(完整版)初中圆知识点总结与练习
初中圆知识点总结与练习
![初中圆知识点总结与练习](https://img.taocdn.com/s3/m/ed794148bd64783e08122b39.png)
圆1.圆的定义 。
(1)在一个平面内,线段OA 绕它的一个端点O 旋转一周, 另一个端点A 随之旋转所形成的图形叫做圆。
固定的端点O 叫做圆心,线段OA 叫做半径,如右图所示。
(2)圆可以看作是平面内到定点的距离等于定长的点的集 合,定点为圆心,定长为圆的半径。
说明:圆的位置由圆心确定,圆的大小由半径确定,半 径相等的两个圆为等圆。
2.圆的有关概念(1)弦:连结圆上任意两点的线段。
(如右图中 的CD )。
&(2)直径:经过圆心的弦(如右图中的AB )。
直径等于半径的2倍。
(3)弧:圆上任意两点间的部分叫做圆弧。
(如 右图中的CD 、CAD )其中大于半圆的弧叫做优弧,如CAD ,小 于半圆的弧叫做劣弧。
&(4)圆心角:如右图中∠COD 就是圆心角。
3.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。
③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。
(2)与圆相关的角的性质①圆心角的度数等于它所对的弦的度数; (②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
圆的认识AOBCDOAr4.圆心角、弧、弦、弦心距之间的关系。
(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。
:(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等【例1】下面四个命题中正确的一个是()A.过弦的中点的直线平分弦所对的弧B.过弦的中点的直线必过圆心C.弦所对的两条弧的中点连线垂直平分弦,且过圆心D.弦的垂线平分弦所对的弧—【答案】C与圆有关的位置1.点与圆的位置关系如果圆的半径为r,某一点到圆心的距离为d,那么:(1)点在圆外d r(2)点在圆上d r(3)点在圆内d r2.直线和圆的位置关系设r为圆的半径,d为圆心到直线的距离'(1)直线和圆相离d r,直线与圆没有交点;(2)直线和圆相切d r,直线与圆有唯一交点;(3)直线和圆相交d r,直线与圆有两个交点。
初四数学-圆的基础知识点及基础题型-新课-11月
![初四数学-圆的基础知识点及基础题型-新课-11月](https://img.taocdn.com/s3/m/663bc4dc941ea76e58fa04e3.png)
4、三角形的内切圆:与三角形的三边都相切的圆。
5、三角形的内心:三角形三条角平分线的交点,即三角形内切圆的圆心。
知识点五、直线和圆的位置关系:相交、相切、相离
当直线和圆相交时,d<r;反过来,当d<r时,直线和圆相交。
当直线和圆相切时,d=r;反过来,当d=r时,直线和圆相切。
难点:使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系.
正多边形的中心:所有对称轴的交点;
正多边形的半径:正多边形外接圆的半径。
正多边形的边心距:正多边形内切圆的半径。
正多边形的中心角:正多边形每一条边所对的圆心角。
正n边形的n条半径把正n边形分成n个全等的等腰三角形,每个等腰三角形又被相应的边心距分成两个全等的直角三角形。
圆的知识点总结及题型分析
知识点一、圆的定义及有关概念
1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。
2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。
120
已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上则∠ACB的度数为( )
A..45°B.35°C.25°D.20°
【尝试】
.如图,半圆的直径 ,点C在半圆上, .
(1)求弦 的长;
(2)若P为AB的中点, 交 于点E,求 的长.
2.已知:如图,在 △ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D.
8
初中 圆重要知识点总结
![初中 圆重要知识点总结](https://img.taocdn.com/s3/m/3dc02045591b6bd97f192279168884868762b826.png)
初中圆重要知识点总结一、圆的基本概念和性质1. 圆的定义:圆是平面上到一个确定点的距离等于一个常数的点的集合。
这个确定点叫做圆心,距离叫做半径。
2. 圆的元素:在一个圆中,包括圆心、直径、半径、圆周和弧等元素。
其中,直径是通过圆心并且两端点在圆上的线段,而半径则是连接圆心和圆上一点的线段。
3. 圆的性质:(1)所有的圆都是共有的性质,包括一个圆的直径始终等于两个半径之和,以及圆周率π等于圆的周长与直径之比。
(2)圆内任意两点之间的最短距离是半径,而圆内的任意两点之间的最长距离是直径。
二、圆的相关定理和推论1. 圆的周长和面积:(1)圆的周长:圆的周长可以表示为C=2πr,其中r为半径。
(2)圆的面积:圆的面积可以表示为S=πr²,其中r为半径。
2. 弧长和扇形面积:(1)弧长定理:圆的弧长可以表示为l=rθ,其中l为弧长,r为半径,θ为圆心角的度数。
(2)扇形面积的计算:扇形的面积可以表示为A=1/2r²θ,其中A为扇形面积,r为半径,θ为圆心角的度数。
3. 圆的相交与切线:(1)相交弦定理:如果两条弦相交于圆上一点,那么它们包围的弧长乘积相等。
(2)切线定理:切线与圆的交点与切点处的切线垂直。
三、圆的常见问题解题方法1. 圆的周长和面积问题:当题目给出了圆的直径或者半径时,可以利用圆的周长和面积公式进行计算。
2. 弧长和扇形面积问题:当题目给出了圆心角的度数时,可以利用弧长和扇形面积的计算公式进行计算。
3. 相交与切线问题:当题目涉及到相交弦定理和切线定理时,可以利用这些定理进行解题。
四、圆的常见应用1. 圆的运动学应用:在圆周运动和圆周角速度等方面,圆的知识经常被应用到物理学中。
2. 圆的工程应用:在建筑、设计、制图等方面,利用圆的性质可以进行工程设计和计算。
3. 圆的生活应用:在日常生活中,很多物体或者装饰物都具有圆的形状,因此圆的知识也经常被应用到生活中。
以上就是关于圆的重要知识点的总结,希望对初中生对圆的认识有所帮助。
圆九年级知识点与题型
![圆九年级知识点与题型](https://img.taocdn.com/s3/m/acfb7021fe00bed5b9f3f90f76c66137ee064f0a.png)
