RedET同源重组技术概述(PPT 49页)
重组DNA技术详细概述(ppt 41页)(共40张PPT)
胰岛素在大肠杆菌体内的表达
凝血因子VIII高表达载体的构建和及其原理
培育转基因动物的基本步骤
准备供体动物,分离受精卵; 准备注射用转基因DNA溶液;
将转基因DNA显微注射到一个受精卵的雌性原核之 中,进入的DNA通过非同源重组插入到基因组之中 ; 将受精卵移植到代孕母鼠的子宫之中; 对出生的小鼠进行筛选,挑出转基因小鼠。
蛋白质工程一般有三个目的:(1)改变催化性质。这包括提高Vmax、降低 Km值、改变最适pH、去除抑制剂作用位点、改变反应的特异性或去除导致 蛋白质不稳定的氨基酸残基等;(2)改变结构性质。这包括改善热稳定性 、提高在有机溶剂中的稳定性、改变理化性质或改变对配体结合的特异性; (3)创造新系统。这包括合成融合蛋白或多功能蛋白、添加有利于纯化的 标记或增强药用蛋白质的药效。
基因敲除
基因敲除是上个世纪80年代后半期随DNA同源 重组原理发展起来的一门新技术,它是指在分子 水平上,使用特定的手段,将一个结构已知但功 能不详的基因去除,或用其它顺序相近的基因取 代,使原基因功能丧失,然后从整体观察实验动 物的表型变化,进而推断相应基因的功能。这与 早期生理学研究中常用的切除部分-观察整
要使克隆基因在宿主细胞中表达,首先需要将目的基因亚克隆到带有基 因表达所必需的各种元件的载体之中,这些载体通称为表达载体。目的 基因可以放在不同的宿主细胞中表达。针对不同的表达系统,需要构建 不同的表达载体。 表达载体可分为融合载体和非融合载体两类,前者在插入位点上“预 装”了另外一个蛋白质或多肽的基因,因此,插入的外源基因将会与 它发生融合,表达出来的是一种融合蛋白。使用融合载体的主要好 处是方便了目的蛋白的纯化。 理想的表达系统应该满足以下条件:(1)表达载体具有合适的MCS,以便 使外源基因能够插入到正确的表达位置,或者至少是含有3个以上阅读框架 的系列;(2)能够形成正确的翻译后修饰和三维结构,以形成有活性的或 有功能的分子;(3)为可诱导的表达系统,允许细胞生长和诱导表达,防 止毒性蛋白质的积累;(4)易于分离和纯化;(5)最好能分泌到胞外。
RedET同源重组技术概述
RedET同源重组技术概述RedET同源重组技术是一种利用酵母宿主的遗传重组系统,将目标基因在酵母中进行同源重组而得到转基因株系的技术。
该技术在生物医学和生物工程领域具有广泛的应用前景。
本文将对RedET同源重组技术进行概述并介绍其原理、应用以及存在的问题。
RedET同源重组技术的原理基于酵母自然发生的同源重组机制。
酵母是一种单细胞真核生物,其核糖体RNA和转录因子与哺乳动物的细胞中类似,使得酵母成为一种理想的宿主,用于表达复杂蛋白质的研究和生产。
在RedET同源重组技术中,采用了遗传重组系统来介导目标基因与酵母染色体发生同源重组,从而实现目标基因的插入和表达。
RedET同源重组技术的核心是一种诱导目标基因与酵母染色体同源重组的DNA修复机制。
该修复机制主要基于酵母中两个DNA重组酶RecE和RecT的相互作用。
RecE酶在酵母中识别并切割目标基因与酵母染色体之间的同源序列,形成单链切口。
然后RecT酶结合在切口上,介导目标基因与酵母染色体的DNA重组。
最后,通过酵母DNA修复机制,目标基因与酵母染色体实现了同源重组,并插入到酵母基因组中。
RedET同源重组技术具有广泛的应用领域,尤其在基因工程和蛋白表达中具有重要作用。
首先,该技术可以用于基因敲除和基因座替换,为基因功能研究提供了有效的手段。
其次,RedET同源重组技术也可以用于构建表达突变蛋白或蛋白片段的酵母株系,用于蛋白结构和功能研究。
此外,通过RedET同源重组技术,还可以构建酵母株系用于产生异源重组蛋白,并通过大规模筛选酵母株系实现高效蛋白生产。
