现代分子生物学综述 - 副本
生物学考研资料课后答案朱玉贤《现代分子生物学》(第5版)笔记和课后习题
![生物学考研资料课后答案朱玉贤《现代分子生物学》(第5版)笔记和课后习题](https://img.taocdn.com/s3/m/a3d3e7fef01dc281e53af0bf.png)
朱玉贤《现代分子生物学》(第5版)笔记和课后习题(含考研真题)详解完整版>精研学习网>无偿试用20%资料全国547所院校视频及题库资料考研全套>视频资料>课后答案>往年真题>职称考试试读(部分内容)隐藏第1章绪论1.1复习笔记【知识概览】【重难点归纳】一、分子生物学概述分子生物学是从分子水平研究生物结构、组织和功能的一门学科,以核酸、蛋白质等生物大分子的结构、形态及其在遗传信息和细胞信息传递中的作用和功能为研究对象。
1进化论1859年,达尔文提出“物竞天择,适者生存”的进化论思想。
2细胞学说(1)细胞的发现17世纪末叶,荷兰的Leeuwenhoek用自制的世界上第一架光学显微镜,首次发现了单细胞生物。
(2)细胞学说的建立19世纪德国人Schleiden和Schwann提出细胞学说。
其基本内容为:①细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成。
②细胞是一个相对独立的单位,既有它“自己”的生命,又对与其他细胞共同组成的整体的生命起作用。
③新的细胞可以通过已存在的细胞繁殖产生。
3经典遗传学①孟德尔(Gregor Mendel)发现并提出遗传学定律:分离定律和自由组合定律。
②摩尔根(Morgan)提出遗传学第三定律:连锁交换定律。
4DNA的发现(1)肺炎链球菌转化实验①1928年,英国科学家Griffith等人通过肺炎链球菌转化感染小鼠实验提出“转化因子”。
②1944年,Avery证明DNA是遗传物质。
(2)噬菌体侵染实验1952年,Hershey和Chase通过噬菌体侵染细菌实验证明DNA是遗传物质。
二、分子生物学的发展简史本部分只列出部分常考的重要事件,如表1-1所示。
表1-1分子生物学发展的重要事件三、分子生物学主要研究内容现代分子生物学研究内容主要包括:DNA重组技术;基因表达调控研究;结构分子生物学;基因组、功能基因组与生物信息学。
综述现代分子生物学在医学检验中的应用进展
![综述现代分子生物学在医学检验中的应用进展](https://img.taocdn.com/s3/m/2b7e7736dc36a32d7375a417866fb84ae45cc388.png)
术,可在同一个 PCR 体系中增添 2 对以上引物,提高检测结
果准确性。 但将现代分子生物学技术应用在病原微生物检
测过程中难度较大,究其原因是病原微生物体积较小,且死
菌量较大,为确保检验结果准确性,需首先将死菌筛选出,使
用活菌进行检测。
采用其他技术检测病原微生物会受液体及其他因素影
用。 人们通过将特异性抗体固定在磁性纳米球表面,而后使
用酶、荧光染剂等进行检验。 将其与传统检验方案对比发
现,新型分子纳米技术检验敏感度、特异度较高,且具有操作
简单有优势。
应用分子纳米技术可对人体各种生化指标状态进行分
析,继而判断机体内是否存在足够的微量元素,其次分子纳
米技术可应用在病变基因修整中,促进损伤组织、细胞修复,
质检测中应用广泛。 例如,通过采集患者血液等标本,对机
体微量蛋白进行研究,通过分子生物遗传器可明确血液标本
特异性,继而为临床治疗、病情评估提供参考。
有报告指出,利用分子生物遗传器检验食物中大肠埃希
菌,灵敏度在 102- 103CFU / mL 之间,5 ~ 7min 便可完成一个
样品的检测,不仅稳定性较高,还可节约检测所需时间,亦可
体病变进行评估,为后期治疗提供更准确的引导,提高各疾
病控制效果。 因此分子蛋白组必然会成为医学检验的主流
方向,且在医学发展中占据重要地位。
五、 现代分子生物技术对病原菌微生物的检测
传统的病原菌检测技术耗时长、步骤繁杂,在检验过程
中需对病原微生物进行分离、培养,在检验过程中应用现代
分子生物学技术可提高检测效率及敏感度。 例如,在检测核
响,但应用现代分子生物技术可有效改善这一问题,既可提
关于分子生物学与医药的综述
![关于分子生物学与医药的综述](https://img.taocdn.com/s3/m/f3e8ba46e518964bcf847c13.png)
分子生物学与医药专业:11生技姓名:檀慧芳学号:1102021036摘要:分子生物学是从分子水平上研究生物体生命活动及其规律的一门科学,其不仅是目前自然科学中进展最迅速、最具活力和生气的领域,也是新世纪的带头学科。
在医学中,分子生物学主要研究人体生物大分子的结构、功能、相互作用及其同疾病发生、发展关系,乃至在诊断治疗上的应用[1]。
医药是关于人类同疾病作斗争和增进健康的科学,医药产业是国民经济的重要组成部分,与人民群众的生命健康和生活质量等切身利益密切相关。
随着分子生物学和医药的逐步发展,分子生物学被越来越广泛的应用到生物医药行业中。
下文将通过对分子生物学和医药的介绍、分子生物学在医药领域的应用、分子生物学再生医药领域的发展趋势和展望这三方面内容来介绍分子生物学与医药。
关键词:分子生物学生物医药应用发展趋势与展望1、分子生物学与生物医药简介1.1分子生物学分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的学科,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动的改造和重组自然界的基础科学。
分子生物学从分子水平上研究生命现象、生命本质、生命活动及其规律,它涵盖了生命科学的各个领域,改变了或正在改变着整个生物学的面貌,其研究成果已在工业、农业、医学、食品、材料、能源、冶金、环保等领域得到了广泛的应用[2]。
分子生物学是研究所有生物学现象的分子基础,内容十分广泛,但可以把分子生物学的研究内容可以概括为以下五个方面:1.基因与基因组的结构与功能:基因的研究一直是影响整个分子生物学发展的主线。
近20年来,由于重组DNA技术的不断完善和应用,人们已经改变了从表型到基因型的传统研究基因的途径,能够直接从克隆目的基因出发,研究基因的功能及其与表型的关系,使基因的研究进入了反向生物学阶段。