圆九年级知识点与题型圆是中学数学中一个非常重要的几何概念,也是九年级数学课程中的一个重点内容。
掌握圆的知识点和解题方法,对于学生提高数学成绩以及应对考试非常有帮助。
一、圆的定义和性质圆是平面上的一个几何图形,由与一点距离相等的所有点组成。
这个点叫作圆心,到圆心的距离叫做半径,用字母r或者R表示。
圆上的任意一点到圆心的距离都等于半径。
圆的周长叫做圆周长,用C表示。
圆的面积叫做圆面积,用S表示。
圆有许多重要性质。
首先,圆上任意两点的距离都等于半径。
其次,圆的周长公式是C=2πr,其中π是一个数,约等于3.14159。
最后,圆的面积公式是S=πr²。
掌握这些公式,可以帮助我们计算圆的周长和面积。
二、圆的判断和证明问题在九年级数学中,还会遇到一些与圆相关的判断和证明问题。
比如,给出一些线段,让我们判断是否能构成一个圆,以及在何种条件下可以构成。
一种常用的方法是判断给出线段之间的关系。
如果给出的三条线段互相相等,并且两两之间的夹角都是直角,那么我们可以判断这三条线段构成一个圆。
此外,对于已知的圆,我们也可以进行一些证明问题。
比如,给出一个圆和一个半径长线段,让我们证明这条线段是圆的一条半径。
这时,我们可以使用数学定理和性质来辅助证明。
例如,根据圆的定义和性质,我们可以得知半径垂直于圆上的切线,从而帮助我们证明给出的线段是圆的半径。
三、圆的应用问题圆不仅在数学中有重要的地位,而且在现实生活中也有广泛的应用。
比如,圆形的轮胎、圆形的饼干、圆形的碗等等,这些都是我们生活中常见的圆形物体。
在实际问题中,我们也会遇到一些与圆有关的测量、计算等应用问题。
例如,给出一个轮胎的直径,让我们计算这个轮胎的周长。
我们可以使用圆周长公式C=2πr来完成这个计算。
此外,还可以通过应用圆的面积公式,计算一些与圆相关的问题。
比如,给出一个半径为5cm的圆形蛋糕,问这个蛋糕的面积是多少。
我们可以通过公式S=πr²,帮助我们计算出这个蛋糕的面积。
九年级数学圆知识点及例题
![九年级数学圆知识点及例题](https://img.taocdn.com/s3/m/1ad542296fdb6f1aff00bed5b9f3f90f77c64d73.png)
九年级数学圆知识点及例题圆是初中数学中非常重要的一个几何概念,它与我们日常生活息息相关。
本文将带领大家系统地了解九年级数学中与圆相关的知识点,并提供一些例题进行辅助学习。
一、圆的基本概念1. 圆的定义:圆是平面上到一个定点(圆心)距离相等的所有点的集合。
2. 圆的要素:圆心、半径、直径、弧、弦、切线等。
二、圆的基本性质1. 圆的半径与直径的关系:直径是半径的两倍。
2. 圆的周长:圆的周长是其直径的倍数,即周长等于直径乘以π(π≈3.14)。
3. 圆的面积:圆的面积等于半径的平方乘以π。
三、圆的判定1. 距离判定定理:给定一定距离,平面上到该距离相等的点构成的图形是圆。
2. 切线定理:过圆外一点有且仅有一条切线,该切线与半径垂直。
四、圆的位置关系1. 同圆:拥有相同半径的两个圆。
2. 内切和外切:一个圆与另一个圆内部的一个点或外部的一个点相切。
3. 相交与相离:两个圆相交的情况包括相切和交叉,而相离则是两个圆不相交。
五、圆的综合应用1. 圆和三角形的关系:圆内切于一个三角形的关系、圆外接于一个三角形的关系等。
2. 圆和正多边形的关系:正n边形的内切和外切圆等。
3. 圆和椭圆、抛物线、双曲线的关系。
下面我们来看一些九年级数学中与圆相关的例题。
例题1:已知一个圆的半径是5cm,求其周长和面积。
解:根据圆的周长公式,周长等于直径乘以π。
我们已知半径是5cm,则直径是半径的两倍,即10cm。
所以,圆的周长为10cm × π ≈ 10 × 3.14 ≈ 31.4cm。
另外,根据圆的面积公式,面积等于半径的平方乘以π。
所以,圆的面积为5cm × 5cm × π ≈ 25 × 3.14 ≈ 78.5cm²。
例题2:已知圆A的半径是8cm,圆B的直径是12cm,判断这两个圆的位置关系。
解:首先,我们通过直径的关系得知,圆B的直径是圆A的直径的1.5倍,即12cm = 8cm × 1.5。
初三数学圆的知识点总结及经典例题详解
![初三数学圆的知识点总结及经典例题详解](https://img.taocdn.com/s3/m/ffae81f1ec3a87c24128c41d.png)
1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.. 3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。
直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 .A. 50°B. 80°C. 90°D. 100°2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 .A.100° B.130° C.80° D.50°3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 .A.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是.A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 . A.3cm B.4cm C.5cmD.6cm 6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.507.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 .A.100° B.130° C.200° D.508. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是.A.100°B.130°C.80°D.50°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm.A.3B.4C.5D. 10点、直线和圆的位置关系1.已知⊙O 的半径为10㎝,如果一条直线和圆心O 的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离 B.相切 C.相交 D.相交或相离2.已知圆的半径为6.5cm,直线l 和圆心的距离为7cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交3.已知圆O 的半径为6.5cm,PO=6cm,那么点P 和这个圆的位置关系是 A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定4.