2017年九年级数学压轴题

合集下载

2017年河北省中考数学压轴试卷及解析答案word版(一)

2017年河北省中考数学压轴试卷及解析答案word版(一)

2017年河北省中考数学压轴试卷(一)一、选择题(本大题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分.在每小题给出的四个选项中只有一项是符合题目要求的,请把正确的答案涂在答题卡上.1.(3分)﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.(3分)如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D3.(3分)下列运算正确的是()A.a2⋅a3=a6 B.(a2)3=a6C.(﹣ab2)6=a6b6D.(a+b)2=a2+b24.(3分)下列图形中,不是中心对称图形的是()A. B.C. D.5.(3分)的算术平方根是()A.2 B.±2 C.D.±6.(3分)要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣27.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数8.(3分)将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()A.B.C.D.9.(3分)如图几何体的俯视图是()A.B.C.D.10.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)11.(2分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.1212.(2分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3 D.2﹣(x+2)=3(x﹣1)13.(2分)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个 C.2个 D.1个14.(2分)如图,点A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在y轴上.已知平行四边形ABCD 的面积为6,则k的值为()A.6 B.﹣6 C.3 D.﹣315.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形16.(2分)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250米B.600﹣250米C.350+350米D.500米二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中的横线上)17.(3分)若|a|=20160,则a=.18.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.19.(3分)在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A 向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,则A3表示的数是按照这种移动规律移动下去,第n次移动到点A N,如果点A N与原点的距离不小于20,那么n的最小值是.三、解答题(本大题6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(9分)计算:(﹣2015)0+|1﹣|﹣2cos45°++(﹣)﹣2.21.(9分)先化简,再求值:,其中x=+1.22.(10分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.23.(9分)我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?24.(10分)已知一次函数y=﹣x+6的图象与坐标轴交于A、B点(如图),AE 平分∠BAO,交x轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB 的面积.25.(10分)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.26.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m 经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.2017年河北省中考数学压轴试卷(一)参考答案与试题解析一、选择题(本大题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分.在每小题给出的四个选项中只有一项是符合题目要求的,请把正确的答案涂在答题卡上.1.(3分)﹣3的相反数是()A.3 B.﹣3 C.D.﹣【解答】解:﹣3的相反数是3,故选:A.2.(3分)如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.3.(3分)下列运算正确的是()A.a2⋅a3=a6 B.(a2)3=a6C.(﹣ab2)6=a6b6D.(a+b)2=a2+b2【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、积的乘方等于乘方的积,故C错误;D、和的平方等于平方和加积的二倍,故D错误;故选:B.4.(3分)下列图形中,不是中心对称图形的是()A. B.C. D.【解答】解:A、是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项符合题意;C、是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项不符合题意.故选B.5.(3分)的算术平方根是()A.2 B.±2 C.D.±【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.6.(3分)要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣2【解答】解:∵分式有意义,∴x+2≠0,∴x≠﹣2,即x的取值应满足:x≠﹣2.故选:D.7.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加比赛,他们决赛的最终成绩各不相同,其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.方差C.平均数D.中位数【解答】解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:D.8.(3分)将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是()A.B.C.D.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,剪去右上角,展开得到结论.故选A.9.(3分)如图几何体的俯视图是()A.B.C.D.【解答】解:该几何体的俯视图为,故选D10.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3﹣x=x(x+1)(x﹣1)【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确;故选:D.11.(2分)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.12【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1:2,△ABC的面积是3,∴△ABC与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选:D.12.(2分)解分式方程+=3时,去分母后变形正确的是()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3 D.2﹣(x+2)=3(x﹣1)【解答】解:方程变形得:﹣=3,去分母得:2﹣(x+2)=3(x﹣1),故选D13.(2分)将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么,在形成的这个图中与∠α互余的角共有()A.4个 B.3个 C.2个 D.1个【解答】解:∵斜边与这根直尺平行,∴∠α=∠2,又∵∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°∴与α互余的角为∠1和∠3.故选:C.14.(2分)如图,点A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x轴上,点D在y轴上.已知平行四边形ABCD 的面积为6,则k的值为()A.6 B.﹣6 C.3 D.﹣3【解答】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S=S矩形ADOE,平行四边形ABCD=|﹣k|,而S矩形ADOE∴|﹣k|=6,而k<0,即k<0,∴k=﹣6.故选B.15.(2分)如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形【解答】解:∵AB⊥CD,AB过O,∴DE=CE,=,根据已知不能推出OE=BE,△BOC是等边三角形,四边形ODBC是菱形.故选:B.16.(2分)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250米B.600﹣250米C.350+350米D.500米【解答】解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中的横线上)17.(3分)若|a|=20160,则a=±1.【解答】∵|a|=20160,∴|a|=1,∴a=±1.故答案为:±1.18.(3分)如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为﹣.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S=S四边形DMCN=.四边形DGCH则阴影部分的面积是:﹣.故答案为﹣.19.(3分)在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A 向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,则A3表示的数是﹣5按照这种移动规律移动下去,第n次移动到点A N,如果点A N与原点的距离不小于20,那么n的最小值是13.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A6表示的数为7+3=10,A8表示的数为10+3=13,A10表示的数为13+3=16,A12表示的数为16+3=19,所以点A N与原点的距离不小于20,那么n的最小值是13,故答案为:﹣5,13.三、解答题(本大题6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(9分)计算:(﹣2015)0+|1﹣|﹣2cos45°++(﹣)﹣2.【解答】解:原式=1+﹣1﹣2×+2+9=2+9.21.(9分)先化简,再求值:,其中x=+1.【解答】解:∵x=+1,∴x=3+1=4,原式=×=,当x=4时,原式==2.22.(10分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.23.(9分)我市某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=的一部分,请根据图中信息解答下列问题:(1)求k的值;(2)恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有多少小时?【解答】解:(1)把B(12,20)代入y=中得:k=12×20=240(2)设AD的解析式为:y=mx+n把(0,10)、(2,20)代入y=mx+n中得:解得∴AD的解析式为:y=5x+10当y=15时,15=5x+10,x=115=,x==16∴16﹣1=15答:恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有15小时.24.(10分)已知一次函数y=﹣x+6的图象与坐标轴交于A、B点(如图),AE 平分∠BAO,交x轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB 的面积.【解答】解:(1)当y=﹣x+6=0时,x=8,∴点B的坐标为(8,0).(2)当x=0时,y=﹣x+6=6,∴点A的坐标为(0,6),∴OA=6,OB=8,∴AB==10.∵AE平分∠BAO,交x轴于点E,∴=,∴OE=BE.∵OE+BE=OB=8,∴OE=3,BE=5,∴点E的坐标为(3,0).设直线AE的表达式为y=kx+b,将A(0,6)、E(3,0)代入y=kx+b,,解得:,∴直线AE的表达式为y=﹣2x+6.(3)过点F作FG⊥x轴于点G,如图所示.∵BF⊥AE,∴∠BFE=90°=∠AOE.∵∠AEO=∠BEF,∴△AOE∽△BFE,∴==.∵OA=6,OE=3,∴AE=3.∵BE=5,∴BF=2,EF=.同理可得:△BEF∽△BFG,∴BG=4,FG=2.∵OB=8,∴OG=4=BG,∴△OFB为等腰三角形,∴S=OB•FG=8.△OFB25.(10分)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.【解答】解:(1)AB=AC,理由如下:连接OB.∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,PA=5﹣r,则AB2=OA2﹣OB2=52﹣r2,AC2=PC2﹣PA2=﹣(5﹣r)2,∴52﹣r2=﹣(5﹣r)2,解得:r=3,∴AB=AC=4,∵PD是直径,∴∠PBD=90°=∠PAC,又∵∠DPB=∠CPA,∴△DPB∽△CPA,∴=,∴=,解得:PB=.∴⊙O的半径为3,线段PB的长为;(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=AC=AB=又∵圆O与直线MN有交点,∴OE=≤r,≤2r,25﹣r2≤4r2,r2≥5,∴r≥,又∵圆O与直线相离,∴r<5,即≤r<5.26.(12分)抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m 经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.【解答】(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣2x﹣3;(2)如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S=AB×OC=×4×3=6,△ABC∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),∵P点在第四限,∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,=PM•OH+PM•HB=PM(OH+HB)=PM•OB=PM,∴S△PBC∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,∵PM=﹣x2+3x=﹣(x﹣)2+,∴当x=时,PM max=,则S△PBC=×=,此时P点坐标为(,﹣)(3)如图2,设直线m交y轴于点N,交直线l于点G,则∠AGP=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中,∴Rt△AON≌Rt△NOB(ASA),∴ON=OA=1,∴N点坐标为(0,﹣1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,∴直线m解析式为y=x﹣1,即存在满足条件的直线m,其解析式为y=x﹣1.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。

2017中考数学压轴题及答案精选

2017中考数学压轴题及答案精选

A O C
Bx
y = a(x + 1) ( x − 3) ( a ≠ 0 ),

把 C(0, ∴C1:
1 3 a= 2 2 )代入可得 1 2 3 x −x− 2 2
…………………………………………………………4 分
y=
1 2 3 n −n− 2) 设 P( n , 2
∴ △ PBC 3 3 2 27 − (n − ) + 4 2 16 = S = S △ POC + S △ BOP – S △ BOC
…………………………………6 分 3 3 27 a=− n= 16 4 2 ∵ <0, ∴当 时, S△PBC 最大值为 . ……………………………………7 分 (3)由 C2 可知: B(3,0),D(0, −3m ),M(1, − 4m )
2 2 2 BD2= 9m + 9 , BM2= 16m + 4 ,DM2= m + 1 ,
图 12
3 1 5 y = x2 − x + 4 4 2 (2)sin ∠ ACB= 5 ,
--------------4 分
P
N
90° , (3)证明:因为 D 为圆心,A 在圆周上,DA=r=5,故只需证明 ∠DAF =
9 25 9 2 15 9 2 (5, − ) DF = 4 + = , AF = 3 + ( ) = 4 4 4 4 , 4 , 抛物线顶点坐标:F
1
∵2.25<4, ∴x 轴下方不存在 B 点, ∴点 B 的坐标为:(4,4); ③∵点 B 的坐标为:(4,4), ∴∠BOD=45°,BO= =4 ,
当∠POB=90°, ∴∠POD=45°, 设 P 点横坐标为:﹣x,则纵坐标为:x2﹣3x, 即﹣x=x2﹣3x, 解得 x=2 或 x=0, ∴在抛物线上仅存在一点 P (2,﹣2). ∴OP= =2 ,

2017全国中考数学压轴题——解答题部分(三)

2017全国中考数学压轴题——解答题部分(三)

