(新)高中数学必修2测试卷及答案

合集下载

人教版高中数学必修第二册 第九章~第十章 综合测试卷 (含答案)

人教版高中数学必修第二册 第九章~第十章 综合测试卷 (含答案)

人教版高中数学必修第二册第九章~第十章综合测试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.现要完成下列两项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①抽签法,②比例分配的分层随机抽样B.①随机数法,②比例分配的分层随机抽样C.①随机数法,②抽签法D.①抽签法,②随机数法2.若A,B为对立事件,则下列式子中成立的是()A.P(A)+P(B)<1B.P(A)+P(B)>1C.P(A)+P(B)=0D.P(A)+P(B)=13.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为()A.0.2B.0.35C.0.3D.0.44.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如图C6-1所示,则这30只宠物狗体重的平均值大约为()图C6-1A.15.5千克B.15.6千克C.15.7千克D.16千克5.以下数据为参加数学竞赛决赛的15人的成绩(单位:分):78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位数是()A.90分B.91.5分C.91分D.90.5分6.一组样本数据a,3,4,5,6的平均数是b,且不等式x2-6x+c<0的解集为(a,b),则这组样本数据的标准差是()A.1B.2C.3D.27.我国历史上有田忌与齐王赛马的故事:“田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.”若双方各自拥有上、中、下等马各1匹,双方各随机选1匹马进行1场比赛,则齐王的马获胜的概率为()A.23B.13C.12D.568.在发生某公共卫生事件期间,有专业机构认为在一段时间内没有发生规模群体感染的标志为“连续10天,每天新增疑似病例数量不超过7”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是()A.甲地:总体的平均数为3,中位数为4B.乙地:总体的平均数为1,总体方差大于0C.丙地:中位数为2,众数为3D.丁地:总体的平均数为2,总体方差为3二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有两项是符合题目要求的)9.给出下列四个说法,其中正确的说法有()A.做100次抛硬币的试验,结果有51次出现正面朝上,因此,出现正面朝上的概率是51100B.随机事件发生的频率就是这个随机事件发生的概率C.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950D.随机事件发生的频率不一定是这个随机事件发生的概率10.在某次高中学科竞赛中,4000名考生的参赛成绩统计如图C6-2所示,60分以下视为不及格,若同一组中的数据用该组区间的中点值为代表,则下列说法中正确的是()图C6-2A.成绩在[70,80)内的考生人数最多B.不及格的考生人数为1000C.考生竞赛成绩的平均数约为70.5分D.考生竞赛成绩的中位数为75分11.某健身房为了解运动健身减肥的效果,调查了20名肥胖者健身前(如直方图C6-3(1)所示)后(如直方图(2)所示)的体重(单位:kg)变化情况:图C6-3对比数据,关于这20名肥胖者,下面结论正确的是()A.健身后,体重在区间[90,100)内的人数较健身前增加了2B.健身后,体重原在区间[100,110)内的人员一定无变化C.健身后,20人的平均体重大约减少了8kgD.健身后,原来体重在区间(110,120]内的肥胖者体重都有减少12.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋中各摸出一个球,下列结论正确的是()A.2个球都是红球的概率为16B.2个球不都是红球的概率为13C.至少有1个红球的概率为23D.2个球中恰有1个红球的概率为12请将选择题答案填入下表:题号12345678总分答案题号9101112答案第Ⅱ卷(非选择题共90分)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.从甲、乙两个厂家生产的同一种产品中各抽取8件产品,对其使用寿命(单位:年)跟踪调查的结果如下:甲:3,4,5,6,8,8,8,10;乙:3,3,4,7,9,10,11,12.两个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别采用了平均数、众数、中位数中的哪一个特征数:甲:,乙:.14.如图C6-4是容量为100的样本数据的频率分布直方图,则样本数据落在区间[6,18)内的频数为.图C6-415.已知甲、乙、丙3名运动员射击一次击中目标的概率分别为0.7,0.8,0.85,若这3人向目标各射击一次,则目标没有被击中的概率为.16.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才想的数字,把乙猜的数字记为b,且a,b∈{0,1,2,…,9}.若|a-b|≤1,则称甲、乙两人“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)某班选派5人,参加学校举行的数学竞赛,获奖的人数及其概率如下:获奖人数012345概率0.10.16x y0.2z(1)若获奖人数不超过2的概率为0.56,求x的值;(2)若获奖人数最多为4的概率为0.96,获奖人数最少为3的概率为0.44,求y,z的值.18.(12分)甲、乙两台机床同时加工直径为100cm的零件,为检验质量,各从中抽取6个零件测量其直径,所得数据如下.甲:99,100,98,100,100,103;乙:99,100,102,99,100,100.(1)分别计算两组数据的平均数及方差;(2)根据计算结果判断哪台机床加工零件的质量更稳定.19.(12分)某校高一年级举行了一次数学竞赛,为了了解参加本次竞赛的学生的成绩情况,从中抽取了部分学生的成绩(取正整数,单位:分)作为样本(样本量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图如图C6-5所示,已知成绩在[50,60),[90,100]内的频数分别为8,2.(1)求样本量n和频率分布直方图中的x,y的值;(2)估计参加本次竞赛的学生成绩的众数、中位数、平均数.图C6-520.(12分)生产同一种产品,甲机床的废品率为0.04,乙机床的废品率为0.05,从甲、乙机床生产的产品中各任取1件,求:(1)至少有1件废品的概率;(2)恰有1件废品的概率.21.(12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图C6-6所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯的概率与获得饮料的概率的大小,并说明理由.图C6-622.(12分)2020年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分100分).根据调查数据制成如下表格和如图C6-7所示的频率分布直方图.已知评分在[80,100]内的居民有600人.满意度评分[40,60)[60,80)[80,90)[90,100]满意度等级不满意基本满意满意非常满意(1)求频率分布直方图中a的值及参与评分的总人数.(2)定义满意度指数η=(满意程度的平均分)/100,若η<0.8,则防疫工作需要进行大的调整,否则不需要进行大调整.根据所学知识判断该区防疫工作是否需要进行大调整.(3)为了解部分居民不满意的原因,从不满意的居民(评分在[40,50),[50,60)内)中用比例分配的分层随机抽样的方法抽取6位居民,倾听他们的意见,并从6人中抽取2人担任防疫工作的监督员,求这2人中仅有1人对防疫工作的评分在[40,50)内的概率.图C6-7参考答案与解析1.A[解析]①总体较少,宜用抽签法;②各层间差异明显,宜用分层随机抽样.故选A.2.D[解析]若事件A与事件B是对立事件,则P(A)+P(B)=1.故选D.3.B[解析]∵事件A={抽到一等品},且P(A)=0.65,∴事件“抽到的产品不是一等品”的概率P=1-P(A)=1-0.65=0.35.4.B[解析]由频率分布直方图可以计算出各组的频率分别为0.1,0.2,0.3,0.2,0.1,0.1,故各组的频数分别为3,6,9,6,3,3,则这30只宠物狗体重的平均值为11×3+13×6+15×9+17×6+19×3+21×330=15.6(千克),故选B.5.D[解析]将这15人的成绩(单位:分)由小到大依次排列为56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,第12,13个数据分别为90分、91分,所以这15人成绩的第80百分位数是90.5分.故选D.6.B[解析]由题意得a+3+4+5+6=5b,a+b=6,解得a=2,b=4,所以样本数据的方差s2=15×[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]=2,所以标准差s=2.故答案为B.7.A[解析]依题意,记田忌的上等马、中等马、下等马分别为a,b,c,齐王的上等马、中等马、下等马分别为A,B,C.由题意可知,样本空间Ω={aA,bA,cA,aB,bB,cB,aC,bC,cC},共有9个样本点,其中事件“田忌可以获胜”包含的样本点为aB,aC,bC,共3个,则齐王的马获胜的概率P=1-39=23.故选A.8.D[解析]由于甲地总体数据的平均数为3,中位数为4,即按从小到大排序后,中间两个数据的平均数为4,因此后面的数据可以大于7,故甲地不一定符合.乙地总体数据的平均数为1,因此这10天的新增疑似病例总数为10,又由于方差大于0,故这10天中新增疑似病例数量不可能每天都是1,可以有一天大于7,故乙地不一定符合.丙地总体数据的中位数为2,众数为3,故数据中可以出现8,故丙地不一定符合.丁地总体数据的平均数为2,方差为3,故丁地一定符合.9.CD[解析]对于A,混淆了频率与概率的区别,故A错误;对于B,混淆了频率与概率的区别,故B 错误;对于C,抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是950,符合频率定义,故C正确;对于D,频率是概率的估计值,故D正确.故选CD.10.ABC [解析]由频率分布直方图可得,成绩在[70,80)内的频率最高,考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)内的频率为0.25,则不及格的考生人数为4000×0.25=1000,故B 正确;由频率分布直方图可得,平均数为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5(分),故C 正确;因为成绩在[40,70)内的频率为0.45,在[70,80)内的频率为0.3,所以中位数为70+10×0.050.3≈71.67(分),故D 错误.故选ABC .11.AD[解析]体重在区间[90,100)内的肥胖者由健身前的6人增加到健身后的8人,增加了2人,故A 正确;健身后,体重在区间[100,110)内的频率没有变,但人员组成可能改变,故B 错误;健身后,20人的平均体重大约减少了(0.3×95+0.5×105+0.2×115)-(0.1×85+0.4×95+0.5×105)=5(kg),故C 错误;因为图(2)中没有体重在区间(110,120]内的人员,所以原来体重在区间(110,120]内的肥胖者体重都有减少,故D 正确.故选AD .12.ACD[解析]设“从甲袋中摸出一个红球”为事件A 1,“从乙袋中摸出一个红球”为事件A 2,则P (A 1)=13,P (A 2)=12,且A 1,A 2独立;在A 中,“2个球都是红球”为事件A 1A 2,其概率为13×12=16,A 正确;在B中,“2个球不都是红球”是“2个球都是红球”的对立事件,其概率为56,B 错误;在C 中,“2个球中至少有1个红球”的概率为1-P ( )P ( )=1-23×12=23,C 正确;在D 中,2个球中恰有1个红球的概率为13×12+23×12=12,D 正确.故选ACD .13.众数中位数[解析]对甲厂的数据进行分析:该组数据中8年出现的次数最多,故广告中采用了众数;对乙厂的数据进行分析:该组数据最中间的是7年与9年,故中位数是7+92=8(年),故广告中采用了中位数.14.80[解析]由题图知,样本数据落在区间[6,18)内的频数为100×0.8=80.15.0.009[解析]由相互独立事件的概率计算公式知,3人向目标各射击一次,目标没有被击中的概率P=(1-0.7)×(1-0.8)×(1-0.85)=0.3×0.2×0.15=0.009.16.725[解析]从{0,1,2,…,9}中任意取两个数(可重复),该试验共有100个样本点,事件“|a-b|≤1”包含的样本点为(0,0),(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(7,7),(8,8),(9,9),(0,1),(1,0),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),(6,7),(7,6),(7,8),(8,7),(8,9),(9,8),共有28个,所以所求概率P=28100=725.17.解:记事件“在竞赛中,有k 人获奖”为A k (k ∈N,k ≤5),则事件A k 彼此互斥.(1)∵获奖人数不超过2的概率为0.56,∴P (A 0)+P (A 1)+P (A 2)=0.1+0.16+x=0.56,解得x=0.3.(2)由获奖人数最多为4的概率为0.96,得P (A 5)=1-0.96=0.04,即z=0.04.由获奖人数最少为3的概率为0.44,得P (A 3)+P (A 4)+P (A 5)=0.44,即y+0.2+0.04=0.44,解得y=0.2.18.解:(1)由题中数据可得 甲=16×(99+100+98+100+100+103)=100(cm); 乙=16×(99+100+102+99+100+100)=100(cm).甲2=16×(1+0+4+0+0+9)=73, 乙2=16×(1+0+4+1+0+0)=1.(2)由(1)知两台机床所加工零件的直径的平均数相同,又 甲2> 乙2,所以乙机床加工零件的质量更稳定.19.解:(1)由题意可知,样本量n=80.016×10=50,y=250×10=0.004,x=0.1-0.016-0.04-0.01-0.004=0.03.(2)由频率分布直方图可估计,参加本次竞赛的学生成绩的众数为75分.设样本数据的中位数为m ,因为(0.016+0.03)×10<0.5<(0.016+0.03+0.04)×10,所以m ∈[70,80),所以(0.016+0.03)×10+(m-70)×0.04=0.5,解得m=71,故估计参加本次竞赛的学生成绩的中位数为71分.由频率分布直方图可估计,参加本次竞赛的学生成绩的平均数为55×0.16+65×0.3+75×0.4+85×0.1+95×0.04=70.6(分).20.解:记从甲、乙机床生产的产品中取1件是废品分别为事件A ,B ,则事件A ,B 相互独立,且P (A )=0.04,P (B )=0.05.(1)设“至少有1件废品”为事件C ,则P (C )=1-P ( )=1-P ( )P ( )=1-(1-0.04)×(1-0.05)=0.088.(2)设“恰有1件废品”为事件D ,则P (D )=P (A )+P ( B )=0.04×(1-0.05)+(1-0.04)×0.05=0.086.21.解:(1)试验的所有样本点为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),( 4,3),(4,4),共16个.事件“xy≤3”包含的样本点有(1,1),(1,2),(1,3),(2,1),(3,1),共5个,所以小亮获得玩具的概率为516.(2)事件“xy≥8”包含的样本点有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),共6个,所以小亮获得水杯的概率为38,小亮获得饮料的概率为1-516-38=516,所以小亮获得水杯的概率大于获得饮料的概率.22.解:(1)由频率分布直方图知(0.002+0.004+0.014+0.02+0.035+a)×10=1,即10×(0.075+a)=1,解得a=0.025,设共有n人参与评分,则600 =(0.035+0.025)×10,解得n=1000,即参与评分的总人数为1000.(2)由频率分布直方图知各组的频率分别为0.02,0.04,0.14,0.2,0.35,0.25,所以η=45×0.02+55×0.04+65×0.14+75×0.2+85×0.35+95×0.25100=0.807>0.8,所以该区防疫工作不需要进行大调整.(3)因为0.002×10×1000=20,0.004×10×1000=40,所以评分在[40,50),[50,60)内的居民人数分别为20,40,所以所抽取的评分在[40,50)内的居民人数为20×660=2,将这2人分别记为a,b,所抽取的评分在[50,60)内的居民人数为40×660=4,将这4人分别记为A,B,C,D.从这6人中抽取2人,试验的样本点有ab,aA,aB,aC,aD,bA,bB,bC,bD,AB,AC,AD,BC,BD,CD,共15个.而“仅有1人对防疫工作的评分在[40,50)内”包含的样本点有aA,aB,aC,aD,bA,bB,bC,bD,共8个,则所求事件的概率为815.。

高中数学必修二测试题及答案人教版

高中数学必修二测试题及答案人教版

第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1.5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第19题)20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台.2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1.5-1)=23π.7.D解析:设底面边长是a ,底面的两条对角线分别为l 1,l 2,而21l =152-52,22l =92-52,而21l +22l =4a 2,即152-52+92-52=4a 2,a =8,S 侧面=4×8×5=160. 8.D解析:过点E ,F 作底面的垂面,得两个体积相等的四棱锥和一个三棱柱,V =2×31×43×3×2+21×3×2×23=215.9.B解析:斜二测画法的规则中,已知图形中平行于 x 轴的线段,在直观图中保持原长度不变;平行于 y 轴的线段,长度为原来的一半.平行于 z 轴的线段的平行性和长度都不变.10.D解析:从三视图看底面为圆,且为组合体,所以选D. 二、填空题11.参考答案:5,4,3.解析:符合条件的几何体分别是:三棱柱,三棱锥,三棱台.12.参考答案:1∶22∶33.r 1∶r 2∶r 3=1∶2∶3,31r ∶32r ∶33r =13∶(2)3∶(3)3=1∶22∶33.13.参考答案:361a .解析:画出正方体,平面AB 1D 1与对角线A 1C 的交点是对角线的三等分点, 三棱锥O -AB 1D 1的高h =33a ,V =31Sh =31×43×2a 2×33a =61a 3. 另法:三棱锥O -AB 1D 1也可以看成三棱锥A -OB 1D 1,它的高为AO ,等腰三角形OB 1D 1为底面.14.参考答案:平行四边形或线段.15.参考答案:6,6.解析:设ab =2,bc =3,ac =6,则V = abc =6,c =3,a =2,b =1, l =1+2+3=6. 16.参考答案:12.解析:V =Sh =πr 2h =34πR 3,R =32764×=12. 三、解答题 17.参考答案:V =31(S +S S ′+S )h ,h =S S S S V ′+′+3=6001+4002+60030001903×=75.18.参考答案:如图是过正方体对角面作的截面.设半球的半径为R ,正方体的棱长为a ,则CC'=a ,OC =22a ,OC'=R .(第18题)在Rt △C'CO 中,由勾股定理,得CC' 2+OC 2=OC' 2,即 a 2+(22a )2=R 2. ∴R =26a ,∴V 半球=26πa 3,V 正方体=a 3. ∴V 半球 ∶V 正方体=6π∶2. 19.参考答案:S 表面=S 下底面+S 台侧面+S 锥侧面=π×52+π×(2+5)×5+π×2×22 =(60+42)π. V =V 台-V 锥 =31π(21r +r 1r 2+22r )h -31πr 2h 1 =3148π.20.解:(1) 参考答案:如果按方案一,仓库的底面直径变成16 m ,则仓库的体积V 1=31Sh =31×π×(216)2×4=3256π(m 3).如果按方案二,仓库的高变成8 m ,则仓库的体积COAV 2=31Sh =31×π×(212)2×8=3288π(m 3).(2) 参考答案:如果按方案一,仓库的底面直径变成16 m ,半径为8 m . 棱锥的母线长为l =224+8=45, 仓库的表面积S 1=π×8×45=325π(m 2). 如果按方案二,仓库的高变成8 m .棱锥的母线长为l =226+8=10,仓库的表面积S 2=π×6×10=60π(m 2).(3) 参考答案:∵V 2>V 1,S 2<S 1,∴方案二比方案一更加经济些.。

人教A版新课标高中数学必修二第二章单元测试题(含答案)

人教A版新课标高中数学必修二第二章单元测试题(含答案)

高二周末检测题一、选择题1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2 .垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 3.若三个平面两两相交,有三条交线,则下列命题中正确的是( )A .三条交线为异面直线B .三条交线两两平行C .三条交线交于一点D .三条交线两两平行或交于一点4. 在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、 能相交于点P ,那么 ( )A 、点P 必在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面BCD 内 D 、点P 必在平面ABC 外5.若平面α⊥平面β,α∩β=l ,且点P ∈α,P ∉l ,则下列命题中的假命题是( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的直线在α内C .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的平面垂直于β 6.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A .若a ,b 与α所成的角相等,则a ∥bB .若a ∥α,b ∥β,α∥β,则a ∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b 7.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论:①EF ⊥AA 1; ②EF ∥AC ; ③EF 与AC 异面; ④EF ∥平面ABCD . 其中一定正确的有( )A .①②B .②③C .②④D .①④8.如图,在△ABC 中,∠BAC =90°,P A ⊥面ABC ,AB =AC ,D 是BC的中点,则图中直角三角形的个数是( ) A .5 B .8 C .10D .69.如右图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM ( ) A .与AC 、MN 均垂直相交 B .与AC 垂直,与MN 不垂直 C .与MN 垂直,与AC 不垂直D .与AC 、MN 均不垂直10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A 、2V B 、3V C 、4V D 、5V11.(2009·海南、宁夏高考)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E 、F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 成60°的角;④AB 与CD 所成的角是60°. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4 二、填空题13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ,平行则四边形ABCD 一定是 .14.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的平面角大小为 .15.如下图所示,以等腰直角三角形ABC 斜边BC 上的高AD 为折痕.Q PC'B'A'C BA使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为________.(2)∠BAC=________.16.在正方体ABCD—A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形.②四边形BFD′E有可能是正方形.③四边形BFD′E在底面ABCD内的投影一定是正方形.④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)三、解答题17、如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.18.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.19.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.20.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.21.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.高二周末检测题答一、选择题 1-5 BDDAB 6-10 DDBAB 11-12 DC 二、填空题13、菱形 14、90° 15、(1)BD ⊥CD (2)60° 16、①③④ 三、解答题17、证明:(1)∵E 、F 分别是AB 、BD 的中点,∴EF ∥AD .又AD ⊂平面ACD ,EF ⊄平面ACD , ∴直线EF ∥面ACD .(2)在△ABD 中,∵AD ⊥BD ,EF ∥AD , ∴EF ⊥BD .在△BCD 中,∵CD =CB ,F 为BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面EFC , 又∵BD ⊂平面BCD , ∴平面EFC ⊥平面BCD .18、[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA , ∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3. ∵平面PCD ⊥平面ABCD ,∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM . ∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM . (2)解:由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PEEM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.19[分析] 本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件. [证明] (1)在正三棱柱ABC -A 1B 1C 1中, ∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.20.(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ⊄平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB.故CQ⊥平面ABE.由(1)有PQ∥DC,又PQ=12EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=5,DP=1,sin∠DAP=5 5,因此AD和平面ABE所成角的正弦值为5 5.21[分析] (1)转化为证明GF平行于平面ABC内的直线AC;(2)转化为证明AC垂直于平面EBC内的两条相交直线BC和BE;(3)几何体ADEBC是四棱锥C-ABED.[解] (1)证明:连接AE,如下图所示.∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点, 又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED , ∴BE ⊥平面ABC ,∴BE ⊥AC . 又∵AC =BC =22AB , ∴CA 2+CB 2=AB 2, ∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE . (3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22, ∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.。

新课标高中数学(必修2)单元测试卷12套(附详解答案)

新课标高中数学(必修2)单元测试卷12套(附详解答案)