已知圆的半径为6.5cm,直线l 和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是 . A.0个 B.1个 C.2个 D.不能确定5.一个圆的周长为a cm,面积为a cm 2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 不能确定6.已知圆的半径为6.5cm,直线l 和圆心的距离为6cm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线l 和圆心的距离为4cm,那么这条直线和这个圆的位置关系是 .A.相切 B.相离 C.相交 D. 相离或相交8. 已知⊙O 的半径为7cm,PO=14cm,则PO 的中点和这个圆的位置关系是 .A.点在圆上 B. 点在圆内 C. 点在圆外 D.不能确定•BADO C•CBAO•BOCAD•BOCAD•BOCAD•DBAO •D BAO •DBCAO圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离B. 外切C. 相交D. 内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B. 外切C.相交D.内切35.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长4,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条5. 已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B. 2条C. 3条D. 4条正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为 .A. 5cmB.cmC.10cmD.5πcm102.正三角形外接圆的半径为2,那么它内切圆的半径为.32A. 2B.C.1D.3.已知,正方形的边长为2,那么这个正方形内切圆的半径为.23A. 2B. 1C.D.24.扇形的面积为,半径为2,那么这个扇形的圆心角为= .3A.30°B.60°C.90°D. 120°5.已知,正六边形的外接圆半径为R,那么这个正六边形的边长为 .A.R B.RC.RD.212R 36.圆的周长为C,那么这个圆的面积S= .A.B.C. D.2C ππ2C π22C π42C 7.正三角形内切圆与外接圆的半径之比为 .A.1:2B.1:C.:2D.1:3328. 圆的周长为C,那么这个圆的半径R= .A.2B.C.D.C πC ππ2CπC9.已知,正方形的边长为2,那么这个正方形外接圆的直径为 .A.2B.4C.2D.22310.已知,正三角形的外接圆半径为3,那么这个正三角形的边长为 .A. 3B.C.3D.3323。
圆 初中 知识点总结
![圆 初中 知识点总结](https://img.taocdn.com/s3/m/886f909877eeaeaad1f34693daef5ef7ba0d128c.png)
圆初中知识点总结1. 圆的定义圆是平面上到一个点的距离等于定值(半径)的全部点的集合,这个定值就叫做圆的半径,用r表示。
2. 圆的相关概念(1)圆心:圆周上的任一点到圆心的距离都等于半径。
(2)直径:通过圆心,且两端点在圆周上的线段叫做圆的直径,且直径等于半径的两倍。
用d表示。
(3)圆周:圆的边界。
(4)圆内部:圆周内部的所有点组成的集合。
(5)圆外部:圆周外部的所有点组成的集合。
(6)弧:在圆周上取两点A、B,以这两点为端点的圆周部分叫做圆的弧。
(7)扇形:以圆心为顶点,以圆弧为边界的部分叫做扇形。
3. 圆的性质(1)圆的直径是圆周长的两倍。
(2)圆内接四边形的对角线相等。
(3)相交弦定理:相交弦的两条弦的乘积等于它们各自所包围的弧的乘积。
(4)同弧对应的圆心角相等。
(5)同弦对应的圆心角相等。
(6)同弧对应的弧长相等。
(7)同弦对应的弧长相等。
(8)举行的两个对角互补,每个角是举行的对角的一半。
(9)在圆的外部,离圆心最近的一条线段是切线,这条切线垂直于半径。
4. 圆的相关公式(1)圆的周长C=2πr(2)圆的面积S=πr²(3)弧长公式:若θ是圆的中心角度数,r是半径,则弧长为l=rθ(4)扇形的面积公式:扇形的面积=(θ/360°)πr²(5)圆环的面积=π(R²-r²)其中R是外圆半径,r是内圆半径。
5. 圆相关定理(1)圆的直径等于圆周长的两倍。
(2)若两条弦相等,则它们对应的圆心角相等。
(3)圆内接四边形的对角线相等。
6. 圆的应用(1)圆的运动学问题在机械制造和机械运动中,常用圆的性质解决一些问题。
比如,摆线轮、凸轮、齿轮等的设计和制造。
(2)圆的地理问题利用地理中的纬度和经度等问题,常常用到圆的相关知识。
(3)圆的建筑问题在建筑设计中,常常用到圆的性质,比如拱形结构。
(4)圆的电子学问题在电子学中,相关的电路设计中也常常用到圆的性质。
九年级圆的知识点详细总结归纳
![九年级圆的知识点详细总结归纳](https://img.taocdn.com/s3/m/424c50bdfbb069dc5022aaea998fcc22bcd14338.png)
九年级圆的知识点详细总结归纳一、圆的定义和关键概念圆是一个平面上的简单闭曲线,由与一个固定点的所有点到该点的距离相等的点组成。
下面是一些重要的圆的关键概念:1. 圆心 (Center):圆心是圆的中心点,标记为O。
2. 圆周 (Circumference):圆的周长,也称为圆周,用C表示。
3. 直径 (Diameter):直径是通过圆心的、连接圆上两点的线段。
直径的长度是圆直径的两倍。
直径用d表示。
4. 半径 (Radius):半径是从圆心到圆上任意一点的线段。
半径的长度是直径的一半。
半径用r表示。
5. 弧 (Arc):圆上两点之间的一段路径叫做弧。
6. 弦 (Chord):圆上两点之间的线段叫做弦。
7. 切线 (Tangent):切线是切于圆的一条直线,且与圆仅有一个交点。
二、圆的性质和定理圆的性质和定理是研究圆的重要基础,下面是一些常见的圆的性质和定理:1. 直径定理:直径是最长的弦,且它把一个圆分成两个半圆。
2. 弧长定理:一个圆的弧长是根据圆的半径和弧度来计算的。
弧长等于半径乘以弧的弧度。
3. 弧心角定理:圆心角是以圆心为顶点的角,它的弧度等于弧长与半径的比值。
4. 切线定理:切线与半径的关系是垂直。
5. 切线和半径的性质:当一条直线与圆相切时,与切点相连的半径垂直于切线。
6. 切割定理:如果一个弦垂直于一个半径,那么它将被切分成两个互为正方向的弧。
7. 切割角度定理:互不相交的弧它们对应的圆心角相等,相交的弧,它们对应切线切割的角相等。