2017全国中考数学压轴题——解答题部分(三)41.(河南省23)如图,直线y =-23x +c 与x 轴交于点A (3,0),与y 轴交于点B ,抛物线y =-43x 2+bx +c 经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M (m ,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N ,①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与∆APM 相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M ,P ,N 三点为“共谐点”.请直接写出使得M ,P ,N 三点成为“共谐点”的m 的值.42.(黑龙江大庆28)如图,直角∆ABC 中,∠A 为直角,AB =6,AC =8.点P ,Q ,R 分别在AB ,BC ,CA 边上同时开始作匀速运动,2秒后三个点同时停止运动,点P 由点A 出发以每秒3个单位的速度向点B 运动,点Q 由点B 出发以每秒5个单位的速度向点C 运动,点R 由点C 出发以每秒4个单位的速度向点A 运动,在运动过程中:(1)求证:∆APR ,∆BPQ ,∆CQR 的面积相等;(2)求∆PQR 面积的最小值;(3)用t (秒)(0≤t ≤2)表示运动时间,是否存在t ,使∠PQR =90°,若存在,请直接写出t 的值;若不存在,请说明理由.43.(黑龙江哈尔滨26)已知:AB 是⊙O 的弦,点C 是︵AB 的中点,连接OB 、OC ,OC交AB 于点D .(1)如图1,求证:AD =BD ;(2)如图2,过点B 作⊙O 的切线交OC 的延长线于点M ,点P 是︵AC 上一点,连接AP 、BP ,求证:∠APB -∠OMB =90°;(3)如图3,在(2)的条件下,连接DP 、MP ,延长MP 交⊙O 于点Q ,若MQ =6DP ,sin∠ABO =35,求MP MQ 的值.44.(黑龙江哈尔滨27)如图,在平面直角坐标系中,点O 为坐标原点,抛物线y =x 2+bx +c 交x 轴于A 、B 两点,交y 轴于点C ,直线y =x -3经过B 、C 两点.(1)求抛物线的解析式;(2)过点C 作直线CD ⊥y 轴交抛物线于另一点D ,点P 是直线CD 下方抛物线上的一个动点,且在抛物线对称轴的右侧,过点P 作PE ⊥x 轴于点E ,PE 交CD 于点F ,交BC 于点M ,连接AC ,过点M 作MN ⊥AC 于点N ,设点P 的横坐标为t ,线段MN 的长为d ,求d 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,连接PC ,过点B 作BQ ⊥PC 于点Q (点Q 在线段PC 上),BQ 交CD 于点T ,连接OQ 交CD 于点S ,当ST =TD 时,求线段MN 的长.45.(黑龙江龙东28)如图,矩形AOCB 的顶点A 、C 分别位于x 轴和y 轴的正半轴上,线段OA 、OC 的长度满足方程|x -15|+y -13=0(OA >OC ),直线y =kx +b 分别与x 轴、y 轴交于M 、N 两点,将△BCN 沿直线BN 折叠,点C 恰好落在直线MN 上的点D处,且tan ∠CBD =34(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB 的面积S关于运动的时间t(0<t≤13)的函数关系式.46.(黑龙江齐齐哈尔26)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在的直线折叠,点B落在点D处,DC与y轴相交于点E.矩形OABC的边OC,OA的长是关于x的一元二次方程x2-12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:∆ADE≌∆COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.47.(黑龙江绥化28)如图,在矩形ABCD中,E为AB边上一点,EC平分∠DEB,F为CE的中点,连接AF,BF,过点E作EH∥BC分别交AF,CD于G,H两点.(1)求证:DE=DC;(2)求证:AF⊥BF;(3)当AF•GF=28时,请直接写出CE的长.48.(黑龙江绥化29)在平面直角坐标系中,直线y =-34x +1交y 轴于点B ,交x 轴于点A ,抛物线y =-12x 2+bx +c 经过点B ,与直线y =-34+1交于点C (4,-2).(1)求抛物线的解析式;(2)如图,横坐标为m 的点M 在直线BC 上方的抛物线上,过点M 作ME ∥y 轴交直线BC 于点E ,以ME 为直径的圆交直线BC 于另一点D ,当点E 在x 轴上时,求△DEM 的周长.(3)将△AOB 绕坐标平面内的某一点按顺时针方向旋转90°,得到△A 1O 1B 1,点A ,O ,B 的对应点分别是点A 1,O 1,B 1,若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的坐标.49.(湖北鄂州24)已知,抛物线y =ax 2+bx +3(a <0)与x 轴交于A (3,0)、B 两点,与y 轴交于点C .抛物线的对称轴是直线x =1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE =12. (1)求抛物线的解析式及顶点D 的坐标;(2)求证:直线DE 是△ACD 外接圆的切线;(3)在直线AC 上方的抛物线上找一点P ,使S ∆ACP =12S ∆ACD ,求点P 的坐标;(4)在坐标轴上找一点M ,使以点B 、C 、M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.50.(湖北恩施24)如图12,已知抛物线y=ax2+c过点(-2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A,B两点,点B在点A的右侧,过点B作x轴的垂线,垂足为C.(1)求抛物线的解析式;(2)当点B在抛物线上运动时,判断线段BF与BC的数量关系(>、<、=),并证明你的判断;(3)P为y轴上一点,以B,C,F,P为顶点的四边形是菱形,设点P(0,m),求自然数m的值;(4)若k=1,在直线l下方的抛物线上是否存在点Q,使得∆QBF的面积最大,若存在,求出点Q的坐标及∆QBF的最大面积,若不存在,请说明理由.51.(湖北黄冈24)已知:如图所示,在平面直角坐标系xOy中,四边形OABC是矩形,OA=4,OC=3.动点P从点C出发,沿射线CB方向以每秒2个单位长度的速度运动;同时,动点Q从点O出发,沿x轴正半轴方向以每秒1个单位长度的速度运动.设点P、点Q的运动时间为t(s).(1)当t =1s 时,求经过点O ,P ,A 三点的抛物线的解析式;(2)当t =2s 时,求tan ∠QP A 的值;(3)当线段PQ 与线段AB 相交于点M ,且BM =2AM 时,求t (s )的值;(4)连接CQ ,当点P ,Q 在运动过程中,记∆CQP 与矩形OABC 重叠部分的面积为S ,求S 与t 的函数关系式.52.(湖北黄石24)在现实生活中,我们会看到许多“标准”的矩形,如我们的课本封面、A 4的打印纸等,其实这些矩形的长与宽之比都为2:1,我们不妨就把这样的矩形成为“标准矩形”.在“标准矩形”ABCD 中,P 为DC 边上一定点,且CP =BC ,如下图所示.(1)如图①,求证:BA =BP ;(2)如图②,点Q 在DC 上,且DQ =CP ,若G 为BC 边上一动点,当△AGQ 的周长最小时,求CG GB 的值;(3)如图③,已知AD =1,在(2)的条件下,连接AG 并延长交DC 的延长线于点F ,连接BF ,T 为BF 的中点,M 、N 分别为线段PF 与AB 上的动点,且始终保持PM =BN ,请证明:△MNT 的面积S 为定值,并求出这个定值.53.(湖北黄石25)如图,直线l :y =kx +b (k <0)与函数y =4x (x >0)的图象相交于A 、C两点,与x 轴相交于T 点,过A 、C 两点作x 轴的垂线,垂足分别为B 、D ,过A 、C 两点作y 轴的垂线,垂足分别为E 、F ;直线AE 与CD 相交于点P ,连接DE .设A 、C两点的坐标分别为(a ,4a ),(c ,4c ),其中a >c >0.(1)如图①,求证:∠EDP =∠ACP ;(2)如图②,若A 、D 、E 、C 四点在同一圆上,求k 的值;(3)如图③,已知c =1,且点P 在直线BF 上,试问:在线段AT 上是否存在点M ,使得OM ⊥AM ?若存在,请求出点M 的坐标;若不存在,请说明理由.54.(湖北荆门24)已知:如图所示,在平面直角坐标系xOy 中,∠C =90°,OB =25,OC =20.若点M 是边OC 上的一个动点(与点O ,C 不重合),过点M 作MN ∥OB 交BC 于点N .(1)求点C 的坐标;(2)当∆MCN 的周长与四边形OMNB 的周长相等时,求CM 的长;(3)在OB 上是否存在点Q ,使得∆MNQ 为等腰直角三角形?若存在,请求出此时MN 的长;若不存在,请说明理由.55.(湖北荆州25)如图在平面直角坐标系中,直线y =-34x +3与x 轴、y 轴分别交于A 、B 两点,点P 、Q 同时从点A 出发,运动时间为t 秒.其中点P 沿射线AB 运动,速度为每秒4个单位长度,点Q 沿射线AO 运动,速度为每秒5个单位长度.以点Q 为圆心,PQ 长为半径作⊙Q .(1)求证:直线AB 是⊙Q 的切线;(2)过点A 左侧x 轴上的任意一点C (m ,0),作直线AB 的垂线CM ,垂足为M .若CM 与⊙Q 相切于点D ,求m 与t 的函数关系式(不需写出自变量的取值范围);(3)在(2)的条件下,是否存在点C ,直线AB 、CM 、y 轴与⊙Q 同时相切?若存在,请直接写出此时点C 的坐标;若不存在,请说明理由.56.(湖北十堰24)已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,∠BAO =90º,AC ∥OP交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1)如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2)将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(0º<α<45º),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(45º<α<90º),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式;57.(湖北十堰25)抛物线y =x 2+bx +c 与x 轴交于A (1,0),B (m ,0),与y 轴交于C .(1)若m =-3,求抛物线的解析式,并写出抛物线的对称轴 ;(2)如图1,在(1)的条件下,设抛物线的对称轴交x 轴于D ,在对称轴左侧的抛物线上有一点E ,使S △ACE = 10 3S △ACD ,求E 点的坐标; (3)如图2,设F (-1,-4),FG ⊥y 轴于G ,在线段OG 上是否存在点P ,使∠OBP =∠FPG ? 若存在,求m 的取值范围;若不存在,请说明理由.图2x x58.(湖北随州24)如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF 经过点C ,连接DE 交AF 于点M ,观察发现:点M 是DE 的中点. 下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD 交AF 于点H .……请参考上面的思路,证明点M 是DE 的中点(只需用一种方法证明);(2)如图2,在(1)的条件下,当∠ABE =135°时,延长AD 、EF 交于点N ,求AM NE 的值;(3)在(2)的条件下,若AF AB =k (k 为大于2的常数),直接用含k 的代数式表示AM MF 的值.59.(湖北随州25)在平面直角坐标系中,我们定义直线y =ax -a 为抛物线y =ax 2+bx +c (a 、b 、c 为常数,a ≠0)的“梦想直线”;有一个顶点在抛物线上,另一个顶点在y 轴上的三角形为其“梦想三角形”.已知抛物线y =-233x 2-433x +23与其“梦想直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“梦想直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将∆ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若∆AMN 为该抛物线的“梦想三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.60.(湖北武汉23)已知四边形ABCD 的一组对边AD ,BC 的延长线相交于点E .(1)如图1,若∠ABC =∠ADC =90°,求证ED ·EA =EC ·EB ;(2)如图2,若∠ABC =120°,cos ∠ADC =35,CD =5,AB =12,∆CDE 的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB ,DC 的延长线相交于点F ,若cos ∠ABC =cos ∠ADC =35,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示).。

2017年中考数学抛物线压轴题

2017年中考数学抛物线压轴题

2017年中考数学抛物线压轴题2017年中考数学抛物线压轴题1. 如图1,点A为抛物线C 1:y= x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC 于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值;2. 将抛物线c1:233=x轴翻折,得到抛物线c2,如图所示;y x(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E;①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M 为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.3.如图,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0);(1)b =----------------,点B 的横坐标为----------------(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC ,设△PBC 的面积为S ,①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有------------------个;4.在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c(a≠0)经过点C.(1)如图1,若该抛物线经过原点O,且1a ,①求4点C的坐标及该抛物线的表达式;②在抛物线上是否存在点P,使得∠POB=∠BAO.,若存在,请求出所有满足条件的点P的坐标,不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点D(2,1),点Q 在抛物线上,且满足∠QOB=∠BAO. 若符合条件的Q点的个数是4个,请直接写出a的取值范围;5.如图1是二次函数y= x2 +b x + c的图象,其顶点坐标为M(1,- 4),与x轴的交于A、B两点;(1)求出A、B的坐标;(2)P是平面内一点,将△AOM 绕点P沿顺时针方向旋转90°后,得到△A1O1M1,点A、O、M 的对应点分别是点A1、O1、M1,若△A1O1M1的两个顶点恰好落在抛物线上,求出点A1的坐标;6.在直角坐标系中,抛物线y=-ax 2+2ax+b ,交x 轴于A (一1,0),B 两点,交y 轴的负半轴于点C ,且OC =3OA .(1)求抛物线的解析式.(2)若P 为抛物线对称轴上的点,且S △BCP =2S △ACP ,求P 点坐标;(3)若P 为抛物线上BC 下方一点,且S △BCP =2S △ACP ,求P 点坐标;(4)若Q 点为抛物线对称轴上的点,且∠QB C=∠ACO ,求Q 点坐标;x y CB A O x yC B A O x y C B A O x yC B A O7. 已知抛物线C1的顶点为P(1,0),且过点(0,1),将抛物轴的直线与两条抛物线交于A 、B 、C 、D 四点(如图),且点A 、C 关于y 轴对称,直线AB 与x 轴的距离是m 2(m >0); ⑴求抛物线C 1的解析式的一般形式;⑵当m=2时,求h 的值;⑶若抛物线C 1的对称轴与直线AB 交于点E ,与抛物线C 2交于点F ,求证:EC EPED EF -的值为定值,并求此定值;8.如图,已知抛物线y=x2-2x-3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,该抛物线顶点为D,对称轴交x 轴于点H;⑴求A,B两点的坐标;⑵设点P在x轴下方的抛物线上,当∠ABP=∠CDB时,求出点P的坐标;⑶以OB为边在第四象限内作等边△OBM,设点E为x轴的正半轴上一动点(OE>OH),连接ME,把线段ME绕点M顺时针旋转60°得MF,求线段DF的最小值;9.已知抛物线C1:y=ax2+bx+23(a≠0)经过点A(﹣1,0)和B(1)求抛物线C1的解析式,并写出其顶点C的坐标;(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2,此时点A,C分别平移到点D,E处.设点F在抛物线C1上且在x轴的下方,若△DEF是以EF为底的等腰直角三角形,求点F 的坐标;(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:tan∠ENM的值如何变化?请说明理由;10. 如图,坐标系在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限,OA=3,AB= 4;⑴求直线AB的解析式;⑵将△AOB沿垂直于x轴的线段折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为E,设点C的坐标为(x,0),设△CDE 与△AOB重合部分的面积为S,直接写出S与C点的横坐标x 之间的函数关系式(包括自变量x的取值范围);。