然而,RedET同源重组技术在应用过程中也存在一些问题和局限性。
首先,该技术的目标基因与酵母染色体之间需要具有足够的同源性,这对于异源基因的插入造成了一定的限制。
其次,RedET同源重组技术在染色体插入位置的选择性方面存在一定的限制,这可能影响目标基因的表达水平和稳定性。
此外,酵母株系在目标基因插入后可能会发生染色体结构的重组和重排,这可能会对酵母的生长和基因表达产生影响。
同源重组
同源重组同源重组(Homologous Recombination) 是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。
同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。
同源重组反应通常根据交叉分子或holiday结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。
目录1简介2基因敲除1. 2.1 定义2. 2.2 技术路线3转移法4DNA1简介同源重组(Homologus Recombination) 是指发生在姐妹染色单体(sister chromatin)之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。
同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。
同源重组同源重组反应通常根据交叉分子或holliday结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。
同源重组反应严格依赖DNA分子之间的同源性,100%重组的DNA分子之间的重组常见于非姐妹染色体之间的同源重组,称为Homologous Recombination,而小于100%同源性的DNA分子之间或分子之内的重组,则被称为Hemologus Recombination。
后者可被负责碱基错配对的蛋白如原核细胞内的MutS 或真核生物细胞内的MSH2-3等蛋白质“编辑”。
同源重组可以双向交换DNA分子,也可以单向转移DNA分子,后者又被称为基因转换(Gene Conversion)。
RedET同源重组技术概述.pptx
引物设计方法
同源臂的长度在15~50bp时,重组效率就能满足实验要求, 重组效率随着同源臂长度的增加而增加。
同源臂长度对Red/ET重组效率的影响(数据来自Zhang et al. 1998)
源重组的DNA工程技术。
2. 原理
首先重组酶沿5’→3’方向消化双链DNA,露出粘性末端(15-50bp)。 随后重组酶介导单链退火修复(single- strand annealing),即载体 和插入片段的黏性末端(15-50bp) 互补形成稳定的带缺刻的环状重组 质粒,转化大肠杆菌后能自动被修复为闭合的环状质粒
Red/ET同源重组链退火模型
四、 Red/ET重组中的功能元件
1. Redα、Redβ和Redγ Redα:以三聚体的形式形成“漏斗型”活性的蛋白, 5’-3’外切 酶活性。
Redα结构(A)和与DNA相互作用的模式(B) (图片来自Subramanian et al. 2003)
Redβ:与ssDNA结合形成丝状体,催化与互补ssDNA之间的退火。 Redγ:抑制RecBCD外切酶和SbcCD外切酶对外源DNA的降解。
λ噬菌体的pL操纵子示意图
l phage
gba
Rac phage
ET
Rac recE/recT 操纵子 = λ red 操纵子, 操纵子中的重组酶 (Redα/Redβ 或者RecE/RecT)协同配合完成重组作用;