8. 重合弧定理:在同一个圆上,两个重合的弧对应的圆心角相等。
三、圆的应用圆在日常生活和实际问题中有很多应用,下面是一些常见的圆的应用:1. 圆的测量:通过测量圆的直径或半径可以计算圆的周长和面积。
2. 圆的构造:通过给定圆的半径或直径可以构造圆。
3. 圆的几何关系:圆与直线、圆与圆之间有各种几何关系,如相离、相切、相交等。
4. 圆的运动学:在物理学中,圆的运动学广泛应用于描述物体的圆周运动和周期性运动。
中考圆专题知识点总结
![中考圆专题知识点总结](https://img.taocdn.com/s3/m/8850f713814d2b160b4e767f5acfa1c7aa008294.png)
中考圆专题知识点总结一、圆的概念圆是平面上一个集合,该集合中任意两点的距离都相等,并且距离都等于圆的半径。
圆的周长叫做圆的周长,圆的面积叫做圆的面积。
圆的半径为r,圆的直径为d。
二、圆的性质1. 圆的周长和面积:圆的周长C = 2πr圆的面积S = πr²2. 弧和圆心角:- 弧:两点间的曲线部分,圆的一部分。
- 弧长:弧的长度,记作L。
- 圆心角:以圆心为顶点的角叫做圆心角,圆心角的度数等于它所对的弧的弧度数。
3. 弧长公式:L = rθ(θ用弧度表示)4. 圆周角:圆周角是一条弧所对的圆心角。
圆周角的度数等于它所对的圆心角的两倍。
5. 切线和切点:切线是与圆只有一个交点的直线。
切线与圆相切的点叫做切点。
6. 相交弧、对应弧和交角:- 相交弧:两个圆相交的弧。
- 对应弧:两个圆相交的弧的对应部分。
- 交角:两个相交弧的交角。
7. 圆内接四边形:如果一个四边形的四个顶点都在圆上,那么这个四边形叫做圆内接四边形。
8. 圆的切线和割线:切线是与圆只有一个交点的直线,割线是与圆相交而不相切的直线。
切线和割线的切点到圆心的连线和圆的半径相垂直。
三、圆周角、圆心角和弧对应的关系1. 圆周角的度数等于所对的圆心角的两倍。
2. 圆周角的度数等于所对的弧的度数。
3. 圆心角的度数等于所对的弧的度数。
四、圆的性质定理证明1. 同弧或同角:弧对应的圆心角和圆周角以及弧的长度都相等。
2. 切线定理:若直线与圆相交,且交点在圆外,则直线与圆的切点连线垂直于直线。
3. 切线与弦定理:如果一条切线和一条弦相交于圆上的同一点,则切线上这个点的两个切线段相等。
五、常见的圆相关问题1. 圆与圆之间的位置关系:相离、外切、相交、内切、相切。
2. 圆的面积和周长问题:求圆的面积和周长。
3. 圆心角、圆周角和弧的问题:根据给定的信息计算圆心角、圆周角和弧的长度。
4. 切线和切点的问题:计算切线和切点的位置以及相关长度。
5. 圆的切线和割线问题:计算切线和割线的位置以及相关长度。
九年级数学圆知识点及习题(含答案)
![九年级数学圆知识点及习题(含答案)](https://img.taocdn.com/s3/m/35e0d4565901020207409c9d.png)
九年级数学圆知识点及习题(含答案)1.圆上各点到圆心的距离都等于半径。
2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形, 圆心是它的对称中心。
3.垂直于弦的直径平分这条弦 ,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等 ,那么它们所对应的其余各组量都分别相等。
5.同弧或等弧所对的圆周角相等 ,都等于它所对的圆心角的一半。
6.直径所对的圆周角是 90° ,90°所对的弦是直径。
7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。
8.与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。
9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外 ,②点在圆上 ,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交 ,②相切 ,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含 ,②相内切 ,③相交 ,④相外切 ,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长相等,这点与圆心之间的连线平分这两条切线的夹角。
九年级上册数学圆章节知识点总结
![九年级上册数学圆章节知识点总结](https://img.taocdn.com/s3/m/9539f06d59fb770bf78a6529647d27284b733791.png)
九年级上册数学圆章节知识点总结What is a classic? It takes about 100 years to become a classic.与圆相关的基本知识和计算一、知识梳理:一:圆及圆的有关概念1.圆:到顶点的距离等于定长的点的集合叫做圆;2.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆,大于半圆的弧叫做优弧,小于半圆的叫做劣弧;3.弦:连接圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,它是圆的最长的弦;4.等圆:能够完全重合的两个圆叫做等圆;等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;5.圆心角:顶点在圆心的角叫做圆心角;圆周角:顶点在圆上且两边与圆相交的角叫做圆周角;二圆的有关性质:1.对称性:圆是中心对称图形,其对称中心是圆心;圆是轴对称图形,其对称轴是直径所在的直线;2.垂径定理及其推论:1、垂径定理:垂直弦的直径平分弦,并且平分弦所对的弧;2、推论:平分弦不是直径的直径垂直于弦,并且平分弦所对的弧;3.圆心角、弧、弦之间的关系1定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;2推论:在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等、所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等、所对的弧相等.4.圆周角与圆心角的关系1在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;2推论:半圆或直径所对的圆周角是直角,090的圆周角所对的弦是直径;5.圆内接四边形对角互补.