新课标高中数学(必修2)单元测试卷目录第一章空间几何体[基础训练A组] (1)第一章空间几何体[综合训练B组] (3)第一章空间几何体[提高训练C组] (5)第二章点、直线、平面之间的位置关系[基础训练A组] ........................................... 错误!未定义书签。

第二章点、直线、平面之间的位置关系[综合训练B组] ........................................... 错误!未定义书签。

第二章点、直线、平面之间的位置关系[提高训练C组] ........................................... 错误!未定义书签。

第三章直线与方程[基础训练A组] .............................................................................. 错误!未定义书签。

第三章直线与方程[综合训练B组] ............................................................................... 错误!未定义书签。

第三章直线与方程[提高训练C组] ............................................................................... 错误!未定义书签。

第四章圆与方程[基础训练A组] .................................................................................. 错误!未定义书签。

第四章圆与方程[综合训练B组] ................................................................................... 错误!未定义书签。

新北师大版高中数学必修二第一章《立体几何初步》测试题(含答案解析)(4)

新北师大版高中数学必修二第一章《立体几何初步》测试题(含答案解析)(4)

一、选择题1.正三棱锥(底面为正三角形,顶点在底面的射影为底面中心的棱锥)的三视图如图所示,俯视图是正三角形,O是其中心,则正视图(等腰三角形)的腰长等于()A.5B.2 C.3D.22.已知三棱锥A BCD的各棱长都相等,E为BC中点,则异面直线AB与DE所成角的余弦值为()A.13B.3C.33D.1163.某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:3cm)为()A.43B.2C .4D .64.如图,正三棱柱111ABC A B C -的高为4,底面边长为43,D 是11B C 的中点,P 是线段1A D 上的动点,过BC 作截面AP α⊥于E ,则三棱锥P BCE -体积的最小值为( )A .3B .23C .43D .125.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .24B .30C .47D .676.如图正三棱柱111ABC A B C -的所有棱长均相等,O 是1AA 中点,P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,则直线OP 与平面ABC 所成角正弦值的最大值为( )A .2 B .255C .32D .2777.如图,在四棱锥P ABCD -中,底面ABCD 是矩形.其中3AB =,2AD =,PAD △是以A ∠为直角的等腰直角三角形,若60PAB ∠=︒,则异面直线PC 与AD 所成角的余弦值是( )A .2211B .2211-C .77D .211118.已知球O 的半径为5,球面上有,,A B C 三点,满足214,27AB AC BC ===,则三棱锥O ABC -的体积为( ) A .77B .142C .714D .1479.在正方体1111ABCD A BC D -中,M 是棱1CC 的中点.则下列说法正确的是( ) A .异面直线AM 与BC 5B .BDM 为等腰直角三角形C .直线BM 与平面11BDD B 10D .直线1AC 与平面BDM 相交10.如图,正方形ABCD 的边长为4,点E ,F 分别是AB ,B C 的中点,将ADE ,EBF △,FCD 分别沿DE ,EF ,FD 折起,使得A ,B ,C 三点重合于点A ',若点G 及四面体A DEF '的四个顶点都在同一个球面上,则以FDE 为底面的三棱锥G -DEF 的高h 的最大值为( )A .263+B .463+C .4263-D .2263- 11.在四棱锥P -ABCD 中,//AD BC ,2AD BC =,E 为PD 中点,平面ABE 交PC 于F ,则PFFC=( ) A .1B .32C .2D .312.如图,长、宽、高分别为2、1、1的长方体木块上有一只小虫从顶点A 出发沿着长方体的外表面爬到顶点B ,则它爬行的最短路程是( )A .10B .5C .22D .3二、填空题13.如图,在三棱锥P ABC -中,点B 在以AC 为直径的圆上运动,PA ⊥平面,ABC AD PB ⊥,垂足为,D DE PC ⊥,垂足为E ,若23,2PA AC ==,则三棱锥P ADE -体积的最大值是_________.14.如图,点E 是正方体1111ABCD A BC D -的棱1DD 的中点,点M 在线段1BD 上运动,则下列结论正确的有__________. ①直线AD 与直线1C M 始终是异面直线②存在点M ,使得1B M AE ⊥ ③四面体EMAC 的体积为定值④当12D M MB =时,平面EAC ⊥平面MAC15.正方体1111ABCD A BC D -棱长为点1,点E 在边BC 上,且满足2BE EC =,动点P 在正方体表面上运动,满足1PE BD ⊥,则动点P 的轨迹的周长为__________. 16.在三棱锥P ABC -中,4PA PB ==,42BC =,8AC =,AB BC ⊥.平面PAB ⊥平面ABC ,若球O 是三棱锥P ABC -的外接球,则球O 的半径为_________.17.在三棱锥P ABC -中,P 在底面ABC 的射影为ABC 的重心,点M 为棱PA 的中点,记二面角P BC M --的平面角为α,则tan α的最大值为___________. 18.在三棱锥D ABC -中,AD ⊥平面ABC ,3AC =,17BC =,1cos 3BAC ∠=,若三棱锥D ABC -的体积为27,则此三棱锥的外接球的表面积为______19.如图,在三棱锥A BCD -,,AB AD BC ⊥⊥平面ABD ,点E 、F (E 与A 、D 不重合)分别在棱AD 、BD 上,且EF AD ⊥.则下列结论中:正确结论的序号是______.①//EF 平面ABC ;②AD AC ⊥;③//EF CD20.将底面直径为8,高为23为______.三、解答题21.在所有棱长均为2的直棱柱1111ABCD A BC D -中,底面ABCD 是菱形,且60BAD ∠=︒,O ,M 分别为1,BD B C 的中点.(Ⅰ)求证:直线//OM 平面11DB C ; (Ⅱ)求二面角1D AC D --的余弦值.22.如图(1)在ABC 中,AC BC =,D 、E 、F 分别是AB 、AC 、BC 边的中点,现将ACD △沿CD 翻折,使得平面ACD ⊥平面BCD .如图(2)(1)求证://AB 平面DEF ; (2)求证:BD AC ⊥.23.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,32,3,PB PD PA AD ====点,E F 分别为线段,PD BC 的中点.(1)求证://EF 平面ABP ; (2)求证:平面AEF ⊥平面PCD ;(3)求三棱锥C AEF -的体积24.如图,圆柱的轴截面ABCD 是长方形,点E 是底面圆周上异于A ,B 的一点,AF DE ⊥,F 是垂足.(1)证明:AF DB ⊥;(2)若2AB =,3AD =,当三棱锥D ABE -体积最大时,求点C 到平面BDE 的距离. 25.如图,在平面四边形A ABC '中,90CAB CA A '∠=∠=,M 在直线AC 上,A A A C ''=,AB AM MC ==,A AC '绕AC 旋转.(1)若A AC '所在平面与ABC 所在平面垂直,求证:A C '⊥平面A AB '. (2)若二面角A AC B '--大小为60,求直线A B '与平面ABM 所成角的正弦值. 26.如图,四边形ABCD 为矩形,且4=AD ,22AB =PA ⊥平面ABCD ,2PA =,E 为BC 的中点.(1)求证:PC DE ⊥;(2)若M 为PC 的中点,求三棱锥M PAB -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,设底面边长为2x ,表示出2522x AO OE -===1333xOE CE ==,即可求出x ,进而求出腰长. 【详解】根据三视图可得原几何体如图所示正三棱锥A BCD -,取BD 中点E ,连接,AE CE ,则底面中心O 在CE 上,连接AO ,可得AO ⊥平面ABC ,由三视图可知5AB AC AD ===45AEC ∠=, 设底面边长为2x ,则DE x =,则25AE x =-则在等腰直角三角形AOE 中,2522xAO OE -===O 是底面中心,则133xOE CE ==,则253 23x x-=,解得3x=,则1AO=,底面边长为23,则正视图(等腰三角形)的腰长为()22312+=.故选:B.【点睛】本题考查根据三视图计算原几何体的相关量,解题的关键是根据正三棱锥中的关系求出底面边长.2.B解析:B【分析】取AC中点F,连接,EF DF,证明FED∠是异面直线AB与DE所成角(或其补角),然后在三角形中求得其余弦值即可得.【详解】取AC中点F,连接,EF DF,∵E是BC中点,∴//EF AB,12EF AB=,则FED∠是异面直线AB与DE所成角(或其补角),设1AB=,则12EF=,32DE DF==,∴在等腰三角形DEF中,11324cos3EFFEDDE∠===.所以异面直线AB与DE3故选:B.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.3.B解析:B 【分析】根据三视图判断出几何体的结构,利用椎体体积公式计算出该几何体的体积. 【详解】根据三视图可知,该几何体为如图所示四棱锥,该棱锥满足底面是直角梯形,且侧棱ED ⊥平面ABCD , 所以其体积为11(12)22232V =⨯⨯+⨯⨯=, 故选:B. 【点睛】方法点睛:该题考查的是有关根据几何体三视图求几何体体积的问题,解题方法如下:(1)首先根据题中所给的几何体的三视图还原几何体;(2)结合三视图,分析几何体的结构特征,利用体积公式求得结果.4.C解析:C 【分析】因为P BCE P ABC E ABC V V V ---=-则当E ABC V -取最大值时,三棱锥P BCE -体积有最小值,建立坐标系求得当点E 的高为3时,问题得解. 【详解】以点O 为原点,,,OA OD OB 分别为,,x y z 轴建立空间直角坐标系,如图所示:设点(),0,E x z ,依题意得()6,0,0A ,则()6,0,AE x z =- ,(),0,OE x z = 因为过BC 作截面AP α⊥于E ,所以AE OE ⊥则0AE OE ⋅=, 故()2600x x z -++= 所以()6z x x =-3x =时max 3z =又()143P BCE P ABC E ABC ABCV V V S z ---=-=-因为max 3z =所以三棱锥P BCE -体积的最小值()1114343643332P BCE ABC V S-=-=⋅⋅=故选:C 【点睛】关键点点晴:本题的解题关键是将问题转化为求E ABC V -的最大值,通过建系求得三棱锥E ABC -的高的最大值即可.5.D解析:D 【分析】先找到几何体的原图,再求出几何体的高,再求几何体的体积得解.【详解】由三视图可知几何体为图中的四棱锥1P CDD E -, 由题得22437AD =-=,所以几何体的高为7. 所以几何体的体积为11(24)676732⋅+⋅⋅=. 故选:D 【点睛】方法点睛:通过三视图找几何体原图常用的方法有:(1)直接法;(2)拼凑法;(3)模型法.本题利用的就是模型法.要根据已知条件灵活选择方法求解.6.D解析:D 【分析】先找到与平面11A BC 平行的平面OEFG ,确定点P 在直线FG 上,作出线面角,求出正弦,转化为求AP 的最小值. 【详解】分别取1,,CC BC BA 的中点,连接,,,OE EF FG GO ,并延长FG ,如图,由中位线性质可知11//OE AC , 1//EF BC ,且OEEF E =,故平面11//A BC 平面OGFE ,又P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC 则点P 在直线FG 上,OA ⊥平面ABC ,OPA ∴∠是直线OP 与平面ABC 所成角,sin OAOPA OP∴∠=, OA 为定值,∴当OP 最小时,正弦值最大,而OP所以当AP 最小时,sin OPA ∠最大, 故当AP FG ⊥时,sin OPA ∠最大, 设棱长为2, 则1212AG =⨯=,而30GAP ∠=︒,AP ∴=, 又1212OA =⨯=,sin OAOPA OP∴∠===故选:D 【点睛】关键点点睛:由P 是ABC 所在平面内的一个动点且满足//OP 平面11A BC ,转化为找过O 的平面与平面11A BC 平行,P 在所找平面与平面ABC 的交线上,从而容易确定出线面角,是本题解题的关键所在.7.D解析:D 【分析】在图形中找到(并证明)异面直线所成的角,然后在三角形中计算. 【详解】因为//AD BC ,所以PCB ∠是异面直线PC 与AD 所成角(或其补角), 又PA AD ⊥,所以PA BC ⊥,因为AB BC ⊥,AB PA A ⋂=,,AB PA ⊂平面PAB ,所以BC ⊥平面PAB , 又PB ⊂平面PAB ,所以PB BC ⊥. 由已知2PA AD ==,所以PB==cos11BCPCBPC∠===,所以异面直线PC与AD所成角的余弦值为11.故选:D.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.8.A解析:A【分析】利用正弦定理求出ABC的外接圆半径,则可求出三棱锥的高,进而求出三棱锥体积.【详解】设ABC的外接圆的圆心为D,半径为r,在ABC中,cos ABC∠==sin4ABC∴∠=,由正弦定理可得28sinACrABC==∠,即4r=,则3OD==,11133324O ABC ABCV S OD-∴=⨯⨯=⨯⨯=故选:A.【点睛】本题考查球内三棱锥的相关计算,解题的关键是利用正弦定理求出ABC 的外接圆半径,利用勾股关系求出高.9.C解析:C 【分析】A 通过平移,找出异面直线所成角,利用直角三角形求余弦即可. B.求出三角形的三边,通过勾股定理说明是不是直角三角形.C.求出点M 到面11BB D D 的距离,再求直线BM 与平面11BDD B 所成角的正弦.D.可通过线线平行证明线面平行. 【详解】 设正方体棱长为2A. 取1BB 的中点为N ,则//BC MN ,则AM 与BC 所成角为AMN ∠ 由BC ⊥面11ABB A ,故MN ⊥面11ABB A ,故MN AN ⊥,在Rt ANM △中,5tan AMN ∠=,故2cos 3AMN ∠=B. BDM 中,5BM =22BD =5DM =C. AC BD ⊥,1AC BB ⊥,故AC ⊥面11BB D D ,1//CC 面11BB D D ,故M 到面11BB D D 的距离等于C 到面11BB D D 的距离,即为122d AC =直线BM 与平面11BDD B 所成角为θ210sin 5d BM θ===直线BM 与平面11BDD B 所成角的正弦值等于105D.如图ACBD O =OM 为1ACC △的中位线,有1//OM AC故直线1AC 与平面BDM 平行故选:C 【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.10.A解析:A 【分析】先求出'A FDE -外接球的半径和外接圆的半径,再利用勾股定理求出外接球的球心到外接圆的圆心的距离,可得高h 的最大值. 【详解】因为A ,B ,C 三点重合于点A ',原来A B C ∠∠∠、、都是直角,所以折起后三条棱'''A F A D A E 、、互相垂直,所以三棱锥'A FDE -可以看作一个长方体的一个角,它们有相同的外接球,外接球的直径就是长方体的体对角线,即为2R==R=,DE DF====EF=在DFE△中,222cos2DE EF DFDEFDE EF+-∠===⨯,所以DEF∠为锐角,所以sin DEF∠==,DEF的外接圆的半径为2sinDFrDEF===∠则球心到DEF23,以FDE为底面的三棱锥G-DEF的高h的最大值为1R OO+23.故选:A.【点睛】本题考查了翻折问题和外接球的问题,关键点翻折前后量的变化及理解外接球和三棱锥的关系,考查了学生的空间想象力和计算能力.11.C解析:C【分析】首先通过延长直线,DC AB,交于点G,平面BAE变为GAE,连结PG,EG交于点F,再根据三角形中线的性质,求PFFC的值.【详解】延长,DC AB,交于点G,连结PG,EG交PC于点F,//AD BC,且2AD BC=,可得点,B C分别是,AG DG的中点,又点E是PD的中点,PC∴和GE是△PGD的中线,∴点F是重心,得2PFFC=故选:C 【点睛】关键点点睛:本题的关键是找到PC 与平面BAE 的交点,即将平面BAE 转化为平面GAE 是关键.12.C解析:C 【分析】小虫有两种爬法,一种是从点A 沿着侧面ACGF 和上底面BHFG 爬行,另一种是从点A 沿着侧面ACGF 和侧面BDCG 爬行,将两种情况下的两个面延展为一个面,计算出平面图形的对角线长,比较大小后可得结果. 【详解】由于长方体ACDE FGBH -的长、宽、高分别为2、1、1,则小虫从点A 沿着侧面AEHF 和上底面FHBG 爬行,以及小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,这两条线路的最短路程相等.①若小虫从点A 沿着侧面ACGF 和上底面BHFG 爬行,将侧面ACGF 和上底面BHFG延展为一个平面,如下图所示:则2AC BC ==,最短路程为2222AB AC BC +=②若小虫从点A 沿着侧面ACGF 和侧面BDCG 爬行,将面ACGF 和侧面BDCG 延展为一个平面,如下图所示:则3AD AC CD =+=,1BD =,最短路程为2210AB AD BD =+因为2210,因此,小虫爬行的最短路程为22 故选:C. 【点睛】方法点睛:(1)计算多面体或旋转体的表面上折线段的最值问题时,一般采用转化的方法进行,即将侧面展开化为平面图形,即“化折为直”或“化曲为直”来解决,要熟练掌握多面体与旋转体的侧面展开图的形状;(2)对于几何体内部折线段长的最值,可采用转化法,转化为两点间的距离,结合勾股定理求解.二、填空题13.【分析】由已知证明再由三角形相似列比例式可得证明利用基本不等式求得的最大值可得三棱锥体积的最大值【详解】由平面得又平面得又平面得而平面可得在中由得由得则由得又得即(当且仅当时等号成立)三棱锥体积的最解析:34【分析】由已知证明AE PC ⊥,再由三角形相似列比例式可得PE ,证明AD DE ⊥,利用基本不等式求得AD DE ⋅的最大值,可得三棱锥P ADE -体积的最大值. 【详解】由PA ⊥平面ABC ,得PA BC ⊥,又BC AB ⊥,PAAB A =,BC ∴⊥平面PAB ,得BC AD ⊥,又AD PB ⊥,PB BC B ⋂=, AD ∴⊥平面PBC ,得AD PC ⊥,而DE PC ⊥,AD DE D ⋂=,PC ∴⊥平面ADE ,可得AE PC ⊥.在Rt PAC △中,由23,2PA AC ==,得4PC =.由Rt PEA Rt PAC ∽,得PE PA PA PC =,则21234PA PE PC ===, 由3PE =,23PA =23AE =,又AD DE ⊥,2223AD DE AE ∴+==,得2232AD DE AD DE =+≥⋅, 即32AD DE⋅(当且仅当AD DE =时等号成立), ∴三棱锥P ADE -体积的最大值是1111333323224AD DE PE ⨯⨯⨯=⨯⨯⨯=.故答案为:34. 【点睛】方法点睛:解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.14.②③④【分析】取点为线段的中点可判断①建立空间直角坐标系假设存在点使得利用解出的值即可判断②;连接交于点证明线段到平面的距离为定值可判断③;求出点的坐标然后计算平面和平面的法向量即可判断④【详解】对解析:②③④. 【分析】取点M 为线段1BD 的中点可判断①,建立空间直角坐标系假设存在点M ,使得1B M AE ⊥,利用()1110AE B M AE B B BD λ⋅=⋅+=解出λ的值即可判断②;连接AC 、BD 交于点1O ,证明11//EO BD ,线段1BD 到平面AEC 的距离为定值,可判断③;求出点M 的坐标,然后计算平面AEC 和平面MAC 的法向量,即可判断④. 【详解】对于①:连接1AC 交1BD 于点O ,当点M 在O 点时直线AD 与直线1C M 相交,故①不正确,以D 为坐标原点,建立如图所示的空间直角坐标系,设正方体的边长为2,则()0,0,0D ,()10,0,2D ,()2,0,0A ,()0,2,0C ,()0,0,1E ,()2,2,0B ,()12,2,2B ,对于②:()2,0,1AE =-,假设存在点M ,使得1B M AE ⊥,()()()1110,0,22,2,22,2,22B M B B BD λλλλλ=+=-+--=---,[]0,1λ∈,所以14220AE B M λλ⋅=+-=,解得13λ=,所以当12D M MB =时1B M AE ⊥, 故②正确; 对于③:连接AC 、BD 交于点1O ,因为点E 是棱1DD 的中点,此时11//EO BD ,故线段1BD 到平面AEC 的距离为定值,所以四面体EMAC 的体积为定值,故③正确; 对于④:当12D M MB =时,442,,333M ⎛⎫⎪⎝⎭,()2,0,1AE =-,()2,2,0AC =-,设平面AEC 的法向量为()111,,m x y z =,由111120220m AE x z m AC x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩令12z =,可得11x =,11y =,可得()1,1,2m =,设平面MAC 的法向量为()222,,n x y z =,242,,333MA ⎛⎫=-- ⎪⎝⎭,由222222202420333n AC x y n MA x y z ⎧⋅=-+=⎪⎨⋅=--=⎪⎩解得:20y =,令 21x =可得22z =,所以1,1,1n ,因为1111120m n ⋅=⨯+⨯-⨯=,m n ⊥所以平面EAC ⊥平面MAC ,故④正确;故答案为:②③④.【点睛】方法点睛:证明面面垂直的方法(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可;(2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用);(4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.15.【分析】根据题意得平面在上取使得连接证得平面平面将空间中的动点轨迹的周长问题转化为求三角形边周长问题又代入计算即可【详解】解:如图正方体中连接:易得平面在上取使得连接易得根据线面平行判定定理证得平面【分析】根据题意得1BD ⊥平面1ABC ,在1,BB AB 上取,F G使得12,2BF FB AG GB ==连接,,GE EF GF 证得平面1//AB C 平面EFG ,将空间中的动点P 轨迹的周长问题转化为求三角形EFG 边周长问题,又GE EF GF ===,代入计算即可. 【详解】解:如图正方体中连接11,,AC B C B A :易得1BD ⊥平面1ABC ,在1,BB AB 上取,F G 使得12,2BF FB AG GB ==连接,,GE EF GF ,易得1//,//GE AC EF BC根据线面平行判定定理证得平面1//AB C 平面EFG所以1BD ⊥平面EFG所以线段,,GE EF GF 就是点P 的运动轨迹, 因为1223GE EF GF ==== 所以动点P 的运动轨迹周长为232GE EF GF ++==2【点睛】关键点点睛:本题考查线面垂直,面面平行的概念,解题的关键是借助图形将空间问题转化为平面问题.本题中根据1BD ⊥平面1ABC 及平面1//ABC 平面EFG 得到线段,,GE EF GF 就是点P 的运动轨迹,代值计算即可.16.4【分析】取中点连接再根据题意依次计算进而得球的球心即为(与重合)【详解】解:因为所以又因为所以所以因为平面平面平面平面平面所以平面取中点连接所以所以平面所以此时所以即球的球心球心即为(与重合)半径 解析:4【分析】取,AB AC 中点,D E ,连接DE ,DP ,再根据题意依次计算4EA EB EC EP ====,进而得球O 的球心O 即为E (O 与E 重合)【详解】 解:因为42BC =8AC =,AB BC ⊥, 所以42AB =4PA PB ==,所以222PA PB AB +=,所以PA PB ⊥,因为平面PAB ⊥平面ABC ,平面PAB ⋂平面ABC AB =,AB BC ⊥,BC ⊂平面ABC ,所以BC ⊥平面PAB ,取,AB AC 中点,D E ,连接DE ,DP所以//DE BC ,22DE =,22DP =所以DE ⊥平面PAB ,所以DE PD ⊥,此时,142EB AC EA EC ====, 224EP DP DE =+=, 所以4EA EB EC EP ====,即球O 的球心球心O 即为E (O 与E 重合),半径为4EA =.故答案为:4.【点睛】本题解题的关键在于寻找球心,在本题中,,PAB ABC △△均为直角三角形,故易得AC 中点即为球心.考查空间思维能力,运算求解能力,是中档题.17.【分析】取中点为过分别作底面的垂线根据题中条件得到;过分别作的垂线连接由二面角的定义结合线面垂直的判定定理及性质得到为二面角的平面角;为二面角的平面角得出令进而可求出最值【详解】取中点为过分别作底面解析:34【分析】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,根据题中条件,得到AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,由二面角的定义,结合线面垂直的判定定理及性质,得到MHN ∠为二面角M BC A--的平面角;PGO ∠为二面角A BC P --的平面角,得出tan 4tan PGO MHN ∠=∠,()23tan tan tan 14tan MHN PGO MHN MHNα∠=∠-∠=+∠,令tan 0x MHN =∠>,进而可求出最值.【详解】取BC 中点为E ,过P 、M 分别作底面的垂线PO 、MN ,则O 为ABC 的重心,MN ⊥平面ABC ;PO ⊥平面ABC ;由于点M 为棱PA 的中点,所以有AN NO OE ==,2PO MN =;过O 、N 分别作BC 的垂线OG 、NH ,连接MH ,PG ,因为BC ⊂平面ABC ,所以MN BC ⊥,同理PO BC ⊥;又MN NH N ⋂=,MN ⊂平面MNH ,NH ⊂平面MNH ,所以BC ⊥平面MNH ;因为MH ⊂平面MNH ,所以BC MH ⊥,所以MHN ∠为二面角M BC A --的平面角;同理BC PG ⊥,所以PGO ∠为二面角A BC P --的平面角,所以tan PO PGO OG ∠=,tan MN MHN HN∠=, 因为NO OE =,//OG NH ,所以12OG NH =; 因此2tan 4tan 12PO MN PGO MHN OG HN ∠===∠, 所以()2tan tan 3tan tan tan 1tan tan 14tan PGO MHN MHN PGO MHN PGO MHN MHN α∠-∠∠=∠-∠==+∠⋅∠+∠, 令tan 0x MHN =∠>,则2333tan 1444x x x x α=≤=+,当且仅当214x =,即12x =时,等号成立. 故答案为:34. 【点睛】关键点点睛: 求解本题的关键在于确定二面角M BC A --、A BC P --以及P BC M --三者之间的关系,由题中条件得出二面角A BC P --是二面角MBC A --的4倍,进而可求得结果. 18.【分析】设出外接球的半径球心的外心半径r 连接过作的平行线交于连接如图所示在中运用正弦定理求得的外接圆的半径r 再利用的关系求得外接球的半径运用球的表面积公式可得答案【详解】设三棱锥外接球的半径为球心为 解析:20π【分析】设出外接球的半径R 、球心O ,ABC 的外心1O 、半径 r , 连接1AO ,过O 作的平行线OE 交AD 于 E ,连接OA ,OD ,如图所示,在ABC 中,运用正弦定理求得 ABC 的外接圆的半径r ,再利用1,,R r OO 的关系求得外接球的半径,运用球的表面积公式可得答案.【详解】设三棱锥外接球的半径为R 、球心为O ,ABC 的外心为1O 、外接圆的半径为r ,连接1AO ,过O 作平行线OE 交AD 于E ,连接OA ,OD ,如图所示,则OA OD R ==,1O A r =,OE AD ⊥,所以E 为AD 的中点.在ABC中,由正弦定理得2sin BC r BAC ==∠r =. 在ABC 中,由余弦定理2222cos BC AB AC AB AC BAC =+-⋅⋅∠,可得2117963AB AB =+-⋅⋅,得4AB =.所以11sin 34223ABC S AB AC BAC =⋅⋅∠=⨯⨯⨯=△因为11333D ABC ABC V S AD AD -=⋅⋅=⨯=△,所以4AD =.连接1OO ,又1//OO AD ,所以四边形1EAOO 为平行四边形,1128EA OO AD ===,所以R ===所以该三棱锥的外接球的表面积()224π4π520πS R ===.故答案为:20π.【点睛】本题考查三棱锥的外接球,及球的表面积计算公式,解决问题的关键在于利用线面关系求得外接球的球心和球半径,属于中档题.19.①②【分析】采用逐一验证法根据线面平行线面垂直的判定定理以及线面距离判断可得结果【详解】由共面所以因为平面平面所以平面;故①正确;平面平面所以又因为平面平面所以故②正确;若则平面或EF 在平面ACD 内 解析:①②【分析】采用逐一验证法,根据线面平行,线面垂直的判定定理,以及线面距离,判断可得结果.【详解】由AB AD ⊥,,,EF AD AD EF AB ⊥,共面 ,所以//EF AB ,因为EF ⊄平面ABC ,AB 平面ABC ,所以//EF 平面ABC ;故①正确; BC ⊥平面ABD ,AD ⊂平面ABD ,所以BC AD ⊥,又因为AB AD ⊥,AB BC B ⋂=,AD ⊥平面ABC ,AC ⊂平面ABC ,所以AD AC ⊥,故②正确;若//EF CD ,则//EF 平面ACD ,或EF 在平面ACD 内,如图EF 与平面ACD 相交于点E ,显然不成立,故③不正确,故答案为:①②【点睛】本题主要考查了线线、线面之间的位置关系,考查了线面平行的判断以及由线面垂直证明线线垂直,属于中档题. 20.【分析】欲使圆柱侧面积最大需使圆柱内接于圆锥设圆柱的高为h 底面半径为r 用r 表示h 从而求出圆柱侧面积的最大值【详解】欲使圆柱侧面积最大需使圆柱内接于圆锥;设圆柱的高为h 底面半径为r 则解得;所以;当时取 解析:43π【分析】欲使圆柱侧面积最大,需使圆柱内接于圆锥,设圆柱的高为h ,底面半径为r ,用r 表示h ,从而求出圆柱侧面积的最大值.【详解】欲使圆柱侧面积最大,需使圆柱内接于圆锥;设圆柱的高为h ,底面半径为r , 23423h r -=,解得323h =; 所以()23222334S rh r r r πππ⎛⎫===- ⎪ ⎪⎝⎭圆柱侧; 当2r 时,S 圆柱侧取得最大值为43π 故答案为:43π.【点睛】本题考查了求圆柱侧面积的最值,考查空间想象能力,将问题转化为函数求最值,属于中档题.三、解答题21.(Ⅰ)证明见解析;(Ⅱ5 【分析】(Ⅰ)由中位线定理证明1//OM C D ,即可得线面平行;(Ⅱ)连1D O ,证明1D OD ∠为二面角1D AC D --的平面角, 在直角1D DO △中计算可得.【详解】解:(Ⅰ)连1BC ,则M 也为1BC 的中点,又M 为BD 的中点,所以1//OM C D ,因为OM ⊄平面11DB C ,1C D ⊂平面11DC B ,所以直线//OM 平面11DB C ;(Ⅱ)连1D O ,因为ABCD 是菱形,所以DO AC ⊥,又1111ABCD A BC D -为直棱柱,底面为菱形,所以11D A D C =,而O 为AC 中点,所以1D O AC ⊥,所以1D OD ∠为二面角1D AC D --的平面角,因为ABCD 是边长为2的菱形,且60BAD ∠=︒,所以1DO =,又12DD =, 由直棱柱知1DD DO ⊥,所以15DO =,所以115cos DO D OD D O ∠==.【点睛】方法点睛:本题考查证明线面平行,考查求二面角角,求二面角常用方法:(1)定义法:作出二面角的平面角并证明,然后在三角形中计算可得;(2)向量法:建立空间直角坐标系,求出两个平面的法向量夹角的余弦即可得二面角的余弦(注意判断二面角是锐角还是钝角).22.(1)证明见解析;(2)证明见解析.【分析】(1)根据三角形中位线的性质,得到//EF AB ,利用线面平行的判定定理证得结果; (2)根据面面垂直的性质定理,得到BD ⊥平面ACD ,进而证得BD AC ⊥.【详解】证明:(1)如图(2):在ABC 中,E 、F 分别是AC 、BC 中点,得//EF AB , 又AB ⊄平面DEF ,EF ⊂平面DEF ,//AB ∴平面DEF .(2)∵平面ACD ⊥平面BCD 且交线为CD ,BD CD ⊥,且BD ⊂平面BCD , ∴BD ⊥平面ACD ,又AC ⊂平面ACD∴BD AC ⊥.【点睛】方法点睛:该题考查的是有关空间关系的证明问题,解题方法如下:(1)熟练掌握线面平行的判定定理,在解题过程中,一定不要忘记线在面内、线在面外的条件;(2)根据面面垂直的条件,结合线线垂直,利用面面垂直的性质定理,得到线面垂直,进而证得线线垂直.23.(1)证明见解析;(2)证明见解析;(3)98. 【分析】(1)取PA 的中点G ,连接,BG EG ,证明四边形EFBG 为平行四边形,得出//EF BG ,再由线面平行的判定定理证明即可;(2)先证明PA ⊥平面ABCD ,从而得出PA CD ⊥,再由等腰三角形的性质得出AE PD ⊥,最后由面面垂直的判定定理证明即可;(3)以AFC △为底,12PA 为高,由棱锥的体积公式得出答案. 【详解】(1)如图,取PA 的中点G ,连接,BG EG .因为点,E G 分别为,PD PA 的中点,所以1//,2EG AD EG AD = 又因为F 是BC 的中点,四边形ABCD 是正方形,所以//BF EG 且BF EG = 故四边形EFBG 为平行四边形,所以//EF BG因为BG ⊂平面,ABP EF 不在平面ABP 内,所以//EF 平面ABP .(2)由条件知32,3PB PD PA AD AB =====,所以PAB △和PAD △都是等腰直角三角形,,PA AB PA AD ⊥⊥又因为,,AB AD A AB AD =⊂平面,ABCD 所以PA ⊥平面ABCD因为CD ⊂平面ABCD ,所以PA CD ⊥又因为,,AD CD PA AD A ⊥⋂=所以CD ⊥平面PAD ,所以CD AE ⊥因为E 是PD 的中点,所以AE PD ⊥又因为,,PD CD D PD CD ⋂=⊂平面PCD ,所以AE ⊥平面PCD因为AE ⊂平面,AEF 所以平面AEF ⊥平面PCD .(3)由图可知C AEF E ACF V V --=,1111319333232228E ACF ACF V S PA -=⨯=⨯⨯⨯⨯⨯=△, 即三棱锥C AEF -的体积为98 【点睛】 关键点睛:在证明线线平行时,关键是证明四边形EFBG 为平行四边形,从而得出//EF BG .24.(1)证明见解析;(232211【分析】。