上海市2017年中考数学压轴题专项训练(含答案).docx

上海市2017年中考数学压轴题专项训练(含答案).docx

上海市 2017 年中考数学压轴题专项训练( 含答案 )上海市 2017 年中考数学压轴题专项训练1. (本分 12分,第( 1)小分 3 分,第( 2)小分 4 分,第( 3)小分 5分)如,已知抛物y x2bx cA 0, 1 、 B4, 3两点 .(1)求抛物的解析式;(2 求tan ABO 的;y(3)点 B 作 BC x ,垂足点C,点 M 是抛物上一点,直 MN 平行于y交直 AB 于点 N,如果 M、 N、 B、 C点的四形是平行四形,求点N 的坐 .oxAB(第 24 题图)1.解:( 1)将 A( 0, -1)、 B( 4, -3)分代入y x2bx cc1,,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)得4b c316解,得b 91⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分 ) , c29 x所以抛物的解析式y x21⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)2( 2)点 B 作 BC x ,垂足C,点A作AH OB,垂足点 H ⋯⋯⋯( 1 分)在 Rt AOH 中,OA=1,sin AOH sin OBC4,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)5∴ AH OA sin AOH 4,∴ OH3, BH OB OH22,⋯⋯⋯⋯⋯⋯(1 分)555在 Rt ABH 中,tan ABO AH4222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)BH5511(3)直 AB 的解析式y 1 x1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2点 M 的坐(m, m29 m1) ,点N坐 (m, 1 m1)22那么 MN= (m29 m1)( 1 m1)m24m ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)22∵ M、 N、 B、 C 点的四形是平行四形,∴MN =BC=3解方程m24m =3得m27 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)解方程 m 24m3 得 m 1或 m3 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)所以符合 意的点N 有 4 个 (27,7 7 3 5 22),(27,2),(1, ),(3,)222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2. (本 分 14 分,第( 1)小 分 4 分,第( 2)小 分 5分,第( 3)小 分 5分)在 Rt △ABC 中,∠ ACB = 90 °, 点 B 的直 l ( l 不与直 AB 重合)与直BC 的角等于∠ ABC ,分 点 C 、点 A 作直 l 的垂 ,垂足分 点D 、点E .(1)如 1,当点 E 与点 B 重合 ,若 AE=4,判断以 C 点 心 CD 半径的C 与直 AB 的位置关系并 明理由;(2)如 2,当点 E 在 DB 延 上 ,求 :AE=2CD ;ACF 5(3) 直 CE 与直 AB 相交于点 F ,若EF, CD = 4,求 BD 的 .6ACCDB(E)lD Bl(第 25 题图 1)E(第 25 题图 2 )2.解:( 1) 点 C 作 CF ⊥ AB ,垂足 点 F. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵∠ AED =90°,∠ ABC=∠ CBD ,∴∠ ABC=∠ CBD =45°,∵∠ ACB=90 °,∠ ABC=45°, AE=4,∴ CF=2 ,BC= 2 2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) 又∵∠ CBD=∠ ABC=45°, CD ⊥ l ,∴ CD =2, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) ∴CD =CF=2,∴ C 与直 AB 相切 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) (2) 明:延 AC 交直 l 于点 G . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵∠ ACB = 90 °,∠ ABC =∠GBC ,∴∠ BAC =∠BGC .∴AB = GB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ( 1 分) ∴AC = GC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵AE ⊥l ,CD ⊥ l ,∴ AE ∥ CD .∴CD GC 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯AE GA 2∴AE = 2CD . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3)( I )如 1,当点 E 在 DB 延 上 :点 C 作 CG ∥ l 交 AB 于点 H ,交 AE 于点 G , ∠ CBD =∠ HCB .∵∠ ABC =∠CBD ,∴∠ ABC =∠ HCB .∴ CH = BH .⋯⋯⋯( 1 分)∵∠ ACB = 90 °,∴∠ ABC +∠BAC =∠ HCB +∠ HCA = 90 °. CH∴∠ BAC =∠HCA .∴ CH = AH = BH .F∵CG ∥ l ,∴CHCF 5FBEEF.D B6(第 25 题图CH = 5x , BE = 6x , AB = 10 x .( 1 分)( 1 分)AGlE1)在 Rt △ ABE 中, AEAB 2BE 28x .由( 2)知 AE = 2CD = 8,∴ 8x 8 ,得 x 1 .∴CH = 5 , BE = 6 ,AB = 10.∵CG ∥ l ,∴HGAH 1 ,∴ HG=3.⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)ABEAB 2∴CG = CH + HG = 8 .易 四 形 CDEG 是矩形,∴ DE = CG = 8.CGH∴ BD DE BE2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)(II )如 2,当点 E 在 DB 上 :DEl同理可得 CH = 5 , BE = 6 , HG = 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)B(第 25题图 2)∴ DE CG CH HG 2 .∴BD =DE + BE = 8 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)上所述, BD 的 2 或 8.3.已知点 A ( 2, 2)和点 B ( 4, n )在抛物 y=ax 2( a ≠0)上.(1)求 a 的 及点 B 的坐 ;(2)点 P 在 y 上,且 △ ABP 是以 AB 直角 的三角形,求点P 的坐 ;(3)将抛物 y=ax 2(a ≠0)向右并向下平移, 平移后点 A 的 点A ′,点B 的点 B ′,若四 形 ABB ′A ′ 正方形,求此 抛物 的表达式.【考点】二次函数图象上点的坐标特征;坐标与图形变化 -平移.【分析】( 1)把点 A (2,﹣ 2)代入 y=ax 2,得到 a ,再把点 B 代入抛物线解析式即可解决问题.(2)求出直线 AB 解析式,再分别求出过点 A 垂直于 AB 的直线的解析式,过点直线 AB 的解析式即可解决问题.B 垂直于( 3)先求出点 A ′坐标,确定是如何平移的,再确定抛物线顶点的坐标即可解决问题.【解答】解:( 1)把点 A ( 2,﹣ 2)代入 y=ax 2,得到 a=﹣, ∴抛物线为 y= ﹣ x 2, ∴x= ﹣ 4 时, y= ﹣ 8, ∴点 B 坐标(﹣ 4,﹣ 8),∴a=﹣,点 B 坐标(﹣ 4,﹣ 8).(2)设直线AB为 y=kx+b ,则有,解得,∴直线 AB 为 y=x ﹣ 4,∴过点 B 垂直 AB 的直线为 y= ﹣ x ﹣ 12,与 y 轴交于点P ( 0,﹣ 12),过点 A 垂直 AB 的直线为 y= ﹣ x ,与 y 轴交于点 P ′( 0, 0),∴点 P 在 y 轴上,且 △ ABP 是以 AB 为直角边的三角形时.点 P 坐标为( 0,0),或( 0,﹣12).(3)如图四边形 ABB ′A ′是正方形,过点 A 作 y 轴的垂线,过点B 、点 A ′作 x 轴的垂线得到点 E 、 F .∵直线 AB 解析式为 y=﹣ x ﹣ 12, ∴△ ABF , △ AA ′E 都是等腰直角三角形, ∵AB=AA ′= =6 ,∴AE=A ′E=6 ,∴点 A ′坐标为( 8,﹣ 8),∴点 A 到点 A ′是向右平移 6 个单位,向下平移 6 个单位得到,∴抛物线 y=﹣ x 2的顶点( 0,0),向右平移 6 个单位,向下平移6 个单位得到( 6,﹣ 6),∴此时抛物线为 y=﹣( x ﹣ 6) 2﹣ 6.4.已知, AB=5 , tan∠ABM= ,点 C、 D、 E 为动点,其中点 C、D 在射线 BM 上(点 C 在点 D 的左侧),点 E 和点 D 分别在射线 BA 的两侧,且 AC=AD ,AB=AE ,∠ CAD= ∠BAE .(1)当点 C 与点 B 重合时(如图 1),联结 ED ,求 ED 的长;(2)当 EA ∥BM 时(如图 2),求四边形 AEBD 的面积;(3)联结 CE,当△ ACE 是等腰三角形时,求点B、 C 间的距离.【考点】三角形综合题.【分析】( 1)如图 1 中,延长 BA 交 DE 于 F,作 AH ⊥ BD 于 H ,先证明 BF⊥ DE ,EF=DF ,再利用△ ABH ∽△ DBF ,得= ,求出 DF 即可解决问题.(2)先证明四边形 ADBE 是平行四边形,根据 S 平行四边形ADBE =BD?AH ,计算即可.(3)由题意 AC≠AE ,EC≠AC,只有 EA=EC ,利用四点共圆先证明四边形ADBE 是平行四边形,求出 DH 、 CH 即可解决问题.【解答】解:( 1)如图 1 中,延长 BA 交 DE 于 F,作 AH ⊥ BD 于 H .在RT△ABH 中,∵∠AHB=90°,∴sin ∠ABH= =,∴AH=3 , BH==4,∵A B=AD ,AH ⊥BD ,∴BH=DH=4 ,在△ ABE 和△ ABD 中,,∴△ ABD ≌△ ABE ,∴B E=BD ,∠ ABE= ∠ ABD ,∴B F ⊥ DE, EF=DF ,∵∠ ABH= ∠ DBF ,∠ AHB= ∠ BFD ,∴△ ABH ∽△ DBF ,∴= ,∴D F= ,∴D E=2DF=.(2)如图 2 中,作 AH ⊥ BD 于 H.∵AC=AD , AB=AE ,∠ CAD= ∠ BAE ,∴∠ AEB= ∠ABE= ∠ACD= ∠ADC , ∵AE ∥ BD ,∴∠ AEB+ ∠EBD=180° , ∴∠ EBD+ ∠ADC=180° , ∴EB ∥AD , ∵AE ∥ BD ,∴四边形 ADBE 是平行四边形, ∴ B D=AE=AB=5 ,AH=3 , ∴S 平行四边形 ADBE =BD?AH=15 .( 3)由题意 AC ≠AE ,EC ≠AC ,只有 EA=EC .如图 3 中,∵∠ ACD= ∠ AEB (已证), ∴A 、 C 、 B 、 E 四点共圆,∵ A E=EC=AB , ∴ = , ∴ = ,∴∠ AEC= ∠ABC , ∴AE ∥ BD ,由( 2)可知四边形 ADBE 是平行四边形, ∴AE=BD=AB=5 ,∵ A H=3 , BH=4 , ∴DH=BD ﹣ BH=1 , ∵AC=AD , AH ⊥ CD , ∴ C H=HD=1 , ∴BC=BD ﹣ CD=3 .5.如图,已知二次函数y=x 2+bx +c 图象顶点为 C ,与直线 y=x +m 图象交于 AB 两点,其中A 点的坐标为( 3, 4),B 点在 y 轴上.(1)求这个二次函数的解析式;(2)联结 AC ,求∠ BAC 的正切值;(3)点 P 为直线 AB 上一点,若△ ACP 为直角三角形,求点 P 的坐标.【分析】 ( 1)先把 A 点坐标代入 y=x +m 求出 m 得到直线 AB 的解析式为 y=x +1,这可求出直线与 y 轴的交点 B 的坐标, 然后把 A 点和 B 点坐标代入 y=x 2+bx+c 中得到关于 b 、c 的方程组,再解方程组求出b 、c 即可得到抛物线解析式;(2)如图,先抛物线解析式配成顶点式得到C ( 1, 0),再利用两点间的距离公式计算出BC 2=2, AB 2=18, AC 2=20,然后利用勾股定理的逆定理可证明△ABC 为直角三角形,∠ACB=90°,于是利用正切的定义计算tan ∠ BAC 的值;(3)分类讨论:当∠ APC=90° 时,有( 2 )得点 P 在 B 点处,此时 P 点坐标为( 0, 1);当∠ ACP=90°时,利用( 2tan ∠ PAC= = ,则 PC= AC P t t 1 )中结论得,设 ( , + ), 然后利用两点间的距离公式得到方程 t 2t 1 1 220,再解方程求出t 即可得到时 P 点 +( + ﹣ ) = 坐标.【解答】解:( 1 )把 A( 3 4 )代入 y=x m 得 3 +m=4 ,解得 m=1, +∴直线 AB 的解析式为 y=x 1+ ,∵当 x=0 时, y=x +1=1,∴B ( 0,1),把 B ( 0,1), A ( 3,4)代入 y=x 2+bx+c 得,解得 ,∴抛物线解析式为y=x 2﹣ 2x+1;(2)如图,∵ y =x 2﹣ 2x+1=( x ﹣ 1)2,∴C ( 1,0),22 2 2 2 +( 4 2 2 2 2∴BC =1 +1 =2,AB =3 ﹣ 1) =18 ,AC =( 3 ﹣ 1) +4 =20,而 2+18=20,∴BC 2+AB 2=AC 2,∴△ ABC 为直角三角形,∠ ACB=90° ,∴tan∠BAC===;(3)当∠ APC=90°时,点 P 在 B 点处,此时P 点坐标为( 0, 1);当∠ ACP=90°时,∵ tan∠ PAC==,∴P C= AC ,设P( t, t+1),∴t2t 1 1220,解得 t 1=﹣, t2=(舍去),此时P 点坐标为(﹣,+( + ﹣) =﹣+ 1),综上所述,满足条件的P 点坐标为( 0, 1)或(﹣,﹣+ 1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质和一次函数图象上点的坐标特征;能运用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式;能利用勾股定理的逆定理证明直角三角形.6.如图, ? ABCD 中, AB=8 ,AD=10 , sinA=,E、F分别是边AB 、BC 上动点(点 E 不与A 、B 重合),且∠ EDF= ∠ DAB , DF 延长线交射线 AB 于G.(1)若 DE⊥AB 时,求 DE 的长度;(2)设 AE=x , BG=y ,求 y 关于 x 的函数解析式,并写出函数的定义域;(3)当△ BGF 为等腰三角形时,求AE 的长度.【分析】( 1) DE⊥ AB 时,根据sinA=即可解决问题.(2)如图 2 中,作 DM ⊥AB 于 M ,根据 DG 2=DM2+MG2=AGEG ,列出等式即可解决问题.(3)分三种情形① BF=BG ,②FB=FG ,③ GB=GF ,根据 BF ∥AD ,得出比例式,列方程即可解决.【解答】解:( 1)如图 1 中,∵DE ⊥ AB ,∴sinA==,∵A D=10 ,∴DE=8 .(2)如图 2 中,作DM ⊥AB 于 M ,由( 1)可知 DM=8 , AM=6 , MG=AB ﹣ AM=8 ﹣ 6=2 ,∴DG 2=DM2+MG2,∵∠ DGE= ∠ DGA ,∠ GDE= ∠ A,∴△ DGE∽△ AGD ,∴= ,∴DG 2=AGEG ,∴DM 2+MG2=AGEG ,∴82+( 2+y)2=( 8+y)( 8+y﹣ x),∴y=(0<x<8)(3)①当 BF=FG 时,∵ BF∥ AD ,∴= ,∴AD=AG=10 ,∴y=2 ,即=2,解得 x=2 ,∴A E=2 .②当 FB=FG 时,∵ BF ∥AD ,∴=,∴A D=DG=10 ,∵DM ⊥AG ,∴A M=MB=6 ,∴A G=12 ,∴y=4 ,即=4,解得 x=.③当 GB=GF 时,∵ BF ∥ AD ,∠ GBF= ∠ BFG,∴∠ A= ∠ GBF ,∠ ADG= ∠ BFG ,∴∠ A= ∠ ADG ,∵∠ A= ∠ EDG ,∴∠ EDG= ∠ ADG ,∴此时点 E 与点 A 重合,不合题意.综上所述 AE=2 或时,△ BFG是等腰三角形.【点评】本题考查四边形综合题、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会用方程的思想解决问题,属于中考常考题型.。