(三)点与圆的位置关系1、点和圆的位置关系如果圆的半径为r,已知点到圆心的距离为d,则可用数量关系表示位置关系.1d>r点在圆外;2d=r点在圆上;3d<r点在圆内.2、确定圆的条件:不在同一直线上的三个点确定一个圆.(四)直线与圆的位置关系1、1直线与圆的位置关系有关概念①相交与割线:直线和圆有两个公共点时,叫做直线和圆相交,这条直线叫做圆的割线.②切线与切点:直线和圆有惟一公共点时,叫做直线和圆相切,这条直线叫做圆的切线,惟一的公共点叫做切点.③相离,当直线和圆没有公共点时,叫做直线和圆相离.2用数量关系判断直线与圆的位置关系如果⊙O的半径为r,圆心O到直线l的距离为d,那么:1直线l和⊙O相交d<r如图1所示;2直线l和⊙O相切d=r如图2所示;3直线l和⊙O相离d>r如图3所示.2、切线1切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.2切线的性质:圆的切线垂直于过切点的半径.3切线长:圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.4切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.五三角形的外接圆和内切圆1、三角形的外接圆1定义:经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆.三角形的外心:外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形.2三角形外心的性质:①三角形的外心是外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等.②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是惟一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.2、三角形的内切圆与三角形的内心①与三角形各边都相切的圆叫做三角形的内切圆.三角形内切圆的圆心叫做三角形的内心.这个三角形叫做圆的外切三角形.②三角形的内心就是三角形三条内角平分线的交点,三角形的内心到三边的距离相等.六:圆的有关计算一正多边形与圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形.2、任何正多边形都有一个外接圆和内切圆,这两个圆是同心圆,正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心;如果一个正n 边形有偶数条边,那么它又是中心对称图形,其中心就是对称中心;3、边数相同的正多边形相似,它们的周长的比等于它们的相似比,面积的比等于它们相似比的平方;4、正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形;正n 边形的中心角等于外角等于n3600; 二 弧长与扇形面积1、在半径为R 的圆中,0n 圆心角所对的弧长l=180n ℜπ;2、在半径为R 的圆中,圆心角为0n 的扇形面积扇形S =360n 2R π;半径为R,弧长为l 的扇形面积为扇形S =R l 21;3、侧面积:设圆锥的母线长为l,底面积的半径为r,那么圆的侧面积展开得到的扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积为πrl,圆锥的全面积为πrl+πr 2.。
初中圆知识点总结
![初中圆知识点总结](https://img.taocdn.com/s3/m/1d8b553803768e9951e79b89680203d8ce2f6a80.png)
初中圆知识点总结
一、圆的定义
圆是一个平面上所有离圆心距离相等的点的集合。
圆由圆心O和半径r确定,圆心是平面内离圆最近的点,半径是从圆心到圆上任意一点的距离。
二、圆的性质
1. 圆心角:圆内的两条弦所对的圆心角相同。
2. 圆的周长:圆的周长等于直径的长度乘以π(π≈
3.14)。
3. 圆的面积:圆的面积等于半径的平方乘以π。
4. 圆的切线:与圆相交的直线与圆相切的直线是两种情况。
三、相关公式
1. 圆的周长公式:C=2πr(C表示周长,r表示半径,π≈3.14)。
2. 圆的面积公式:S=πr²(S表示面积,r表示半径,π≈
3.14)。
四、解题技巧
1. 计算圆的周长和面积时,要根据给定的半径或直径使用相应的公式进行计算。
2. 在解题过程中,应灵活运用圆的相关性质,如圆心角的性质、切线与圆的性质等。
3. 在应用题中,需注意将问题中的条件转化成数学表达式,并根据问题的要求求解出所需的答案。
4. 在解题过程中,要注意计算时的单位问题,如需要将结果转换成具体的长度单位或面积单位。
通过以上总结,相信初中阶段的学生能够更好地掌握圆的相关知识,并能够在解题过程中更加灵活地运用圆的性质和相关公式。
希望本文对初中学生学习圆有所帮助,让他们能够更加轻松地应对数学课上的学习和考试。
初中圆知识点及练习题
![初中圆知识点及练习题](https://img.taocdn.com/s3/m/667e4403ed630b1c59eeb5c1.png)
22.直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,则以AB为直径的圆与边CD有怎样的位置关系?
四、课后练习题:
1. Rt△ABC中,∠C=90°,BC=5,AC=12则其外接圆半径为
④三角形的内心是三角形三条内角平分线的交点.
三角形的内心到三角形三边的距离相等.
⑤切线长 :圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.
⑥切线长定理:从圆外一点引圆的两条切线,它们的切线长相等.
这一点和圆心的连线 平分这两条切线的夹角.
(4)圆与圆的位置关系
① 圆与圆的位置关系有五种:外离、 外切、相交、内切、内含.
㈠、确定圆的条件
1.过已知两点的圆的圆心组成的图形是_____________________________________,
_____________________________________确定一个圆.
2.三角形的三个顶点确定一个圆,这个圆叫做三角形的_____________,它的圆心叫做三角形的_______,它是三角形_______________________的交点;这个三角形叫做圆的__________________-
⑥能综合运用基本图形的面积公式求阴影部分面积.
2、基础知识
(1)掌握圆的有关性质和计算
①弧、弦、圆心角之间的关系:
在同圆或等圆中,如果两条劣弧(优弧)、两条两个圆心角中有一组量对应相等, 那么它们所对应的其余各组量也分别对应相等.
②垂径定理: 垂直于弦的直径平分这条弦, 并且平分弦所对的两条弧.