高中数学必修二测试题及答案人教版

高中数学必修二测试题及答案人教版

第一章 空间几何体一、选择题1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).主视图 左视图 俯视图 (第1题) A .棱台 B .棱锥 C .棱柱 D .正八面体2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ).A .2+2B .221+C .22+2 D .2+13.棱长都是1的三棱锥的表面积为( ).A .3B .23C .33D .434.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).A .25πB .50πC .125πD .都不对 5.正方体的棱长和外接球的半径之比为( ). A .3∶1 B .3∶2 C .2∶3 D .3∶36.在△ABC 中,AB =2,BC =1。

5,∠ABC =120°,若使△ABC 绕直线BC 旋转一周,则所形成的几何体的体积是( ).A .29πB .27πC .25πD .23π7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .1608.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,且EF 与平面ABCD 的距离为2,则该多面体的体积为( ).A .29 B .5 C .6 D .2159.下列关于用斜二测画法画直观图的说法中,错误..的是( ). A .用斜二测画法画出的直观图是在平行投影下画出的空间图形B .几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同C .水平放置的矩形的直观图是平行四边形D .水平放置的圆的直观图是椭圆10.如图是一个物体的三视图,则此物体的直观图是( ).(第8题)(第10题)二、填空题11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.(第14题)15.已知一个长方体共一顶点的三个面的面积分别是2、3、6,则这个长方体的对角线长是___________,它的体积为___________.16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.三、解答题17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm 和40 cm,求它的深度.18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=22,AD =2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.(第20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?第一章 空间几何体参考答案A 组一、选择题 1.A解析:从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断可能是棱台. 2.A解析:原图形为一直角梯形,其面积S =21(1+2+1)×2=2+2.3.A解析:因为四个面是全等的正三角形,则S 表面=4×43=3. 4.B解析:长方体的对角线是球的直径, l =2225+4+3=52,2R =52,R =225,S =4πR 2=50π. 5.C解析:正方体的对角线是外接球的直径. 6.D解析:V =V 大-V 小=31πr 2(1+1。

新课标人教版B版高一数学必修2期中期末试卷(含答案)(2套)

新课标人教版B版高一数学必修2期中期末试卷(含答案)(2套)

普通高中课程标准实验教科书——数学第二册[人教版]高中学生学科素质训练新课标高一数学同步期中测试本试卷分第Ⅰ卷和第Ⅱ卷两部分.共150分.第Ⅰ卷(选择题,共50分)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.一个棱锥所有的棱长都相等,则该棱锥一定不是 ( ) A .三棱锥 B .四棱锥 C .五棱锥 D .六棱锥 2.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为 ( ) A .πQ B .2πQ C . 3πQ D . 4πQ3.已知高与底面的直径之比为2:1的圆柱内接于球,且圆柱的体积为500π,则球的体积 为 ( )A .π53500B .π5310000C .π5320000 D .π5325004.到空间四点距离相等的平面的个数为 ( )A .4B .7C .4或7D .7或无穷多 5.在阳光下一个大球放在水平面上, 球的影子伸到距球与地面接触点10米处, 同一时刻, 一根长1米一端接触地面且与地面垂直的竹竿的影子长为2米, 则该球的半径等于 ( ) A .10(5-2)米 B .(6-15)米C .(9-45)米D .52米6.已知ABCD 是空间四边形,M 、N 分别是AB 、CD 的中点,且AC =4,BD =6,则 ( )A .1<MN <5B .2<MN <10C .1≤MN ≤5D .2<MN <57.空间一个角的两边分别垂直于另一角的两边,则这两个角 ( )A .相等B .互补C .相等或互补D . 不确定8.已知平面α ⊥平面β ,m 是α 内一条直线,n 是β 内一条直线,且m ⊥n .那么,甲:m ⊥β ;乙:n ⊥α ;丙:m ⊥β 或n ⊥α ;丁:m ⊥β 且n ⊥α .这四个结论中,不正确的三个是( )A .甲、乙、丙B .甲、乙、丁9.如图,A —BCDE 是一个四棱锥,AB ⊥平面BCDE ,且四边 形BCDE 为矩形,则图中互相垂直的平面共有( )A .4组B .5组C .6组D .7组10.棱台的两底面积分别为S 上、S 下、平行于底面的戴面把棱台的高自上而下分为两段之比 为m ∶n 则截面面S 0为 ( )A .nm mS nS ++下上B .n m S m S n ++下上C .(nm mS nS ++下上)2D .(nm S m S n ++下上)2第Ⅱ卷(非选择题,共100分)二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.半径为a 的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为 .12.α 、β 是两个不同的平面,m 、n 是平面α 及β 之外的两条不同直线,给出四个论断:(1)m ⊥n (2)α ⊥β (3)n ⊥β (4)m ⊥α 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题___________.13.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分 别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= _____.14.还原成正方体后,其中两个完全一样的是.(1) 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)如图,长方体ABCD -A 1B 1C 1D 1中被截去一部分,其中EF ∥A 1D 1.剩下的几何体是什么?截取的几何体是什么?若FH ∥EG ,但FH<EG ,截取的几何体是什么?① ②③ ⑤ ⑥ ④④ ⑥ ①⑤ ③②① ⑤ ⑥ ④③ ②④ ② ⑥ ③ ①⑤16.(12分)有一正三棱锥和一个正四棱锥,它们的所有棱长都相等,把正三棱锥和正四棱锥的一个全等的面重合.①说明组合体是什么样的几何体?②证明你的结论.17.(12分)正四棱台的高,侧棱,对角线长分别为7cm,9cm,11cm,求它的侧面积.18.(12分)三棱锥S-ABC的三条侧棱两两垂直,SA=5,SB=4,SC=3,D为AB中点,E为AC中点,求四棱锥S-BCED的体积.19.(14分)如图,在正方体ABCD A B C D E F BB CD -11111中,、分别是、的中点 (1)证明:AD D F ⊥1; (2)求AE D F 与1所成的角; (3)证明:面面AED A FD ⊥11.20.(14分)如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE,CE=CA=2 BD,M是EA的中点,求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.高一新数学期中测试题参考答案一、DBDDA ADBCD.二、11a3;12.①③④⇒②;13.7∶5;14.②③;三、15.五棱柱,三棱柱,三棱台。

新人教版高中数学必修第二册第二单元《复数》测试(包含答案解析)

新人教版高中数学必修第二册第二单元《复数》测试(包含答案解析)
故选:A.
【点睛】
本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力.
12.A
解析:A
【分析】
先化简z,求出a,再判断即可.
【详解】

z不是纯虚数,则 ,所以 ,即 ,
所以 是 的充分而不必要条件.
故选:A.
【点睛】
本题主要考查根据复数的类型求参数,考查充分条件和必要条件的判断,考查逻辑思维能力和计算能力,属于常考题.
二、填空题
13.①②③【分析】①根据复数加法交换律判定;②结合复平面中复数模长的几何意义判定;③由判定;④结合复平面中向量数量积判定;⑤结合复平面中向量数量积判定【详解】解:①成立满足加法的交换律故①正确;②在复平
【详解】
用向量 表示 ,
因为 ,所以 ,
又 满足 或者 ,
则 可表示以O为起点,终点在以A为圆心,半径为r的圆上的向量,或终点在以B为圆心,半径为r的圆上的向量,则终点可能的个数即为n,
因为 ,所以在同一个圆上的两个点,形成的最小圆心角为 ,
如图所示,则最多有10个可能的终点,即n=10.
故选:C
【点睛】
综上可得上述命题中仍为真命题的序号为②④,
故选B.
【点睛】
本题考查了复数的概念和性质及复数的代数形式的运算法则,属基础题.
4.A
解析:A
【分析】
首先计算 ,之后应用复数的除法运算法则,求得结果.
【详解】

故选A.
【点睛】
该题考查的是有关复数的运算,属于简单题目.
5.C
解析:C
【解析】
【分析】

新人教版高中数学必修第二册第四单元《统计》检测卷(含答案解析)(2)

新人教版高中数学必修第二册第四单元《统计》检测卷(含答案解析)(2)