2017年中考数学精选压轴题(华东师大版)

2017年中考数学精选压轴题(华东师大版)

“蓬溪县群力乡小学校-杨天强”2017年中考数学精选压轴题一、函数与几何综合的压轴题1.(2004安徽芜湖)如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上;(2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程.(3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式.[解] (1)(本小题介绍二种方法,供参考) 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ''''==又∵DO ′+BO ′=DB ∴1EO EO AB DC''+= ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ''=,∴2316EO DO DB AB ''=⨯=⨯= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上方法二:由D (1,0),A (-2,-6),得DA 直线方程:y =2x -2① 再由B (-2,0),C (1,-3),得BC 直线方程:y =-x -2 ②图①图②“蓬溪县群力乡小学校-杨天强”联立①②得02x y =⎧⎨=-⎩∴E 点坐标(0,-2),即E 点在y 轴上(2)设抛物线的方程y =ax 2+bx +c (a ≠0)过A (-2,-6),C (1,-3)E (0,-2)三点,得方程组42632a b c a b c c -+=-⎧⎪++=-⎨⎪=-⎩解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2(3)(本小题给出三种方法,供参考)由(1)当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。

2017中考数学压轴题精选精析

2017中考数学压轴题精选精析

中考压轴题分类专题三——抛物线中的等腰三角形基此题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若ABP ∆为等腰三角形,求点P 坐标。

分两大类进行讨论:(1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。

利用中点公式求出AB 的中点M ;利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ;利用中点M 与斜率k 求出AB 的垂直平分线的解析式;将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。

(2)AB 为腰时,分两类讨论:①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。

②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以AB 为半径的圆上。

利用圆的一般方程列出A (或B )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。

中考压轴题分类专题四——抛物线中的直角三角形基此题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对称轴上),若ABP ∆为直角三角形,求点P 坐标。

分两大类进行讨论:(1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。

利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。

(2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥):利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率k ;进而求出PA (或PB )的解析式;将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。

(完整版),2017届上海初三数学各区一模压轴题汇总情况(15套全),推荐文档

(完整版),2017届上海初三数学各区一模压轴题汇总情况(15套全),推荐文档

2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15套整理廖老师宝山区一模压轴题18(宝山)如图,为直角的斜边上一点,交于,如果沿着翻折,D ABC D AB DE AB ^AC E AED D DE 恰好与重合,联结交于,如果,,那么A B CD BEF 8AC =1tan 2A =:___________.CF DF =图18图A24(宝山)如图,二次函数的图像与轴交于两点,与轴交于点已知点232(0)2y ax x a =-+¹x A B 、y ,C .(4,0)A -(1)求抛物线与直线的函数解析式;AC (2)若点是抛物线在第二象限的部分上的一动点,四边形的面积为,求关于的函数关(,)D m n OCDA S S m 系;(3)若点为抛物线上任意一点,点为轴上任意一点,当以为顶点的四边形是平行四边形时,E F x A C E F 、、、请直接写出满足条件的所有点的坐标.E 图24图25(宝山)如图(1)所示,为矩形的边上一点,动点同时从点出发,点以的E ABCD AD P Q 、B P 1/cm s 速度沿着折线运动到点时停止,点以的速度沿着运动到点时停止。

设BE ED DC --C Q 2/cm s BC C 同时出发秒时,的面积为,已知与的函数关系图像如图(2)(其中曲线为抛物线P Q 、t BPQ D 2ycm y t OG 的一部分,其余各部分均为线段).(1)试根据图(2)求时,的面积关于的函数解析式;05t <£BPQ D y t (2)求出线段的长度;BC BE ED 、、(3)当为多少秒时,以为顶点的三角形和相似;t B P Q 、、ABE D (4)如图(3)过点作于,绕点按顺时针方向旋转一定角度,如果中的E EF BC ^F BEF D B BEF D E F 、对应点恰好和射线的交点在一条直线,求此时两点之间的距离. H I 、BE CD 、G C I 、图3图图2图图1图图25图崇明县一模压轴题18(崇明)如图,已知 中,,于点,点在上,且,联结,ABC ∆45ABC ∠=o AH BC ⊥H D AH DH CH =BD 将绕点旋转,得到(点、分别与点、对应),联结,当点落在上时,(不BHD V H EHF ∆B D E F AE F AC F 与重合)如果,,那么的长为;C 4BC =tan 3C =AE24(崇明)在平面直角坐标系中,抛物线与轴交于点 ,与轴的正半轴交于点235y x bx c =-++y (0,3)A x (5,0)B ,点在线段上,且 ,联结、将线段绕着点顺时针旋转,得到线段,过点作直D OB 1OD =AD AD D 90︒DE E 线轴,垂足为,交抛物线于点. l x ⊥H F (1)求这条抛物线的解析式;(2)联结,求的值;DF cot EDF ∠(3)点在直线上,且,求点的坐标.G l 45EDG ︒∠=G25(崇明)在中,,,,以为斜边向右侧作等腰直角,是ABC ∆90ACB ︒∠=3cot 2A =BC EBC ∆P 延长线上一点,联结,以为直角边向下方作等腰直角,交线段于点,联结. BE PC PC PCD ∆CD BE F BD (1)求证:;PC CECD BC=(2)若,的面积为,求关于的函数解析式,并写出定义域;PE x =BDP ∆y y x (3)当为等腰三角形时,求的长.BDF ∆PE奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是______.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线与x 轴相交于点A (-1,0)和点B ,与y 轴相2y x bx c =-++交于点C (0,3),抛物线的顶点为点D ,联结AC 、BC 、DB 、DC .(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO ,求点E 的坐标。

2017年九年级数学中考压轴题练习(2)及答案

2017年九年级数学中考压轴题练习(2)及答案

2017年九年级数学中考综合题30题1.如图,在△ABC中,以AB为直径的⊙O分别于BC,AC相交于点D,E,BD=CD,过点D作⊙O的切线交边AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为5,∠CDF=30°,求的长(结果保留π).2.如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)3.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线的一点,AC平分∠FAB交⊙O于点C,过点C 作CE⊥DF,垂足为点E.(1)求证:CE是⊙O的切线;(2)若AE=1,CE=2,求⊙O的半径.4.如图,AB为⊙O的弦,若OA⊥OD,AB、OD相交于点C,且CD=BD.(1)判定BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=0.6,求⊙O的直径.6.如图,已知AB是⊙的直径,AC是弦,点P是BA延长线上一点,连接PC,BC.∠PCA=∠B (1)求证:PC是⊙O的切线;(2)若PC=6,PA=4,求直径AB的长.7.已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.8.如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.(1)求证:DE是半圆⊙O的切线.(2)若∠BAC=30°,DE=2,求AD的长.9.如图,在矩形ABCD中,AB=8,AD=12,过点A,D两点的⊙O与BC边相切于点E,求⊙O的半径.10.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.11.如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,AD=AB,AD,BC的延长线相交于点E.(1)求证:AD是半圆O的切线;(2)连结CD,求证:∠A=2∠CDE;(3)若∠CDE=27°,OB=2,求的长.12.如图,⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12.求⊙O的半径.13.如图,⊙O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交⊙O于点D.(1)求BC的长;(2)求弦BD的长.14.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,求EC的长.15.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC(1)若∠CBD=39°,求∠BAD的度数;(2)求证:∠1=∠2。

2017中考数学压轴题及答案40例(3)

2017中考数学压轴题及答案40例(3)