圆的综合知识点总结(初中数学)
![圆的综合知识点总结(初中数学)](https://img.taocdn.com/s3/m/549c0ca4b8d528ea81c758f5f61fb7360b4c2ba9.png)
圆的基本概念和性质要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.2. 弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧:在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.垂径定理知识点一、垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即⎩⎨⎧⇒⎭⎬⎫平分弦所对的弧平分弦垂直于弦直径(2)这里的直径也可以是半径,也可以是过圆心的直线或线段. 知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. 要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)弧、弦、圆心角、圆周角要点一、弧、弦、圆心角的关系1.圆心角定义:如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
初中圆必考知识点总结
![初中圆必考知识点总结](https://img.taocdn.com/s3/m/35877e9932d4b14e852458fb770bf78a65293a0a.png)
初中圆必考知识点总结一、基本概念圆是平面内的一个点到另一个点的距离恒等于一个定值的点的集合,这个定值就是圆的半径。
圆的直径是圆上任意两点间的最长的距禬所以直径的长度是半径的两倍。
二、圆的元素1. 圆心:圆的中心点2. 圆周:圆心周围的一条完整的线3. 圆弧:圆周上的一段弧线4. 弦:连接圆上的任意两点的线段三、圆的性质1. 圆周上的任意一点到圆心的距离都是相等的,等于圆的半径。
2. 圆周上的任意一点和另外一点之间的弧长与圆周上的圆心角之间有着相同的比例关系。
四、圆的相关定理1. 圆的直径定理:直径是一个圆上的最长的线段,且直径的长度是半径的两倍。
2. 圆心角定理:同一个圆的圆弧的圆心角相等。
3. 弧长定理:同一个圆的两个圆心角相等的圆弧所对应的弧长相等。
4. 弧与角的关系:同一个圆的圆心角与其所对应的圆弧的关系满足角度与弧长之间的比例关系。
五、圆的相关公式1. 圆的周长公式:圆的周长等于直径乘以π(C=π*d)2. 圆的面积公式:圆的面积等于半径的平方乘以π(A=π*r^2)3. 弧长的计算:若知道圆的半径和圆心角的大小,则可以通过弧长公式计算出圆周上任意弧的长度。
六、圆与角的关系1. 圆心角:连接圆上两点的线段与半径构成的角度叫做圆心角。
2. 弦切角:切割圆的弦和切线所构成的角度。
3. 弦弧角:连接圆周上的两点与弦所构成的角度。
七、圆与直线的关系1. 切线:与圆相切且只有一个交点的直线。
2. 正切线:与圆相切且切点是圆外部的直线。
3. 角切线:与圆相切且切点是圆内部的直线。
八、圆的应用1. 圆的图形应用:常见的有钟表,车轮等、2. 圆的几何应用:定点转动的电动机、环体积的计算、圆形操场的设计等以上是初中圆必考知识点的总结,掌握这些知识将对学生在初中数学学习中有很大的帮助。
初中圆知识点归纳总结
![初中圆知识点归纳总结](https://img.taocdn.com/s3/m/22c3bc5353d380eb6294dd88d0d233d4b14e3fba.png)
初中圆的知识点归纳总结:
1. 圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆。
2. 圆的性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆有无数条对称轴。
3. 圆的半径:连接圆心到圆上任意一点的线段叫做圆的半径,用字母r表示。
4. 圆的直径:通过圆心且两个端点都在圆周上的线段叫做圆的直径,用字母d 表示。
5. 圆直径与半径的关系:在同圆或等圆中,直径的长度是半径的2倍,半径的长度是直径的1/2。
6. 圆心角:顶点在圆心上的角叫做圆心角,圆心角的大小与所对的弧长有关。
7. 弧长与扇形面积:在同圆或等圆中,弧长与扇形面积成正比关系。
8. 圆的周长:圆的周长等于2πr,其中r为圆的半径。
9. 圆的面积:圆的面积等于πr²,其中r为圆的半径。
10. 直线与圆的位置关系:直线与圆有三种位置关系,分别是相交、相切和相离。
11. 切线与切线长:过圆外一点作圆的切线,这一点到切点的线段叫做切线,圆的切线长度叫做切线的长度。
12. 正多边形与圆的关系:正多边形的外接圆直径叫做正多边形的直径,正多边形的内切圆直径叫做正多边形的半径。
13. 弧长公式:弧长公式可以用来计算弧长,其公式为L = nπr/180,其中n 为扇形的圆心角度数,r为扇形的半径。
14. 扇形面积公式:扇形面积公式可以用来计算扇形面积,其公式为S =
nπr²/360,其中n为扇形的圆心角度数,r为扇形的半径。
15. 圆的切线定理:圆的切线定理指出,圆的切线垂直于经过切点的半径。
九年级数学圆的知识点总结大全
![九年级数学圆的知识点总结大全](https://img.taocdn.com/s3/m/bdec2c6a2bf90242a8956bec0975f46526d3a77b.png)
一、圆的基本概念和性质1.圆的定义:平面上的点到圆心的距离等于半径的点的集合。
2.圆的要素:圆心、半径、圆周。
3.圆的性质:a.对于圆上任意一点P和圆心O,OP是半径;b.圆上任意两点P和Q的半径相等;c.圆上两个不同的弧所对的圆心角相等;d.圆心角的度数等于它所对的弧的度数;e.圆的内切四边形的对角线互相垂直;f.圆的内切四边形的对边互相平行且相等;g.圆内接正方形的边长等于半径的2倍。
4.圆心角与弧的关系:a.弧所对的圆心角是其两倍;b.圆心角相等的弧相等;c.同弧度数的圆心角相等;d.弧需要圆的整个周长的弧数表示。
二、圆的运算1.圆周长:圆周长是圆周上的弧长,可以通过半径和直径推导得到。
2.圆的面积:圆的面积是圆心角度和圆的半径之间的数学关系,可以通过面积公式πr²计算得到。
三、圆的位置关系1.圆的判定:a.两个圆相交,如果两个圆的圆心距离小于半径之和但大于半径之差;b.两个圆相切,如果两个圆的圆心距离等于半径之和或半径之差;c.两个圆外离,如果两个圆的圆心距离大于半径之和;d.两个圆内含,如果一个圆完全位于另一个圆内部。
2.相切圆的性质:a.相切圆的切点在半径的连线上;b.相切圆的切线相互垂直;c.相切圆的切线公共切点的连线通过两个圆的圆心。
四、圆与线的位置关系1.弦的性质:a.弦和圆心连线垂直,那么弦是直径;b.弦的中点位于圆心。
2.弧与弦:a.弧上的两个弦相等,则它们所对的圆心角相等;b.两个等圆弧所对的圆心角相等;c.弦所夹的圆弧是圆心角的一半。
3.弦的长度:等于两个切线段的和。
4.直线和圆的位置关系:a.直线与圆相交于两点;b.直线与圆相切于一点;c.直线与圆不相交。
五、切线和切线长1.切线的定义:从圆外的一点引一条直线,直线与圆相交于该点,这条直线叫做切线。