2. DNA的复制、转录和翻译:此方面研究的重点是DNA或基因怎样在相关的酶与蛋白质因子的作用下按照中心法则进行自我复制、转录和翻译,以及对mRNA分子剪接、加工、编辑和对新生多肽链折叠成为功能结构的研究。
2024年度-朱玉贤现代分子生物学第四版
![2024年度-朱玉贤现代分子生物学第四版](https://img.taocdn.com/s3/m/6752929e48649b6648d7c1c708a1284ac9500574.png)
蛋白质翻译后加工的意义
对于蛋白质的成熟、定位和功能发挥具有重要作用。例如,信号肽的去除可以使蛋白质从细胞内分泌 到细胞外或定位到细胞膜上;化学修饰可以调控蛋白质的活性和稳定性,从而影响细胞的生理功能; 剪切可以产生具有不同功能的蛋白质片段,增加蛋白质的多样性。
17
转录与转录后加工的调控
转录的调控主要通过转录 因子与DNA的结合来实 现,可以影响RNA聚合酶 的活性和选择性。
转录和转录后加工的调控 具有协同作用,可以共同 调节基因的表达水平和蛋 白质的功能。
ABCD
转录后加工的调控涉及多 种蛋白质和RNA的相互作 用,可以影响RNA的加工 效率和产物种类。
29
基因工程与基因组学的应用前景
农牧业领域
通过基因工程改良作物和畜禽品种, 提高产量和品质,增强抗逆性;应用 基因组学解析重要农艺性状形成的分 子机制,指导新品种选育。
工业领域
利用基因工程生产工业酶、生物燃料 和生物材料等;应用基因组学优化工 业生产过程和开发新产品。
医学领域
基因工程可用于生产重组蛋白药物、 基因诊断和基因治疗等;基因组学可 用于解析人类疾病的遗传基础,发现 新的治疗靶点和药物。
异常的转录和转录后加工 调控可能导致疾病的发生 ,如癌症、遗传性疾病等 。
18
05
蛋白质翻译与翻译后加工
19
蛋白质翻译的过程与特点
蛋白质翻译的过程
起始、延长和终止三个阶段。起始阶段,核糖体与mRNA结合,形成起始复合物;延长阶段,tRNA携带氨基酸 进入核糖体,进行肽链的延伸;终止阶段,释放完成翻译的蛋白质。
分子生物学综述论文(基因敲除技术)
![分子生物学综述论文(基因敲除技术)](https://img.taocdn.com/s3/m/297510de28ea81c758f578f8.png)
现代分子生物学课程论文题目基因敲除技术班别生物技术10-2学号 *********** 姓名陈嘉杰成绩基因敲除技术的研究进展要摘基因敲除是自80年代末以来发展起来的一种新型分子生物学技术,是通过一定的途径使机体特定的基因失活或缺失的技术。
此后经历了近20年的推广和应用,直到2007年10月8日,美国科学家马里奥•卡佩奇(Mario Capecchi)和奥利弗•史密西斯(Oliver Smithies)、英国科学家马丁•埃文斯(Martin Evans)因为在利用胚胎干细胞对小鼠基因金星定向修饰原理方面的系列发现分享了2007年诺贝尔生理学或医学奖。
基因敲除技术从此得到关注和肯定,并对医学生物学研究做出了重大贡献。
本文就基因敲除的研究进展作一个简单的综述。
关键词基因敲除、RNAi、生物模型、同源重组前言基因敲除又称基因打靶,该技术通过外源DNA与染色体DNA之间的同源重组,进行精确的定点修饰和基因改制,具有转移性强、染色体DNA可与目的片段共同稳定遗传等特点。
应用DNA同源重组技术将灭活的基因导入小鼠胚胎干细胞(embryonic stem cells,ES cells)以取代目的基因,再筛选出已靶向灭活的细胞,微注射入小鼠囊胚。
该细胞参与胚胎发育形成嵌合型小鼠,再进一步传代培育可得到纯合基因敲除小鼠。
基因敲除小鼠模型的建立使许多与人类疾病相关的新基因的功能得到阐明,使现代生物学及医学研究领域取得了突破性进展。
上述起源于80年代末期的基因敲除技术为第一代技术,属完全性基因敲除,不具备时间和区域特异性。
关于第二代区域和组织特异性基因敲除技术的研究始于1993年。
Tsien等[1]于1996年在《Cell》首先报道了第一个脑区特异性的基因敲除动物,被誉为条件性基因敲除研究的里程碑。
该技术以Cre/LoxP系统为基础,Cre在哪种组织细胞中表达,基因敲除就发生在哪种组织细胞中。
2000年Shimizu等[2]于《Science》报道了以时间可调性和区域特异性为标志的第三代基因敲除技术,其同样以Cre/LoxP系统为基础,利用四环素等诱导Cre的表达。
2021综述番茄开花诱导、分生组织的分子生物学研究范文
![2021综述番茄开花诱导、分生组织的分子生物学研究范文](https://img.taocdn.com/s3/m/094a3795cf84b9d529ea7a34.png)
2021综述番茄开花诱导、分生组织的分子生物学研究范文 引言 开花植物(被子植物)作为陆生植物中最大的族群,现已超过了250000种。
开花对于所有开花植物来说是生活史上的一个质变过程,是植物个体发育过程的中心环节;而对于人本身来说,色彩斑斓、气味芬芳的花不仅愉悦了人的身心,种类繁多的种子与果实也为人类提供了丰富的食物。
故研究开花植物的开花过程,阐明其分子生物学上的调控机理无论在理论上还是在应用上都具有重要意义。
Yanofsky 等(1990)在拟南芥(Arabidopsis thaliana)中首次克隆了花同源异型基因agamous(AG),标志着高等植物花发育研究进入分子遗传学阶段。
从发育生物学角度来看,高等植物经过一段时期的营养生长后,在合适的外界条件(其中重要的有日照长度、光质及温度)下,才能进行由营养生长(vegetativedevelopment)向生殖生长(reproductivedevelopment)的转变,才能开始花的发育。
总的来说,花的发育过程在时间上大致分为4个阶段:(1)开花过渡(flowering transition),植株响应外界环境以及自身信号,由营养生长转向生殖生长,这个过程受一系列与开花时间相关基因的调控;(2)分生组织特征基因激活,植株响应从不同开花时间调控途径而来的信号,激活分生组织特征基因,决定分生组织属性;(3)花器官特征基因的激活,分生组织特征基因激活位于不同区域的花器官特征基因;(4)花器官形态建成,花器官特征基因激活下游的器官形态建成基因,决定组成各器官的特异细胞类型和组织(Jack, 2004)。