一、选择题1.某校高三年级有男生410人,学号为001,002,,410;女生290人,学号为411,412,,700.对高三学生进行问卷调查,按学号采用系统抽样的方法,从这700名学生中抽取10人进行问卷调查(第一组采用简单随机抽样,抽到的号码为030);再从这10名学生中随机抽取3人进行数据分析,则这3人中既有男生又有女生的概率是( )A .15B .310C .710D .452.图(1)是某品牌汽车2019年月销量统计图,图(2)是该品牌汽车月销量占所属汽车公司当月总销量的份额统计图,则下列说法错误的是( )A .该品牌汽车2019年全年销量中,1月份月销量最多B .该品牌汽车2019年上半年的销售淡季是5月份,下半年的销售淡季是10月份C .2019年该品牌汽车所属公司7月份的汽车销量比8月份多D .该品牌汽车2019年下半年月销量相对于上半年,波动性小,变化较平稳3.高考“33+”模式指考生总成绩由语文、数学、外语3个科目成绩和高中学业水平考试3个科目成绩组成.计入总成绩的高中学业水平考试科目,由考生根据报考高校要求和自身特长,在思想政治、历史、地理、物理、化学、生物6个科目中自主选择.某中学为了解本校学生的选择情况,随机调查了100位学生的选择意向,其中选择物理或化学的学生共有40位,选择化学的学生共有30位,选择物理也选择化学的学生共有10位,则该校选择物理的学生人数与该校学生总人数比值的估计值为( ) A .0.1 B .0.2 C .0.3 D .0.44.我们正处于一个大数据飞速发展的时代,对于大数据人才的需求也越来越大,其岗位大致可分为四类:数据开发、数据分析、数据挖掘、数据产品. 以北京为例,2018年这几类工作岗位的薪资(单位:万元/月)情况如下表所示:薪资/岗位[]0.5,1(]1,2(]2,3(]3,5数据开发8%25%32%35%数据分析15%36%32%17%数据挖掘9%12%28%51%数据产品7%17%41%35%由表中数据可得各类岗位的薪资水平高低情况为()A.数据挖掘>数据开发>数据产品>数据分析B.数据挖掘>数据产品>数据开发>数据分析C.数据挖掘>数据开发>数据分析>数据产品D.数据挖掘>数据产品>数据分析>数据开发5.我国古代数学算经史书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣()A.104人B.108人C.112人D.120人6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图,90后从事互联网行业岗位分布条形图,则下列结论错误的是()-年之间出生,80前指1979年及以前注:90后指1990年及以后出生,80后指19801989出生.A.互联网行业从业人员中从事技术和运营岗位的人数占总人数的三成以上B.互联网行业中从事技术岗位的人数超过总人数的20%C.互联网行业中从事运营岗位的人数90后一定比80前多D.互联网行业中从事技术岗位的人数90后一定比80后多CPI)与工业品7.如图所示是2018年11月份至2019年10月份的居民消费价格指数(()%PPI)的曲线图,从图中得出下面四种说法:出厂价格指数(()%①()%CPI 指数比相应时期的()%PPI 指数值要大; ②2019年10月份()%CPI 与()%PPI 之差最大;③2018年11月至2019年10月()%CPI 的方差大于()%PPI 的方差﹔ ④2018年11月份到2019年10月份的()%PPI 的中位数大于0. 则说法正确的个数为( ) A .1B .2C .3D .48.甲、乙、丙、丁四名同学在某次军训射击测试中,各射击10次.四人测试成绩对应的条形图如下,以下关于四名同学射击成绩的数字特征判断不正确...的是( )A .平均数相同B .中位数相同C .众数不完全相同D .甲的方差最小9.2021年起,我省将实行“3+1+2”高考模式,某中学为了解本校学生的选考情况,随机调查了100位学生,其中选考化学或生物的学生共有70位,选考化学的学生共有40位,选考化学且选考生物的学生共有20位.若该校共有1500位学生,则该校选考生物的学生人数的估计值为( ) A .300B .450C .600D .75010.已知数据122020,,,x x x 的平均数、标准差分别为90,20x x s ==,数据122020,,,y y y 的平均数、标准差分别为,y y s ,若5(1,2,,2020)2nn x y n =+=,则( )A .45,5y y s ==B .45,10y y s ==C .50,5y y s ==D .50,10y y s ==11.统计某校n 名学生的某次数学同步练习成绩(满分150分),根据成绩分数分成六组:[)90,100,[)100,110,[)110,120,[)120130,,[)130140,,[]140,150,绘制频率分布直方图如图所示,若已知不低于140分的人数为110,则n 的值是( )A .800B .900C .1200D .100012.甲、乙两名同学在5次数学考试中,成绩统计图用茎叶图表示如图所示,若甲、乙两人的平均成绩分别用x 甲、x 乙表示,则下列结论正确的是( )A .x x >甲乙,且甲比乙成绩稳定B .x x >甲乙,且乙比甲成绩稳定C .x x <甲乙,且甲比乙成绩稳定D .x x <甲乙,且乙比甲成绩稳定13.如图,是根据某班学生在一次数学考试中的成绩画出的频率分布直方图,若由直方图得到的众数,中位数和平均数(同一组中的数据用该组区间的中点值为代表)分别为,,a b c ,则( )A .b a c >>B .a b c >>C .2a cb +> D .2b ca +> 二、解答题14.某校为了增强学生的爱国情怀,举办爱国教育知识竞赛,从参加竞赛的学生中抽出60人,将其成绩分为六段[)40,50,[)50,60,⋯,[]90,100后画出如图频率分布直方图.观察图形,回答下列问题:(1)估计这次考试的众数m与中位数n(结果保留一位小数);(2)估计这次考试的及格率(60分及以上为及格).15.某市有100万居民,政府为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),,[4,4.5)分成9组,制成了如下的频率分布直方图:(1)求直方图中a的值;(2)估计居民月均用水量的众数、中位数(精确到0.01).16.如图,从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布表和频率分布直方图如下,回答下列问题:分组人数频率[39.5,49.5)a0.10[49.5,59.5)9x[59.5,69.5)b0.15[69.5,79.5)180.30[79.5,89.5)15y[89.5,99.5]30.05a b x y的值,并补全频率分布直方图;(1)分别求出,,,(2)估计这次环保知识竞赛平均分;(3)若从所有参加环保知识竞赛的学生中随机抽取一人采访,抽到的学生成绩及格的概率有多大?17.某校两个班级100名学生在一次考试中的成绩的频率分布直方图如图所示,其中成绩分组区如下表:组号第一组第二组第三组第四组第五组分组[50,60)[60,70)[70,80)[80,90)[90,100](1)求频率表分布直方图中a的值;(2)根据频率表分布直方图,估计这100名学生这次考试成绩的平均分;(3)现用分层抽样的方法从第三、四、五组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.18.为了落实习主席提出“绿水青山就是金山银山”的环境治理要求,某市政府积极鼓励居民节约用水.计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年200位居民每人的月均用水量(单位:吨),将数据按照[0,=. 1),[1,2),…,[8,9)分成9组,制成了如图所示的频率分布直方图,其中0.4a b(1)求直方图中,a b的值,并由频率分布直方图估计该市居民用水的平均数(每组数据用该组区间中点值作为代表);(2)设该市有40万居民,估计全市居民中月均用水量不低于2吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.19.辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的100名学生期中考试的语文、数学成绩都不低于100,110、100分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:[)[)140,150.110,120、[),、[],、[)130140120130(1)根据频率分布直方图,估计这100名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到0.01)(2)若这100名学生语文成绩某些分数段的人数x与数学成绩相应分数段的人数y之比如下表所示:分组区间[)100,110[)110,120[)120130, [)130140, :x y 1:31:13:4 10:1从数学成绩在[]130,150的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在[]140,150的概率.20.从某食品厂生产的面包中抽取100个,测量这些面包的一项质量指标值,由测量结果得如下频数分布表: 质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125)频数82237 28 5(1)在相应位置上作出这些数据的频率分布直方图;(2)估计这种面包质量指标值的平均数x (同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该食品厂生产的这种面包符合“质量指标值不低于85的面包至少要占全部面包90%的规定?”21.某大型企业为鼓励员工利用网络进行营销,准备为员工办理手机流量套餐.为了解员工手机流量使用情况,通过抽样,得到100位员工每人手机月平均使用流量L (单位:M )的数据,其频率分布直方图如图.(1)从该企业的100位员工中随机抽取1人,求手机月平均使用流量不超过900M的概率;(2)据了解,某网络运营商推出两款流量套餐,详情如下:套餐名称月套餐费(单位:元)月套餐流量(单位:M)A20700B301000流量套餐的规则是:每月1日收取套餐费.如果手机实际使用流量超出套餐流量,则需要购买流量叠加包,每一个叠加包(包含200M的流量)需要10元,可以多次购买,如果当月流量有剩余,将会被清零.该企业准备订购其中一款流量套餐,每月为员工支付套餐费,以及购买流量叠加包所需月费用.若以平均费用为决策依据,该企业订购哪一款套餐更经济?22.某校从高二年级学生中随机抽取100名学生,将他们某次考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示),(1)求分数在[70,80)中的人数;(2)若用分层抽样的方法从分数在[40,50)和[50,60)的学生中共抽取5 人,该5 人中成绩在[40,50)的有几人?(3)在(2)中抽取的5人中,随机选取2 人,求分数在[40,50)和[50,60)各1 人的概率.23.哈三中数学竞赛辅导班进行选拔性测试,且规定:成绩大于等于110分的有参加资格,110分以下(不包括110分)的则淘汰.若现有1500人参加测试,频率分布直方图如下:(Ⅰ)求获得参加资格的人数;(Ⅱ)根据频率直方图,估算这1500名学生测试的平均成绩.24.我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;分组频数频率[50,60)20.04[60,70)80.16[70,80)10[80,90)[90,100]140.28合计 1.00如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.25.已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.26.有一容量为50的样本,数据的分组以及各组的频数如下:[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;[21.5,24.5),11;[24.5,27.5),10;[27.5,30.5),5;[30.5,33.5],4.(1)列出样本的频率分布表.(2)画出频率分布直方图.(3)根据频率分布表,估计数据落在[15.5,24.5)内的可能性约是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用系统抽样可知,这10个人中男生有6人,女生有4人,计算出所抽3人全是男生或女生的概率,利用对立事件的概率公式可计算出结果.【详解】利用系统抽样从这700名学生中抽取10人进行问卷调查,分段间隔为70,由于第一组抽到的号码为030,所抽取的10人号码依次为030、100、170、240、310、380、450、520、590、660,其中男生6人,女生4人,因此,从这10名学生中随机抽取3人进行数据分析,则这3人中既有男生又有女生的概率是33463104 15C CPC+=-=.故选:D.【点睛】本题考查古典概型概率的计算,考查了系统抽样、组合计数原理以及对立事件概率公式的应用,考查计算能力,属于中等题.2.C解析:C【分析】根据图(1)中的条形统计图可判断出A、B、D选项的正误,结合图(1)和图(2)比较该品牌汽车所属公司7月份和8月份销量的大小,可判断出C选项的正误.【详解】根据图(1)中的条形统计图可知,该品牌汽车2019年全年销量中,1月份月销量最多,A选项正确;该品牌汽车2019年上半年销量最少的月份是5月份,下半年销量最少的月份是10月份,B 选项正确;由条形统计图中的波动性可知,该品牌汽车2019年下半年月销量相对于上半年,波动性小,变化较平稳,D选项正确;由图(1)和图(2)可知,该品牌汽车7月份和8月份的销量相等,但该品牌汽车7月份的销量占该品牌汽车所属公司当月总销量的比例较8月份的大,所以,2019年该品牌汽车所属公司7月份的汽车销量比8月份少,C选项错误.故选:C.【点睛】本题考查条形统计图与频率分布折线图的应用,考查学生数据处理的能力,属于中等题. 3.B解析:B【分析】计算选择物理的学生人数为20,再计算比值得到答案.【详解】选择物理的学生人数为40301020-+=,即该校选择物理的学生人数与该校学生总人数比值的估计值为200.2 100=.故选:B【点睛】本题考查了根据样本估计总体,意在考查学生的应用能力.4.B解析:B【解析】【分析】计算各岗位的平均薪资,即可比较各岗位平均工资的高低.【详解】由表格中的数据可知,数据开发岗位的平均薪资为0.750.08 1.50.25 2.50.3240.25 2.235⨯+⨯+⨯+⨯=(万元),数据分析岗位的平均薪资为0.750.15 1.50.36 2.50.3240.17 2.1325⨯+⨯+⨯+⨯=(万元),数据挖掘岗位的平均薪资为0.750.09 1.50.12 2.50.2840.51 2.9875⨯+⨯+⨯+⨯=(万元),数据产品岗位的平均薪资为0.750.07 1.50.17 2.50.4140.35 2.7325⨯+⨯+⨯+⨯=(万元),因此,各类岗位的薪资水平高低情况为:数据挖掘>数据产品>数据开发>数据分析,故选B.【点睛】本题考查平均数的计算,考查学生对数据的收集和分析能力,解题关键就是频率分布表中平均数公式的应用,考查计算能力,属于中等题.5.B解析:B【详解】 由题设可知这是一个分层抽样的问题,其中北乡可抽取的人数为8100810030030010881007488691222500⨯=⨯=++,应选答案B . 6.D解析:D【分析】根据整个互联网行业从业者年龄分布饼状图、90后从事互联网行业岗位分布条形图,对四个选项逐一分析,即可得出正确选项.【详解】对于选项A ,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术和运营岗位的人数占的比分别为39.6%和17%,则“90后”从事技术和运营岗位的人数占总人数的()56%39.6%17%31.7%⨯+≈. “80前”和“80后”中必然也有从事技术和运营岗位的人,则总的占比一定超过三成, 故选项A 正确;对于选项B ,因为互联网行业从业人员中,“90后”占比为56%,其中从事技术岗位的人数占的比为39.6%,则“90后”从事技术岗位的人数占总人数的56%39.6%22.2%⨯≈.“80前”和“80后”中必然也有从事技术岗位的人,则总的占比一定超过20%,故选项B 正确;对于选项C ,“90后”从事运营岗位的人数占总人数的比为56%17%9.5%⨯≈, 大于“80前”的总人数所占比3%,故选项C 正确;选项D ,“90后”从事技术岗位的人数占总人数的56%39.6%22.2%⨯≈,“80后”的总人数所占比为41%,条件中未给出从事技术岗位的占比,故不能判断,所以选项D 错误.故选:D.【点睛】关键点点睛:本题考查利用扇形统计图和条形统计图解决实际问题,解本题的关键就是利用条形统计图中“90后”事互联网行业岗位的占比乘以“90后”所占总人数的占比,再对各选项逐一分析即可.7.B解析:B【分析】根据题中所给的图,观察曲线的形状,以及对应的走向,分析可得结果.【详解】因为消费价格指数(()%CPI )曲线在工业品出厂价格指数(()%PPI )曲线的上方, 所以()%CPI 指数比相应时期的()%PPI 指数值要大,所以①正确;由图可知,2019年10月份()%CPI 最大,()%PPI 值最小,所以其差最大,所以②正确;2018年11月至2019年10月()%CPI 较平稳,()%PPI 的波动性更大,所以2018年11月至2019年10月()%CPI 的方差小于()%PPI 的方差,所以③错误; 2018年11月份到2019年10月份的()%PPI 的值有5个正的,4个负数,三个0, 所以中位数为0,所以④错误;所以正确的命题为两个,故选:B.【点睛】该题考查的是有关统计的问题,涉及到的知识点有曲线图的应用,属于简单题目. 8.D解析:D【分析】观察四名同学的统计图的特征,四位同学的直方图都关于5环对称,因此它们的平均数都是5,中位数相同,众数显然不完全相同,根据方差的定义分别计算四名同学的方差即可得出结论.【详解】解:由图的对称性可知,平均数都为5;由图易知,四组数据的众数不完全相同,中位数相同;记甲、乙、丙、丁图所对应的方差分别为22221234,,,s s s s ,则()()2221450.5650.51s =-⨯+-⨯=,()()()22222450.3550.4650.30.6s =-⨯+-⨯+-⨯=,()()()()()2222223350.3450.1550.2650.1750.3 2.6s =-⨯+-⨯+-⨯+-⨯+-⨯=, ()()()()()2222224250.1450.3550.2650.3850.1 2.4s =-⨯+-⨯+-⨯+-⨯+-⨯=, 所以丙的方差最大.故选:D .【点睛】本小题考查统计图表、数字特征的概念等基础知识;考查运算求解能力;考查数形结合思想、统计与概率思想;考查直观想象、数据处理、数学运算等核心素养,体现基础性、应用性.9.D解析:D【分析】先求出100位样本中选考生物没有选考化学的学生共有704030-=位,根据已知选考化学且选考生物的学生共有20位,得到选考生物的学生有30+20=50位,计算比值估计选考生物的总体人数.【详解】因为选考化学或生物的学生共有70位,选考化学的学生共有40位,所以选考生物没有选考化学的学生共有704030-=位,又选考化学且选考生物的学生共有20位,所以选考生物的学生有30+20=50位所以在100位学生中选考生物的占比为50100, 该校共有1500位学生,则该校选考生物的学生人数的估计值为501500=750100⨯人 故选:D【点睛】本题考查用样本估计总体,属于基础题.利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.10.D解析:D【分析】 分别代入平均数和标准差的公式,得到x 和y 的关系,以及y s 和x s 的关系,计算求值.【详解】()51,2,...,20202n n x y n =+= 202012202012...1155...552020202022220202x x x x x x y ⎡⎤⎡+++⎤⎛⎫⎛⎫⎛⎫⎛⎫∴=++++++=+⨯ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 15502x =+=,y s ==11201022x s ==⨯=. 故选:D本题考查样本平均数和标准差的计算公式,重点考查计算化简能力,属于中档题型,本题的关键是利用公式正确化简两个数据的平均数和标准差.11.D解析:D【分析】由频率分布直方图的性质求出m =0.011,从而不低于140分的频率为0.011100.11⨯=,由此能求出n 的值.【详解】由频率分布直方图的性质得:()100.0310.0200.0160.0160.0061m +++++=, 解得0.011m =.因为不低于140分的频率为0.011100.11⨯=, 所以11010000.11n ==. 故选:D.【点睛】 本题主要考查了频率分布直方图的性质,意在考查学生的转化能力和计算求解能力,属于容易题.12.A解析:A【分析】利用茎叶图求出甲、乙两位同学的平均成绩和方差,分别比较这两个数的大小,可得出结论.【详解】 由茎叶图可知,甲同学成绩的平均数为8889909192905x ++++==甲, 方差为24101425S ++++==甲, 乙同学成绩的平均数为8388898991885x ++++==乙, 方差为22508198.65S ++++==乙,则x x >甲乙,22S S <甲乙, 因此,x x >甲乙,且甲比成绩稳乙定,故选A .【点睛】本题考查茎叶图,考查平均数和方差的计算,在求解有关茎叶图中数据的计算时,先将数据由小到大或由大到小排列,结合相关公式进行计算, 考查计算能力,属于中等题. 13.B解析:B根据频率分布直方图读出众数a ,计算中位数b ,平均数c ,再比较大小.【详解】 由频率分布直方图可知:众数7080752a +==; 中位数应落在70-80区间内,则有:0.01100.015100.015100.03(70)0.5b ⨯+⨯+⨯+⨯-=,解得:22017333b ==; 平均数4050506060700.01100.015100.01510222c +++=⨯⨯+⨯⨯+⨯⨯+ 70808090901000.03100.025100.00510222+++⨯⨯+⨯⨯+⨯⨯ =4.5+8.25+9.75+22.5+21.25+4.75=71所以a b c >>故选:B【点睛】从频率分布直方图可以估计出的几个数据:(1)众数:频率分布直方图中最高矩形的底边中点的横坐标;(2)平均数:频率分布直方图每组数值的中间值乘以频率后相加;(3)中位数:把频率分布直方图分成两个面积相等部分的平行于y 轴的直线横坐标.【分析】设样本数据l x 的均值为x ,方程为2s ,标准差为s ,由已知得新样本2i i y x m =+的均值为2x m +,方差为222s ,标准差为2s ,代入可得选项.【详解】设样本数据l x 的均值为x ,方程为2s ,标准差为s ,则新样本2i i y x m =+的均值为2x m +,方差为222s ,标准差为2s ,所以24y x m m =+=+,28s =,所以标准差为s=22s =⨯=故选:B.【点睛】本题考查均值、方差、标准差的性质,属于中档题.二、解答题14.(1)m =75;73.3n ≈;(2)75%.【分析】(1)根据定义确定样本众数,估计总体众数即可,先利用频率之和为1求参数a ,再根据定义求样本中位数,估计总体中位数即可;(2)先判断样本中60分及以上分数在第三、四、五、六组,再计算频率和及估计了总体【详解】解:(1)众数是最高小矩形中点的横坐标,故众数是75,故估计这次考试的众数m =75; 由频率之和为1得:()0.0120.030.0250.005101a ++++⨯=,得0.015a =,中位数要平分频率分布直方图的面积,前三个小矩形面积之和为()0.010.0150.015100.4++⨯=,故样本中位数是0.50.47073.30.03-+≈,故估计这次考试的中位数73.3n ≈; (2)依题意,60分及以上分数在第三、四、五、六组,频率和为()0.0150.030.0250.005100.7575%+++⨯==,即抽样学生的合格率是75%, 故估计这次考试的及格率75%.【点睛】结论点睛:频率分布直方图的相关公式以及数字特征的计算,①直方图中各个小长方形的面积之和为1;②直方图中纵轴表示频率除以组距,故每组样本中的频率为组距乘以小长方形的高,即矩形的面积;③直方图中每组样本的频数为频率乘以总数;④最高的小矩形底边中点横坐标即是众数;⑤中位数的左边和右边小长方形面积之和相等;⑥平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.15.(1)0.3a =;(2)众数2.25吨,中位数约为2.06吨.【分析】(1)由直方图中各矩形的面积之和为1能求出a 的值;(2)由频率分布直方图中最高矩形中点横坐标以及直方图左右两边面积相等处横坐标表示可求众数和中位数.【详解】(1)由频率分布直方图得:(0.080.160.400.520.120.080.04)0.51a a ++++++++⨯=,解得0.3a =.(2)由频率分布直方图估计居民月均用水量的众数为:2 2.5 2.252+=. [0,2)的频率为:(0.080.120.30.4)0.50.45+++⨯=,[2,2.5)的频率为:0.520.50.26⨯=,∴中位数为:0.50.4520.5 2.060.26-+⨯≈【点睛】直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.16.(1)6a =,9b =,0.15x =,0.25y =(2)70.5(3)0.75【分析】(1)根据频率分布表的相关计算即可求出,,,a b x y 的值,再作出频率分布直方图. (2)用组中给出的数据代入相应的公式即可估计平均分(3)本题考察的是某一组的概率问题,先求出满足条件的本次竞赛及格率,用样本估计总体,每个人被抽到的概率相同,故可以求出抽到的学生成绩几个的概率.【详解】(1)6a =,9b =,0.15x =,0.25y =(2)用组中值估计平均分:44.50.154.50.1564.50.1574.50.384.50.2594.50.0570.5⨯+⨯+⨯+⨯+⨯+⨯= (3)本次竞赛及格率为:0.015100.025100.03100.005100.75⨯+⨯+⨯+⨯=,用样本估计总体,每个人被抽到的概率相同, ∴从所有参加环保知识竞赛的学生中随机抽取一人采访,抽到的学生成绩及格的概率为0.75.考点:(1)互斥事件的概率加法公式(2)频率分布表17.(1)a =0.005;(2)74.5;(3)13【分析】(1)根据各组的频率之和为1计算即可;(2)每组的中值与该组频率之积的和即为平均值计算即可;(3)根据分层抽样得到各组抽出人数,列出基本事件,找到所求事件包含的基本事件个数,利用古典概型求解即可.【详解】(1)由题意得10a +0.01×10+0.02×10+0.03×10+0.035×10=1,所以a =0.005.(2)由直方图分数在[50,60]的频率为0.05,[60,70]的频率为0.35,[70,80]的频率为0.30,[80,90]的频率为0.20,[90,100]的频率为0.10,所以这100名学生期中考试数学成绩的平均分的估计值为:55×0.05+65×0.35+75×0.30+85×0.20+95×0.10=74.5(3)由直方图,得:第3组人数为0.3×100=30,第4组人数为0.2×100=20人,第5组人数为0.1×100=10人.所以利用分层抽样在60名学生中抽取6名学生,每组分别为:第3组:306360⨯=人, 第4组:206260⨯=人, 第5组:106160⨯==1人. 所以第3、4、5组分别抽取3人、2人、1人.设第3组的3位同学为A 1,A 2,A 3,第4组的2位同学为B 1,B 2,第5组的1位同学为C 1,则从六位同学中抽两位同学有15种可能如下:(A 1,A 2),(A 1,A 3),(A 2,A 3),(B 1,B 2),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 1,C 1),(A 2,C 1),(A 3,C 1),(B 1,C 1),(B 2,C 1),其中恰有1人的分数不低于90(分)的情形有:(A 1,C 1),(A 2,C 1),(A 3,C 1),(B 1,C 1),(B 2,C 1),共5种. 所以恰有1人的分数不低于90分的概率为51153=. 【点睛】本题主要考查了频率分布直方图,均值,古典概型,分层抽样,属于中档题.18.(1)0.15a =,0.06b =;4.07(2)35.2万;(3) 5.8x =【分析】(1)由频率之和为1以及0.4a b =列方程组求得,a b 的值,并由频率分布直方图中间值作为代表,计算出平均数;(2)计算不低于2吨人数对应的频率,求出对应的人数;(3)由频率分布直方图计算频率,可判断56x <<,再根据频率列出方程,求出x 的值.【详解】解:(1)由频率分布直方图可得 0.04+0.08+0.200.260.040.021a a b ++++++=,又0.4a b =,则0.15a =,0.06b =,该市居民用水的平均数估计为:0.50.04 1.50.08 2.50.15 3.50.20 4.50.26x =⨯+⨯+⨯+⨯+⨯5.50.156.50.067.50.048.50.02 4.07+⨯+⨯+⨯+⨯=;(2)由频率分布直方图可得,月均用水量不超过2吨的频率为:0.040.080.12+=,。