2.切线的性质:a.切线与半径垂直;b.切线与切线垂直;c.相切圆的切线相互垂直。
3.切线长的计算:可以通过勾股定理得到切线长的计算公式。
最全面初中圆的知识点总结-初中数学圆知识点总结(完整版)
![最全面初中圆的知识点总结-初中数学圆知识点总结(完整版)](https://img.taocdn.com/s3/m/fb89c03b0640be1e650e52ea551810a6f524c893.png)
最全面初中圆的知识点总结-初中数学圆知识点总结(完整版)名师总结:中考数学圆的知识点考点一:圆的相关概念1.圆的定义:在平面内,以一个固定点为圆心,以固定距离为半径,绕圆心旋转一周所形成的图形叫做圆。
2.圆的几何表示:以圆心为中心的圆记作“⊙O”,读作“圆O”。
考点二:弦、弧等与圆有关的定义1.弦:连接圆上任意两点的线段。
2.直径:经过圆心的弦,等于半径的2倍。
3.半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
4.弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,用符号“⌒”表示。
大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧。
考点三:垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论2:圆的两条平行弦所夹的弧相等。
考点四:圆的对称性1.圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2.圆的中心对称性:圆是以圆心为对称中心的中心对称图形。
考点五:弧、弦、弦心距、圆心角之间的关系定理1.圆心角:顶点在圆心的角叫做圆心角。
2.弦心距:从圆心到弦的距离叫做弦心距。
3.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
考点六:圆周角定理及其推论1.圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆1.圆的定义(1)在一个平面内,线段OA 绕它的一个端点O 旋转一周, 另一个端点A 随之旋转所形成的图形叫做圆。
固定的端点O 叫做圆心,线段OA 叫做半径,如右图所示。
(2 合,定点为圆心,定长为圆的半径。
说明:圆的位置由圆心确定,圆的大小由半径确定,半 径相等的两个圆为等圆。
2.圆的有关概念(1)弦:连结圆上任意两点的线段。
(如右图中 的CD )。
(2)直径:经过圆心的弦(如右图中的AB )。
直径等于半径的2倍。
(3)弧:圆上任意两点间的部分叫做圆弧。
(如 右图中的CD 、CAD )其中大于半圆的弧叫做优弧,如CAD ,小于半圆的弧叫做劣弧。
(4)圆心角:如右图中∠COD 就是圆心角。
3.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。
③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。
(2)与圆相关的角的性质①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
4.圆心角、弧、弦、弦心距之间的关系。
(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。
(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等圆的认识AOBCDOAr【例1】 下面四个命题中正确的一个是( )A .过弦的中点的直线平分弦所对的弧B .过弦的中点的直线必过圆心C .弦所对的两条弧的中点连线垂直平分弦,且过圆心D .弦的垂线平分弦所对的弧【答案】C1.点与圆的位置关系如果圆的半径为r ,某一点到圆心的距离为d ,那么: (1)点在圆外d r (2)点在圆上d r (3)点在圆内d r 2.直线和圆的位置关系设r 为圆的半径,d 为圆心到直线的距离(1)直线和圆相离d r ,直线与圆没有交点; (2)直线和圆相切d r ,直线与圆有唯一交点; (3)直线和圆相交d r ,直线与圆有两个交点。
3.两圆的位置关系设R 、r 为两圆的半径,d 为圆心距 (1)两圆外离d R r ; (2)两圆外切d R r ; (3)两圆相交R r d R r R r ;(4)两圆内切d R r R r ;(5)两圆内含dR r Rr 。
(注意:如果为0d ,则两圆为同心圆。
) 4. 切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:∵MN OA 且MN 过半径OA 外端 ∴MN 是⊙O 的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
5. 切线长定理从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
与圆有关的位置NMOBO即:∵PA 、PB 是的两条切线 ∴PA PB = PO 平分BPA ∠【例2】 已知⊙O 的半径为1,点P 到圆心O 的距离为d ,若关于x 的方程x 2-2x +d =0有实根,则点P ( ). A .在⊙O 的内部 B .在⊙O 的外部 C .在⊙O 上 D .在⊙O 上或⊙O 的内部【答案】D【例3】 已知:如图,PA ,PB 分别与⊙O 相切于A ,B 两点.求证:OP 垂直平分线段AB . 【答案】略【例4】 已知:如图,PA 切⊙O 于A 点,PO ∥AC ,BC 是⊙O 的直径.请问:直线PB 是否与⊙O 相切?说明你的理由.【答案】直线PB 与⊙O 相切.提示:连结OA ,证ΔPAO ≌ΔPBO【例5】已知:如图,⊙O 1与⊙O 2外切于A 点,直线l 与⊙O 1、⊙O 2分别切于B ,C 点,若⊙O 1的半径r 1=2cm ,⊙O 2的半径r 2=3cm .求BC 的长. 【答案】cm 62.提示:分别连结O 1B ,O 1O 2,O 2C .【例6】如图,点A ,B 在直线MN 上,AB =11cm ,⊙A ,⊙B 的半径均为1cm .⊙A 以每秒2cm 的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (cm)与时间t (s )之间的关系式为r =1+t (t ≥0).(1)试写出点A ,B 之间的距离d (cm)与时间t (s )之间的函数表达式; (2)问点A 出发多少秒时两圆相切?【答案】(1)当0≤t ≤5.5时,d =11-2t ;当t >5.5时,d =2t -11.(2) ①第一次外切,t =3;②第一次内切,;311=t ③第二次内切,t =11;④第二次外切,t =13.垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; 推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD【例7】在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.垂径定理及推论OCDAB【答案】4159【例8】如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=21BF.【答案】提示:连接OF ,证明,,ADO FOE BOE 是全等三角形。