番茄(Solanumlycopersicum L.)是很重要的经济作物,同时也是用于双子叶植物花发育机理研究的一个重要模式植物。
通过多年来不断的分子生物学上的深入研究,已有10个与番茄开花诱导及分生组织特征相关的基因被鉴定,将番茄与拟南芥相关基因比较发现两物种在花发育分子生物学上兼具保守性和多样性(表1)。
现代分子生物学
![现代分子生物学](https://img.taocdn.com/s3/m/0b189309326c1eb91a37f111f18583d049640fe7.png)
蛋白质组学基本概念
蛋白质组
指一个细胞、组织或生物体在特定时间和空 间下表达的所有蛋白质的总和。
蛋白质组学
研究蛋白质组的结构、功能和相互作用的科 学,旨在揭示生物体内蛋白质的表达、修饰 和调控机制。
蛋白质组测序技术及应用
蛋白质组测序技术
包括质谱技术、蛋白质芯片技术、酵母双杂 交系统等,用于鉴定和定量蛋白质组中的蛋 白质。
信号转导不仅影响细胞短期内的功能,还参与调控细胞长期的生命过 程。
06
现代分子生物学实验技术
基因克隆与表达技术
01
02
03
基因克隆基本步骤
包括目的基因获取、载体 选择、基因与载体连接、 转化宿主细胞、筛选阳性 克隆等。
基因表达系统
包括原核表达系统和真核 表达系统,用于生产重组 蛋白或进行基因功能研究。
细胞培养与转染技术
细胞培养基本条件
提供适宜的温度、湿度、pH值和营养成分,维持细胞正常生长和 增殖。
转染方法
包括化学转染、物理转染和病毒转染等,将外源基因导入细胞内。
细胞培养与转染技术应用
用于基因功能研究、药物筛选、细胞治疗等。
显微成像技术在分子生物学中应用
光学显微镜
观察细胞形态、细胞分裂、细胞 运动等基本生命活动。
应用前景
分子生物学在医学、农业、工业等领域具有广泛的应用前景。例如,在医学领域,分子生物学可用于疾病诊断、 治疗和预防;在农业领域,可用于作物遗传改良和病虫害防治;在工业领域,可用于生物制药、生物燃料和生物 环保等方面。
02
基因与基因组学
基因结构与功能
基因结构
基因由编码区和非编码区组成,编 码区包含外显子和内含子,外显子 负责编码蛋白质,内含子则在转录 过程中被剪切掉。
现代分子生物学(第3版)_课后答案-五章
![现代分子生物学(第3版)_课后答案-五章](https://img.taocdn.com/s3/m/d12e6b0a53d380eb6294dd88d0d233d4b14e3f0d.png)
第一章 绪论1, 简述孟德尔、摩尔根和沃森等人对分子生物学发展的主要贡献。
答:孟德尔的对分子生物学的发展的主要贡献在于他通过豌豆实验,发现了遗传规律、分离规律及自由组合规律;摩尔根的主要贡献在于发现染色体的遗传机制,创立染色体遗传理论,成为现代实验生物学奠基人;沃森和克里克在1953年提出DAN 反向双平行双螺旋模型。
反向双平行双螺旋模型。
2, 写出DNA 和RNA 的英文全称。
答:脱氧核糖核酸(答:脱氧核糖核酸(DNA, Deoxyribonucleic acid DNA, Deoxyribonucleic acid DNA, Deoxyribonucleic acid)), 核糖核酸(核糖核酸(RNA, Ribonucleic acid RNA, Ribonucleic acid RNA, Ribonucleic acid))3, 试述“有其父必有其子”的生物学本质。
答:其生物学本质是基因遗传。
子代的性质由遗传所得的基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。
自于父方,一般来自于母方。
4, 早期主要有哪些实验证实DNA 是遗传物质?写出这些实验的主要步骤。
答:一,肺炎双球菌感染实验,答:一,肺炎双球菌感染实验,11,R 型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。
型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。
22,S 型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。
型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。
33,用加热的方法杀死S 型细菌后注入到小鼠体内,小鼠不死亡;后注入到小鼠体内,小鼠不死亡;二,噬菌体侵染细菌的实验:二,噬菌体侵染细菌的实验:11,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。
,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。
2 2 2,,DNA 中P 的含量多,蛋白质中P 的含量少;蛋白质中有S 而DNA 中没有S ,所以用放射性同位素35S 标记一部分噬菌体的蛋白质,用放射性同位素32P 标记另一部分噬菌体的DNA DNA。
现代分子生物学技术发展综述
![现代分子生物学技术发展综述](https://img.taocdn.com/s3/m/8073013883c4bb4cf7ecd1ec.png)
现代分子生物学技术发展综述20世纪50年代,录Wsaton和crick提出DNA双螺旋结构,标志着现代分子生物学的兴起,为揭开人类重生命现象的本质奠定了基础。
目前,分子生物学是生命科学中发民最快的领域,并且与诸多学科正在进行广泛的交叉与渗透,因此,分子生物学已成为主导21世纪生命科学的前沿科学。
一、现代分子生物学的含义分子生物学是从分子水平研究生命本质的一门新兴边缘科学,它是以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象的一门综合性学科。
包括:结构分子生物学、发育生物学、分子细胞生物学、分子神经生物学等。
主要研究基因或DNA 的复制、转录、表达和调控等过程,以及参与这些过程的蛋白质和酶的结构与功能。
二、现代分子生物学研究的内容分子生物学主要包含两个部分研究内容:一是核酸的分子生物学,以研究核酸的结构与功能为主,中心法则是其研究的理论核心。
内容包括:核酸的基因结构、遗传信息的复制、转录与翻译,基因修复与突变、基因的表达与调控基因工程的发展与应用等。
