小数的比较比较小数大小,可以先确定小数点后的整数大小,然后比较小数点后的小数位。
知识点2.4 小数的相加法则小数相加,先让小数点对齐,然后按位相加,最后把小数点写在和的下方。
知识点2.5 小数的减法法则小数相减,先让小数点对齐,然后按位相减,最后把小数点写在答案的下方。
知识点2.6 小数的乘法法则小数相乘,先把小数前的数乘起来,再把总位数相加,最后把小数点放到乘积中位数的位置。
知识点2.7 小数的除法法则小数相除,先把被除数和除数放大到整数,再按整数的除法法则计算,最后把小数点放在商中位数的位置。
第三章平面图形知识点3.1 分类平面图形可以分为点、线、面,其中面又可分为三角形、四边形等。
知识点3.2 三角形三角形是由三条边和三个角组成的图形,可以根据边长和角度分类。
新人教版六年级上册数学期末复习(全册知识点汇总)
新人教版六年级上册数学知识点汇编一、分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。
都是求几个相同加数的和的简便运算。
例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。
例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。
(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a +b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。
4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“= ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为..倒数。
最新人教版六年级(上册)数学知识点归纳与整理
最新人教版六年级(上册)数学知识点归纳与整理六年级数学上册知识点归纳与整理第一单元分数乘法一、分数乘法的意义1.分数乘整数的意义与整数乘法相同,都是求几个相同加数和的简便运算。
例如:3/4×6,表示6个3/4相加的和是多少,也表示6的3/4倍是多少。
2.一个数(小数、分数、整数)乘以分数的意义不同于整数乘法,它表示这个数的几分之几是多少。
例如:6×2/3,表示6的2/3是多少。
二、分数乘法的计算法则1.整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2.分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3.注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
三、分数大小的比较1.一个数(除外)乘以一个真分数,所得的积小于它本身。
一个数(除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(除外)乘以一个带分数,所得的积大于它本身。
2.如果几个不相等的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
四、解决实际问题1.分数应用题一般解题步骤:1)找出含有分数的关键句。
2)找出单位“1”的量。
3)根据线段图写出等量关系式:单位“1”的量×对应分数=对应量。
4)根据已知条件和问题列式解答。
2.乘法应用题有关注意概念:1)乘法应用题的解题思路是:已知一个数,求这个数的几分之几是多少?2)找单位“1”的方法是:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原来的量看做单位“1”。
3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少的数占乙的几分之几。
4)在应用题中,例如“小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?”题目中的“增产”是指多的意思,因此应该是“多比少多”。
即今年水稻的亩产量比去年水稻的亩产量多几分之几。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末考试:综合测试方式:笔试(90分钟),填空、判断、选择、计算、操作、应用。
要特别加强计算能力的训练。
学生计算能力的训练不只是机械重复的练习,而是要让学生掌握正确的计算方法和策略。
让学生记住“一看二想三算”看清题目中的数、符号;想好计算的顺序,什么地方可以口算什么地方要笔算,哪里可以简便计算;最后动笔算。
3、加强与实际的联系适应新课标的精神加强知识的综合应用以及与生活的联系,提高学生解决实际问题的能力。
4、讲练结合有讲有练,在练中发现问题。
5、分层指导针对学生的具体情况有针对性的进行复习,对于中差生和优生在复习上提出不同的要求,复习题分层,指导分层。
四、复习内容要点:领域一数与代数一.分数乘法(一)分数乘整数1、分数乘整数的意义:表示求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、计算方法:分母不变,分子乘整数。
(二)分数乘分数1、意义:表示求一个分数的几分之几是多少。
2、计算方法:分子乘分子,分母乘分母,能约分的要先约分。
一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a(三)分数乘加、乘减混合运算及简算1、分数混合运算的运算顺序与整数混合运算的运算顺序相同。
2、整数乘法的运算定律对于分数乘法也同样适用。
3、合理地应用运算定律,可以使一些分数计算变得简便。
(四)求一个数的几分之几是多少的问题解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。
2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几。
几4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率对应量二.分数除法(一)倒数的认识1、乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求一个数(0除外)的倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 0没有倒数。
因为1×1=1;0乘任何数都得0,01(分母不能为0)4、对于任意数(0)a a≠,它的倒数为1a;非零整数a的倒数为1a;分数ba的倒数是ab;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
(二)分数除法1、意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。