高中数学必修2立体几何考题(附答案)(最新整理)

高中数学必修2立体几何考题(附答案)(最新整理)

,与CM 交于Q (只写作法,不必证明ON 确定一个平面α.两两相交,有三条交线OP 、CM 必相交,记交点为Q .OQ 与AN 交于P ,与CM .143B C 中,AB =BC =B B =aBC=a,∠ABC=90°,-A1B1C1D1中,O,MBD1的公垂线;所成的角的余弦值;,求异面直线AA1与BD1的距离.的中点,平行的平面,交侧棱PC于点E,又作,则O为AC的中点,连结∩平面BDE=OE,∴PA底面ABCD,与平面ABC所成角的余弦值.⊥l1,MN∩l1=M,可得,可知AN=NB且AN⊥内的射影,ABC的中心.连结BH,中,CB=CD,AD⊥BD,点分别是AB、BD的中点.本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、分别是AB、BD的中点,所以ACD,∴直线EF∥平面上,为异面直线BF所以FA,ADFA=a,,则MP⊥CE.又⊥平面CDE.因为PC=PD,所B 1C 1D 1中,AD ⊥BD 的中点.D 与DE 所成的角.,A 1E =DE =a ,52,求B1C与平面BCD所成的角的大小.,连结EF,为平行四边形,从而AF∥DE.⊥平面BCC1,从而AF⊥BC的垂直平分线,,故∠AGC为二面AB=2,BC=2BAD=90°,PA=AD=DC=2,AB所成的角的正弦值;的距离.证明:如图,在直角梯形ABCD中,AD=DC=2,.在平面ABCD内的射影,的底面是正方形,PA⊥底面A 1B 1C 1为直三棱柱,,∠ABC =60°,由正弦定理得∠ABB 1A 1是菱形且是正三角形,=a ,32a =a 3.32116两点间的球面距离为,点A 与B 、π3BAC =,设74、;到平面SBD 的距离;⊥AC ,又∵SA ⊥平面BED ⊥平面SAC .由三垂线定理得BD ⊥SO .AO =AC 12,S =BD ·SO =·211,ABC =∠BCD =90°的中点,M∈BB1,异面直线MN的中点;所成角的大小;的大小.,连结PM,PN.PN,又∵AA1⊥MN,MN∩PN,∴PM∥AB,与平面ADD 1A 1所成的角.=1,PN =,12PNM =arctan2.所成的角为arctan2.是BB 1的中点,∴A 1N =AN ,A 1M MN ≌△AMN .交MN 于G ,连结A 1G ,则∠A 1GA G =GA =,305=-,∴∠A GA =arccos(--AA 212、CF 都与平面ABCD 垂直,的大小;F -ABCD 公共部分的体积.本题考查空间位置关系,二面角平面角的作法以及空间几何体的体积计算等知识.考查利用综合法或向量法解决立体几何问题的能力.交于菱形的中心O ,过O 作OG ⊥平面ACF ,故BD ⊥AF AF ,DG ⊥AF ,∠BGD π2所在平面和圆O所在的平面互相垂直.已知;所成角的大小;D-FE-B的大小为⊥平面ABEF,CB⊥AB。

人教版高中数学必修2第二章测试题A组及答案解析

人教版高中数学必修2第二章测试题A组及答案解析

人教版高中数学必修2第二章测试题A组及答案解析第二章点、直线、平面之间的位置关系一、选择题1.设 $\alpha$,$\beta$ 为两个不同的平面,$l$,$m$ 为两条不同的直线,且 $l\subset\alpha$,$m\subset\beta$,有如下的两个命题:①若 $\alpha\parallel\beta$,则 $l\parallel m$;②若 $l\perp m$,则 $\alpha\perp\beta$。

那么()。

A。

①是真命题,②是假命题B。

①是假命题,②是真命题C。

①②都是真命题D。

①②都是假命题2.如图,ABCD为正方体,下面结论错误的是()。

A。

BD $\parallel$ 平面CBB。

AC $\perp$ BDC。

AC $\perp$ 平面CBD。

异面直线AD与CB角为60°3.关于直线 $m$,$n$ 与平面 $\alpha$,$\beta$,有下列四个命题:① $m\parallel\alpha$,$n\parallel\beta$ 且$\alpha\parallel\beta$,则 $m\parallel n$;② $m\perp\alpha$,$n\perp\beta$ 且 $\alpha\perp\beta$,则$m\perp n$;其中真命题的序号是()。

A。

①②B。

③④C。

①④D。

②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线 $l_1$,$l_2$ 与同一平面所成的角相等,则$l_1$,$l_2$ 互相平行④若直线 $l_1$,$l_2$ 是异面直线,则与 $l_1$,$l_2$ 都相交的两条直线是异面直线其中假命题的个数是()。

A。

1B。

2C。

3D。

45.下列命题中正确的个数是()。

①若直线 $l$ 上有无数个点不在平面 $\alpha$ 内,则$l\parallel\alpha$②若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都没有公共点A。

最新人教版高中数学必修第二册第五单元《概率》检测题(含答案解析)(2)

最新人教版高中数学必修第二册第五单元《概率》检测题(含答案解析)(2)

一、选择题1.某地有A ,B ,C ,D 四人先后感染了传染性肺炎,其中只有A 到过疫区,B 确定是受A 感染的.对于C 因为难以判定是受A 还是受B 感染的,于是假定他受A 和B 感染的概率都是12.同样也假定D 受A ,B 和C 感染的概率都是13.在这种假定下,B ,C ,D 中恰有两人直接受A 感染的概率是( ) A .16B .13C .12D .232.如果一个三位数的十位上的数字比个位和百位上的数字都大,则称这个三位数为“凸数”(如132),现从集合{}1,2,3,4中任取3个互不相同的数字,组成一个三位数,则这个三位数是“凸数”的概率为( ) A .23B .112C .16D .133.袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是( )A .恰有1个白球和全是白球B .至少有1个白球和全是黑球C .至少有1个白球和至少有2个白球D .至少有1个白球和至少有1个黑球4.设集合{0,1,2}A =,{0,1,2}B =,分别从集合A 和B 中随机抽取一个数a 和b ,确定平面上的一个点(,)P a b ,记“点(,)P a b 满足a b n +=”为事件n C (04,)n n N ≤≤∈,若事件n C 的概率最大,则n 的可能值为( ) A .2B .3C .1和3D .2和45.下列说法正确的是( )A .由生物学知道生男生女的概率约为0.5,一对夫妇先后生两小孩,则一定为一男一女B .一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C .10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大D .10张票中有1张奖票,10人去摸,无论谁先摸,摸到奖票的概率都是0.16.一个三位数的百位,十位,个位上的数字依次是,,a b c ,当且仅当a b c b >>且时称为“凹数”,若{},,1234a b c ∈,,,,从这些三位数中任取一个,则它为“凹数”的概率是 A .13B .532C .732D .7127.素数分布是数论研究的核心领域之一,含有众多著名的猜想.19世纪中叶,法国数学家波利尼亚克提出了“广义孪生素数猜想”:对所有自然数k ,存在无穷多个素数对(2)p p k +,.其中当1k =时,称(2)p p +,为“孪生素数”,2k =时,称(4)p p +,为“表兄弟素数”.在不超过30的素数中,任选两个不同的素数p 、q (p q <),令事件(){A p q =,为孪生素数},(){B p q =,为表兄弟素数},{()|4}C p q q p =-≤,,记事件A 、B 、C 发生的概率分别为()P A 、()P B 、(C)P ,则下列关系式成立的是( ) A .()()()P A P B P C = B .()()()P A P B P C += C .()()()P A P B P C +> D .()()()P A P B P C +<8.某普通高校招生体育专业测试合格分数线确定为60分,甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为( ) A .0.015 B .0.005C .0.985D .0.9959.如果从1,2,3,4,5中任取2个不同的数,则这2个数的和能被3整除的概率为( ) A .25 B .310C .15D .1210.六个人排队,甲乙不能排一起,丙必须排在前两位的概率为( ) A .760B .16C .1360D .1411.在20张百元纸币中混有4张假币,从中任意抽取2张,将其中一张在验钞机上检验发现是假币,则这两张都是假币的概率是( ) A .335B .338C .217D .以上都不正确12.今年“五一”小长假期间,某博物馆准备举办-次主题展览,为了引导游客有序参观,该博物馆每天分别在10时,13时,16时公布实时观展的人数.下表记录了5月1日至5日的实时观展人数:通常用实时观展的人数与博物馆的最大承载量(同一时段观展人数的饱和量)之比来表示观展的舒适度,50%以下称为“舒适”,已知该博物馆的最大承载量是1万人.若从5月1日至5日中任选2天,则这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率为( ) A .12B .25C .35D .3413.某校3名教师和5名学生共8人去北京参加学习方法研讨会,需乘坐两辆车,每车坐4人,则恰有两名教师在同一车上的概率( ) A .78B .67C .37D .13二、解答题14.6月17日是联合国确定的“世界防治荒漠化和干旱日”,为增强全社会对防治荒漠化的认识与关注,聚焦联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗埔中随机地抽测了200株树苗的高度(单位:cm ),得到以下频率分布直方图.(1)求直方图中a 的值及众数、中位数; (2)估计苗埔中树苗的平均高度;(3)在样本中从205cm 及以上的树苗中按分层抽样抽出5株,再从5株中抽出两株树苗,其中含有215cm 及以上树苗的概率.15.某班倡议假期每位学生每天至少锻炼一小时.为了解学生的锻炼情况,对该班全部34名学生在某周的锻炼时间进行了调查,调查结果如下表: 锻炼时长(小时) 5 6 7 8 9 男生人数(人) 1 2 4 3 4 女生人数(人)38621(Ⅱ)若从锻炼8小时的学生中任选2人参加一项活动,求选到男生和女生各1人的概率;(Ⅲ)试判断该班男生锻炼时长的方差21s 与女生锻炼时长的方差22s 的大小.(直接写出结果)16.新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动.开学后,某校采用分层抽样的方法从高中三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查. 已知该校高一年级共有学生660人,高三年级共有540人,抽取的样本中高二年级有50人. 下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表.x y z的值(2)求频率分布表中实数,,(3)已知日睡眠时间在区间[6,6.5)内的5名高二学生中,有2名女生,3名男生,若从中任选3人进行面谈,求选中的3人恰好为两男一女的概率.17.某学习研究机构调研数学学习成绩对物理学习成绩的影响,随机抽取了100名学生的数学成绩和物理成绩(单位:分).率;(2)完成下面的2×2列联表.附()()()()()22n ad bcKa b c d a c b d-=++++18.甲、乙两队举行围棋擂台赛,规则如下:两队各出3人,排定1,2,3号.第一局,双方1号队员出场比赛,负的一方淘汰,该队下一号队员上场比赛.当某队3名队员都被淘汰完,比赛结束,未淘汰完的一方获胜.如图表格中,第m行、第n列的数据是甲队第m号队员能战胜乙队第n号队员的概率.3名队员都淘汰的概率;(2)比较第三局比赛,甲队队员和乙队队员哪个获胜的概率更大一些?19.高考改革后,学生除了语数外三门必选外,可在A类科目:物理、化学、生物和B类科目:政治、地理、历史共6个科目中任选3门.(1)求小明同学选A类科目数X的分布列.(2)求小明同学从A类和B类科目中均至少选择1门科目的概率.20.城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):(1)估计这60名乘客中候车时间少于10分钟的人数;(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.21.某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗A 、B 、C .经过引种实验发现,引种树苗A 的自然成活率为0.7,引种树苗B 、C 的自然成活率均为()0.60.8p p ≤≤.(1)任取树苗A 、B 、C 各一棵,估计自然成活的棵数为X ,求X 的分布列及其数学期望;(2)将(1)中的数学期望取得最大值时p 的值作为B 种树苗自然成活的概率.该农户决定引种n 棵B 种树苗,引种后没有自然成活的树苗有75%的树苗可经过人工栽培技术处理,处理后成活的概率为0.8,其余的树苗不能成活. ①求一棵B 种树苗最终成活的概率;②若每棵树苗引种最终成活可获利400元,不成活的每棵亏损80元,该农户为了获利期望不低于10万元,问至少要引种B 种树苗多少棵?22.某社区对安全卫生进行问卷调查,请居民对社区安全卫生服务给出评价(问卷中设置仅有满意、不满意).现随机抽取了90名居民,调查情况如下表:(1)利用分层抽样的方法从对安全卫生服务评价为不满意的居民中随机抽取6人,再从这6人中随机抽取2人,求这2人中男、女居民各有1人的概率;(2)试通过计算判断能否在犯错误的概率不超过0.05的情况下认为男居民与女居民对社区安全卫生服务的评价有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.23.5月4日,修水第二届“放肆青春放肆跑”全民健身彩跑活动在信华城举行,全程约5.4km,共有2500余名参与者.某单位为了解员工参加彩跑活动是否与性别有关,从单位随机抽取30名员工进行问卷调查,得到了如下22⨯列联表:已知在这30人中随机抽取1人抽到参加彩跑活动的员工的概率是8 15.(1)完成答题卡上的22⨯列联表,并判断能否有90%的把握认为参加彩跑活动与性别有关?(2)已知参加彩跑的女性中共有4人跑完了全程,若从参加彩跑的6名女性中任选两人,求选出的两人均跑完了全程的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.现有10道题,其中6道甲类题,4道乙类题,小明同学从中任取3道题解答.(Ⅰ)求小明同学至少取到1道乙类题的概率;(Ⅱ)已知所取的3道题中有2道甲类题,1道乙类题.若小明同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.求小明同学至少答对2道题的概率.25.从4名男生和2名女生中任选2人参加抗疫志愿服务活动.(1)设X 表示所选2人中男生的人数,求X 的分布列和数学期望E (X );(2)已知选出了A ,B 这两人参加此次服务活动,A 的服务满意率为0.87,B 的服务满意率为0.91,用“Y A =1,Y B =1,”分别表示对A ,B 的服务满意,“Y A =0,Y B =0,”分别表示对A ,B 的服务不满意,写出方差D (Y A ),D (Y B )的大小关系.(只需写出结论) 26.某电讯企业为了了解某地区居民对电讯服务质量评价情况,随机调查100 名用户,根据这100名用户对该电讯企业的评分,绘制频率分布直方图,如图所示,其中样本数据分组为[)40,50,[)50,60,……[90,100].(1)估计该地区用户对该电讯企业评分不低于70分的概率,并估计对该电讯企业评分的中位数;(结果保留两位有效数字)(2)现从评分在[)40,60的调查用户中随机抽取2人,求2人评分都在[)40,50的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设,,B C D 直接受A 感染为事件B 、C 、D ,分析题意得出()1P B =,1()2P C =,1()3P D =,B ,C ,D 中恰有两人直接受A 感染为事件CD CD +,利用公式求得结果.【详解】根据题意得出:因为直接受A 感染的人至少是B , 而C 、D 二人也有可能是由A 感染的, 设,,B C D 直接受A 感染为事件B 、C 、D , 则事件B 、C 、D 是相互独立的,()1P B =,1()2P C =,1()3P D =, 表明除了B 外,,C D 二人中恰有一人是由A 感染的, 所以12111()()()23232P CD CD P CD P CD +=+=⨯+⨯=, 所以B 、C 、D 中直接受A 传染的人数为2的概率为12, 故选:C. 【点睛】该题考查的是有关概率的问题,涉及到的知识点有随机事件发生的概率,相互独立事件同时发生的概率公式和互斥事件有一个发生的概率公式,属于简单题目.2.D解析:D 【分析】讨论十位上的数为4,十位上的数为3,共8个,再计算概率得到答案. 【详解】当十位上的数为4时,共有236A =个;当十位上的数为3时,共有222A =个,共8个.故34881243p A ===. 故选:D . 【点睛】本题考查了概率的计算,分类讨论是解题的关键.3.B解析:B 【分析】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,进而可分析四个事件的关系; 【详解】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,故①恰有1个白球和全是白球,是互斥事件,但不是对立事件, ②至少有1个白球和全是黑球是对立事件; ③至少有1个白球和至少有2个白球不是互斥事件,④至少有1个白球和至少有1个黑球不是互斥事件, 故选B . 【点睛】本题考查互斥事件和对立事件的关系,对于题目中出现的两个事件,观察两个事件之间的关系,这是解决概率问题一定要分析的问题,本题是一个基础题.4.A解析:A 【分析】列出所有的基本事件,分别求出事件0C 、1C 、2C 、3C 、4C 所包含的基本事件数,找出其中包含基本事件数最多的,可得出n 的值. 【详解】所有的基本事件有:()0,0、()0,1、()0,2、()1,0、()1,1、()1,2、()2,0、()2,1、()2,2,事件0C 包含1个基本事件,事件1C 包含2个基本事件,事件2C 包含3个基本事件,事件3C 包含2个基本事件,事件4C 包含1个基本事件,所以事件2C 的概率最大,则2n =,故选A . 【点睛】本题考查古典概型概率的计算,解题的关键在于列举所有的基本事件,常用枚举法与数状图来列举,考查分析问题的能力,属于中等题.5.D解析:D 【分析】由概率的意义可判断AB 错误,由随机抽样的概念得到D 正确. 【详解】一对夫妇生两小孩可能是(男,男),(男,女),(女,男),(女,女),所以A 不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B 不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到的奖票的概率都是0.1,所以C 不正确;D 正确. 故答案为D. 【点睛】本题考查了概率的意义以及随机抽样法的概念,性质,属于基础题.6.C解析:C 【解析】 【分析】先分类讨论求出所有的三位数,再求其中的凹数的个数,最后利用古典概型的概率公式求解. 【详解】先求所有的三位数,个位有4种排法,十位有4种排法,百位有4种排法,所以共有44464⨯⨯=个三位数.再求其中的凹数,第一类:凹数中有三个不同的数,把最小的放在中间,共有3428C ⨯=种,第二类,凹数中有两个不同的数,将小的放在中间即可,共有2416C ⨯=种方法,所以共有凹数8+6=14个, 由古典概型的概率公式得P=1476432=. 故答案为:C 【点睛】本题主要考查排列组合的运用,考查古典概型的概率,意在考查学生对这些知识的掌握水平和分析推理能力.7.D解析:D 【分析】根据素数的定义,一一列举出不超过30的所有素数,共10个,根据组合运算,得出随机选取两个不同的素数p 、q (p q <),有21045C =(种)选法,从而可列举出事件A 、B 、C的所有基本事件,最后根据古典概率分别求出(),()P A P B 和(C)P ,从而可得出结果. 【详解】解:不超过30的素数有2、3、5、7、11、13、17、19、23、29,共10个,随机选取两个不同的素数p 、q (p q <),有21045C =(种)选法,事件A 发生的样本点为(3)5,、(57),、(1113),、(1719),共4个, 事件B 发生的样本点为(37),、(711),、(1317),、(1923),共4个, 事件C 发生的样本点为(2)3,、(25),、(3)5,、(37),、(57),、 (711),、(1113),、(1317),、(1719),、(1923),,共10个,∴4()()45P A P B ==,102()459P C ==, 故()()()P A P B P C +<.故选:D. 【点睛】关键点点睛:本题考查与素数相关的新定义,考查古典概型的实际应用和利用列举法求古典概型,考查组合数的计算,解题的关键在于理解素数的定义,以及对题目新定义的理解,考查知识运用能力.8.D解析:D 【分析】设出每一个每一个考生达标的事件,并求其对立事件的概率,根据相互独立事件的概率的和事件求解出答案. 【详解】设 “甲考生达标” 为事件A , “乙考生达标” 为事件B , “丙考生达标” 为事件C ,则()0.9P A =,()0.8P B =,()0.75P C =,()10.90.1P A =-=,()10.80.2P B =-=,()10.750.25P C =-=,设 “三人中至少有一人达标” 为事件D ,则()()110.10.20.2510.0050.995P D P ABC =-=-⨯⨯=-=, 故选:D. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.9.A解析:A 【分析】从5个数中任取两个不同数,取法为2510C =,列举和能被3整除的情况有4种,利用古典概型得解 【详解】从1,2,3,4,5中任取两个数,取法总数为2510C =这2个数的和能被3整除的情况有:()()()()1,21,52,44,5,,, ∴这2个数的和能被3整除的概率为:42105= 故选:A 【点睛】本题考查古典概型求概率,属于基础题.10.C解析:C 【分析】根据题意,结合排列组合,利用插空法和特殊位置法,先排丙,再插甲乙,即可得解. 【详解】丙排第一,除甲乙外还有3人,共33A 种排法,此时共有4个空,插入甲乙可得24A ,此时共有3234=612=72A A ⋅⨯种可能;丙排第二,甲或乙排在第一位,此时有1424C A 排法,甲和乙不排在第一位, 则剩下3人有1人排在第一位,则有122323C A A 种排法, 此时故共有1412224323+=84C A C A A 种排法.故概率6672841360P A +==. 故选:C. 【点睛】本题考查了排列组合,考查了插空法和特殊位置法,在解题过程中注意各种情况的不重不漏,有一定的计算量,属于较难题.11.A解析:A 【解析】设事件A 表示“抽到的两张都是假钞”,事件B 表示“抽到的两张至少有一张假钞”, 则所求的概率即P(A|B).又()()()211244164222020,C C C C P AB P A P B C C +===, 由公式()()()24211441663|641635P AB C P A B P B C C C ====++⨯. 本题选择A 选项.点睛:条件概率的求解方法:(1)利用定义,求P (A )和P (AB ),则()()(|)n AB P B A n A =.(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),得()()(|)n AB P B A n A =.12.C解析:C 【分析】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,从5月1日至5日中任选2天,基本事件总数2510n C ==,这2天中,恰有1天这3个时刻的观展舒适度都是"舒适"包含的基本事件个数11236m C C ==,由此能求出这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率. 【详解】5月1日至5日中,该博物馆每天在10时,13时,16时这3个时刻的观展舒适度都是“舒适”的有2天,分别为5月4日和5月5日, 从5月1日至5日中任选2天,基本事件总数2510n C ==,这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”包含的基本事件个数11236m C C ==,所以这2天中,恰有1天这3个时刻的观展舒适度都是“舒适”的概率63105m P n ===. 故选:C 【点睛】本题主要考查了概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于基础题.13.B解析:B 【分析】易得出8人乘车,每车4人的乘车方法是48C ,然后考虑从3名教师中选2人,从5名学生中选2人乘同一辆车,注意有两辆车,求出方法后可得概率. 【详解】8人乘车,每车4人的乘车方法是4870C =,从3名教师中选2人,从5名学生中选2人乘同一辆车的方法娄得2235260C C ⨯=,∴所求概率为606707P ==. 故选:B . 【点睛】本题考查古典概型,解题关键是求出事件“恰有两名教师在同一车上”的方法数,易错点是不考虑两辆车.二、解答题14.(1)0.025a =,众数为190,中位数为190;(2)189.8cm ;(3)25. 【分析】(1)利用频率分布直方图中所有矩形的面积之和为1可求得a 的值,利用最高矩形底边的中点值为众数可求得样本的众数,利用中位数左边矩形的面积和为0.5可求得样本的中位数;(2)将每个矩形底边的中点值乘以对应矩形的面积,再将所得结果全加可得样本的平均数,即为所求;(3)计算可知5株中在株高205215-这一组抽取的有4株,记为1a 、2a 、3a 、4a ,在株高215225-抽取1株,记为b ,列举出所有的基本事件,并确定事件“抽取的2株中含有215cm 及以上树苗”所包含的基本事件数,利用古典概型的概率公式可求得所求事件的概率. 【详解】(1)由频率分布直方图中所有矩形的面积之和为1可得()0.00150.0110.02250.030.0080.0015101a ++++++⨯=,解得0.025a =.众数为1851952+=190, 设中位数为x ,因为()0.00150.01100.0225100.350.5++⨯=<,()0.00150.01100.02250.030100.650.5+++⨯=>,则185195x <<, ()()0.00150.01100.0225100.0301850.5x ++⨯+⨯-=,解得190x =;(2)1600.0151700.111800.2251900.32000.252100.082200.02x =⨯+⨯+⨯+⨯+⨯+⨯+⨯()189.8cm =.因此,估计苗埔中树苗的平均高度为189.8cm ; (3)在株高205215-这一组应抽取:0.08540.080.02⨯=+株,在株高215225-这一组应抽取:0.02510.080.02⨯=+株,用1a 、2a 、3a 、4a 表示在株高205215-这一组的4株,用b 表示在株高215225-这一组的1株,从中抽调2株的抽法:12a a 、13a a 、14a a 、1a b 、23a a 、24a a 、2a b 、34a a 、3a b 、4a b ,共10个基本事件,设抽取2株中含有株高215225-这一组1株为A 事件,A 包含4个基本事件,()42105P A ∴==. 【点睛】方法点睛:计算古典概型概率的方法如下: (1)列举法; (2)列表法; (3)树状图法; (4)排列组合数的应用. 15.(Ⅰ)6.5小时(Ⅱ)35(Ⅲ)2212s s > 【分析】(Ⅰ)由表中数据计算平均数即可;(Ⅱ)列举出任选2人的所有情况,再由古典概型的概率公式计算即可; (Ⅲ)根据数据的离散程度结合方差的性质得出2212s s > 【详解】(Ⅰ)这个班级女生在该周的平均锻炼时长为53687682911306.53862120⨯+⨯+⨯+⨯+⨯==++++小时(Ⅱ)由表中数据可知,锻炼8小时的学生中男生有3人,记为,,a b c ,女生有2人,记从中任选2人的所有情况为{,},{,},{,},{,}a b a c a A a B ,{,},{,},{,}b c b A b B ,{,},{,},{,}c A c B A B ,共10种,其中选到男生和女生各1人的共有6种 故选到男生和女生各1人的概率63105P == (Ⅲ)2212s s > 【点睛】关键点睛:在第二问中,关键是利用列举法得出所有的情况,再结合古典概型的概率公式进行求解.16.(1)600人;(2)8;0.16;10;(3)35. 【分析】(1)利用样本中高二年级人数与高二年级总人数之比=样本中高一年级、高二年级人数之和与高一、高二年级总人数之和之比求解;(2)先根据频率分布表求出z 的值,再根据高二年级学生样本人数计算出x ,从而得到其频率y 的值;(3)记5名高二学生中女生为1a ,2a ,男生为123,,b b b ,先列出从这5名高二学生中任选3人进行面谈的所有可能情况,以及恰好有两男一女的情况数,然后根据古典概率模型概率的计算公式求解. 【详解】解:(1)设该校高二学生的总数为n ,由题意5015050660540n -=+,解得=600n ,所以该校高二学生总数为600人.(2)由题意0.2050z=,解得10z =, 50(57128)8x z =-++++=,0.1650xy ==. (3)记“选中的3人恰好为两男一女”为事件A ,记5名高二学生中女生为1a ,2a ,男生为1b ,2b ,3b ,从中任选3人有以下情况: 121,,a a b ;122,,a a b ;123,,a a b ;112,,a b b ;113,,a b b ;123,,a b b ;212,,a b b ;213,,a b b ;223,,a b b ;123,,b b b ,共10种情况,基本事件共有10个,它们是等可能的,事件A 包含的基本事件有6个,分别为:112,,a b b ;113,,a b b ;123,,a b b ;212,,a b b ;213,,a b b ;223,,a b b ,故63()105P A ==,所以选中的3人恰好为两男一女的概率为35.(1)解决分层抽样问题时,常用的公式有:①nN=样本容量该层抽取的个体数总体个数该层个体数;②总体中某两层的个数比等于样本中这两层抽取的个体数之比;(2)求解古典概率模型时,基本步骤如下:①利用列举法、列表法、树状图等方法求出基本事件总数n;②求出事件A所包含的基本事件个数m;③代入公式mPn=,求出概率值.17.(1)0.42;(2)见解析;(3)有99%把握认为学生的数学成绩对物理成绩有影响.【分析】(1)先求得“数学考分不低于60分,且物理考分不低于50分的学生”的人数,再由古典概率公式可求得所求的概率;(2)由已知的数据可得出2×2列联表;(3)由(2)中的数据,计算210.5306>6.6354K≈,可得结论.【详解】(1)数学考分不低于60分,且物理考分不低于50分的学生有:12+16+6+842=人,所以“数学考分不低于60分,且物理考分不低于50分”的概率为420.42100P==;(2)2×2列联表如下表所示:(3)由(2)中的数据,得:()210010.5306>6.63544852442102246436K⨯-⨯⨯⨯=≈⨯⨯,所以有99%把握认为学生的数学成绩对物理成绩有影响.【点睛】关键点点睛:本题考查求古典概率,独立性检验的问题,关键在于对数据处理,准确地运用相应的公式,并且理解其数据的实际意义.18.(1)0.045;(2)甲队队员获胜的概率更大一些.【分析】(1)甲队2号队员把乙队3名队员都淘汰这个事件的发生应是甲队1号输给乙队1号,然后甲队2号上场,三场全胜,由独立事件概率公式计算可得;(2)第三局比赛甲胜可分为3个互斥事件:甲队1号胜乙队3号,甲队2号胜乙队2号,甲队3号胜乙队1号,分别计算概率后相加可得.然后由对立事件概率得出乙队胜的概率,比较后要得结论. 【详解】解:(1)甲队2号队员把乙队3名队员都淘汰的概率为0.50.60.50.30.045⨯⨯⨯= (2)第3局比赛甲队队员获胜可分为3个互斥事件 (i )甲队1号胜乙队3号,概率为0.50.30.20.03⨯⨯=;(ii )甲队2号胜乙队2号,概率为0.50.70.50.50.60.50.325⨯⨯+⨯⨯=; (iii )甲队3号胜乙队1号,概率为0.50.40.80.16⨯⨯= 故第3局甲队队员胜的概率为0.030.3250.160.515++=. 则第3局乙队队员胜的概率为10.5150.485-= 因为0.5150.485>,故甲队队员获胜的概率更大一些. 【点睛】关键点点睛:本题考查相互独立事件的概率公式和互斥事件的概率公式.解题关键是把事件“第3局比赛甲队队员获胜”分斥成3个互斥事件,然后分别求得概率后易得出结论. 19.(1)分布列见解析;(2)910. 【分析】(1)确定X 的所有取值为0,1,2,3,X 服从超几何分布,代入超几何分布的概率公式,计算每个X 的取值对应的概率,列出X 的分布列即可;(2)即两门A 类科目一门B 类科目或者一门A 类科目两门B 类科目的概率,则概率()()12P P X P X ==+=,从而计算可得;【详解】解:(1)小明同学选A 类科目数X 可能的取值为0,1,2,3,则X 服从超几何分布,()0333361020C C P X C ===, ()1233369120C C P X C ===,()2133369220C C P X C ===,()3033361320C C P X C ===. X 的分布列为:()()()99912202010P C P X P X ==+==+= 【点睛】本题考查了离散型随机变量的概率分布列,考查了超几何分布,古典概型的概率计算,计数原理.属于中档题. 20.(1)32;(2)815. 【详解】试题分析:(1)根据15名乘客中候车时间少于10分钟频数和为8,可估计这60名乘客中候车时间少于10分钟的人数;(2)将两组乘客编号,进而列举出所有基本事件和抽到的两人恰好来自不同组的基本事件个数,代入古典概型概率公式可得答案. 试题(1)候车时间少于10分钟的概率为2681515+=, 所以候车时间少于10分钟的人数为8603215⨯=人. (2)将第三组乘客编号为1234,,,a a a a ,第四组乘客编号为12,b b .从6人中任选两人包含以下基本事件:1213141112(,),(,),(,),(,),(,)a a a a a a a b a b ,23242122(,),(,),(,),(,)a a a a a b a b ,343132(,),(,),(,)a a a b a b ,4142(,),(,)a b a b ,12()b b ,,10分其中两人恰好来自不同组包含8个基本事件,所以,所求概率为815. 考点:频率分布表;古典概型及其概率计算公式.21.(1)分布列见解析,()20.7E X p =+;(2)①0.92;②277棵. 【分析】(1)根据题意得出随机变量X 的可能取值有0、1、2、3,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可求得随机变量X 的数学期望; (2)①由(1)知当0.8p =时,()E X 最大,然后分一棵B 种树苗自然成活和非自然成活两种情况,可求得所求事件的概率;②记Y 为n 棵树苗的成活棵数,由题意可知(),0.92Y B n ~,利用二项分布的期望公式得出()0.92E Y n =,根据题意得出关于n 的不等式,解出n 的取值范围即可得解. 【详解】(1)依题意,X 的所有可能值为0、1、2、3, 则()()2200.310.30.60.3P X p p p ==-=-+,()()()2210.710.3210.10.80.7P X p p p p p ==-+⨯-=-+,()()22220.710.3 1.1 1.4P X p p p p p ==⨯-+=-+, ()230.7P X p ==.所以,随机变量X 的分布列为:。