二是蛋白质的分子生物学,以研究蛋白质等大分子的结构与功能为主。
蛋白质具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构而构成多样化生物个体,所以对蛋白质的研究难度较大。
三、现代分子生物学的主要任务分子水平指的是携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间传递过程中发挥重要作用的蛋白质等生物大分子。
分子水平上研究生命的本质,是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为改造生物奠定理论基础和提供新的手段。
阐明这些分子的结构与功能关系是分子生物学的主要任务。
四、现代分子生物学的发展前景21世纪是生命科学的世纪,分子生物学取得突飞猛进的的发展,分子生物技术让整个社会进入了生物经济时代。
诊断试剂、治疗药物、植物品种、畜用制品、环境工程、再生能源,分子生物技术无处不在,在工业、农业、医药卫生业带来全新的变革。
现代分子生物学复习重点
![现代分子生物学复习重点](https://img.taocdn.com/s3/m/6dc7b81ac281e53a5802ff9b.png)
现代分子生物学复习资料第一章绪论分子生物学:是研究核酸、蛋白质等所有生物大分子的形态、结构及其重要性、规律性和相互关系的科学分子生物学的主要研究内容1、DNA重组技术2、基因表达调控研究3、生物大分子的结构功能研究——结构分子生物学4、基因组、功能基因组与生物信息学研究5、DNA的复制转录和翻译第二章染色体与DNA半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。
这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样,因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA半保留复制DNA半不连续复制:DNA双螺旋的两条链反向平行,复制时,前导链DNA的合成以5′-3′方向,随着亲本双链体的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向、按照5′-3′方向合成一系列的冈崎片段,然后再把它们连接成完整的后随链,这种前导链的连续复制和后随链的不连续复制称为DNA 的半不连续复制原核生物基因组结构特点:1、基因组很小,大多只有一条染色体2、结构简练3、存在转录单元,多顺反子4、有重叠基因真核生物基因组的结构特点:1、真核基因组庞大,一般都远大于原核生物的基因组2、真核基因组存在大量的重复序列3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间最主要区别4、真核基因组的转录产物为单顺反子5、真核基因是断裂基因,有内含子结构6、真核基因组存在大量的顺式作用元件,包括启动子、增强子,沉默子等7、真核基因组中存在大量的DNA多态性8、真核基因组具有端粒结构DNA转座(移位)是由可移位因子介导的遗传物质重排现象DNA转座的遗传学效应:1、转座引入插入突变2、转座产生新的基因3、转座产生的染色体畸变4、转座引起生物进化转座子分为插入序列和复合型转座子两大类环状DNA复制方式:θ型、滚环型和D-环型第三章生物信息的传递(上)从DNA到RNA转录:指拷贝出一条与DNA链序列完全相同的RNA单链的过程启动子:是一段位于结构基因5′段上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性原核生物启动子结构:存在位于-10bp处的TATA区和-35bp处的TTGACA区,其是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力终止子:是给予RNA聚合酶转录终止信号的DNA序列(促进转录终止的DNA序列)终止子的类型:不依赖于ρ因子和依赖于ρ因子增强子:能增强或促进转录起始的序列增强子的特点:1、远距离效应2、无方向性3、顺式调节4、无物种和基因的特异性5、具有组织特异性6、有相位性7、有的增强子可以对外部信号产生反应上升突变:增加Pribnow区共同序列的同一性,将Pribnow区从TATGTT变成TATATT的启动子突变,会提高启动子的效率,提高乳糖操纵子基因的转录水平下降突变:把Pribnow区从TATAAT变成AATAAT的启动子突变,会大大降低其结构基因的转录水平RNA编辑及其生物学意义:RNA的编辑是某些RNA,特别是mRNA前体的一种加工方式,如插入、删除或取代一些核苷酸残基,导致DNA所编码的遗传信息的改变生物学意义:1、校正作用2、调控翻译3、扩充遗传信息RNA的再编码:mRNA在某些情况下不是以固定的方式被翻译,而可以改变原来的编码信息,以不同的方式进行翻译,科学上把RNA编码和读码方式的改变称为RNA的再编码比较原核和真核基因转录起始位点上游区的结构:1、原核基因启动区范围较小,一般情况下,TATAAT的中心位于-10——-7,上游-70——-30区为正调控因子结合序列,-20——+1区为负调控因子结合序列;真核基因调控区较大,TATAA/TA区位于-30——-20,而-110——-40区为上游激活区-2、除Pribnow区之外,原核基因启动子上游只有TTGACA区作为RNA聚合酶的主要结合位点,参与转录调控;而真核基因除了含有可与之相对应的CAAT区之外,大多数基因还拥有GC区和增强子区第四章翻译:所谓翻译是指将mRNA链上的核苷酸从一个特定的起始位点开始,按每3个核苷酸代表一个核苷酸的原则,依次合成一条多肽链的过程。
生化复习 名词解释 - 副本
![生化复习 名词解释 - 副本](https://img.taocdn.com/s3/m/8de25248852458fb770b5638.png)
酶学通论*酶:酶是生物体内进行新陈代谢不可缺少的、受多种因素调节控制的、具有催化能力的生物催化剂。
*酶的转换数(TN):在一定条件下每秒钟每个酶分子转换底物的分子数(1~10^4)。
*单纯蛋白酶:除了蛋白质外,不含其他物质。
*缀合蛋白酶:蛋白质+辅酶或辅基*脱脯酶:缀合蛋白酶中的蛋白质部分。
*全酶:脱辅酶和辅助因子统称为全酶。