recE = red α :5’→3’ dsDNA核酸外切酶;
recT = redβ :ssDNA结合和退火蛋白;
3. 特点:
Red同源重组技术具有同源序列短(15~50bp)、重组效率高、操作 简单、快速的特点。
4. 应用
这种技术可在DNA靶标分子的任意位点进行基因敲除、敲入、点突 变等操作,无需使用限制性内切酶和连接酶。此外,这种新型重组技术可 直接将目的基因克隆到载体上,目的基因既可来源于细菌人工染色体也 可是基因组DNA。Red同源重组技术使难度较大的基因工程实验顺利进行, 大大推动功能基因组研究的发展。
实验93RedET同源重组XXXX325.pptx
五、 Red/ET重组操作流程
引物设 计合成
线性供体dsDNA 底物的制备
线性载体的 制备
重组子 筛选
重组产物转化 至感受态细胞
重组子检测
重组反应
1. 设计合成引物
设计引物时要遵循一般引物设计的基本原则,但是上下 游引物要加上15-20bp的载体同源序列。载体同源序列如何 添加主要分以下两种情况: (1)载体酶切后是5’端突出或平末端,则引物上的同源序 列包括5’端突出序列的同源序列。 (2)载体酶切后是3’端突出,则引物上的同源序列不包括3’ 端突出序列的同源序列。
3. 特点:
Red同源重组技术具有同源序列短(15~50bp)、重组效率高、操作 简单、快速的特点。
4. 应用
这种技术可在DNA靶标分子的任意位点进行基因敲除、敲入、点突 变等操作,无需使用限制性内切酶和连接酶。此外,这种新型重组技术可 直接将目的基因克隆到载体上,目的基因既可来源于细菌人工染色体也 可是基因组DNA。Red同源重组技术使难度较大的基因工程实验顺利进行, 大大推动功能基因组研究的发展。
2. RecE和RecT
RecE:C端39kDa的部分才是5’-3’外切酶活DNA结合形成丝状体,催化与互补ssDNA之间的退火。
3. RecA 4个亚基形成有活性的RecA蛋白,细菌中广泛存在且高度保
守,有同源重组酶、DNA损伤修复、DNA依赖ATPase活性等功能。 可诱导SOS反应、挽救DNA复制叉等,提高电击后细胞的活
Red同源重组技术相关文献
Nature Genetics (1998)
Nature Biotechnology (2000)
二、Red/ET同源重组技术的特点
1. 不依赖RecA蛋白,在重组酶系统(Redα/Redβ或 RecE/RecT)的相互配合下,含短同源臂(15~50bp)的供体
RedET同源重组技术概述(PPT 49页)
RecE/RecT和Redα/Redβ两重组系统的差异
质粒: pSC101-BAD-gbaA(amp) pSC101-BAD-gbaA(tet) pSC101-BAD-gbaA(hyg) SC101-Tet-gbaA(tet) pSC101-BAD-ETgA(tet) pSC101-Tet-ETgA (amp)
Red/ET同源重组技术
2015年3月25日
内容
一、 什么是Red/ET同源重组 二、 技术的特点 三、 作用机制 四、 功能元件 五、操作流程及关键因素 六、在基因工程中的主要应用 七、 新技术的发展 八、在其他细菌中的应用
遗传重组
• 基因组的可变性和稳定性之间必须维持 一个恰到好处的平衡,这样才能使生物 体得以生存并能世代相传,繁衍不息。
2. RecE和RecT
RecE:C端39kDa的部分才是5’-3’外切酶活性必需,对5’端为羟 基的底物也有活性。 RecT:与ssDNA结合形成丝状体,催化与互补ssDNA之间的退火。
3. RecA 4个亚基形成有活性的RecA蛋白,细菌中广泛存在且高度保
守,有同源重组酶、DNA损伤修复、DNA依赖ATPase活性等功能。 可诱导SOS反应、挽救DNA复制叉等,提高电击后细胞的活