2017中考数学压轴题及答案40例(3)28.如图,Rt △ABC 的顶点坐标分别为A (0,3),B (-21,23),C (1,0),∠ABC =90°,BC 与y 轴的交点为D ,D 点坐标为(0,33),以点D 为顶点、y 轴为对称轴的抛物线过点B .(1)求该抛物线的解析式;(2)将△ABC 沿AC 折叠后得到点B 的对应点B ′,求证:四边形AOCB ′是矩形,并判断点B ′是否在(1)的抛物线上;(3)延长BA 交抛物线于点E ,在线段BE 上取一点P ,过P 点作x 轴的垂线,交抛物线于点F ,是否存在这样的点P ,使四边形PADF 是平行四边形?若存在,求出点P 的坐标,若不存在,说明理由. 解:(1)∵抛物线的顶点为D (0,33) ∴可设抛物线的解析式为y =ax 2+33. ··········································· 1分 ∵B (-21,23)在抛物线上∴a (-21)2+33=23,∴a =332. ····················· 3分 ∴抛物线的解析式为y =332x 2+33. ···················· 5分(2)∵B (-21,23),C (1,0)∴BC =2223121)+()-(-=3 又B ′C =BC ,OA =3,∴B ′C =OA . ·················································· 6分∵AC =22OC OA +=2213+)(=2 ∴AB =22BC AC -=2232)-(=1又AB ′=AB ,OC =1,∴AB ′=OC . ····················································· 7分 ∴四边形AOCB ′是矩形. ···································································· 8分 ∵B ′C =3,OC =1∴点B ′ 的坐标为(1,3) ······························································ 9分 将x =1代入y =332x 2+33得y =3∴点B ′ 在抛物线上. ······································································· 10分(3)存在 ································································································· 11分理由如下:设直线AB 的解析式为y =kx +b ,则⎪⎩⎪⎨⎧32321 ==+-b b k 解得⎪⎩⎪⎨⎧33 ==b k ∴直线AB 的解析式为y =33+x ··················································· 12分 ∵P 、F 分别在直线AB 和抛物线上,且PF ∥AD∴设P (m ,33+m ),F (m ,332m 2+33)∴PF =(33+m )-(332m 2+33)=-332m 2+m 3+332AD =333-=332 若四边形PADF 是平行四边形,则有PF =AD . 即-332m 2+m 3+332=332 解得m 1=0(不合题意,舍去),m 2=23. ····································· 13分当m =23时,33+m =3×23+3=235.∴存在点P (23,235),使四边形PADF 是平行四边形. ·············· 14分29.如图1,平移抛物线F 1:y =x 2后得到抛物线F 2.已知抛物线F 2经过抛物线F 1的顶点M 和点A (2,0),且对称轴与抛物线F 1交于点B ,设抛物线F 2的顶点为N . (1)探究四边形ABMN 的形状及面积(直接写出结论);(2)若将已知条件中的“抛物线F 1:y =x 2”改为“抛物线F 1:y =ax 2”(如图2),“点A (2,0)”改为“点A (m ,0)”,其它条件不变,探究四边形ABMN 的形状及其面积,并说明理由;(3)若将已知条件中的“抛物线F 1:y =x 2”改为“抛物线F 1:y =ax 2+c ”(如图3),“点A (2,0)”改为“点A (m ,c )”其它条件不变,求直线AB 与y 轴的交点C 的坐标(直接写出结论).解:(1)四边形ABMN 是正方形,其面积为2. ···················································· 1分(2)四边形ABMN 是菱形.当m >0时,四边形ABMN 的面积为43am ;当m <0时,四边形ABMN 的面积为-43am . ·················································· 2分 (说明:如果没有说理过程,探究的结论正确的得2分)理由如下:∵平移抛物线F 1后得到抛物线F 2,且抛物线F 2经过原点O . ∴设抛物线F 2的解析式为y =ax 2+bx .∵抛物线F 2经过点A (m ,0),∴am 2+bm =0. 由题意可知m ≠0,∴b =-am .∴抛物线F 2的解析式为y =ax 2-amx . ·············································· 3分∴y =a (x -2m )2-42am∴抛物线F 2的对称轴为直线x =2m ,顶点N (2m,-42am ). ········· 4分∵抛物线F 2的对称轴与抛物线F 1的交点为B ,∴点B 的横坐标为2m. ∵点B 在抛物线F 1:y =ax 2上∴y B =a (2m )2=42am ·········································································· 5分设抛物线F 2的对称轴与x 轴交于点P ,如图1.∵a >0,∴BP =42am .∵顶点N (2m,-42am ),∴NP =|-42am |=42am .∴BP =NP . ···························································· 6分 ∵抛物线是轴对称图形,∴OP =AP .∴四边形ABMN 是平行四边形. ····························· 7分 ∵BN 是抛物线F 2的对称轴,∴BN ⊥OA .∴四边形ABMN 是菱形. ··································································· 8分∵BN =BP +NP ,∴BN =22am .∵四边形ABMN 的面积为21×OA ·BN =21×|m |×22am∴当m >0时,四边形ABMN 的面积为21×m ×22am =43am . ·········· 9分 当m <0时,四边形ABMN 的面积为21×(-m )×22am =-43am . · 10分 (3)点C 的坐标为(0,22am +c )(参考图2).30.如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B . (1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由.解:(1)由题意,可设抛物线的解析式为y =a (x -2)2+1.∵抛物线经过原点,∴a (0-2)2+1=0,∴a =-41.∴抛物线的解析式为y =-41(x -2)2+1=-41x 2+x . ······················ 3分(2)△AOB 和所求△MOB 同底不等高,若S △MOB =3S △AOB ,则△MOB 的高是△AOB 高的3倍,即M 点的纵坐标是-3. ···································································· 5分∴-41x 2+x =-3,整理得x 2-4x -12=0,解得x 1=6,x 2=-2.∴满足条件的点有两个:M 1(6,-3),M 2(-2,-3) ·························· 7分 (3)不存在. ···························································································· 8分理由如下:由抛物线的对称性,知AO =AB ,∠AOB =∠ABO . 若△OBN ∽△OAB ,则∠BON =∠BOA =∠BNO . 设ON 交抛物线的对称轴于A ′ 点,则A ′ (2,-1).∴直线ON 的解析式为y =-21x .由21x =-41x 2+x ,得x 1=0,x 2=6. ∴N (6,-3).过点N 作NC ⊥x 轴于C .在Rt △BCN 中,BC =6-4=2,NC =3 ∴NB =2232+=13.∵OB =4,∴NB ≠OB ,∴∠BON ≠∠BNO ,∴△OBN 与△OAB 不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N 点.∴在x 轴下方的抛物线上不存在点N ,使△OBN 与△OAB 相似. ······ 10分31.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.(1)如图1,过点B 作BM ⊥x 轴于M .由旋转性质知OB =OA =2.∵∠AOB =120°,∴∠BOM =60°.∴OM =OB ·cos60°=2×21=1,BM =OB ·sin60°=2×23=3.∴点B 的坐标为(1,3). ······································ 1分 (2)设经过A 、O 、B 三点的抛物线的解析式为y =ax 2+bx +c ∵抛物线过原点,∴c =0.∴⎪⎩⎪⎨⎧=+=-3024b a b a 解得⎪⎪⎩⎪⎪⎨⎧==33233b a ∴所求抛物线的解析式为y =33x 2+332x . ·································· 3分 (3)存在. ······························································································ 4分如图2,连接AB ,交抛物线的对称轴于点C ,连接OC .∵OB 的长为定值,∴要使△BOC 的周长最小,必须BC +OC 的长最小. ∵点A 与点O 关于抛物线的对称轴对称,∴OC =AC . ∴BC +OC =BC +AC =AB .由“两点之间,线段最短”的原理可知:此时BC +OC 最小,点C 的位置即为所求.设直线AB 的解析式为y =kx +m ,将A (-2,0),B (1,3)代入,得⎪⎩⎪⎨⎧=+=+-302m k m k 解得⎪⎪⎩⎪⎪⎨⎧==33233m k∴直线AB 的解析式为y =33x +332. 抛物线的对称轴为直线x =332332⨯-=-1,即x =-1.将x =-1代入直线AB 的解析式,得y =33×(-1)+332=33. ∴点C 的坐标为(-1,33). ·························································· 6分 (4)△PAB 有最大面积. ········································································· 7分如图3,过点P 作y 轴的平行线交AB 于点D . ∵S △PAB =S △PAD +S △PBD=21(y D -y P )(x B -x A ) =21[(33x +332)-(33x 2+332x )](1+2) =-23x 2-23x +3 =-23(x +21)2+839 ∴当x =-21时,△PAB 的面积有最大值,最大值为839.·············· 8分此时y P =33×(-21)2+332×(-21)=-43. ∴此时P 点的坐标为(-21,-43). ··············································· 9分。

2017年中考数学压轴题专题《函数》

2017年中考数学压轴题专题《函数》

【典例探究】已知抛物线22y x x =+- (1) 求抛物线与x 轴的交点坐标;(2) 将抛物线22y x x =+-沿y 轴向上平移,平移后与直线y=x+2的一个交点为点P ,与y 轴相交于点Q ,当PQ ∥x 轴时,求抛物线平移了几个单位;(3) 22y x x =+-将抛物线在x 轴下方的部分沿x 轴翻折到x 轴上方,图象的其余部分保持不变,翻折后的图象与原图象x 轴上方的部分组成一个“W ”形状的新图象若直线12y x b =+与该新图象恰好有三个公共点,求b 的值.分析:(1)令y=0,得到关于x 的方程,解方程即可求得;(2)设平移后的抛物线为22y x x n =+-+,求得与y 轴的交点坐标,根据题意,把交点纵坐标代入2y x =+,求得点P 的坐标,把P 点坐标代入抛物线的解析式可求得n 的值;(3)由图象可得当直线12y x b =+与抛物线219()(21)24y x x =-++-≤≤相切时,直线12y x b =+与该新函数恰好有三个公共点,即2191()242x x b -++=+有相等的实数解,利用根的判别式的意义可求出此时b 的值。

解:(1)令y=0,220x x +-=,解得122,1,x x =-=∴抛物线与x 轴的交点坐标为(-2,0),(1,0);(2)设抛物线向上平移了n 个单位,则平移后的抛物线为22y x x n =+-+,如图1, ∵抛物线22y x x n =+-+与y 轴的交点为(0,n-2),∴(4,2),P n n --∴抛物线22y x x n =+-+的对称轴为22nx =-,由抛物线22y x x n =+-+的对称轴为1,2x =-∴12,22n -=-解得n=3, ∴当PQ ∥x 轴时抛物线平移了3个单位;(3)∵22192()24y x x x =+-=+-,∴抛物线的定点坐标为19(,)24-- 则翻折部分的抛物线解析式为219()(21)24y x x =-++-≤≤,如图2,把直线12y x =向上平移,当平移后的直线12y x b =+过点A 时,直线12y x b =+与该新图象恰好有三个公共点,所以1(2)0,2b ⨯-+=解得b=1; 当直线12y x b =+与抛物线219()(21)24y x x =-++-≤≤相切时,直线12y x b =+与该新函数恰好有三个公共点,即2191()242x x b -++=+有相等的实数解,整理得223320,()4(2)0,22x x b b ++-=∆=--=解得41,16b = 所以b 的值为1或41.16【方法突破】将抛物线沿x轴翻折后与直线探究交点问题:1.先考虑翻折后的函数解析式,只需要让原函数解析式中的x用-x替换即可;2.考虑相切,即翻折后的抛物线的解析式与直线的解析式组合成的方程组只有一组解,判断切点是否在要求范围内,3.再分析出抛物线与x轴的两个交点,结合草图,把合适的交点坐标代入直线解析式可得到参数的临界值【学以致用】1.(2015山东菏泽)已知关于x的一元二次方程x2+2x+k−12=0有两个不相等的实数根,k为正整数.(1)求k的值;(2)当此方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+k−12的图象交于A、B 两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN 的最大值及此时点M的坐标;(3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线y=12x+b与该新图象恰好有三个公共点,求b的值.(1) 当2202mx x ---=时,求m 的值; (2) 如图,当该二次函数的图象经过原点时,与直线y=-x-2的图象交于A,B 两点,求A,B 两点的坐标;(3) 将(2)中的二次函数图象x 轴上方的部分沿x 轴翻折到x 轴下方,图象的其余部分保持不变,翻折后的图象与原图象x 轴下方的部分组成一个“M ”形状的新图象。

2017全国中考数学压轴题——解答题部分(四)

2017全国中考数学压轴题——解答题部分(四)
72.(湖南常德25)如图12,已知抛物线的对称轴是y轴,且点(2,2),(1,)在抛物线上,点P是抛物线上不与顶点N重合的一动点,过P作PA⊥x轴于A,PC⊥y轴于C,延长PC交抛物线于E,设M是O关于抛物线顶点N的对称点,D是C点关于N的对称点.
(1)求抛物线解析式及顶点N的坐标;
(2)求证:四边形PMDA是平行四边形;
(3)求证△DPE∽△PAM,并求当它们的相似比为时的点P的坐标.
73.(湖南常德26)如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.
(1)如图13,若BD=BA,求证:△ABE≌△DBE;
(2)如图14,若BD=4DC,取AB的中点G,连接CG交AD于M,
(2)如图,顶点在第一象限的抛物线y=m(x-1)2-4m与其伴随直线相交于点A,B(点A在点B的右侧)与x轴交于点C,D
①若∠CAB=90°求m的值;
②如果点P(x,y)是直线BC上方抛物线的一个动点,∆PBC的面积记为S,当S取得最大值时,求m的值.
70.(湖北宜昌23)正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°.
(1)直接写出A、B两点的坐标;
(2)过点A、B的抛物线G与x轴的另一个交点为点C.
①若∆ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;
②将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N的坐标.
77.(湖南衡阳27)如图,正方形ABCD的边长为1,点E为边AB上一动点,连结CE并将其绕点C顺时针旋转90°得到CF,连结DF,以CE、CF为邻边作矩形CFGE,GE与AD、AC分别交于点H、M,GF交CD延长线于点N.