*辅酶:与脱辅酶结合松弛的小分子有机物,透析可除去*辅基:以共价键与脱辅酶结合,透析不易除去。
*单体酶:酶蛋白多数由一条肽链组成。
相对分子量在(13-35)×10^3之间。
*寡聚酶:酶蛋白由两个或两个以上亚基组成,亚基可相同亦可不相同。
相对分子量一般大于35×10^3;寡聚酶便于进行调节。
*多酶复合体:由几种酶靠非共价键彼此嵌合而成,反应依次连接,使一系列反应能连续进行。
这类多酶复合体相对分子量很高。
多酶体系效率极高,很象是流水作业。
*绝对专一性:酶对底物要求很严格,只能催化一种底物向着一个方向发生反应。
*相对专一性:相对专一性的酶对底物的专一性程度要求较低,能够催化一类具有相类似的底物。
它又可分为键专一性和基团(族)专一性两类。
*诱导契合学说:当底物(激活剂或抑制剂)与酶分子结合时,酶蛋白的构象发生了有利于与底物结合的变化,使反应所需的催化基团和结合基团正确地排列和定向,转入有效的作用位置,这样才能使酶与底物完全吻合,结合成中间产物。
*酶活力:即酶活性,指酶催化某一反应的能力。
*酶活力单位IU:在最适反应条件(25℃)下,每分钟内催化1μmol底物转化为产物的酶量为一个酶活力单位,即:1 IU = 1μmol/min。
*Kat单位:规定在最适条件下,每秒钟能催化1mol底物转化为产物所需酶量定义为 1 Kat(=1mol/s)。
1 Kat = 60 ×106 IU*酶的比活力:代表酶的纯度,用每mg 酶蛋白所含的酶活力单位数表示。
比活力越高,表示酶制剂越纯。
分子生物学综述
![分子生物学综述](https://img.taocdn.com/s3/m/2f78d82f49d7c1c708a1284ac850ad02de800734.png)
引言概述:分子生物学是研究生物体内分子结构、功能和相互作用的科学领域。
它深入探索了生物体的分子组成、基因表达、蛋白质合成以及遗传信息传递的机制。
分子生物学的发展已经在医学、农业和生物技术等领域发挥了重要作用。
本文将综述分子生物学的核心概念、技术和应用,并探讨其对人类生活的意义。
正文:一、分子生物学的核心概念1.1DNA和基因1.1.1DNA的结构和功能1.1.2基因的定义和定位1.1.3基因表达与调控1.2RNA和蛋白质1.2.1RNA的种类和功能1.2.2蛋白质的合成和功能1.2.3RNA与蛋白质的相互作用1.3酶和催化1.3.1酶的种类和功能1.3.2酶与底物的结合和催化作用1.3.3酶的调控和抑制二、分子生物学的技术工具2.1PCR技术2.1.1PCR的原理和步骤2.1.2PCR的应用领域和意义2.1.3PCR的局限性和改进2.2DNA测序技术2.2.1传统测序方法和新一代测序方法2.2.2DNA测序的原理和步骤2.2.3DNA测序的应用和前景2.3基因编辑技术2.3.1CRISPRCas9系统的原理和应用2.3.2基因编辑的方法和限制2.3.3基因编辑技术在医学和农业领域的应用三、分子生物学在医学中的应用3.1分子诊断技术3.1.1基因突变的检测和诊断3.1.2基因表达分析和分子标记的应用3.1.3分子生物学在肿瘤学中的应用3.2基因治疗3.2.1基因治疗的原理和方法3.2.2基因治疗在遗传病和癌症中的应用3.2.3基因编辑技术在基因治疗中的前景四、分子生物学在农业中的应用4.1转基因技术4.1.1转基因作物的定义和制作过程4.1.2转基因作物的优点和争议4.1.3转基因技术在农业中的应用和前景4.2遗传改良技术4.2.1遗传改良的目的和方法4.2.2分子标记辅助选择和遗传改良的应用4.2.3遗传改良技术在粮食产量和品质改良中的作用五、分子生物学对人类生活的意义5.1对人类健康的影响5.1.1疾病的早期诊断和基因治疗的发展5.1.2药物开发和个体化医学的实现5.1.3健康生活方式的指导和预防策略的制定5.2对粮食生产的影响5.2.1高产和抗病虫害作物的培育5.2.2营养改良和耐盐碱作物的培育5.2.3食品安全和可持续发展的实现总结:分子生物学作为现代生物学的核心学科,在疾病预防、医学治疗以及农业生产等方面发挥着重要的作用。
生物文献综述范文
![生物文献综述范文](https://img.taocdn.com/s3/m/1179e29aac51f01dc281e53a580216fc700a5333.png)
生物文献综述范文生物学作为一门研究生命的科学,涉及的领域广泛且深奥。
在生物学研究领域中,文献综述是非常重要的一部分,它可以帮助我们了解当前领域的研究现状,总结前人的研究成果,指导我们未来的研究方向。
本文将对生物学领域中的文献综述进行梳理和总结,希望能够对相关领域的研究者提供一定的参考价值。
首先,我们将从生物学领域中的分子生物学文献综述开始。
分子生物学是生物学的一个重要分支,它研究生物体内分子结构与功能的关系。
在分子生物学领域的文献综述中,研究者们通常会对特定分子或者分子类别进行综合性的总结和分析,包括其结构、功能、调控机制等方面的内容。
通过文献综述,我们可以了解到当前分子生物学领域的研究热点和难点,为我们未来的研究提供指导。
其次,我们将关注生物学领域中的生态学文献综述。
生态学是研究生物与环境之间相互作用的科学,其研究对象涉及到生物个体、种群、群落乃至生态系统等多个层次。
在生态学领域的文献综述中,研究者们通常会对某一生态系统或者生态过程进行综合性的总结和分析,包括其结构、功能、稳定性等方面的内容。
通过文献综述,我们可以了解到当前生态学领域的研究进展和趋势,为我们未来的研究提供借鉴。
最后,我们将探讨生物学领域中的遗传学文献综述。
遗传学是研究遗传变异与遗传规律的科学,其研究对象涉及到基因、染色体、遗传物质等。
在遗传学领域的文献综述中,研究者们通常会对某一遗传现象或者遗传机制进行综合性的总结和分析,包括其遗传规律、分子机制、应用前景等方面的内容。
通过文献综述,我们可以了解到当前遗传学领域的研究热点和突破,为我们未来的研究提供启示。
总之,生物学领域中的文献综述对于我们了解当前研究进展、总结前人经验、指导未来研究具有重要意义。
希望本文对相关领域的研究者有所帮助,也希望生物学领域的研究能够不断取得新的突破和进展。
分子生物学文献综述
![分子生物学文献综述](https://img.taocdn.com/s3/m/3f55b08ba0c7aa00b52acfc789eb172ded63993e.png)