“线状DNA+线状DNA”重组,选用RecE/RecT重组酶系统; “线状DNA+环状DNA”重组,选用Redα/Redβ重组酶系统;
根据需要选择含不同抗生素抗性基因(Ampr、Hygr、Tetr)和不同 的诱导型启动子(pBAD、pTet)的重组酶系统表达质粒。
RecE/RecT和Redα/Redβ两重组系统对不同类型底物重组效率的差异
引物设计方法
同源重组的应用专题讲义PPT(20张)
◆ 基因敲除是自80年代末以来发展起来的一种新型分子生物 学技术,是通过一定的途径使机体特定的基因失活或缺失的 技术。通常意义上的基因敲除主要是应用DNA同源重组原理 ,用设计的同源片段替代靶基因片段,从而达到基因敲除的 目的。随着基因敲除技术的发展,除了同源重组外,新的原 理和技术也逐渐被应用,比较成功的有基因的插入突变和 iRNA,它们同样可以达到基因敲除的目的。 ◆基因敲除和敲进的原理都是同源重组,即同源双交换,用 克隆的外源基因取代基因组中野生型等位基因。 ◆两者不同点在于,基因敲除导入的外源基因是失活的、无 功能的基因,基因敲进导入的是有活性和功能的基因。因 而两者的具体用途有所不同。 ◆基因敲除和敲进都可用于基因功能的研究,基因敲进则也 可用于突变基因的修复。
一、转基因动物 ◆转基因动物是把外源基因导入
动物的生殖细胞中,并整合该
细胞后发育成为个体整合的外 源基因,整合的外源基因又能 影响其后代遗传的动物。
转基因动物生产药用蛋白的基本过程
药用蛋白基因→表达细胞株→细胞核 受体动物
供体动物→受精卵→无核受精卵→组装的核细胞→多细胞胚胎→假孕
动物→动物幼崽→雌性转基因动物→乳汁→药用蛋白
同源重组的应用 09生工夏章传
同源重组概述 同源重组(homologous recombination) ◆即一般重组,是染色体之间进行遗传信息的方式之一,几乎所 有生物都发生同源重组。 ◆如真核生物减数分裂中染色体的交换,细菌结合、转化、普遍 性转导的遗传重组都属于同源重组。 ◆同源重组要求两个DNA分子的序列同源,同源区越长越有利于 重组;同源区太短,则难于发生重组。因为它依赖于大范围 DNA同源顺序的联会,负责DNA配对和重组的蛋白质因子无碱 基序列特异性,只要两条DNA序列相同或相近,重组便可以在 联会部分的任何位置发生。当然,也存在重组热点,即某些序 列发生重组的概率高于其它序列。 ◆同源重组也是对损伤DNA修复的一种重要途径,即重组修复。
同源重组PPT95页
一、同源重组(homologous recombination)
同源重组(homologous recombination)发 生在两个同源DNA分子之间。真核细胞减数分裂 过程中,同源染色体彼此配对,同源染色体DNA 片段发生交叉与互换。这是发生在真核生物中的 同源重组。同源重组在接合、转导或转化后外源 DNA整合到细菌基因组中。Robin Holliday提出 的遗传重组模型是人们从分子水平上认识重组的 基础。
RecBCD的酶活性受重组热点Chi的调节。Chi位点大 肠杆菌基因组中的一种不对称的8 bp核苷酸序列, 5′-GCTGGTGG-3′,Chi位点能够改变RecBCD的 酶活性,它是大肠杆菌重组过程的必需组分,是重组 的热点。一旦RecBCD识别出Chi序列,RecBCD核酸 酶活性便发生变化,其3’→5’外切酶活性受到抑制, 5’→3’外切酶活性被激活,由原来优先降解3’末 端链,改变为只降解5’末端链。但是它的解旋酶活 性未受到影响。 RecBCD酶活性变化的结果是产生3’ 末端带有Chi位点的ssDNA。
4. 大肠杆菌的遗传重组