2017年全国各地中考数学压轴题集锦附答案

2017年全国各地中考数学压轴题集锦附答案

2017年全国各地中考数学压轴题集锦答案1.(北京模拟)已知抛物线y =-x2+2x +m -2与y 轴交于点A (0,2m -7),与直线y =2x 交于点B 、C (B 在C 的右侧). (1)求抛物线的解析式;(2)设抛物线的顶点为E ,在抛物线的对称轴上是否存在一点F ,使得∠BFE =∠CFE ,若存在,求出点F 的坐标,若不存在,说明理由;(3)动点P 、Q 同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC 运动,以PQ 为斜边在直线BC 的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t 秒.若△PMQ 与抛物线y =-x2+2x +m -2有公共点,求t 的取值范围.解:(1)把点A (0,2m -7)代入y =-x2+2x +m -2,得m =5∴抛物线的解析式为y =-x2+2x +3(2)由⎩⎪⎨⎪⎧y =-x2+2x +3y =2x 解得⎩⎨⎧x 1=3y 1=23 ⎩⎨⎧x 2=-3y 2=-23 ∴B (3,23),C (-3,-23)∵y =-x2+2x +3=-(x -1)2+4 ∴抛物线的对称轴为x =1 设F (1,y )∵∠BFE =∠CFE ,∴tan ∠BFE =tan ∠CFE 当点F 在点B 上方时,3-1 y -23 =3+1y +23解得y =6,∴F (1,6)当点F 在点B 下方时,3-1 23-y =3+1-y -23解得y =6(舍去)∴满足条件的点F 的坐标是F (1,6)(3)由题意,OP =5t ,OQ =25t ,∴PQ =5t ∵P 、Q 在直线直线y =2x 上 ∴设P (x ,2x ),则Q (2x ,4x )(x<0)∴x 2+4x 2=5t ,∴x =-t∴P (-t ,-2t ),Q (-2t ,-4t ) ∴M (-2t ,-2t )当M (-2t ,-2t )在抛物线上时,有-2t =-4t2-4t +3解得t =13-14(舍去负值) 当P (-t ,-2t )在抛物线上时,有-2t =-t2-2t +3 解得t =3(舍去负值) ∴t 的取值范围是:13-14≤t≤ 32.(北京模拟)在平面直角坐标系中,抛物线y 1=ax2+3x +c 经过原点及点A (1,2),与x 轴相交于另一点B .(1)求抛物线y 1的解析式及B 点坐标;(2)若将抛物线y 1以x =3为对称轴向右翻折后,得到一条新的抛物线y 2,已知抛物线y 2与x 轴交于两点,其中右边的交点为C 点.动点P 从O 点出发,沿线段OC 向C 点运动,过P 点作x 轴的垂线,交直线OA 于D 点,以PD 为边在PD 的右侧作正方形PDEF . ①当点E 落在抛物线y 1上时,求OP 的长;②若点P 的运动速度为每秒1个单位长度,同时线段OC 上另一点Q 从C 点出发向O 点运动,速度为每秒2个单位长度,当Q 点到达O 点时P 、Q 两点停止运动.过Q 点作x 轴的垂线,与直线AC 交于G 点,以QG 为边在QG 的左侧作正方形QGMN .当这两个正方形解:(1)∵抛物线y 1=ax2+3x +c 经过原点及点A(1,2)∴⎩⎪⎨⎪⎧c =2a +3+c =2 解得⎩⎪⎨⎪⎧a =-1c =0 ∴抛物线y 1的解析式为y 1=-x2+3x令y 1=0,得-x2+3x =0,解得x 1=0,x 2=3 ∴B (3,0)(2)①由题意,可得C (6,0) 过A 作AH ⊥x 轴于H ,设OP =a可得△ODP ∽△OAH ,∴DPOP=AHOH=2 ∴DP =2OP =2a∵正方形PDEF ,∴E (3a ,2a ) ∵E (3a ,2a )在抛物线y 1=-x2+3x 上∴2a =-9a2+9a ,解得a 1=0(舍去),a 2=7 9∴OP 的长为79②设直线AC 的解析式为y =kx +b∴⎩⎪⎨⎪⎧2=k +b 0=6k +b 解得k =-2 5 ,b =12 5∴直线AC 的解析式为y =-2 5 x +125由题意,OP =t ,PF =2t ,QC =2t ,GQ =45t 当EF 与MN 重合时,则OF +CN =6 ∴3t +2t +45t =6,∴t =3029当EF 与GQ 重合时,则OF +QC =6 ∴3t +2t =6,∴t =65当DP 与MN 重合时,则OP +CN =6 ∴t +2t +4 5 t =6,∴t =3019当DP 与GQ 重合时,则OP +CQ =6∴t +2t =6,∴t =23.(北京模拟)如图,在平面直角坐标系中,抛物线y =ax2+bx +4经过A (-3,0)、B(4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC .动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动. (1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)∵抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点∴⎩⎪⎨⎪⎧9a -3b +4=016a +4b +4=0解得a =-1 3 ,b =1 3∴所求抛物线的解析式为y =-1 3x2+ 13x +4(2)连接DQ ,依题意知AP =t∵抛物线y=-13x2+13x+4与y轴交于点C∴C(0,4)又A(-3,0,B(4,0)可得AC=5,BC=42,AB=7∵BD=BC,∴AD=AB-BD=7-42∵CD垂直平分PQ,∴QD=DP,∠CDQ=∠CDP ∵BD=BC,∴∠DCB=∠CDB∴∠CDQ=∠DCB,∴DQ∥BC∴△ADQ∽△ABC,∴ADAB=DQBC∴ADAB=DPBC,∴7-427=DP42解得DP=42-327,∴AP=AD+DP=177∴线段PQ被CD垂直平分时,t的值为17 7(3)设抛物线y=-13x2+13x+4的对称轴x=12与x轴交于点E由于点A、B关于对称轴x=12对称,连接BQ交对称轴于点M则MQ+MA=MQ+MB,即MQ+MA=BQ当BQ⊥AC时,BQ最小,此时∠EBM=∠ACO∴tan∠EBM=tan∠ACO=3 4∴MEBE=34,即ME4-12=34,解得ME=218∴M(12,218)∴在抛物线的对称轴上存在一点M(12,218),使得MQ+MA的值最小4.(北京模拟)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A出发,沿AC→CB→BA边运动,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位.直线l从与AC重合的位置开始,以每秒43个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB、AB边交于点E、F.点P与直线l同时出发,设运动的时间为t秒,当点P 第一次回到点A时,点P和直线l同时停止运动.(1)当t=_________秒时,点P与点E重合;当t=_________秒时,点P与点F重合;(2)当点P在AC边上运动时,将△PEF绕点E逆时针旋转,使得点P的对应点P′落在EF上,点F的对应点为F′,当EF′⊥AB时,求t的值;(3)作点P关于直线EF的对称点Q,在运动过程中,若形成的四边形PEQF为菱形,求t的值;(4)在整个运动过程中,设△PEF的面积为S,直接写出S关于t的函数关系式及S的最大值.解:(1)3;4.5提示:在Rt△ABC中,∠C=90°,AC=6,BC=8∴AB=62+82=10,∴sin B=ACAB=35,cos B=BCAB=45,tan B=ACBC=34当点P与点E重合时,点P在CB边上,CP=CE∵AC=6,点P在AC、CB边上运动的速度分别为每秒3、4个单位∴点P在AC边上运动的时间为2秒,CP=4(t-2)∵CE=43t,∴4(t-2)=43t,解得t=3当点P与点F重合时,点P在BA边上,BP=BF∵AC=6,BC=8,点P在AC、CB、BA边上运动的速度分别为每秒3、4、5个单位∴点P在AC、CB边上运动的时间共为4秒,BF=BP=5(t-4)∵CE=43t,∴BE=8-43t在Rt△BEF中,BEBF=cos B∴8-43t5(t-4)=45,解得t=4.5(2)由题意,∠PEF=∠MEN∵EF∥AC,∠C=90°,∴∠BEF=90°,∠CPE=∠PEF ∵EN⊥AB,∴∠B=∠MEN∴∠CPE=∠B,∴tan∠CPE=tan B∵tan∠CPE=CECP,tan B=ACBC=34∴CECP=34,∴CP=43CE∵AP=3t(0<t<2),CE=43t,∴CP=6-3t∴6-3t=43×43t,解得t=5443(3)连接PQ交EF于O∵P、Q关于直线EF对称,∴EF垂直平分PQ若四边形PEQF为菱形,则OE=OF=12EFBCA PlFEBCA备用图EBMCAPlFNBCAlFE(P)BCAlFE(P)①当点P 在AC 边上运动时易知四边形POEC 为矩形,∴OE =PC ∴PC =12EF ∵CE =4 3t ,∴BE =8-4 3 t ,EF =BE ·tan B = 3 4 ( 8- 43t)=6-t∴6-3t =1 2 (6-t),解得t =65②当点P 在CB 边上运动时,P 、E 、Q 三点共线,不存在四边形PEQF③当点P 在BA 边上运动时,则点P 在点B 、F 之间 ∵BE =8-43t ,∴BF = BE cos B=5 4 (8-4 3 t )=10-5 3t ∵BP =5(t -4),∴PF =BF -BP =10-53t -5(t -4)=30-203t ∵∠POF =∠BEF =90°,∴PO ∥BE ,∴∠OPF =∠B 在Rt △POF 中,OFPF=sin B ∴12(6-t)30- 20 3t= 3 5 ,解得t =30 7∴当t =65或t =307时,四边形PEQF 为菱形 (4)S =⎩⎪⎪⎨⎪⎪⎧-23t2+4t (0≤t≤2)4 3t2-12t +24(2<t≤3)-43t2+12t -24(3<t≤4)8 3t2-28t +72(4<t≤4.5)-8 3t2+28t -72(4.5<t≤6)S 的最大值为1635.(北京模拟)在等腰梯形ABCD 中,AB ∥CD ,AB =10,CD =6,AD =BC =4.点P 从点B 出发,沿线段BA 向点A 匀速运动,速度为每秒2个单位,过点P 作直线BC 的垂线PE ,垂足为E .设点P 的运动时间为t (秒). (1)∠A =___________°; (2)将△PBE 沿直线PE 翻折,得到△PB ′E ,记△PB ′E 与梯形ABCD 重叠部分的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值;(3)在整个运动过程中,是否存在以点D 、P 、B ′为顶点的三角形为直角三角形或等腰三角形?若存在,求出t 的值;若不存在,请说明理由.EBOC APl FQEB CAPlF QO解:(1)60°(2)∵∠A =∠B =60°,PB =PB ′ ∴△PB ′B 是等边三角形∴PB =PB ′=BB ′=2t ,BE =B ′E =t ,PE =3t 当0<t≤2时S =S △PB ′E =12B ′E ·PE =1 2 t ·3t = 3 2t2 当2<t≤4时S =S △PB ′E-S △FB ′C=3 2t2- 3 4 ( 2t -4 )2=- 3 2t2+43t -4 3当4<t≤5时设PB ′、PE 分别交DC 于点G 、H ,作GK ⊥PH 于K ∵△PB ′B 是等边三角形,∴∠B ′PB =60°=∠A ∴PG ∥AD ,又DG ∥AP∴四边形APGD 是平行四边形 ∴PG =AD =4∵AB ∥CD ,∴∠GHP =∠BPH∵∠GPH =∠BPH =12∠B ′PB =30°∴∠GHP =∠GPH =30°,∴PG =GH =4 ∴GK =12PG =2,PK =KH =PG ·cos30°=2 3 ∴PH =2PK =4 3 ∴S =S △PGH=12PH ·GK =12×43×2=4 3 综上得,S 与t 之间的函数关系式为: S =⎩⎨⎧32t2(0<t≤2)-3 2t2+43t -43(2<t≤4)43(4<t≤5)(3)①若∠DPB ′=90° ∵∠B ′PB =60°,∴∠DP A =30° 又∠A =60°,∴∠ADP =90°∴AP =2AD ,∴10-2t =8,∴t =1 若∠PDB ′=90°A CB D P EB ′ACBD备用图C DE B ′作DM⊥AB于M,DN⊥B′B于N则AM=2,DM=23,NC=3,DN=3 3PM=|10-2-2t|=|8-2t|NB′=|3+4-2t|=|7-2t|DP2=DM2+PM2=(23)2+(8-2t)2=(8-2t)2+12 DB′2=DN2+NB′=(33)2+(7-2t)2=(7-2t)2+27 ∵DP2+DB′2=B′P2∴(8-2t)2+12+(7-2t)2+27=(2t)2解得t1=15+732>5(舍去),t2=15-732若∠DB′P=90°,则DB′2+B′P2=DP2∴(7-2t)2+27+(2t)2=(8-2t)2+12 解得t1=-1(舍去),t2=0(舍去)∴存在以点D、P、B′为顶点的三角形为直角三角形,此时t=1或t=15-732②若DP=B′P,则(8-2t)2+12=(2t)2解得t=19 8若B′D=B′P,则(7-2t)2+27=(2t)2解得t=19 7若DP=DB′,则(8-2t)2+12=(7-2t)2+27 解得t=0(舍去)∴存在以点D、P、B′为顶点的三角形为等腰三角形,此时t=198或t=1976.