分子生物学文献综述分子生物学文献综述是对分子生物学领域的研究论文、研究报告、综述文章等进行综合分析和评价,以全面了解该领域的研究现状、研究进展和发展趋势。
以下是一篇分子生物学文献综述的示例:标题:分子生物学研究进展综述摘要:本文综述了近年来分子生物学领域的研究进展,包括基因组学、蛋白质组学、代谢组学等方面的研究进展,以及这些研究在医学、农业、生态等领域的应用。
本文还讨论了分子生物学研究中存在的问题和挑战,以及未来的研究方向。
一、引言分子生物学是研究生物分子结构、功能、相互作用以及生物体遗传信息传递规律的科学。
随着科学技术的发展,分子生物学已经成为了生命科学领域的重要分支。
本文将对近年来分子生物学领域的研究进展进行综述。
二、基因组学研究进展基因组学是研究生物体基因组结构和功能的科学。
近年来,随着测序技术的发展,基因组学研究取得了重要进展。
例如,人类基因组计划的完成,为人类疾病的研究和治疗提供了重要的基础数据。
同时,基因组编辑技术的发展,如CRISPR-Cas9系统,为基因治疗和遗传疾病治疗提供了新的手段。
三、蛋白质组学研究进展蛋白质组学是研究蛋白质的表达、修饰和功能变化的科学。
近年来,蛋白质组学研究取得了重要进展。
例如,通过质谱技术对蛋白质进行定性和定量分析,可以更深入地了解蛋白质的结构和功能。
同时,蛋白质相互作用的研究也为理解生物体内复杂的信号传导网络提供了重要信息。
四、代谢组学研究进展代谢组学是研究生物体内代谢物变化的科学。
近年来,代谢组学研究取得了重要进展。
例如,通过对尿液、血液等体液的代谢物进行分析,可以了解人体健康状况和疾病发展过程。
同时,代谢组学研究也为农业、生态等领域提供了重要的基础数据。
五、应用领域分子生物学在医学、农业、生态等领域有着广泛的应用。
例如,在医学领域,通过对癌症、糖尿病等疾病的基因和蛋白质进行研究,可以为疾病的治疗和预防提供新的手段。
在农业领域,通过对农作物基因和蛋白质进行研究,可以提高农作物的产量和品质。
现代分子生物学
![现代分子生物学](https://img.taocdn.com/s3/m/fea7603ca517866fb84ae45c3b3567ec102ddc82.png)
现代分子生物学简介现代分子生物学是研究生物体分子级别的组成和功能的学科。
它集合了生物学、化学、物理学和计算机科学等多个学科的知识,在20世纪中叶出现并迅猛发展。
现代分子生物学的研究对象包括DNA、RNA、蛋白质等生物分子,其目标是理解生物分子之间的相互作用以及它们在生命过程中的功能。
DNA的结构和功能DNA是分子生物学中最重要的分子之一,它是遗传信息的存储介质。
DNA由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、鳞氨酸)组成,以双螺旋结构存在。
DNA 的双螺旋结构由两个互补的链组成,其中一个链以5’-3’方向排列,另一个链以3’-5’方向排列。
DNA的结构决定了其功能,包括遗传信息的复制、转录和翻译等。
RNA的结构和功能RNA是DNA的转录产物,也是调控基因表达的重要分子。
与DNA类似,RNA 也由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、尿嘧啶)组成。
RNA的基本结构包括信使RNA(mRNA)、转运RNA(tRNA)和核糖体RNA(rRNA)等。
mRNA携带着从DNA转录而来的遗传信息,tRNA参与蛋白质合成,rRNA则是组成核糖体的主要成分。
蛋白质的结构和功能蛋白质是分子生物学中最重要的功能性分子,它们参与几乎所有生命过程。
蛋白质的结构分为四个层次:一级结构是氨基酸的线性排列,二级结构是氢键形成的α螺旋和β折叠,三级结构是二级结构的空间排布,四级结构是多个亚基相互结合形成的复合物。
蛋白质的功能包括催化反应、结构支持、信号传导等。
基因调控基因调控是生物体在不同发育阶段和环境条件下合理利用基因资源的重要机制。
分子生物学研究揭示了基因调控的分子机制,其中包括转录因子、启动子、转录因子结合位点等。
这些分子间的相互作用构成了复杂的基因调控网络,决定了基因表达的时空特异性。
基因工程基因工程是通过改变生物体的基因组来创造具有特定性状的生物体的技术。
分子生物学为基因工程提供了理论和方法支持。
其中包括基因克隆、基因转导和基因编辑等技术。
转录组综述11 - 副本
![转录组综述11 - 副本](https://img.taocdn.com/s3/m/e268280282c4bb4cf7ec4afe04a1b0717fd5b3a9.png)
转录组综述一. 引言:基因的表达分为转录和翻译过程,对同一生物体而言,虽然每个细胞具有相同的基因,但不同的细胞在特定的时空条件下表达不同的基因,转录出不同的RNA分子。
例如,人类基因组包含有30亿个碱基对,大约有5万个基因转录成mRNA分子,转录后的mRNA能被翻译生成蛋白质只占整个转录组的40%左右,通过转录组谱数据研究可以得到什么条件下什么基因表达的信息[1],这是基因功能及结构研究的基本出发点,随着生物学研究已经跨入后基因组时代,高通量测序技术的出现,大规模的基因表达水平研究的序幕已经拉开,转录组学作为一门新技术开始在生物学前沿研究中绽露头角,已经成为生命科学研究的热点,并逐渐走向应用。
二. 转录组概念:转录组学(transcriptomics),是一门在整体水平上研究细胞中基因转录的情况及转录调控机制的学科,主要从RNA水平研究基因表达的情况。
一般来说,把转录组学分为广义和狭义转录组学[2],广义转录组指从一种细胞或者组织的基因组所转录出来的RNA的总和,包括编码蛋白质的mRNA和各种非编码RNA (rRNA, tRNA, snoRNA, snRNA,microRNA和其他非编码RNA等),狭义转录组是特定组织或细胞在某一发育阶段或功能状态下转录出来的所有RNA的总和[3]。
三. 转录组研究内容:转录组学的研究内容包括:对所有的转录产物进行分类,确定基因的转录结构,通过对转录谱的分析,推断相应某一基因的功能,揭示特定调节基因的作用机制,辨别细胞的表型归属等[4]。
四. 棉花转录组研究的意义棉花纤维转录组研究起步较晚,但近年来大量高质量棉花胚珠、纤维cDNA文库的构建,EST数据库的丰富,以及高通量基因芯片的应用和转录组测序工作的开展,在涉及纤维起始分化、伸长及次生壁加厚等的各个发育阶段均取得了不小的成果。