高中数学必修2立体几何部分试卷及答案

高中数学必修2立体几何部分试卷及答案

高中数学必修2立体几何部分试卷试卷满分100分。

时间70分钟考号 班级 姓名第Ⅰ卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 2、过直线l 外两点作与直线l 平行的平面,可以作( )A .1个B .1个或无数个C .0个或无数个D .0个、1个或无数个 3、正三棱锥底面三角形的边长为3,侧棱长为2,则其体积为 ( )A .41 B .21 C .43 D .49 4、右图是一个实物图形,则它的左视图大致为 ( )5、已知正四棱台的上、下底面边长分别为3和6,其侧面积等于两底面积之和,则该正四棱台的高是 ( )A .2B .25C .3D .27 6、已知α、β是平面,m 、n 是直线,则下列命题不正确...的是 ( ) A .若//,m n m α⊥,则n α⊥ B .若,m m αβ⊥⊥,则//αβ C .若,//,m m n n αβ⊥⊂,则αβ⊥ D .若//,m n ααβ=I,则//m n7、正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1的侧面是正方形,若底面的边长为a ,则该正六棱柱的外接球的表面积是 ( )A .4πa 2 B.5 πa 2 C. 8πa 2 D.10πa 28、如右下图,在ABC ∆中,2AB =,BC=1.5,120ABC ∠=o,如图所示。

若将ABC ∆绕BC 旋转一周,则所形成的旋转体的体积是( ) (A )92π (B )72π (C )52π (D )32π(第8题图)9、如左上图是由单位立方体构成的积木垛的三视图,据此三视图可知,构成这堆积木垛的单 位正方体共有 ( ) A .6块 B .7块 C .8块 D .9块10、给出下列命题①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个C .2个D .3个第Ⅱ卷(非选择题 共60分)二、填空题(每小题4分,共16分)11、已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:①一条直线;②一个平面;③一个点;④空集。

高中数学必修2测试题附答案

高中数学必修2测试题附答案

高中数学必修2测试题附答案数学必修2一、选择题1、下列命题为真命题的是()A.平行于同一平面的两条直线平行;解析:平行于同一平面的两条直线一定平行,为真命题,选A。

2、下列命题中错误的是:()A.如果α⊥β,那么α内一定存在直线平行于平面β;解析:如果直线α垂直于平面β,则α内不存在直线平行于平面β,选A。

3、右图的正方体ABCD-A’B’C’D’中,异面直线AA’与BC所成的角是()解析:异面直线AA’与BC所成的角为直角,选D。

4、右图的正方体ABCD-A’B’C’D’中,AB二面角D’-AB-D的大小是()解析:AB二面角D’-AB-D为60度,选C。

5、直线5x-2y-10=0在x轴上的截距为a,在y轴上的截距为b,则()解析:将y=0代入5x-2y-10=0,得到x=2,即直线在x轴上的截距为2;将x=0代入5x-2y-10=0,得到y=-5,即直线在y轴上的截距为-5,选B。

6、直线2x-y=7与直线3x+2y-7=0的交点是()解析:将2x-y=7和3x+2y-7=0联立,解得交点为(3,-1),选A。

7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是()解析:3x-4y+6=0的斜率为3/4,与其垂直的直线斜率为-4/3,过点P(4,-1),代入点斜式方程y+1=-4/3(x-4),化简得到4x+3y-13=0,选A。

8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:()解析:正方体的全面积为6a,每个面积为a,每个面的对角线长为正方体的对角线长,即球的直径。

因此球的直径为正方体的对角线长,即a的开根号乘以根号3.球的表面积为4πr^2,即4π(0.5a√3)^2=3πa^2,选C。

9、圆x^2+y^2-4x-2y-5=0的圆心坐标是:()解析:将x^2-4x和y^2-2y分别配方得到(x-2)^2-4+(y-1)^2-1=0,即(x-2)^2+(y-1)^2=5,圆心坐标为(2,1),选B。

高中数学新人教A版必修2综合测试卷(答案)

高中数学新人教A版必修2综合测试卷(答案)

高中数学必修二综合测试卷一、选择题:(共10小题,每小题5分)1. 在空间直角坐标系中,点(2,1,4)-关于x 轴的对称点的坐标为(C ) A .(2,1,4)-- B .(2,1,4)- C .(2,1,4)--- D .(2,1,4)-2. 将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( B ) A .2π B .4π C .8π D .16π 3.ABC ∆的斜二侧直观图如图所示,则ABC ∆的面积为( B ) A 、1 B 、2 C 、22D 、24. 过点P(-2,4)作圆(x -2)2+(y -1)2=25的切线l ,直线l 1 ax +3y +2a =0与l 平行,则l 1与l 间的距离是( B) A.285B.125C.85D.255. 已知点(3,1)和(- 4,6)在直线023=+-a y x 的两侧,则a 的取值范围是( C ) A. a <-7或a >24 B. a =7或a =24 C. -7<a <24 D. -24<a <76. 直线320x y +-=截圆224x y +=得到的弦长为( B ) A .1 B . 23 C . 22 D . 27. 关于空间两条直线a 、b 和平面α,下列命题正确的是( D ) A .若//a b ,b α⊂,则//a α B .若//a α,b α⊂,则//a b C .若//a α,//b α,则//a b D .若a α⊥,b α⊥,则//a b 8. 下列四个命题中错误..的.是(C ) A .若直线a 、b 互相平行,则直线a 、b 确定一个平面 B .若四点不共面,则这四点中任意三点都不共线C .若两条直线没有公共点,则这两条直线是异面直线D .两条异面直线不可能垂直于同一个平面9.对于任意实数a ,点(),2P a a -与圆22:1C x y +=的位置关系的所有可能是( B )A 、都在圆内B 、都在圆外C 、在圆上、圆外D 、在圆上、圆内、圆外Oxy 12()C AB10.如右图,定圆半径为a ,圆心为(,)b c ,则直线0ax by c ++= 与直线10x y +-=的交点在( D )A .第一象限B .第二象限C .第三象限D .第四象限 二、填空题:(共5小题,每小题5分)11. 圆2220x y x +-=和圆2240x y y ++=的位置关系是___相交_____.12. 已知直线a 和两个不同的平面α、β,且a α⊥,a β⊥,则α、β的位置关系是_平行____.13. 如图,在三棱锥ABC P -中,PA ⊥底面ABC ,∠ACB = 90,AE ⊥PB 于E ,AF ⊥PC 于F ,若2==AB PA ,∠BPC =θ,则当AEF ∆的面积最大时,θtan 的值为___22___. 14. 将边长为1的正方形ABCD 沿对角线AC 折起,使得平面ADC ⊥平面ABC ,在折起后形成的三棱锥D ABC -中,给出下列三个命题:①面DBC 是等边三角形; ②AC BD ⊥; ③三棱锥D ABC -的体积是26. 其中正确命题的序号是_①②________.(写出所有正确命题的序号)15. 已知a 、b 、c 为某一直角三角形的三边长,c 为斜边,若点P(m ,n)在直线ax +by +2c =0上,则m 2+n 2的最小值为__4___.三、解答题:(共6小题)16.(本小题满分12分)已知一个几何体的三视图如图所示。

新人教版高中数学必修第二册第二单元《复数》测试(有答案解析)(5)

新人教版高中数学必修第二册第二单元《复数》测试(有答案解析)(5)