(三)已知一个数的几分之几是多少,求这个数的问题的解法1、除法:多少÷一个数2、方程解法:设这个数为x,几分之几× x = 多少(四)已知比一个数多(或少)几分之几的数是多少,求这个数的问题的解法1、组合除法:多少÷(1±几分之几)2、方程解法:设这个数为x, x ±几分之几× x = 多少三.比(一)比的意义1、比的意义:两个数相除又叫两个数的比。
2、比与分数、除法的关系:3、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
Array比值:相当于商,是一个数,可以是整数,分数,也可以是小数。
4、根据分数与除法的关系,两个数的比也可以写成分数形式。
5、比和除法、分数的联系:6、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
7、根据比与除法、分数的关系,可以理解比的后项不能为0。
体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。
(二)比的基本性质1,比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2,化简比:把两个数的比化成最简单的整数比。
(1)按化简整数比的方法来化简。
①用比的前项和后项同时除以它们的最大公因数。
②两个分数的比:用前项后项同时乘分母的最小公倍数,再③两个小数的比:向右移动小数点的位置,先化成整数比再化简。
(2)用求比值的方法。
注意: 最后结果要写成比的形式。
3 = 3∶2如: 15∶10 = 15÷10 =2(三)比的应用按比例分配问题的解题方法:先求出总份数,再求各部分量占总量的几分之几,最后求出各部分量。
四.百分数(一)百分数的意义表示一个数是另一个数的百分之几的数叫百分数。
百分数也叫百分率或百分比。
(二)百分数与小数的互化“添右去左”(三)百分数与分数的互化1.百分数化成分数的方法:先把百分数改写成分母是100的分数,再化成最简分数。
2.分数化成百分数的方法:一般是先把分数化成小数,再把小数化成百分数,除不尽的小数要保留三位小数,百分数的分子保留一位小数。
有的分数,当分母是100的因数或倍数时,可把分数先改写成分母是100的分数,再改写成百分数。
(四)百分数解决问题1.例1,课本p84,求命中率等常见的百分率方法:命中率= ×100%,成活率= ×100%,发芽率= ×100%,出勤率= ×100%合格率= ×100%,及格率= ×100%2.例2,课本p85,求一个数的百分之几是多少(此类型对分数同样适用)单位“1”:一个数。
方法:一个数×百分之几3.例3,课本p89,求一个数比另一个数多(或少)百分之几,即求增减幅度。
(此类型对分数同样适用)单位“1”:另一个数。
方法:差量÷单位“1”4.例4,课本p90,求比一个数多(或少)百分之几的数是多少。
(此类型对分数同样适用)单位“1”:一个数。
方法:一个数±一个数×百分之几一个数×(1±百分之几)5.例5,课本p90,求一个数连续两次增减变化。
单位“1”:有两个。
方法:有设数法和设1法。
即:一个数×(1±百分之几)×(1±百分之几)6.补充例1,已知一个数的百分之几是多少,求这个数?(此类型对分数同样适用)单位“1”:一个数。
方法(简单除法):多少÷百分之几7.补充例2,已知两个数,求一个数是(或占或相当于)另一个数的百分之几?(此类型对分数同样适用)单位“1”:另一个数。
方法:一个数÷另一个数。
8.补充例3,已知比一个数多(或少)百分之几的数是多少,求这个数?(此类型对分数同样适用)单位“1”:一个数。
方法(组合除法):多少÷(1±百分之几)方程解法:设这个数为x, x ±百分之几×x = 多少领域二图形与几何一位置与方向(一)在平面图上标出物体位置的方法1、面对地图,上北下南,左西右东。
2、在平面图上标出物体位置的方法,先用量角器确定方向,再以选定的单位长度为基准用直尺来确定图上距离,最后找出物体的具体位置,标上名称。
(二)描述简单的行走路线每走一步,都要说清从哪里走(观测点),向哪个方向走多远的距离。
(三)绘制简单的路线图1、确定方向标和单位长度。
2、以起点为观测点,从起点出发,根据描述确定所走的方向和距离。
每走一段路,都要重新确定新的观测点。
二圆(一)圆的各部分名称1、圆心:圆中心的一点叫做圆心,一般用字母O表示。
2、半径:连接圆心和圆上任意一点的线段叫做半径,一般用字母r 表示。
3、直径:通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
(二)圆的特征1、圆具有对称性,圆是轴对称图形,圆有无数条对称轴。
2、在同圆或等圆中,半径的长度都相等,直径的长度都相等,直径的长度是半径长度的2倍。
d=2r,或r= 。
(三)用圆规画圆的方法1、先把圆规的两脚分开,定好两脚间的距离;2、再把带有针尖的一只脚固定在一点上;3、然后把装有铅笔的一只脚旋转一周,就画出一个圆。
(四)圆的周长1、圆的周长:围成圆的曲线的长叫做圆的周长。
一般用字母C表示。
2、圆周率:圆的周长和它的直径的比值叫做圆周率。
一般用字母π表示。
(1)一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
3、圆的周长计算公式:C=πd,或C=2πr。
4、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长÷2计算方法:2π r÷ 2 即π r(2)半圆的周长:等于圆的周长的一半加直径。
计算方法:πr+2r 即 5.14 r(五)圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积,一般用字母S表示。
2、圆的面积计算公式:S=πr23、圆的面积公式的推导:把一个圆切成若干偶数等分,拼成一个长方形。
拼成的长方形的长等于圆周长的一半,宽等于圆的半径。
4、半圆的面积=2πr÷2(六)圆环的面积1、圆环的面积公式:S环=πR2-πr2或S环=π(R2-r2)2、外接圆和内切圆的面积(七)圆的半径、直径、周长、面积的变化1、一个圆的半径扩大或缩小多少倍,它的直径、周长也扩大或缩小多少倍,而它的面积扩大或缩小平方倍。
2、两个圆的半径之比=直径之比=周长之比,面积之比=半径之比的平方倍。
(九)求图形阴影部分的面积的方法加法、减法、切割法、平移法。
常用各π值结果:π = 3.14 2π = 6.28 3π = 9.42 4π = 12.56 5π = 15.7 6π = 18.84 7π = 21.98 8π = 25.129π = 28.26 10π = 31.4 16π = 50.24 25π = 78.5 36π = 113.04 64π = 200.96 96π = 301.44常用平方数结果112 = 121 122 = 144 132 = 169 142 = 196 152 = 225162 = 256 172 = 289 182 = 324 192 = 361领域三统计与概率扇形统计图(一)扇形统计图的表示方法1、弧:圆上任意两点之间的部分叫做弧。