从整体的转录组水平上对棉纤维复杂的多基因遗传机制进行深入研究以及了解整个纤维发育的分子调控机制,结合分子标记技术定位的大量与纤维产量和纤维品质相关的QTLs,非常有助于分子标记辅助选择(MAS )育种和纤维品质的改良。
现代分子生物学概括 Microsoft Word 文档
![现代分子生物学概括 Microsoft Word 文档](https://img.taocdn.com/s3/m/c2da0304de80d4d8d15a4f95.png)
一、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。
当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。
从1847年Schleiden和Schwann提出"细胞学说",证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。
孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将"性状"与"基因"相耦联,成为分子遗传学的奠基石。
Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。
在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。
而Kendrew和Perutz利用X射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。
1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。
1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。
同年,Kornberg实现了试管内细菌细胞中DNA的复制。
1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilkins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。
现代分子生物学总结
![现代分子生物学总结](https://img.taocdn.com/s3/m/5b30dadc76eeaeaad1f330d9.png)
第一章、基因的结构和功能实体及基因组1、基因定义基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。
2、DNA修复DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。
也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。
对不同的DNA损伤,细胞可以有不同的修复反应。
3、DNA损伤DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。
情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。
DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。
嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。
b、缺失:指DNA链上一个或一段核苷酸的消失。
c、插入:指一个或一段核苷酸插入到DNA链中。
在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。
d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。
e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。
现代分子生物学课后习题及答案(朱玉贤 第3版)
![现代分子生物学课后习题及答案(朱玉贤 第3版)](https://img.taocdn.com/s3/m/a40761fa0975f46527d3e1ad.png)
现代分子生物学课后习题及答案(共10章)第一章绪论1.你对现代分子生物学的含义和包括的研究范围是怎么理解的?答:分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。
狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。
分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。
所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。
这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。
这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。
阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。
2.分子生物学研究内容有哪些方面?答:分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。
由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。
由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。
研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。
遗传信息传递的中心法则(centraldogma)是其理论体系的核心。
此刻分子生物学综述
![此刻分子生物学综述](https://img.taocdn.com/s3/m/2a1b24affe4733687e21aae0.png)