通过遗传分析,在大肠杆菌细胞中已经发现了3种重 组途径,即RecBCD、 RecE、RecF途径。以下步 骤为这3种途径所共有:(1)产生一个具有3’- OH末端的单链DNA片段;(2)单链DNA侵入其 同源双链DNA分子;(3)形成Holliday中间体, 并发生分支迁移;(4)内切核酸酶对中间体进行切 割,连接后产生重组体;(5)三种重组途径均需要 RecA蛋白。
5. 真核细胞的同源重组
发生在减数分裂过程中的同源重组有两方面的重要 作用。一是确保同源染色体能够正确配对,而同源染 色体的联会是生殖细胞形成时染色体数目减半的基础。 另外,减数分裂重组也常常引起非姊妹染色单体之间 的交换,结果是亲本DNA分子上的等位基因在下一 代发生了重新排列。
《重组DNA技术简介》课件
载体的构建
选择合适的载体,如质粒或病毒载体,对其进行 限制性内切酶切割、连接和转化等操作,构建成 重组载体。
克隆的表达与分析
对阳性克隆进行培养和诱导表达,收集表达产物 并进行相关分析,如蛋白质纯化、Western blot 等。
03
重组DNA技术的实验操作
基因的克隆与鉴定
基因克隆
将目的基因从原始生物体中提取出来,经过剪切、拼接等操作后 ,将其插入到载体DNA中,形成重组DNA的过程。
04
重组DNA技术的安全性与伦理问题
重组DNA技术的安全性评估
重组DNA技术的安全性
重组DNA技术是一种在分子水平上对DNA进行操作的技术,通过该技术可以实现对生物 遗传信息的精确控制。经过多年的研究和应用,重组DNA技术已经得到了广泛的应用和 认可,被认为是一种相对安全的技术。
安全评估的必要性
各国政府也制定了一些关于重组DNA 技术的法规和政策,例如美国的《人 间重组DNA研究指南》和中国的《人 间遗传资源管理暂行办法》等。这些 法规和政策对技术的研发和应用进行 了规范和管理,以确保技术的安全和 可控性。
重组DNA技术的社会影响与争议
社会影响
争议与挑战
重组DNA技术作为一种先进的生物技 术,对社会产生了深远的影响。该技 术的应用不仅推动了生物医学领域的 发展,也促进了农业、工业等领域的 技术革新。同时,该技术的应用也引 发了一些社会问题和争议。
基因表达的调控对于生物体的生长发 育和环境适应性至关重要。基因表达 受到多种因素的影响,包括DNA的甲 基化、染色质结构的改变、蛋白质因 子的作用等。
重组DNA技术的操作流程
目的基因的获取
通过限制性内切酶将DNA切割成片段,再通过 凝胶电泳和回收试剂盒分离得到目的基因。
Red重组技术
Red重组技术2006-11-6 20:48最佳答案伴随着分子生物学的发展,一种基于λ噬菌体Red重组酶的同源重组系统已应用于大肠杆菌基因工程研究.Red重组系统由三种蛋白组成:Exo蛋白是一种核酸外切酶,结合在双链DNA的末端,从5'端向3'端降解DNA,产生3'突出端;Beta蛋白结合在单链DNA上,介导互补单链DNA退火;Gam蛋白可与RecBCD酶结合,抑制其降解外源DNA的活性.Red同源重组技术具有同源序列短(40~60 bp)、重组效率高的特点.这种技术可在DNA靶标分子的任意位点进行基因敲除、敲入、点突变等操作,无需使用限制性内切酶和连接酶.此外,这种新型重组技术可直接将目的基因克隆于载体上,目的基因既可来源于细菌人工染色体也可是基因组DNA.Red同源重组技术使难度较大的基因工程实验顺利进行,大大推动功能基因组研究的发展.当今生物学与医学科学中,最强大的工具之一就是人工除去或补充DNA片段到生物体基因组中的能力。
这个能力已帮助科学家了解了许多由于基因缺陷引起的问题,如今基因缺陷已与数千种疾病联系在一起。
迄今这种增删DNA的技术还只局限于小DNA片断。
但4年前,德国海德堡欧洲分子生物学实验室的Francis Stewart和他的同事发明了一种可以改造细菌中更长片段的DNA的新技术(http://www-db.embl-heidelberg.de/jss/servlet/de.embl.bk.wwwTools.GroupL eftEMBL/ExternalInfo/stewart/ETcloning-textonly.html,)。