一、选择题1.复数z 满足5(3)2i z i ⋅+=-,则z 的虚部是( ) A .12B .12-C .12i -D .12i 2.下列各式的运算结果为纯虚数的是 A .(1+i)2B .i 2(1-i)C .i(1+i)2D .i(1+i)3.已知复数23i -是方程220x px q ++=的一个根,则实数p ,q 的值分别是( ) A .12,26B .24,26C .12,0D .6,84.“1x >”是“复数2(1)()z x x x i x R =-+-∈在复平面内对应的点在第一象限”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.若11z z -=+,则复数z 对应的点在( ) A .实轴上 B .虚轴上 C .第一象限 D .第二象限 6.若复数z 满足232,z z i +=-其中i 为虚数单位,则z= A .1+2iB .1-2iC .12i -+D .12i --7.已知复数Z 满足()13Z i i +=+,则Z 的共轭复数为( ) A .2i + B .2i -C .2i -+D .2i --8.复数z 满足(1i)2i z -=,则z =A .1i -B .1i -+C .1i --D .1i +9.若32a ii -+为纯虚数,则实数a 的值为( ) A .32-B .23-C .23 D .3210.已知复数z 在复平面内对应的点的坐标为(1,2)-,则复数(1)z i -的虚部为( )A .3-B .3C .3i -D .3i 11.若复数z 满足(12)5z i +=,则它的共轭复数z 在复平面内对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.对于给定的复数0z ,若满足042z i z z -+-=的复数z 对应的点的轨迹是椭圆,则01z -的取值范围是( )A .)2 B .)1C .)2-D .)1-二、填空题13.复数2018|(3)|z i i i =-+(i 为虚数单位),则||z =________.14.计算121009100(23)(13)(123)i z i i -+=+=-++_______. 15.已知11z i --=,则z i +的取值范围是_____________; 16.设i 为虚数单位,复数z 满足()()2133i z i+=-+,则z =______.17.在复变函数中,自变量z 可以写成(cos sin )i z r i r e θθθ=⨯+=⨯,其中||r z =,θ是z 的辐角.点(),x y 绕原点逆时针旋转θ后的位置可利用复数推导,点()2,3A 绕原点逆时针旋转3arcsin5得A '_______;复变函数ln (,0)z z C z ω=∈≠,i ωπ=,z =_______.18.已知复数z 满足43(zi i i+=为虚数单位),则z 的共轭复数z =____. 19.已知,则 =____.20.设复数1(z i i =--虚数单位),z 的共轭复数为z ,则()1z z -⋅=________.三、解答题21.已知复数1z 、2z 满足1||71z =、2||71z =,且12||4z z -=,求12z z 与12||z z +的值.22.已知复数()212(24)z a a i =--+,()221z a a i =-+,12z z z =-(i 为虚数单位,a R ∈).(1)若复数12z z z =-为纯虚数,求12z z ⋅的值; (2)若1z z i +=-,求z i +的值.23.i 为虚数单位,(,)z a bi a b R =+∈是虚数, 1z zω=+是实数,且12ω-<<,11zu z-=+. (1)求||z 及a 的取值范围; (2)求2u ω-的最小值.24.已知关于t 的一元二次方程2(2)2()0(,)t i t xy x y i x y ++++-=∈R . (1)当方程有实根时,求点(,)x y 的轨迹; (2)求方程实根的取值范围.25.设复数12,z z 满足12122210z z iz iz +-+=. (1)若12,z z 满足212z z i -=,求12,z z .(2)若1z =k ,使得等式24z i k -=恒成立?若存在,试求出k 的值;若不存在,请说明理由.26.在复平面内,A B C ,,分别对应复数1231i 5i 33i z z z =+=+=+,,,以AB,AC 为邻边作一个平行四边形ABCD ,求D 点对应的复数4z 及AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】通过5(3)2i z i ⋅+=-计算出z ,从而得到z ,根据虚部的概念即可得结果. 【详解】∵5(3)2i z i ⋅+=-,∴()()()()5232211333322i i i i z i i i i i ----====-+++-, ∴1122z i =+,即z 的虚部是12,故选A. 【点睛】本题主要考查了复数除法的运算,共轭复数的概念,复数的分类等,属于基础题.2.A解析:A 【分析】利用复数的四则运算,再由纯虚数的定义,即可求解. 【详解】由题意,对于A 中,复数2(1)2i i +=为纯虚数,所以正确; 对于B 中,复数2(1)1i i i ⋅-=-+不是纯虚数,所以不正确; 对于C 中,复数2(1)2i i ⋅+=-不是纯虚数,所以不正确; 对于D 中,复数(1)1i i i ⋅+=-+不是纯虚数,所以不正确,故选A. 【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其四则运算技巧和常规思路. 其次要熟悉复数相关基本概念是解答此类问题的关键,着重考查了推理与计算能力,属于基础题.3.A解析:A【分析】复数23i -是方程的根,代入方程,整理后利用复数的相等即可求出p,q 的值. 【详解】因为23i -是方程220x px q ++=的一个根,所以22(23)(23)0i p i q -+-+=, 即(224)3100p i p q --++=,所以22403100p p q -=⎧⎨-++=⎩,解得12,26p q ==,故选A.【点睛】本题主要考查了复数方程及复数相等的概念,属于中档题.4.C解析:C 【分析】根据充分必要条件的定义结合复数与复平面内点的对应关系,从而得到答案. 【详解】若复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限,则20,10x x x ⎧->⎨->⎩ 解得1x >,故“1x >”是“复数()()21z x x x i x R =-+-∈在复平面内对应的点在第一象限”的充要条件. 故选C. 【点睛】本题考查了充分必要条件,考查了复数的与复平面内点的对应关系,是一道基础题.5.B解析:B 【分析】首先分析题目,设z x yi =+,将其代入11z z -=+进行化简可得0x =,从而可得结论. 【详解】设z x yi =+,则11x yi x yi +-=++, 即()()222211x y x y -+=++, 解得0x =,所以z yi =,它对应的点在虚轴上. 故选B. 【点睛】本题主要考查复数的模以及复数的几何意义,属于中档题.6.B解析:B 【解析】试题分析:设i z b a =+,则23i 32i z z a b +=+=-,故,则12i z =-,选B.【考点】注意共轭复数的概念【名师点睛】本题主要考查复数的运算及复数的概念,是一道基础题目.从历年高考题目看,复数题目往往不难,有时对复数的运算与概念、复数的几何意义等进行综合考查,也是考生必定得分的题目之一.7.A解析:A 【分析】根据复数的运算法则得()()()()31242112i i i Z ii i +--===-+--,即可求得其共轭复数.【详解】由题:()13Z i i +=+,所以()()()()31242112i i i Z ii i +--===-+--,所以Z 的共轭复数为2i +. 故选:A 【点睛】此题考查求复数的共轭复数,关键在于准确求出复数Z ,需要熟练掌握复数的运算法则,准确求解.8.B解析:B 【解析】因为()1i 2i z -=,所以()2i111iz i i i ==+=-+-,选B. 9.C解析:C 【分析】先化简复数,再利用纯虚数的定义求解. 【详解】由题得()(32)(32)(23)32(32)(32)13a i a i i a a ii i i -----+==++-, 因为32a ii-+为纯虚数, 则320(23)0a a -=⎧⎨-+≠⎩,所以23a =.故选:C 【点睛】结论点睛:复数(,)z a bi a b R =+∈则0a =且0b ≠,不要漏掉了0b ≠.10.B解析:B 【分析】由复数的几何意义,得到12z i =-+,再根据复数的运算法则,化简复数为(1)13z i i -=+,结合复数的概念,即可求解.【详解】由题意,复数z 在复平面内对应的点的坐标为(1,2)-, 可得12z i =-+, 又由(1)(12)(1)13z i i i i -=-+-=+,所以复数(1)z i -的虚部为3. 故选:B.11.A解析:A 【分析】根据复数的除法运算法则,可得12z i =-,求得12z i =+,结合复数的几何意义,即可求解. 【详解】由题意,复数z 满足(12)5z i +=,可得51212z i i==-+, 所以12z i =+,它在复平面内对应的点为(1,2)在第一象限.故选:A. 【点睛】本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力.12.A解析:A 【分析】根据条件可得042z i -<,即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部.01z -表示复数0z 对应的点到()1,0的距离,由圆的性质可得答案.【详解】因为042z i z z -+-=的复数z 对应的点的轨迹是椭圆, 所以042z i -<由复数的几何意义可知042z i -<表示复数0z 对应的点到()0,4的距离小于2. 即复数0z 对应的点在以()0,4为圆心,2为半径的圆内部.01z -表示复数0z 对应的点到()1,0的距离.如图,设()0,4C ,1,0AAC ==则0212AC z AC -<-<+,0212z <-< 故选:A【点睛】本题考查椭圆的定义的应用,考查复数的几何意义的应用和利用圆的性质求范围,属于中档题.二、填空题13.1【分析】由复数模的求法及虚数单位的性质化简求值【详解】解:由题得故答案为:1【点睛】本题考查复数模的求法考查虚数单位的性质是基础题解析:1 【分析】由复数模的求法及虚数单位i 的性质化简求值. 【详解】解:由题得222|13|1(3)1211z i i =+=+=-=,||1z ∴=.故答案为:1. 【点睛】本题考查复数模的求法考查虚数单位i 的性质,是基础题.14.-511【分析】利用复数的运算公式化简求值【详解】原式故答案为:【点睛】思路点睛:本题考查复数的次幂的运算注意以及等公式化简求值解析:-511 【分析】利用复数的运算公式,化简求值. 【详解】原式1212100369100100999(23)121511()13[(23)]132()()i i i i i i -=+=+=-+=---⨯-⨯-+-+. 故答案为:511- 【点睛】思路点睛:本题考查复数的n 次幂的运算,注意31312⎛⎫-+= ⎪ ⎪⎝⎭,()212i i +=, 以及()()612211i i ⎡⎤+=+⎣⎦,等公式化简求值.15.【分析】利用复数的几何意义求解表示复平面内到点距离为1的所有复数对应的点表示复平面内到点的距离结合两点间距离公式可求范围【详解】因为在复平面内表示复平面内到点距离为1的所有复数对应的点即复数对应的点解析:1]【分析】利用复数的几何意义求解,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,z i +表示复平面内到点(0,1)-的距离,结合两点间距离公式可求范围. 【详解】因为在复平面内,11z i --=表示复平面内到点(1,1)距离为1的所有复数对应的点,即复数z 对应的点都在以(1,1)为圆心,半径为1的圆上;z i +表示复平面内的点到点(0,1)-11=,11=,所以z i +的取值范围是1].故答案为:1]-. 【点睛】结论点睛:本题考查复数的模,复数的几何意义,复数的几何意义是复平面内两点之间的距离公式,若z x yi =+,则z a bi --表示复平面内点(,)x y 与点(,)a b 之间的距离,z a bi r --=表示以(,)a b 为圆心,以r 为半径的圆上的点.16.【分析】根据复数的除法运算化简求得再结合复数的模的运算公式即可求解【详解】由则所以故答案为:【点睛】本题主要考查了复数的除法运算以及复数的模的运算其中解答中熟记复数的运算法则以及复数模的计算公式是解 解析:2【分析】根据复数的除法运算,化简求得1z =-,再结合复数的模的运算公式,即可求解. 【详解】由()222(2ii =-+=-,则21z ====-,所以12z =-=. 故答案为:2. 【点睛】本题主要考查了复数的除法运算,以及复数的模的运算,其中解答中熟记复数的运算法则,以及复数模的计算公式是解答的关键,着重考查推理与运算能力.17.【分析】点对应的复数其中则对应的复数其中利用两角和差公式求得的坐标;由则化简可得【详解】点对应的复数其中则对应的复数其中则则故的坐标为;由则得故答案为:;【点睛】本题考查了复数的运算结合考查了两角和解析:118(,)55-1-【分析】点A 对应的复数sin )z i αα=+,其中cos αα==A '对应的复数)sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,利用两角和差公式求得A '的坐标;由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+,化简可得z . 【详解】点A 对应的复数sin )z i αα=+,其中cos αα==则A '对应的复数)sin()]z i αβαβ'=+++,其中34sin ,cos 55ββ==,则cos()cos cos sin sin αβαβαβ+=-=sin()sin cos cos sin αβαβαβ+=+=,则118)656555z i '=-+=-+,故A '的坐标为118(,)55-;由ln (,0)z z C z ω=∈≠,i ωπ=,则i z e π=cos sin i ππ=+, 得1z =-. 故答案为:118(,)55-;1- 【点睛】本题考查了复数的运算,结合考查了两角和的正弦、余弦公式,还考查了学生阅读理解能力,分析能力,运算能力,属于中档题.18.【分析】利用复数的运算法则共轭复数的定义即可得出结果【详解】由可得即所以故答案是:【点睛】该题考查的是有关复数的问题涉及到的知识点有复数的运算法则以及共轭复数的概念属于简单题目 解析:34i -+【分析】利用复数的运算法则、共轭复数的定义即可得出结果. 【详解】由43z i i +=可得34zi i=-,即23434z i i i =-=--, 所以34z i =-+, 故答案是:34i -+. 【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的运算法则以及共轭复数的概念,属于简单题目.19.-2-3i 【解析】分析:化简已知的等式即得a 的值详解:由题得(1-i)31+i-3i=a ∴a=(1-i)4(1+i)(1-i)-3i=-2i·-2i2-3i=-2-3i 故答案为-2-3i 点睛:(1)解析:-2-3i 【解析】分析:化简已知的等式,即得 a 的值. 详解:由题得,故答案为-2-3i点睛:(1)本题主要考查复数的综合运算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)本题是一个易错题,已知没有说“a”是一个实数,所以它是一个复数,如果看成一个实数,解答就错了.20.【解析】分析:由可得代入利用复数乘法运算法则整理后直接利用求模公式求解即可详解:因为所以故答案为点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算属于中档题解题时一定要注意和 10【解析】分析:由1i z =--,可得1i z =-+,代入()1z z -⋅,利用复数乘法运算法则整理后,直接利用求模公式求解即可.详解:因为1i z =--,所以1i z =-+,()()()()()111121z z i i i i ∴-⋅=++⋅-+=+⋅-+39110i =-+=+=10.点睛:本题主要考查的是共轭复数的概念与运算以及复数的乘法的运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++三、解答题21.1247z z +=,12||4z z +=. 【分析】设复数1z 、2z 在复平面上对应的点为1Z 、2Z ,从模长入手,可以得到2221212||||z z z z +=-,进而得到以1OZ 、2OZ 为邻边的平行四边形是矩形.【详解】设复数1z 、2z 在复平面上对应的点为1Z 、2Z , 由于222(71)(71)4++-=,故2221212||||z z z z +=-,故以1OZ 、2OZ 为邻边的平行四边形是矩形,从而12OZ OZ ⊥,则1212||||4z z z z +=-=,()()212717473717171z i z +==±=±--+. 【点睛】本题的易错点在127171z z +=-,原因是12,z z 可以交换位置,所以这个取正负值均可. 22.(1)123626z z i ⋅=--;(2)158. 【分析】(1)由复数12z z z =-为纯虚数,可得2220230a a a a ⎧--=⎨--≠⎩,从而可求出a 的值,进而可求出12z z ⋅的值;(2)由1z z i +=-,可得复数z 在直线y x =-上,所以22232a a a a --=-++,从而可求出a 的值,进而可得z i +的值【详解】解:(1)()()22122241()z z a a a a i a R -=--+--++∈为纯虚数, ∴2220230a a a a ⎧--=⎨--≠⎩,解得2a =, ∴128z i =-,225z i =-,∴12(28)(25)3626z z i i i ⋅=-⋅-=--.(2)()()2212223z z z a a a a i =-=--+--, ∵1z z i +=-,∴复数z 对应的点22(2,23)a a a a ----在直线y x =-上,即22232a a a a --=-++,解得1a =-或52a =. 当1a =-时,0z =,1z i +=;当52a =时,7744z i =-,7344z i i +=-=. 【点睛】此题考查复数的有关概念,考查复数的模,考查计算能力,属于中档题23.(1)||1z =;112a -<<;(2)1. 【分析】(1)化简ω得到22221()a b z a b i z a b a bω=+=++-++,利用ω是实数,得到220b b a b-=+,解得0b ≠,得到221a b +=,从而求得||1z =,进而求得12z a zω=+=, 根据12ω-<<,得到112a -<<; (2)各年级题意可知2121a u a aω--=++,进一步转化,利用基本不等式求得其最值. 【详解】(1)22221()a b z a b i z a b a b ω=+=++-++,因为ω是实数, 所以220b b a b-=+,又0b ≠,所以221a b +=,所以||1z = 因为12z a z ω=+=,且12ω-<<,所以112a -<<. (2)由题意知111a bi bi u a bi a ---==+++, 所以2222211222(1)(1)1b a a u a a a a a a ω---=+=+=++++ 12(1)311a a =++-≥+,当且仅当0a =时,等号成立,所以2u ω-的最小值为1.【点睛】该题考查的是有关复数的问题,涉及到的知识点有复数的分类,复数的乘法除法运算,基本不等式求最值,属于简单题目.24.(1)轨迹是以点(1,1)-为圆心.(2)[4,0]-.【分析】(1)由复数相等的定义化简得出0t y x =-,将其代入200220t t xy ++=中即可得出所求点的轨迹方程;(2)将方程的根转化为直线与圆的交点问题,由圆心到直线的距离小于等于半径,即可求得方程实根的取值范围.【详解】解:(1)设方程实根为0t .根据题意得200(2)2()0(,)t i t xy x y i x y ++++-=∈R ,即()()2000220t t xy t x y i ++++-=. 根据复数相等的充要条件,得20002200t t xy t x y ⎧++=⎨+-=⎩① 由①得0t y x =-,代入200220t t xy ++=得2()2()20y x y x xy -+-+=即22(1)(1)2x y -++=.所以所求的点的轨迹方程是22(1)(1)2x y -++=,轨迹是以点(1,1)-为圆心为半径的圆.(2)由(1)得圆心为(1,1)-,半径r =直线0t y x =-与圆有公共点,2,即022t +,所以040t -.故方程实根的取值范围是[4,0]-.【点睛】本题主要考查了复数相等的定义以及直线与圆的位置关系,属于中档题.25.(1)123,5z i z i ==-或12,z i z i =-=-.(2)存在,k =【分析】(1)由条件可得211230z iz --=,设1z a bi =+,即可算出(2)由条件得212212iz z z i -=+,然后22212iz z i-=+22427z i -= 【详解】(1)由212z z i -=,可得212z z i =-,代入已知方程得()()1111222210z z i iz i z i -+--+=, 即211230z iz --=.令()1,z a bi a b =+∈R , 所以()22230a b i a bi +---=, 即()222320a b b ai +---=, 所以2223020a b b a ⎧+--=⎨-=⎩,解得03a b =⎧⎨=⎩或01a b =⎧⎨=-⎩. 所以123,5z i z i ==-或12,z i z i =-=-.(2)由已知得212212iz z z i-=+,又13z =, 所以222132iz z i-=+,所以22222132iz z i -=+, 所以()()()()22222121322iz iz z i z i ---=+-,整理得()()224427z i z i -+=,所以22427z i -=, 即2433z i -=,所以存在常数33k =,使得等式24z i k -=恒成立.【点睛】设()1,z a bi a b =+∈R ,利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.26.z 4=7+3i ,210AD =【分析】由复数的几何意义得到AC 对应复数z 3-z 1,AB 对应复数z 2-z 1,AD 对应复数z 4-z 1,AD AB AC =+,z 4-z 1=(z 2-z 1)+(z 3-z 1),再由复数的加法运算和模长的公式得到结果.【详解】如图所示:AC 对应复数z 3-z 1,AB 对应复数z 2-z 1,AD 对应复数z 4-z 1.由复数加减运算的几何意义,得AD AB AC =+,∴z 4-z 1=(z 2-z 1)+(z 3-z 1).∴z 4=z 2+z 3-z 1=(5+i)+(3+3i)-(1+i)=7+3i.∴AD 的长为41AD z z =-=()()73i 1i 62i 210+-+=+=【点睛】在复平面上,点,()Z a b 和复数z a bi =+(),a b ∈R 一一对应,所以复数可以用复平面上的点来表示,这就是复数的几何意义.复数几何化后就可以进一步把复数与向量沟通起来,从而使复数问题可通过画图来解决,即实现了数与形的转化.由此将抽象问题变成了直观的几何图形,更直接明了.。

《第 九 章 统计》试卷及答案_高中数学必修第二册_人教A版_2024-2025学年

《第 九 章 统计》试卷及答案_高中数学必修第二册_人教A版_2024-2025学年

《第九章统计》试卷(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、在下列数据中,中位数是3的是:A. 1,2,3,3,4B. 1,2,2,3,4C. 2,3,3,4,5D. 3,3,4,4,52、在下列数据中,中位数是3的数据组是()A. 1,2,3,4,5B. 1,2,3,3,5C. 2,3,3,4,5D. 1,2,4,5,63、下列哪组数据符合正态分布的特点?()A. 数据呈偏态分布,平均值和众数相等B. 数据呈偏态分布,平均值大于众数C. 数据呈正态分布,平均值和众数相等D. 数据呈正态分布,平均值小于众数4、某班级有40名学生,其中男生25名,女生15名。

现从该班级随机抽取5名学生参加数学竞赛,则抽取的5名学生全部为女生的概率是()A. 1/4096B. 1/64C. 1/1024D. 1/2565、某班级男生身高分布如下表所示:身高范围(cm)人数150-16010160-17015170-18020180-19025若该班级男生平均身高为165cm,则身高为170cm及以上的男生人数约为()A. 45人B. 50人C. 55人D. 60人6、下列关于正态分布的叙述中,错误的是()A. 正态分布的密度函数图像呈钟形B. 正态分布的均值、中位数和众数相等C. 正态分布的对称轴是x轴D. 正态分布的尾部是无限延伸的7、某校为了解学生每周课外阅读时间,随机抽取了50名学生进行调查,结果如下:阅读时间(小时/周)人数0-510阅读时间(小时/周)人数5-102010-151515-205该校学生每周课外阅读时间的众数是()A. 10小时B. 15小时C. 20小时D. 5小时8、某校为调查学生对课外阅读的兴趣,随机抽取了100名学生,记录了他们每周课外阅读的时间(单位:小时)。