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
即:∵AOB ∠和ACB ∠是弧AB 所对的圆心角和圆周角 ∴2AOB ACB ∠=∠ 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中,∵C ∠、D ∠都是所对的圆周角∴C D ∠=∠推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。
即:在⊙O 中,∵AB 是直径 或∵90C ∠=︒∴90C ∠=︒ ∴AB 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
即:在△ABC 中,∵OC OA OB ==∴△ABC 是直角三角形或90C ∠=︒【例9】已知:如图,AB 是⊙O 的直径,弦CD ⊥AB 于E ,∠ACD =30°,AE =2cm .求DB 【答案】cm.34【例10】已知:如图,⊙O 的直径AE =10cm ,∠B =∠EAC .求AC 的长. 【答案】提示:连结CE .不难得出cm .25=AC与圆有关的计算圆周角定理OAEF CBAOCBAOCAO1. 圆周长:2c R 2. 弧长:180n Rl ; 3. 圆面积:2SR ;4. 扇形面积:212360n R S lR扇形=;【例11】如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 夹角为120°,AB 的长为30cm ,贴纸部分BD 的长为20cm ,则贴纸部分的面积为( ).A .2πcm 100B .2πcm 3400C .2πcm 800D .2πcm 3800【答案】D【例12】已知:如图,以线段AB 为直径作半圆O 1,以线段AO 1为直径作半圆O 2,半径O 1C交半圆O 2于D 点.试比较与的长.【答案】的长等于的长.提示:连结O 2D .1.相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P , ∴PA PB PC PD ⋅=⋅ 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比 例中项。
即:在⊙O 中,∵直径AB CD ⊥,∴2CE AE BE =⋅2. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线 ∴ 2PA PC PB =⋅3. 割线定理:从圆外一点引圆的两条割线,这一点到每圆幂定理O EDCADCBPAO条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O 中,∵PB 、PE 是割线∴PC PB PD PE ⋅=⋅【例13】如图,P 是⊙O 外一点,PC 切⊙O 于点C ,PAB 是⊙O 的割线,交⊙O 于A 、B 两点,如果PA :PB =1:4,PC =12cm ,⊙O 的半径为10cm ,则圆心O 到AB 的距离是___________ 【答案】91.正三角形在⊙O 中△ABC 是正三角形,有关计算在Rt BOD ∆中进行:::1:3:2OD BD OB =; 2.正四边形同理,四边形的有关计算在Rt OAE ∆中进行,::1:1:2OE AE OA =: 3.正六边形同理,六边形的有关计算在Rt OAB ∆中进行,::1:3:2AB OB OA =.【例13】已知正多边形的边长为a 与外接圆半径R 之间满足12<<aR,则这个多边形是( ) A. 正三边形 B. 正四边形C. 正五边形D. 正六边形【答案】C提示:正多边形的边数越多,则边长越小,而有R a R <<2 因为a R 6=,a R 42=,所以a a a 64<< 则a a a 654<<,是正五边形,应选C 。
【例1】若P 为半径长是6cm 的⊙O 内一点,OP =2cm ,则过P 点的最短的弦长为( ).A .12cmB .cm 22C .cm 24D .cm 28【答案】D【例2】若⊙O 的半径长是4cm ,圆外一点A 与⊙O 上各点的最远距离是12cm ,则自A 点所引⊙O 的切线长为( ).A .16cmB .cm 34C .cm 24D .cm 64课后练习题正多边形与圆【答案】B【例3】⊙O 中,∠AOB =100°,若C 是上一点,则∠ACB 等于( ).A .80°B .100°C .120°D .130° 【答案】A【例4】三角形的外心是( ).A .三条中线的交点B .三个内角的角平分线的交点C .三条边的垂直平分线的交点D .三条高的交点 【答案】C【例5】如图,A 是半径为2的⊙O 外的一点,OA =4,AB 是⊙O 的切线,点B 是切点,弦BC ∥OA ,则的长为( ).7题图A .π32B .π38C .πD .3π32+【答案】A【例6】如图,图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B 点,甲虫沿,,,路线爬行,乙虫沿路线爬行,则下列结论正确的是( ).8题图A .甲先到B 点 B .乙先到B 点C .甲、乙同时到B 点D .无法确定 【答案】C【例7】如图,同心圆半径分别为2和1,∠AOB =120°,则阴影部分的面积为( ).9题图A .πB .π34C .2πD .4π【答案】C【例8】如图,在⊙O 中,AB 为⊙O 的直径,弦CD ⊥AB ,∠AOC =60°,则∠B =______. 【答案】30【例9】如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为________. 【答案】cm.32【例10】已知:如图,在两个同心圆中,大圆的弦AB 切小圆于C 点,AB =12cm .求两个圆之间的圆环面积.【答案】36?cm 2.提示:连接OC,OA.【例11】如图,在桌面上有半径为2 cm 的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?【答案】设三个圆的圆心为O 1、O 2、O 3,连结O 1O 2、O 2O 3、O 3O 1,可得边长为4 cm 的正△O 1O 2O 3,则正△O 1O 2O 3外接圆的半径为334 cm ,所以大圆的半径为334+2=3634+【例12】如图,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB于点M,交BC于点N.(1)求证:BA·BM=BC·BN;(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.【答案】(1)证明:连接MN则∠BMN=90°=∠ACB,∴△ACB∽△NMB,∴BC ABBM BN,∴AB·BM=BC·BN(2)解:连接OM,则∠OMC=90°,∵N为OC中点,∴MN=ON=OM,∴∠MON=60°,∵OM=OB,∴∠B=12∠MON=30°.∵∠ACB=90°,∴AB=2AC=2×3=6。