现在德国生物技术大学工作的原欧洲分子生物学实验室研究人员又用这一个方法改造了一个小鼠基因,使其产生一系列复杂变化,目的是能对人类的白血病有更多了解。
他们的研究结果发表在最新一期的《自然生物技术》(Nature Biotechnology)上。
实验93RedET同源重组2015325
根据需要选择含不同抗生素抗性基因(Ampr、Hygr、Tetr)和不同 的诱导型启动子(pBAD、pTet)的重组酶系统表达质粒。
RecE/RecT和Redα/Redβ两重组系统对不同类型底物重组效率的差异
源重组的DNA工程技术。
2. 原理
首先重组酶沿5’→3’方向消化双链DNA,露出粘性末端(15-50bp)。 随后重组酶介导单链退火修复(single- strand annealing),即载体 和插入片段的黏性末端(15-50bp) 互补形成稳定的带缺刻的环状重组 质粒,转化大肠杆菌后能自动被修复为闭合的环状质粒
Red同源重组技术相关文献
Nature Genetics (1998)
Nature Biotechnology (2000)
二、Red/ET同源重组技术的特点
1. 不依赖RecA蛋白,在重组酶系统(Redα/Redβ或 RecE/RecT)的相互配合下,含短同源臂(15~50bp)的供体
DNA分子能直接重组到受体DNA分子上,实现替换、插入、删 除、突变等;
λ噬菌体的pL操纵子示意图
l phage
gba
Rac phage
ET
Rac recE/recT 操纵子 = λ red 操纵子, 操纵子中的重组酶 (Redα/Redβ 或者RecE/RecT)协同配合完成重组作用;
recE = red α :5’→3’ dsDNA核酸外切酶;
recT = redβ :ssDNA结合和退火蛋白;
• 染色体的遗传差异主要由两种 机制产生, 一种是突变,一种是遗传重组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广义遗传重组:任何造成基因型变化的基因交流过程
◘ 狭义遗传重组:涉及到DNA分子内断裂-复合的基因交流 ◘ 重组可分为四类(DNA序列、蛋白质因子)
异常
◘ 遗传重组与重组DNA技术
一、 什么是Red/ET同源重组
1. 概念
Red/ET重组是新近出现的一种利用来自E. coli中λ 噬菌体的重组 酶Redα/Redβ 或者是来自 Rac 噬菌体的重组酶RecE/RecT 进行基因同
六、 Red/ET重组技术的主要应用
1. 重组质粒的构建 2. 染色体的修饰 3. 亚克隆(Subcloning) 4. 直接克隆(Direct cloning)
1. 重组质粒的构建
(1) 传统基因克隆技术的缺点
➢ 传统克隆技术依赖限制性酶切位点和内切
酶的消化,当缺
少合适的酶切位点或者某个酶切位点在目的片段中大量存在时,
降低模板对筛选工作带来的难度;
(1)纯化回收PCR产物; (2)内切酶消化处理模板; (3)使用R6K复制子。
3. 线性载体的制备
线性化载体可以通过酶切或PCR扩增两种方法获得。 1)酶切
选取合适的位点,单酶切或双酶切皆可,质粒的线性化不彻底,将导致阴性 克隆的产生,为了提高阳性率,建议通过双酶切进行质粒线性化。 2)PCR扩增
“质粒多聚体”问题解决办法:
采用“线性DNA+线性DNA”重组方式; 利用RecE/RecT重组酶系统;
减低质粒拷贝数。
“质粒多聚体” 现象
卡那霉素抗性基因(Kan)替换pUC19中的氨苄抗性基因(Amp)
解决办法: 采用“线性DNA+线性DNA”重组方式; 利用RecE/RecT重组酶系统; 减低质粒拷贝数。