学校代码:__________学号:25Hefei University论文题目此刻分子生物学综述________________作者姓名:________苏小伍________________________导师姓名:_______李玉晖_(副教授、博士)_____________完成时刻:___ 2013/10/8________摘要在分子水平上研究的科学。
通过研究生物大分子(、蛋白质)的结构、功能和等方面来阐明各类生命现象的本质。
研究内容包括各类生命进程。
比如、发育的分子机制、神经活动的、癌的发生等。
分子生物学(molecular biology)学从分子水平研究的结构与功能从而阐明本质的科学。
自20世纪50年代以来,分子是生物学的前沿与生长点,其主要研究领域包括体系、蛋白质-核酸体系(中心是)和蛋白质-脂质体系(即)。
生物大分子,专门是蛋白质和核酸结构功能的研究,是分子生物学的基础。
和理论、技术和方式的应用推动了生物大分子结构功能的研究,从而出现了近30年来分子生物学的蓬勃进展。
关键词:分子生物学体系蛋白质-核酸体系蛋白质-脂质体系一、简介分子生物学和及关系十分紧密,它们之间的主要区别在于:①化学和生物物理学是用化学的和物理学的方式研究在分子水平,水平,整体水平乃至群体水平等不同层次上的生物学问题。
而分子生物学则着重在分子(包括)水平上研究的普遍规律;②在分子水平上,分子生物学着重研究的是大分子,主如果蛋白质,核酸,脂质体系和部份及其复合体系。
而一些小分子物质在内的转化则属生物化学的范围;③分子生物学研究的主要目的是在分子水平上阐明整个生物界所一路具有的大体特征,即生命现象的本质;而研究某一特定生物体或某一种生物体内的某一特定的物理、化学现象或转变,则属于生物物理学或生物化学的范围。
2、学科关系是的分支学科,是研究生命物质的化学组成、结构及生命活动进程中各类化学转变的基础。
分子生物学是在分子水平上研究生命现象的,通过研究生物分子的结构、功能和生物合成等方面来阐明生命现象的本质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA的复制与修复综述
摘要:现在分子生物学的研究已经充分证明,DNA是遗传物质。
生物机体的遗传信息通过DNA传递到子代,表现为特定的核苷酸序列。
在后代的生长发育中,遗传物质DNA经过转录,翻译出特定的蛋白质。
在某些情况下,RNA也能成为遗传信息的基本携带者。
那么在遗传传承中遗传物质是怎么保证遗传信息的准确性呢?细胞内存在极为复杂的系统,来保证DNA复制的准确进行,并纠正可能出现的错误。
关键词:DNA复制,转录,翻译,DNA修复
细胞的正常生长离不开DNA的转录,翻译。
在复制翻译的过程中会因为种种原因造成遗传信息DNA的损伤,这时就需要有一种系统机制来修复损伤的DNA。
越来越多的研究表明DNA的复制,损伤修复和重组过程之间既相互独立,也存在着密切联系[1]。
比如,参与DNA复制的DNA聚合酶也参与了DNA损伤修复和重组过程[2]。
现代研究表明,DNA分子是由两条反向螺旋的多核苷酸链组成[3],两条链的碱基通过腺嘌呤(A),胸腺嘧啶(T),鸟嘌呤(G)以及胞嘧啶(C)之间的氢键联接在一起,这两条链又是互补的[4]。
一条链上的核苷酸序列决定了另一条链上的核苷酸排列顺序。
DNA的复制是半保留复制,这样保证了遗传物质能够比较稳定的遗传给后代。
但是,这种稳定是相对的,DNA在代谢上并不是完全惰性的。
在细胞内外各种物理,化学,生物等因素的影响下,DNA难免会发生损伤,需要修复。
在复制的过程中DNA也会有损耗,而必须进行更新修复。
在发育的过程中,DNA序列还能进行修饰、删除、扩增和重排[5][6]。
基因能够独以进行复制的单位称之为复制子。
每个复制子中都含有控制DNA复制开始的起点,可能还有终止复制的终点。
真核生物原核生物病毒等的DNA是多种多样的,含有一个或者多个复制子,复制的方式也是多种多样的[7]。
每个细胞都可以看做一个生物工厂,看作是由多个不同小“机器”组成的生物工厂。
机器是会出错的,DNA在复制过程中可能产生错配。
DNA重组,病毒遗传物质的整合,可能会发生DNA双螺旋结构局部破坏的现象。
而某些物理,化学和生物因素也能作用于DNA,使之发生损伤。
然而在一定条件下,细胞是可以对其DNA的损伤进行修复的,从而使生物DNA能够正常行驶其功能,这是自然界生物长期进化获得的一种保护功能[8]。
目前已经知道到的,细胞对其DNA损伤的修复系统有五种:错配修复,直接修复,切除修复,重组修复和易错修复。
DNA的损伤修复可能不经过诱导。
然而许多能造成DNA损伤或抑制复制的处理均能引起一系列复杂的诱导效应,称之为应急反应(SOS)[9]。
在很多情况下,DNA的复制、损伤修复和重组往往与很多威胁人类健康的肿瘤和遗传病的关系密切。
比如某些遗传性疾病与错配修复、皮肤癌症与核苷切除修复、HIV人类免疫缺陷病毒、人类染色体三体综合征与基因重组功能缺陷等等,这些DNA 修复缺陷细胞表现出对辐射和致癌剂的敏感性增加[10]。
研究DNA的修复机制不仅给我们治愈某些疾病提供一条希望之路,也为科学研究做出了贡献。
参考文献
[1]邱洁芳,潘学峰,大肠杆菌细胞DNA复制、修复和重组途径的衔接,北京理工大学生命科学与技术学院
[2]1.Xu Y;Grindley N D F;Joyce C M Coordination between the polymeraseand
5' nuclease components ofDNApolymerase I of Escherichia coll[外文期刊] 2000(27)
[3]朱玉贤,现代分子生物学(第三版)
[4]王镜岩,生物化学(第三版)
[5]刘伟,动物生物化学,郑州河南科学技术出版社
[6]沈同,王镜岩,赵邦悌,高等学校教材生物化学第二版北京,高等教育出版社
[7]于珊珊,DNA氧化损伤修复反应体系及其对细胞寿命影响机制初探,山东大学
[8]邱洁芳,潘学峰,功能型DNA重组修复蛋白质RecR的体内分布示踪[J].
2009,19(7).doi:10.3321/j.issn:1002-008X.2009.07.002
[9]Stauffer M E, Chazin W J. .Journal of Biological Chemistry
[10]邱洁芳,潘学峰,生物化学与生物物理进展,
微生物系
沈亚鹏
15208024。