(北京模拟)已知二次函数y=-33mx2+3mx-2的图象与x轴交于点A(23,0)、点B,与y轴交于点C.(1)求点B坐标;(2)点P从点C出发以每秒1个单位的速度沿线段CO向O点运动,到达点O后停止运动,过点P作PQ∥AC交OA于点Q,将四边形PQAC沿PQ翻折,得到四边形PQA′C′,设点P的运动时间为t.①当t为何值时,点A′恰好落在二次函数y=-33mx2+3mx-2图象的对称轴上;②设四边形PQA′C′落在第一象限内的图形面积为S,求S关于t的函数关系式,并求出S 的最大值.解:(1)将A(23,0)代入y=-33mx2+3mx-2得0=-33m×(23)2+3m×23-2,解得m=33∴y=-13x2+3x-2ACBDPEB′MNACBDPEB′ACBDPB′E令y =0,得-13x 2+3x -2=0,解得:x 1=3,x 2=2 3 ∴B(3,0) (2)①由y =-13x 2+3x -2,令x =0,得y =-2 ∴C (0,-2) ∵y =-13x2+3x -2=-1 3 (x -323)2+1 4∴二次函数图象的对称轴为直线x =323过A ′作A ′H ⊥OA 于H在Rt △AOC 中,∵OC =2,OA =2 3 ∴∠OAC =30°,∠OCA =60° ∴∠PQA =150°,∠A ′QH =60°,AQ =A ′Q =2QH ∵点A ′在二次函数图象的对称轴上∴⎩⎪⎨⎪⎧OQ +QH =3 23OQ +2QH =23解得QH =32∴AQ =3,CP =1 ∴t =1②分两种情况:ⅰ)当0<t≤1时,四边形PQA ′C ′ 落在第一象限内的图形为等腰三角形QA ′DDQ =A ′Q =3tA ′H =AQ ·sin60°=3t ·32=32t S =S △A ′DQ=12 ·3t ·3 2t =33 4t2 ∵当0<t≤1时,S 随t 的增大而增大 ∴当t =1时,S 有最大值334ⅱ)当1<t<2时,四边形PQA ′C ′ 落在第一象限内的图形为四边形EOQA ′ S 四边形EOQA ′=S 梯形PQA ′C ′-S △OPQ-S △PC ′E=[23-3 2 (2-t )2]- 3 2 ( 2-t )2- 3 4t2 =-534t2+43t -2 3 ∵-53 4 t2+43t -23=-53 4 (t -8 5)2+635且1<85<2,∴当t =8 5 时,S 有最大值63 5∵63 5>33 4 ,∴S 的最大值是63 57.(北京模拟)已知梯形ABCD 中,AD ∥BC ,∠A =120°,E 是DAB的中点,过E点作射线EF∥BC,交CD于点G,AB、AD的长恰好是方程x2-4x+a2+2a+5=0的两个相等实数根,动点P、Q分别从点A、E出发,点P以每秒1个单位长度的速度沿AB由A向B运动,点Q以每秒2个单位长度的速度沿EF由E向F运动,设点P、Q运动的时间为t(秒).(1)求线段AB、AD的长;(2)当t>1时,求△DPQ的面积S与时间t之间的函数关系式;(3)是否存在△DPQ是直角三角形的情况,如果存在,求出时间t;如果不存在,请说明理由.解:(1)由题意,△=42-4(a2+2a+5)=-4(a+1)2=0∴a=-1原方程可化为x2-4+4=0,解得∴x1=x2=2∴AB=AD=2(2)作AH⊥BC于H,交EG于O,DK⊥EF于K,PM⊥DA交DA的延长线于M∵AD∥BC,∠A=120°,AB=AD=2∴∠B=60°,AH= 3∵E是AB中点,且EF∥BC,∴AO=DK=3 2∵AP=t,∴PM=3 2t∵t>1,∴点P在点E下方延长FE交PM于S,设DP与EF交于点N则PS=32t-32∵AD∥BC,EF∥BC,∴EF∥AD∴ENAD=PEP A,∴EN2=t-1t∴EN=2(t-1)t,∴QN=2t-2(t-1)t∴S=12(2t-2(t-1)t)(32t-32+32)=32t2-32t+32即S=32t2-32t+32(t>1)(3)由题意,AM=12t,∴DM=2+12t∴DP2=DM2+PM2=(2+12t)2+(32t)2=t2+2t+4又DQ2=DK2+KQ2=(32)2+(2t-12-2)2=4t2-10t+7PQ2=PS2+SQ2=(32t-32)2+(2t+t-12)2=7t2-4t+1ABDQCPE FN GS O KHM①若∠PDQ=90°,则DP2+DQ2=PQ2∴t2+2t+4+4t2-10t+7=7t2-4t+1解得t=6-1(舍去负值)②若∠DPQ=90°,则PD2+PQ2=DQ2∴t2+2t+4+7t2-4t+1=4t2-10t+7解得t=62-1(舍去负值)③若∠DQP=90°,则DQ2+PQ2=PD2∴4t2-10t+7+7t2-4t+1=t2+2t+4解得t=4±6 5综上所述,存在△DPQ是直角三角形的情况,此时t=6-1,t=62-1,t=4±658.(天津模拟)如图,在平面直角坐标系中,直y=-x+42交x轴于点A,交y轴于点B.在线段OA上有一动点P,以每秒2个单位长度的速度由点O向点A匀速运动,以OP为边作正方形OPQM交y轴于点M,连接QA和QB,并从QA和QB的中点C和D向AB作垂线,垂足分别为点F和点E.设P点运动的时间为t秒,四边形CDEF的面积为S1,正方形OPQM与四边形CDEF重叠部分的面积为S2.(1)直接写出A点和B点坐标及t的取值范围;(2)当t=1时,求S1的值;(3)试求S2与t的函数关系式(4)直接写出在整个运动过程中,点C和点D所走过的路程之和.解:(1)A(42,0)、B(0,42),0≤t≤4(2)过Q作QH⊥AB于H∵C、D分别是QA和QB的中点∴CD∥AB,CD=12AB=12×42×2=4∵CF⊥AB,DE⊥AB,∴CF∥DE∴四边形CDEF是平行四边形又∵CF⊥AB,∴四边形CDEF是矩形∵CF⊥AB,QH⊥AB,∴CF∥QH又∵C是QA中点,∴CF=12QH连接OQ∵正方形OPQM,∴∠1=∠2,OP=PQ=QM=MO ∵OA=OB,∴P A=MB∴Rt△QP A≌Rt△QMB,∴QA=QB,∠PQA=∠MQB∵QH ⊥AB ,∴∠3=∠4 ∴∠1+∠MQB +∠3=180°,∴O 、Q 、H 三点共线 ∴QH =OH -OQ∵t =1,点P 的运动速度为每秒2个单位长度 ∴OP =2,∴OQ =2 又∵OA =42,∴OH =4∴QH =OH -OQ =4-2=2,∴CF =1 ∴S 1=CD ·CF =4×1=4(3)当点Q 落在AB 上时,OQ ⊥AB ,△QOA 是等腰直角三角形∴t =22÷2=2 当0≤t≤2时,S 2=0当点E 落在QM 上,点F 落在PQ 上时, △CFK 和△DEG 都是等腰直角三角形 过C 作CT ⊥PQ 于T则CT =12AP =1 2 (42-2t)=22(4-t) ∴CF =2CT =4-t连接OQ ,分别交AB 、CD 于N 、R 则ON =22OA =22×42=4 ∵OP =2t ,∴OQ =2t ,∴QN =2t -4 ∴CF =12QN =t -2 ∴4-t =t -2,∴t =3当2<t≤3时,重叠部分为等腰梯形GHIK △QGK 和△QHI 都是等腰直角三角形∵QN =2t -4,RN =CF =t -2,∴QR =t -2 ∴GK =2QR =2t -4,HI =2QN =4t -8∴S 2=1 2 (GK +HI)·RN =1 2(2t -4+4t -8)(t -2)=3(t -2)2当3<t≤4时,重叠部分为六边形GHEFIK易知Rt △CIK ≌Rt △DHG ,∴GH =KI =2CT =2(4-t)∴S 2=S 矩形CDEF-2S △CIK=CD ·CF -KI ·CT=4(t -2)-2(4-t)·22(4-t)=-t 2+12t -24 综上得S 2关于t 的函数关系式为:S 2= ⎩⎨⎧0(0≤t≤2)3( t -2 )2(2<t≤3)-t2+12t -24(3<t≤4)(4)8提示:点C 和点D 走过的路程分别为以OP 为边的正方形的对角线的一半9.(上海模拟)如图,正方形ABCD中,AB=5,点E是BC延长线上一点,CE=BC,连接BD.动点M从B出发,以每秒2个单位长度的速度沿BD向D运动;动点N从E出发,以每秒2个单位长度的速度沿EB向B运动,两点同时出发,当其中一点到达终点后另一点也停止运动.设运动时间为t秒,过M作BD的垂线MP交BE于P.(1)当PN=2时,求运动时间t;(2)是否存在这样的t,使△MPN为等腰三角形?若存在,求出t的值;若不存在,请说明理由;(3)设△MPN与△BCD重叠部分的面积为S,直接写出S与t的函数关系式和函数的定义域.解:(1)∵正方形ABCD,∴∠DBC=45°∵MP⊥DB,∴△BMP是等腰直角三角形∵BM=2t,∴BP=2BM=2t又PN=2,NE=2t当0<t<2.5时,BP+PN+NE=BE∴2t+2+2t=10,∴t=2当2.5<t<5时,BP-PN+NE=BE∴2t-2+2t=10,∴t=3(2)过M作MH⊥BC于H则△NQC∽△NMH,∴QCCN=MHHN∴QC5-2t=t10-t-2t,∴QC=5t-2t210-3t令QC=y,则y=5t-2t2 10-3t整理得2t2-(3y+5)t+10y=0∵t为实数,∴[-(3y+5)]2-4×2×10y≥0即9y2-50y+25≥0,解得y≥5(舍去)或y≤5 9∴线段QC长度的最大值为5 9(3)当0<t<2.5时∵∠MPN=∠DBC+∠BMP=45°+90°=135°∴∠MPN为钝角,∴MN>MP,MN>PN若PM=PN,则2t=10-4t解得t=57(4-2)ABDNCPMEABDNCPMEQHABDPCN EMABDNCP EMA DM当2.5<t<5时∵∠MNP>∠MBP=∠MPB,∴MP>MN若MN=PN,则∠PMN=∠MPN=45°∴∠MNP=90°,即MN⊥BP∴BN=NP,BP=2BN∴2t=2(10-2t),解得t=103若PM=PN∵PN=BP-BN=BP-(BE-NE)=BP+NE-BE∴2t=2t+2t-10,解得t=57(4+2)∴当t=57(4-2),t=103,t=57(4+2)时,△MPN为等腰三角形(4)S=⎩⎨⎧8t3-50t2+75t20-6t(0<t<2.5)5t-252(2.5<t<5)10.(重庆模拟)如图,已知△ABC是等边三角形,点O是AC的中点,OB=12,动点P在线段AB上从点A向点B以每秒3个单位的速度运动,设运动时间为t秒.以点P为顶点,作等边△PMN,点M,N在直线OB上,取OB的中点D,以OD为边在△AOB内部作如图所示的矩形ODEF,点E在线段AB上.(1)求当等边△PMN的顶点M运动到与点O重合时t的值;(2)求等边△PMN的边长(用含t的代数式表示);(3)设等边△PMN和矩形ODEF重叠部分的面积为S,请直接写出S与t的函数关系式及自变量t的取值范围;(4)点P在运动过程中,是否存在点M,使得△EFM是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.解:(1)当点M与点O重合时∵△ABC、△PMN是等边三角形,O为AC中点∴∠AOP=30°,∠APO=90°∵OB=12,∴AO=43=2AP=23t解得t=2AO DCBF E备用图AO DCBF E备用图A DB PCNMEAO D BPF E(N)(M)∴当t =2时,点M 与点O 重合(2)由题设知∠ABM =30°,AB =83,AP =3t ∴PB =83-3t ,PM =PB ·tan30°=8-t 即等边△PMN 的边长为8-t(3)S =⎩⎪⎨⎪⎧23t +63(0≤t≤1)-23t2+63t +43(1<t≤2)-32t2+103(2<t≤4)23t2-203t +503(4<t≤5)0(5<t≤8)提示:①当0≤t≤1时,PM 经过线段AF设PM 交AF 于点J ,PN 交EF 于点G ,则重叠部分为直角梯形FONG∵AP =3t ,∴AJ =23t ,JO =43-23t MO =4-2t ,ON =8-t -(4-2t)=4+t 作GH ⊥ON 于H则GH =FO =23,HN =2,FG =OH =4+t -2=2+t ∴S =S 梯形FONG=12(FG +ON)·FO=12(2+t +4+t)·23=23t +6 3 ②当1<t≤2时,PM 经过线段FO设PM 交EF 于点I ,则重叠部分为五边形IJONGFJ =AJ -AF =23t -23,FI =2t -2∴S =S 梯形FONG-S △FIJ=23t +63-12(23t -23)(2t -2)=-23t 2+63t +4 3③当2<t≤4时,PN 经过线段ED设PN 交ED 于点K ,则重叠部分为五边形IMDKG∵AP =3t ,∴PE =43-3t ∴IG =GE =4-t ,EK =43-3t∴KD =23-(43-3t)=3t -23,DN =t -2 ∴S =S 梯形IMNG -S △KDN=1 2 (4-t +8-t)·23-12(3t -23)(t -2) =-32t 2+10 3 ④当4<t≤5时,PM 经过线段ED设PM 交ED 于点R ,则重叠部分为△RMD ∵AP =3t ,∴EP =3t -4 3 ∴ER =2EP =23t -8 3∴RD =23-(23t -83)=103-23t MD =10-2tA ODCBP N F ME∴S =S △RMD=12(10-2t)(103-23t)=23t 2-203t +50 3 ⑤当5<t≤8时,S =0(4)∵MN =BN =PN =8-t ,∴MB =16-2t ①若FM =EM ,则M 为OD 中点 ∴OM =3∵OM +MB =OB ,∴3+16-2t =12 ∴t =3.5②若FM =FE =6,则OM =6 2-( 23)2=2 6∵OM +MB =OB ,∴26+16-2t =12 ∴t =2+ 6③若EF =EM =6,点M 在OD 或DB 上则DM =6 2-( 23)2=2 6∴DB +DM =MB 或者DB -DM =MB∴6+26=16-2t 或6-26=16-2t ∴t =5-6或t =5+ 6综上所述,当t =3.5、2+6、5-6、5+6时,△MEF 是等腰三角形11.