-20℃保存待用。
5.重组产物转化至感受态细胞
注意:所使用的感受态细胞效率≥1×108cfu/μg. 冰上融化一管100 μl的DH5α感受态细胞。
加入5-10μl反应液到感受态细胞中,轻轻混匀,冰上孵育 30分钟。
42℃水浴中热激45-90秒后,冰浴3分钟。
加入890μl SOC液体培养基,37℃复苏45-60分钟。
(1)配置反应体系 将目的DNA片段和线性化载体以一定的摩尔比加到管子中进行重组
反应(摩尔比可计算方法见附录),10 ul体系(见下表) 注意:1.目的片段与载体的摩尔比在2:1-5:1之间,摩尔比低于2:1效
率会降低;2.反应时间在15-30分钟,时间太短不利于重组反应
试剂
加量
10x Buffer
λ噬菌体的pL操纵子示意图
l phage
gba
Rac phage
ET
Rac recE/recT 操纵子 = λ red 操纵子, 操纵子中的重组酶 (Redα/Redβ 或者RecE/RecT)协同配合完成重组作用;
recE = red α :5’→3’ dsDNA核酸外切酶;
recT = redβ :ssDNA结合和退火蛋白;
3. 特点:
Red同源重组技术具有同源序列短(15~50bp)、重组效率高、操作 简单、快速的特点。
4. 应用
这种技术可在DNA靶标分子的任意位点进行基因敲除、敲入、点突 变等操作,无需使用限制性内切酶和连接酶。此外,这种新型重组技术可 直接将目的基因克隆到载体上,目的基因既可来源于细菌人工染色体也 可是基因组DNA。Red同源重组技术使难度较大的基因工程实验顺利进行, 大大推动功能基因组研究的发展。
选取合适的位点,设计正向和反向引物,引物长度一般在18-20bp左右,建 议用高保真的聚合酶扩增。为了避免模板质粒DNA对后续试验的影响,建议 用Dpn I内切酶消化PCR产物,降低背景,提高阳性率。
不管采取哪种方法,最终线性化载体的浓度需>50ng/ul,高浓度的载体有 利于提高效率。
4. 同源重组反应
PCR反应中的突变;扩增GC含量较高的DNA片段时,选用Triplemaster、
HotStarTaq 等),用合成的引物PCR扩增获得dsDNA底物;
纯化PCR产物:
(1)减少模板背景对筛选工作带来的难度; (2)降低其剩余引物与靶标DNA片段的结合,提高重组效率; (3)去处PCR产物中的盐离子,提高转化效率。
“线状DNA+线状DNA”重组,选用RecE/RecT重组酶系统; “线状DNA+环状DNA”重组,选用Redα/Redβ重组酶系统;
根据需要选择含不同抗生素抗性基因(Ampr、Hygr、Tetr)和不同 的诱导型启动子(pBAD、pTet)的重组酶系统表达质粒。
RecE/RecT和Redα/Redβ两重组系统对不同类型底物重组效率的差异
内容
一、 什么是Red/ET同源重组 二、 技术的特点 三、 作用机制 四、 功能元件 五、操作流程及关键因素 六、在基因工程中的主要应用 七、 新技术的发展 八、在其他细菌中的应用
遗传重组
• 基因组的可变性和稳定性之间必须维持 一个恰到好处的平衡,这样才能使生物 体得以生存并能世代相传,繁衍不息。
Red同源重组技术相关文献
Nature Genetics (1998)
Nature Biotechnology (2000)
二、Red/ET同源重组技术的特点
1. 不依赖RecA蛋白,在重组酶系统(Redα/Redβ或 RecE/RecT)的相互配合下,含短同源臂(15~50bp)的供体
DNA分子能直接重组到受体DNA分子上,实现替换、插入、删 除、突变等;
抗生素使用浓度与Red/ET重组效率的关系
常用抗生素的工作浓度
7. 重组子的检测