计算得出这100名学生每周课外阅读时间的平均数为10小时,中位数为9小时,众数为8小时。

以下关于这组数据的描述正确的是()A. 集中趋势的主要指标是平均数和中位数B. 集中趋势的主要指标是平均数和众数C. 离散程度的主要指标是平均数和中位数D. 离散程度的主要指标是平均数和众数二、多选题(本大题有3小题,每小题6分,共18分)1、下列哪些数据类型属于统计中的分类数据?()A. 学生的年龄B. 学生所在班级C. 学生每月的零花钱D. 学生期末考试成绩2、下列关于随机事件的描述中,正确的是()A. 必然事件是指在一定条件下,一定会发生的事件B. 不可能事件是指在一定条件下,一定不会发生的事件C. 随机事件是指在一定条件下,可能发生也可能不发生的事件D. 如果两个事件是互斥事件,则这两个事件不可能同时发生3、某班学生参加数学竞赛,成绩分布如下:成绩区间学生人数80-90分1070-80分1560-70分2050-60分5(1)求该班学生数学竞赛的平均成绩;(2)若要计算该班学生数学竞赛成绩的方差,需要用到以下公式中的哪一个?A. 平均数B. 标准差C. 方差公式D. 频率三、计算题(本大题有3小题,每小题5分,共15分)第一题:某班级40名学生参加数学竞赛,成绩如下(单位:分):68, 72, 85, 78, 82, 90, 67, 70, 73, 75, 76, 80, 81, 84, 86, 88, 89, 91, 92, 95, 96, 98, 99, 100, 70, 72, 76, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 1061.请计算这40名学生数学竞赛成绩的平均数、中位数、众数。

2020秋新人教版高中数学必修二第六章平面向量及其应用考试测试卷(含答案解析)

2020秋新人教版高中数学必修二第六章平面向量及其应用考试测试卷(含答案解析)

第六章 平面向量及其应用 测试卷(时间:120分钟 分值:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一个选项是符合题目要求的)1.在□ABCD 中,若AD ⃗⃗⃗⃗⃗ =(2,8),AB ⃗⃗⃗⃗⃗ =(-3,4),则AC ⃗⃗⃗⃗⃗ = ( ) A.(-1,-12) B.(-1,12) C.(1,-12) D.(1,12)答案:B2.在△ABC 中,若A =π3,BC =3,AB =√6,则C =( )A.π4或3π4B.3π4C.π4D.π6答案:C3.若四边形ABCD 满足AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =0,(AB ⃗⃗⃗⃗⃗ -AD ⃗⃗⃗⃗⃗ )·AC ⃗⃗⃗⃗⃗ =0,则该四边形一定是( )A.正方形B.矩形C.菱形D.直角梯形 答案:C4.(2020年新高考全国Ⅰ卷)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ 的取值范围是 ( )A.(-2,6)B.(-6,2)C.(-2,4)D.(-4,6)答案:A5.若点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB ⃗⃗⃗⃗⃗ 在CD ⃗⃗⃗⃗⃗ 方向上的投影为( )A.3√22B.3√152C.-3√22D.-3√152答案:A6.在△ABC 中,若AB =BC =3,∠ABC =60°,AD 是边BC 上的高,则AD ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ 的值等于 ( )A.-94B.94C.274D.9答案:C7.在△ABC 中,a ,b ,c 分别为A ,B ,C 的对边,如果2b =a +c ,B =30°,△ABC 的面积为32,那么b 等于 ( )A.1+√32B.1+√3C.2+√22D.2√3答案:B8.如图,海平面上的甲船位于中心O 的南偏西30°,与O 相距 15 n mile 的C 处.若甲船以35 n mile/h 的速度沿直线CB 去营救位于中心O 正东方向25 n mile 的B 处的乙船,则甲船到达B 处需要的时间为( )A.12 hB.1 hC.32 hD.2 h 答案:B二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若O 是平行四边形ABCD 对角线的交点,则 ( ) A.AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗B.DA ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ =DB⃗⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ -AD ⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ D.OB ⃗⃗⃗⃗⃗ =12(DA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ) 答案:AB10.在△ABC 中,若a =5√2,c =10,A =30°,则B 可能是 ( ) A.135° B.105° C.45° D.15° 答案:BD11.已知向量 e 1=(-1,2),e 2=(2,1),若向量a =λ1e 1+λ2e 2,则使λ1λ2<0成立的a 可能是( )A.(1,0)B.(0,1)C.(-1,0)D.(0,-1)答案:AC12.定义平面向量之间的一种运算“☉”:对任意的a =(m ,n ),b =(p ,q ),令a ☉b =mq -np ,下列说法正确的是 ( )A.若a 与b 共线,则a ☉b =0B.a ☉b =b ☉aC.对任意的λ∈R ,有λa ☉b =λ(a ☉b )D.(a ☉b )2+(a ·b )2=|a |2|b |2 答案:ACD三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.在△ABC 中,若3a 2-2ab +3b 2-3c 2=0,则cos C 的值为13.14.若向量OA ⃗⃗⃗⃗⃗ =(1,-3),|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,则|AB ⃗⃗⃗⃗⃗ |=2√5. 15.(本题第一空2分,第二空3分)已知在△ABC中,AB =AC =4,BC =2,D 为AB 延长线上一点,连接CD ,若BD =2,则△BDC 的面积是√152,cos ∠CDB =√104. 16.太湖中有一个小岛,沿太湖有一条正南方向的公路,一辆汽车测得小岛在公路的南偏西15°的方向上,若汽车沿公路行驶1 km 后,测得小岛在南偏西75°的方向上,则小岛到公路的距离是√36km .四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算过程)17.(10分)在△ABC 中,a =3,b =2√6,B =2A. (1)求cos A 的值; (2)求c 的值.解:(1)因为a =3,b =2√6,B =2A , 所以在△ABC 中,由正弦定理得3sinA =2√6sin2A,所以2sinAcosA sinA=2√63.故cos A =√63.(2)由(1),知cos A =√63, 所以sin A =√1-cos 2A =√33.因为B =2A ,所以cos B =2cos 2A -1=13.所以sin B =√1-cos 2B =2√23. 在△ABC 中,sin C =sin(A +B )=sin A cos B +cos A sin B =5√39,所以c =asinC sinA=5.18.(12分)如图,在平面直角坐标系中,|OA ⃗⃗⃗⃗⃗ |=2|AB ⃗⃗⃗⃗⃗ |=2,∠OAB =2π3,BC⃗⃗⃗⃗⃗ =(-1,√3). (1)求点B ,C 的坐标;(2)求证:四边形OABC 为等腰梯形.(1)解:设点B 的坐标为(x B ,y B ),则x B =|OA ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |·cos(π-∠OAB )=52,y B =|AB ⃗⃗⃗⃗⃗ |·sin(π-∠OAB )=√32,所以OC ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ +BC⃗⃗⃗⃗⃗ =(52,√32)+(-1,√3)=(32,3√32), 所以点B 的坐标为(52,√32),点C 的坐标为(32,3√32). (2)证明:因为OC ⃗⃗⃗⃗⃗ =(32,3√32),AB ⃗⃗⃗⃗⃗ =(12,√32),所以OC ⃗⃗⃗⃗⃗ =3AB ⃗⃗⃗⃗⃗ ,所以OC ⃗⃗⃗⃗⃗ ∥AB ⃗⃗⃗⃗⃗ . 因为BC ⃗⃗⃗⃗⃗ =(-1,√3),所以|BC ⃗⃗⃗⃗⃗ |=2. 因为|OC ⃗⃗⃗⃗⃗ |≠|AB ⃗⃗⃗⃗⃗ |,|OA ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=2, 所以四边形OABC 为等腰梯形.19.(12分)在四边形ABCD 中,已知AB ⃗⃗⃗⃗⃗ =(6,1),BC ⃗⃗⃗⃗⃗ =(x ,y ),CD ⃗⃗⃗⃗⃗ =(-2,-3),BC ⃗⃗⃗⃗⃗ ∥DA ⃗⃗⃗⃗⃗ .(1)求x 与y 的解析式;(2)若AC ⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ ,求x ,y 的值以及四边形ABCD 的面积. 解:如图所示.(1)因为AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(x +4,y -2), 所以DA ⃗⃗⃗⃗⃗ =-AD ⃗⃗⃗⃗⃗ =(-x -4,2-y ). 因为BC ⃗⃗⃗⃗⃗ ∥DA ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =(x ,y ), 所以x (2-y )-(-x -4)y =0,即x +2y =0. (2)由题意,得AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =(x +6,y +1), BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(x -2,y -3).因为AC ⃗⃗⃗⃗⃗ ⊥BD ⃗⃗⃗⃗⃗⃗ ,所以AC ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗⃗ =0, 即(x +6)(x -2)+(y +1)(y -3)=0.由(1)可知x =-2y ,所以y 2-2y -3=0,所以y =3或y =-1. 当y =3时,x =-6,此时,BC ⃗⃗⃗⃗⃗ =(-6,3),AC ⃗⃗⃗⃗⃗ =(0,4),BD ⃗⃗⃗⃗⃗⃗ =(-8,0), 所以|AC⃗⃗⃗⃗⃗ |=4,|BD ⃗⃗⃗⃗⃗⃗ |=8, 所以S 四边形ABCD =12|AC⃗⃗⃗⃗⃗ ||BD ⃗⃗⃗⃗⃗⃗ |=16. 当y =-1时,x =2,此时,BC ⃗⃗⃗⃗⃗ =(2,-1),AC ⃗⃗⃗⃗⃗ =(8,0),BD ⃗⃗⃗⃗⃗⃗ =(0,-4). 所以|AC⃗⃗⃗⃗⃗ |=8,|BD ⃗⃗⃗⃗⃗⃗ |=4,S 四边形ABCD =16. 综上可知{x =-6,y =3或{x =2,y =-1,S 四边形ABCD =16.20.(12分)如图,某海轮以60 n mile/h 的速度航行,在点A 测得海面上油井P 在南偏东60°,向北航行40 min 后到达点B ,测得油井P 在南偏东30°,海轮改为沿北偏东60°的航向再行驶80 min 到达点C ,求P ,C 间的距离.解:由题意知AB =40 n mile,∠BAP =120°,∠ABP =30°, 所以∠APB =30°,所以AP =40 n mile,所以BP 2=AB 2+AP 2-2AP ·AB ·cos 120°=402+402-2×40×40×(-12)=402×3,所以BP =40√3 n mile . 因为∠PBC =90°,BC =80 n mile,所以PC 2=BP 2+BC 2=(40√3)2+802=11 200, 所以PC =40√7 n mile,即P ,C 间的距离为40√7 n mile .21.(12分)在边长为1的菱形ABCD 中,A =60°,E 是线段CD 上一点,满足|CE ⃗⃗⃗⃗⃗ |=2|DE ⃗⃗⃗⃗⃗ |,如图所示,设AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =b .(1)用a ,b 表示BE⃗⃗⃗⃗⃗ . (2)在线段BC 上是否存在一点F ,满足AF ⊥BE ?若存在,确定点F 的位置,并求|AF⃗⃗⃗⃗⃗ |;若不存在,请说明理由.解:(1)根据题意,得BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =b ,CE ⃗⃗⃗⃗⃗ =23CD ⃗⃗⃗⃗⃗ =23BA ⃗⃗⃗⃗⃗ =-23AB ⃗⃗⃗⃗⃗ =-23a ,所以BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE⃗⃗⃗⃗⃗ =b -23a . (2)结论:在线段BC 上存在使得4|BF ⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |的一点F ,满足AF ⊥BE ,此时|AF⃗⃗⃗⃗⃗ |=√214. 求解如下:设BF ⃗⃗⃗⃗⃗ =t BC ⃗⃗⃗⃗⃗ =t b ,则FC ⃗⃗⃗⃗⃗ =(1-t )b (0≤t ≤1), 所以AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BF⃗⃗⃗⃗⃗ =a +t b . 因为在边长为1的菱形ABCD 中,A =60°, 所以|a |=|b |=1,a ·b =|a ||b |cos 60°=12.因为AF ⊥BE ,所以AF ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =(a +t b )·(b -23a )=(1-23t )a ·b -23a 2+tb 2=(1-23t )×12-23+t =0,解得t =14,所以AF⃗⃗⃗⃗⃗ =a +14b , 所以|AF ⃗⃗⃗⃗⃗ |=√AF⃗⃗⃗⃗⃗ 2=√a 2+12a ·b +116b 2=√1+12×12+116=√214. 22.(12分)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足 sin A +√3cos A =2. (1)求角A 的大小.(2)现给出三个条件:①a =2;②B =π4;③c =√3b.试从中选出两个可以确定△ABC 的条件,写出你的方案,并以此为依据求△ABC 的面积.(写出一种方案即可)解:(1)依题意,得2sin (A +π3)=2,即sin (A +π3)=1.因为0<A <π,所以π3<A +π3<4π3,所以A +π3=π2,所以A =π6.(2)参考方案:选择①②. 由正弦定理a sinA =bsinB,得b =asinB sinA=2√2.因为A +B +C =π,所以sin C =sin(A +B )=sin A cos B +cos A sin B =√2+√64, 所以S △ABC =12ab sin C =12×2×2√2×√2+√64=√3+1.。

(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)

(完整)人教版高中数学必修二期末测试题一及答案(20200814125816)

高中数学必修二期末测试题一1、下图(1)所示的圆锥的俯视图为2、直线l :-、3x y 3 0的倾斜角D 、 150 o3、边长为a 正四面体的表面积是D 、 、,3a 2。

4、对于直线l:3x y 6 0的截距,下列说法正确的是距是6;C 、在x 轴上的截距是3;D 、在y 轴上的截、选择题(本大题共2道小题,每小题5分,共60分。

)A 、30;;60:; 120 ;B 、込 a 3 ;12C 、刍;4A 、在y 轴上的截距是6;B 、在x 轴上的截距是35、已知a// ,b ,则直线a与直线b的位置关系是()A、平行;B、相交或异面;C、异面;D、平行或异面。

6、已知两条直线|「x 2ay 1 0,l2:x 4y 0,且W,则满足条件a的值为()1 1A、;B、;C、2 ;2 2D、2。

7、在空间四边形ABCD中,E,F,G,H分别是AB, BC, CD, DA的中点。

若AC BD a,且AC与BD所成的角为60:,贝卩四边形EFGH的面积为()3 2 3 2 3 2A、 a ;B、 a ;C、 a ;8 4 2D、■-/3a。

8已知圆C:x2 y2 2x 6y 0 ,则圆心P及半径r分别为()A、圆心P 1,3,半径r 10 ;B、圆心P 1,3 ,半径r ;C、圆心P 1, 3,半径r 10 ;D、圆心P 1, 3 ,半径r J0。

9、下列叙述中错误的是()A、若P 口且口l,则PI ;B、三点A,B,C确定一个平面;C、若直线ap|b A,则直线a与b能够确定一个平面;D、若 A I,B I 且 A ,B ,贝卩I 。

10、两条不平行的直线,其平行投影不可能是( )A、两条平行直线;B、一点和一条直线;C、两条相交直线;D、两个点。

11、长方体的一个顶点上的三条棱长分别为4、5,且它的8个顶3、点都在同一个球面上,则这个球的表面积是( )C 、125A、25 ;B、50 ;;D、都不对。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x y O x y O x y O x
y
O 高中数学必修2达标测试题
: 得分:
一、选择题(每小题5分,共60分)
1、下列命题为真命题的是( )
A. 平行于同一平面的两条直线平行;
B.与某一平面成等角的两条直线平行;
C. 垂直于同一平面的两条直线平行;
D.垂直于同一直线的两条直线平行。

2、下列命题中错误的是:( )
A. 如果α⊥β,那么α一定存在直线平行于平面β;
B. 如果α⊥β,那么α所有直线都垂直于平面β;
C. 如果平面α不垂直平面β,那么α一定不存在直线垂直于平面β;
D. 如果α⊥γ,β⊥γ,α∩β=l,那么l ⊥γ.
3、右图的正方体ABCD-A ’B ’C ’D ’
中,异面直线AA ’与BC 所成的角是( )
A. 300
B.450
C. 600
D. 900
4、在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )
A .
B .
C .
D .
5、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )
A.a=2,b=5;
B.a=2,b=-5;
C.a=-2,b=5
D.a=-2,b=-5
6、直线2x-y=7与直线3x+2y-7=0的交点是( )
A (3,-1)
B (-1,3)
C (-3,-1)
D (3,1)
7、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )
A 4x+3y-13=0
B 4x-3y-19=0
C 3x-4y-16=0
D 3x+4y-8=0
8、正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是:(

A.3a
π; B.2a
π; C.a π2; D.a π3.
9、圆x 2+y 2-4x-2y-5=0的圆心坐标是:( )
A.(-2,-1);
B.(2,1);
C.(2,-1);
D.(1,-2).
10、直线3x+4y-13=0与圆1)3()2(22=-+-y x 的位置关系是:( )
A. 相离;
B. 相交;
C. 相切;
D. 无法判定.
11、圆x 2+y 2-2x -8=0和圆x 2+y 2+2x -4y -4=0的公共弦所在的直线方程是()
A .x +y +1=0
B .x +y -3=0
C .x -y +1=0
D .x -y -3=0
12、直线x -2y +1=0关于直线x =1对称的直线的方程是()
A.x +2y -1=0 B .x +2y -3=0 C . 2x +y -1=0 D . 2x +y -3=0
二、填空题(每小题5,共20分)
13、底面直径和高都是4cm 的圆柱的侧面积为cm 2。

14、两平行直线0962043=-+=-+y x y x 与的距离是。

15、、已知点M (1,1,1),N (0,a ,0),O (0,0,0),若△OMN 为直角三角形,则a =____________; 16,半径为a 的球放在墙角,同时与两墙面和地面相切,那么球心到墙角顶点的距离为________________;
三、解答题
17、(10分)已知圆C 的圆心在直线l :x -2y -1=0上,并且经过A (2, 1)、B(1, 2)两点,求圆C 的标准方程.
18.(12分)已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。

(1)求AB 边所在的直线方程;(2)求中线AM 的长。

19、(12分)已知直线1l :3420x y +-=与2l :220x y ++=的交点为P .
(1)求交点P 的坐标;
(2)求过点P 且平行于直线3l :210x y --=的直线方程;
(3)求过点P 且垂直于直线3l :210x y --=直线方程.
20、(12分)如图,在边长为a 的菱形ABCD 中,E,F 是PA 和AB 的中点。

∠ABC=60°,PC ⊥面ABCD ;
(1)求证: EF||平面PBC ;
(2)求E 到平面PBC 的距离。

21、(12分)已知关于x,y 的方程C:04222=+--+m y x y x .
A B C D P E
F
(1)当m 为何值时,方程C 表示圆。

(2)若圆C 与直线1l :x+2y-4=0相交于M,N 两点,且MN=54,求m 的值。

22.(12分)如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.
(1)求四棱锥S-ABCD 的体积; (2)求证:面SAB ⊥面SBC
(3)求SC 与底面ABCD 所成角的正切值。

答案
S C
D B
1-10 CBBCB AABBC 11 12
13、π16 14、1 15、23-
16、√3a 17、解:22(1)(1)13x y +++=
18、解:(1)由两点式写方程得
1
21515+-+=---x y , 即 6x-y+11=0
或 直线AB 的斜率为 616)1(251=--=-----=k 直线AB 的方程为 )1(65+=-x y
即 6x-y+11=0
(2)设M 的坐标为(00,y x ),则由中点坐标公式得
12
31,124200=+-==+-=y x 故M (1,1) 52)51()11(22=-++=AM
19、解:(1)由3420,220,x y x y +-=⎧⎨++=⎩ 解得2,2.
x y =-⎧⎨=⎩
所以点P 的坐标是(2,2)-.
(2)因为所求直线与3l 平行,
所以设所求直线的方程为 20x y m -+=.
把点P 的坐标代入得 2220m --⨯+= ,得6m =.
故所求直线的方程为260x y -+=.
(3)因为所求直线与3l 垂直,
所以设所求直线的方程为 20x y n ++=.
把点P 的坐标代入得 ()2220n ⨯-++= ,得2n =. 故所求直线的方程为 220x y ++=.
20、(1)证明:PB
EF BF AF PE AE ||,,∴== 又 ,,PBC PB PBC EF 平面平面⊂⊄
故 PBC EF 平面||
(2)解:在面ABCD 作过F 作H BC FH 于⊥
PBC PC ABCD PC 面面⊂⊥,
ABCD PBC 面面⊥∴
又 BC ABCD PBC =面面 ,BC FH ⊥,ABCD FH 面⊂ ABCD FH 面⊥∴
又PBC EF 平面||,故点E 到平面PBC 的距离等于点F 到平面PBC 的距离FH 。

在直角三角形FBH 中,2,60a FB FBC =
=∠ , a a a FBC FB FH 4323260sin 2sin 0=⨯=⨯=
∠= 故点E 到平面PBC 的距离等于点F 到平面PBC 的距离, 等于a 4
3。

21、解:(1)方程C 可化为 m y x -=-+-5)2()1(22 显然 5,05<>-m m 即时时方程C 表示圆。

(2)圆的方程化为 m y x -=-+-5)2()1(22
圆心 C (1,2),半径 m r -=5
则圆心C (1,2)到直线l:x+2y-4=0的距离为 51214
22122=+-⨯+=d
5
221,54==MN MN 则 ,有222)21(MN d r += ,)52
()51
(
522+=-∴M 得 4=m 22、(1)解:
4
111)121(61)(2
13131=⨯⨯+⨯=⨯⨯+⨯⨯==SA AB BC AD Sh v Chapter (Next) Section 1 (2)证明:
BC
SA ABCD BC ABCD SA ⊥∴⊂⊥,面,面
又,A AB SA BC AB =⊥ ,
SAB BC 面⊥∴
SAB BC 面⊂
SBC SAB 面面⊥∴
(3)解:连结AC,则SCA ∠就是SC 与底面ABCD 所成的角。

在三角形SCA 中,SA=1,AC=2112
2=+, 222
1tan ===
∠AC SA SCA。

相关文档
最新文档