检测方法:酶切分析、PCR检测、平板双划线、测序等;
一般采用菌落PCR进行阳性克隆鉴定。为避免假阳性结果,鉴定引物选 择一条为载体特异性引物,另一条引物为目的片段特异性引物。
高拷贝质粒修饰存在“质粒多聚体” 现象;
Red/ET同源重组链退火模型
四、 Red/ET重组中的功能元件
1. Redα、Redβ和Redγ Redα:以三聚体的形式形成“漏斗型”活性的蛋白, 5’-3’外切 酶活性。
Redα结构(A)和与DNA相互作用的模式(B) (图片来自Subramanian et al. 2003)
Redβ:与ssDNA结合形成丝状体,催化与互补ssDNA之间的退火。 Redγ:抑制RecBCD外切酶和SbcCD外切酶对外源DNA的降解。
1ul
Recombination Enzyme 1ul 线 性 化 载 体 ( >50ng/ul)50-100ng 插入片段(>50ng/ul) 150-200ng
(2)短暂离dd心H混2O匀,37℃孵育15分补钟足。至10ul
(3)反应结束后,取5-10ul反应液立即进行转化,剩余反应液可在4℃或
亚克隆 pGB-15A载体抗性基因簇
Red/ET subcloning
直接克隆 Myxococcus xanthus中的沉默基因簇
3 mg基因组DNA用EcoR V消化
EcoRV (36739)
EcoRV (664)
p15A ori
Cm
Mx unknown PKS gene cluster (~36kb)
2. RecE和RecT
RecE:的底物也有活性。 RecT:与ssDNA结合形成丝状体,催化与互补ssDNA之间的退火。
3. RecA 4个亚基形成有活性的RecA蛋白,细菌中广泛存在且高度保
守,有同源重组酶、DNA损伤修复、DNA依赖ATPase活性等功能。 可诱导SOS反应、挽救DNA复制叉等,提高电击后细胞的活
三重同源重组示意图
cry1Ac的启动子片段和 终止子片段“一步”重 组入pHT315质粒上
2. 四重同源重组(Quadruple recombineering)
引物设计方法
同源臂的长度在15~50bp时,重组效率就能满足实验要求, 重组效率随着同源臂长度的增加而增加。
同源臂长度对Red/ET重组效率的影响(数据来自Zhang et al. 1998)
2. 线性供体dsDNA底物的制备
选用保真度高的DNA聚合酶(如Phusion、Pyrobest等,减少
克隆片段 长度
一次克隆 片段数
感受态效 率要求
所用的酶
片段的插 入位点
片段酶切
载体线性 化方法
同源重组克隆 50bp-10kb
传统克隆 50bp-2kb
1-5个
1个
1×108cfu/ug以上 1×107cfu/ug以上
重组酶 任何位点
T4连接酶 特定位点
不需要 酶切或PCR
需要 酶切
2. 染色体的修饰
redγ: 防止 E. coli中的核酸酶 RecBCD对外源线性DNA片
段的消化。
Digestion Binding
3’ 5’
Reda(RecE)
Redb(RecT) Single-strand
annealing
3’ 5’
Strand invasion
Repair/Replication
Selection
Red同源重组原理示意图
RecE/RecT和Redα/Redβ两重组系统的差异
质粒: pSC101-BAD-gbaA(amp) pSC101-BAD-gbaA(tet) pSC101-BAD-gbaA(hyg) pSC101-Tet-gbaA(tet) pSC101-BAD-ETgA(tet) pSC101-Tet-ETgA (amp)
利用内切酶消化难以得到相应的产物。
➢ 方法看似简单,但实验周期长。
➢ 大片段难以与载体正确连接。
➢ 无法同时连接多个(2个以上)的DNA片段。