(浙江某校自主招生)如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在直线的解析式分别为y =34x 和y =-4 3 x + 253. (1)求正方形OABC 的边长;(2)现有动点P 、Q 分别从C 、A 同时出发,点P 沿线段CB 向终点B 运动,速度为每秒1个单位,点Q 沿折线A →O →C 向终点C 运动,速度为每秒k 个单位,设运动时间为2秒.当k 为何值时,将△CPQ 沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形? (3)若正方形以每秒53个单位的速度沿射线AO 下滑,直至顶点B 落在x 轴上时停止下滑.设正方形在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围.A OD CBP NF ME AOD C BP NF M E A O D C B PN F M E AO D C BPN F M E解:(1)联立 ⎩⎨⎧y =34x y =- 4 3 x +25 3解得⎩⎪⎨⎪⎧x =4y =3∴A (4,3),∴OA =4 2+32=5 ∴正方形OABC 的边长为5(2)要使△CPQ 沿它的一边翻折,翻折前后的两个三角形组成的 四边形为菱形,根据轴对称的性质,只需△CPQ 为等腰三角形即可 当t =2秒时∵点P 的速度为每秒1个单位,∴CP =2 分两种情况:①当点Q 在OA 上时,∵PQ ≥BA >PC ,∴只存在一点Q ,使QC =QP作QN ⊥CP 于N ,则CN =12CP =OQ =1 ∴QA =5-1=4,∴k =42=2 ②当点Q 在OC 上时,同理只存在一点Q ,使CP =CQ =2 ∴OQ +OA =10-2=8,∴k =82=4 综上所述,当t =2秒时,以所得的等腰三角形CPQ 沿底边翻折, 翻折后得到菱形的k 值为2或4 (3)①当点A 运动到点O 时,t =3 当0<t≤3时,设O ′C ′ 交x 轴于点D则tan ∠DOO ′=3 4 ,即DO ′OO ′=DO ′5 3t= 3 4 ,∴DO ′= 54t∴S =1 2 DO ′·OO ′= 1 2 ·5 4 t ·5 3 t = 25 24t 2②当点C 运动到x 轴上时,t =(5×4 3)÷5 3=4当3<t≤4时,设A ′B ′ 交x 轴于点E∵A ′O =5 3 t -5,∴A ′E = 34 A ′O =5t -15 4∴S =1 2 (A ′E +O ′D )·A ′O ′=1 2 (5t -15 4+54 t )·5=50t -75 8③当点B 运动到x 轴上时,t =(5+5×4 3)÷5 3=7当4<t≤7时,设B ′C ′ 交x 轴于点F∵A ′E =5t -15 4,∴B ′E =5-5t -15 4=35-5t4∴B ′F =43 B ′E =35-5t 3∴S =52-12 ·35-5t 4·35-5t 3=-25 24 t 2+ 175 12 t -625 24综上所述,S 关于滑行时间t 的函数关系式为:S = ⎩⎪⎨⎪⎧2524t 2(0<t≤3)50t -758(3<t≤4)-25 24t2+175 12t -625 24(4<t≤7)12.(浙江某校自主招生)如图,正方形ABCD 的边长为8cm ,动点P 从点A 出发沿AB 边以1cm /秒的速度向点B 匀速移动(点P 不与点A 、B 重合),动点Q 从点B 出发沿折线BC -CD 以2cm /秒的速度匀速移动.点P 、Q 同时出发,当点P 停止时,点Q 也随之停止.连接AQ 交BD 于点E .设点P 运动时间为t (秒).(1)当点Q 在线段BC 上运动时,点P 出发多少时间后,∠BEP =∠BEQ ? (2)设△APE 的面积为S (cm 2),求S 关于t 的函数关系式,并写出t 的取值范围; (3)当4<t <8时,求△APE 的面积为S 的变化范围.解(1)AP =x cm ,BQ =2x cm∵∠BEP =∠BEQ ,BE =BE ,∠PBE =∠QBE =45° ∴△PBE ≌△QBE ,∴PB =BQ 即8-x =2x ,∴x =83∴点P 出发83秒后,∠BEP =∠BEQ (2)①当0<x≤4时,点Q 在BC 上,作EN ⊥AB 于N ,EM ⊥BC 于M ∵AD ∥BC ,∴ AEEQ=ADBQ=8 2x=4x即AEEQ=4 x,∴AEAQ =4x +4∴NEBQ=AEAQ,∴NE =AE ·BQAQ =8x x +4∴S =1 2 AP ·NE = 1 2 x · 8x x +4 =4x2x +4A B DEC PQ A BDE CPQN M即S =4x2x +4(0<x≤4)②当4<x<8时,点Q 在CD 上,作QF ⊥AB 于F ,交BD 于H则AEEQ=ADHQ=8 16-2x=48-x即AEEQ=4 8-x,∴AEAQ = 4 8-x +4 =412-x作EN ⊥AB 于N ,则 NEFQ=AEAQ∴NE =AE ·FQFQ=32 12-x∴S =1 2 AP ·NE = 1 2 x ·32 12-x =16x12-x即S =16x12-x(4<x<8) (3)当4<x<8时,由S =16x12-x,得x =12S16+S∵4<x<8,∴4<12S16+S<8 ∵S>0,∴16+S>0,∴4(16+S)<12S<8(16+S) 解得8<S<32 13.(浙江模拟)如图,菱形ABCD 的边长为6且∠DAB =60°,以点A 为原点、边AB 所在直线为x 轴且顶点D 在第一象限建立平面直角坐标系.动点P 从点D 出发沿折线D -C -B 向终点B 以每秒2个单位的速度运动,同时动点Q 从点A 出发沿x 轴负半轴以每秒1个单位的速度运动,当点P 到达终点时停止运动.设运动时间为t ,直线PQ 交边AD 于点E . (1)求出经过A 、D 、C 三点的抛物线解析式;(2)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 值,若不存在,请说明理由; (3)设AE 长为y ,试求y 与t 之间的函数关系式;(4)若F 、G 为DC 边上两点,且点DF =FG =1,试在对角线DB 上找一点M 、抛物线对称轴上找一点N ,使得四边形FMNG 周长最小并求出周长最小值.解:(1)由题意得:D (3,33)、C (9,33)设经过A 、D 、C 三点的抛物线解析式为y =ax2+bx 把D 、C 两点坐标代入上式,得:A BDE CP QNF H⎩⎨⎧9a +3b =3381a +9b =33 解得:a =-3 9 ,b =433∴抛物线的解析式为:y =-39 x2+433x (2)连接AC∵四边形ABCD 是菱形,∴AC ⊥BD 若PQ ⊥BD ,则PQ ∥AC 当点P 在DC 上时∵PC ∥AQ ,PQ ∥AC ,∴四边形PQAC 是平行四边形 ∴PC =AQ ,即6-2t =t, ∴t =2当点P 在CB 上时,PQ 与AC 相交,此时不存在符合要求的t 值 (3)①当点P 在DC 上,即0≤t≤3时 ∵DP ∥AQ ,∴△DEP ∽△AEQ∴ DE y= DP AQ = 2tt =2,∴y = 13AD =2②当点P 在CB 上,即3<t≤6时∵AE ∥BP ,∴△QEA ∽△QPB∴AEBP=QAQB,即y12-2t=t6+t∴y =12-2t6+t综上所述,y 与t 之间的函数关系式为: y =⎩⎪⎨⎪⎧2 (0≤t≤3) 12-2t6+t(3<t≤6)(4)作点F 关于直线BD 的对称点F ′,由菱形对称性知F ′ 在DA 上,且DF ′=DF =1作点G 关于抛物线对称轴的对称点G ′,易求DG ′=4连接F ′G ′ 交DB 于点M 、交对称轴于点N ,则点M 、N过F ′ 作F ′H ⊥DG ′ 于H ,可得HD =1 2,F ′H = 3 2 ,HG ′=92∴F ′G ′=F ′H 2+HG ′ 2=21∴四边形FMNG 周长最小值为F ′G ′+FG =21+1 14.(浙江模拟)如图,直线y =-x +5和直线y =kx -4交于点C (3,m ),两直线分别交y 轴于点A 和点B ,一平行于y 轴的直线l 从点C 出发水平向左平移,速度为每秒1个单位,运动时间为t ,且分别交AC 、BC 于点P 、Q ,以PQ 为一边向左侧作正方形PQDE . (1)求m 和k 的值;(2)当t 为何值时,正方形的边DE 刚好在y 轴上?(3)当直线l 从点C 出发开始运动的同时,点M 也同时在线段AB 上由点A 向点B 以每秒4个单位的速度运动,问点M 从进入正方形PQDE 到离开正方形持续的时间有多长?解:(1)把C (3,m )代入y =-x +5得m =2 ∴C (3,2),代入y =kx -4得k =2 (2)由题意,点P 横坐标为3-t当x =3-t 时,y =-x +5=t +2,∴P (3-t ,t +2) ∵PQ ∥y 轴,∴点Q 横坐标为3-t当x =3-t 时,y =2x -4=2-2t ,∴Q (3-t ,2-2t ) ∴PQ =t +2-(2-2t)=3t ∵正方形PQDE ,∴PQ =PE当正方形的边DE 刚好在y 轴上时,3t =3-t ,∴t =34(3)∵直线y =-x +5交y 轴于点A ,∴A (0,5) ∴点M 坐标为(0,5-4t )当点M 和点P 的纵坐标相等时,5-4t =t +2,∴t =35∵3 5<3 4,∴点M 进入正方形PQDE 时,t =3 4当点M 和点Q 的纵坐标相等时,5-4t =2-2t ,∴t =3 2∴点M 从进入正方形PQDE 到离开正方形持续的时间为:t =32-3 4=3 415.(浙江模拟)如图,在平面直角坐标系中,O 为坐标原点,Rt △OAB 的直角边OA 在x 轴的正半轴上,点B 坐标为(3,1),以OB 所在直线为对称轴将△OAB 作轴对称变换得△OCB .动点P 从点O 出发,沿线段OA 向点A 运动,动点Q 从点C 出发,沿线段CO 向点O 运动.P 、Q 两点同时出发,速度都为每秒1个单位长度.设点P (1)求∠AOC 的度数;(2)记四边形BCQP 的面积为S (平方单位),求S 与t (3)设PQ 与OB 交于点M . ①当△OMQ 为等腰三角形时,求t 的值. ②探究线段OM 长度的最大值,说明理由.解:(1)∵点B坐标为(3,1),∴OA=3,AB=1∴在Rt△OAB中,tan∠AOB=ABOA=13=33∴∠AOB=30°∵将△OAB作轴对称变换得△OCB∴△OCB≌△OAB,∴∠COB=∠AOB=30°∴∠AOC=60°(2)∵OP=CQ=t,AB=1,OC=OA= 3 ∴AP=OQ=3-t∴S=2S△OAB-S△OPQ-S△P AB=OA·AB-12OP·OQ·sin∠AOC-12P A·AB=3×1-12×t×(3-t)×32-12×(3-t)×1=34t2-14t+32(3)①若△OMQ为等腰三角形,则可能有三种情况:(i)若OM=MQ,则∠MQO=∠MOQ=30°∵∠AOC=60°,∴∠OPQ=90°∴OP=12OQ,即t=12(3-t)解得:t=3 3(ii)若OM=OQ,则∠OMQ=∠OQM=75°∵∠AOC=60°,∴∠OPQ=45°过点Q作QD⊥OA于D,则QD=DP即32(3-t)=t-12(3-t)解得:t=1(iii)若MQ=OQ,则∠OMQ=∠MOQ=∠MOP 得PQ∥OA,显然不符合题意②分别过点P、Q作OB的垂线,垂足分别为E、F ∵OP=t,OQ=3-t,∠MOP=∠MOQ=30°∴S△OPQ=S△OPM+S△OOM=12OM·PE+12OM·QF=14OM·OP+14OM·OQ=14OM(OP+OQ)=14OM(t+3-t)=34OM过点Q作QG⊥OA于G则S△OPQ=12OP·QG=12OP·OQ·sin60°=34t(3-t)=-34(t2-3t)∴34OM=-34(t2-3t)∴OM =-(t 2- 3t )=-(t -32)2+3 4∴当t =32时,线段OM 的长度取得最大值 3416.(浙江模拟)已知直线y =43x +4与x 轴、y 轴分别相交于点A 、B ,点C 从O 点出发沿射线OA 以每秒1个单位长度的速度匀速运动,同时点D 从A 点出发沿AB 以每秒1个单位长度的速度向B 点匀速运动,当点D 到达B 点时C 、D 都停止运动.点E 是CD 的中点,直线EF ⊥CD 交y 轴于点F ,点E ′与E 点关于y t (秒).(1)当t =________秒时,点F 经过原点O ; (2)设四边形BDCO 的面积为S ,求S 与t 的函数关系式;(3)当直线EF 与△AOB 的一边垂直时,求t 的值;(4)以CD 为一边,在CD 的右侧作菱形CDMN ,其中DM ∥x 轴.当点N 在直线E ′F 左侧时,直接写出菱形CDMN 与△EFE ′重叠部分为轴对称图形时t 的取值范围.解:(1)52提示: ∵直线y =43x +4与x 轴、y 轴分别相交于点A 、B ∴A (-3,0),B (0,4),∴AO =3,BO =4 ∴AB =AO 2+BO 2=3 2+42=5 当点F 经过原点时,连接OD 由题意,EF 是CD 的垂直平分线 ∴OD =OC =t∵AD =t ,∴AD =OD ,∴∠DAO =∠DOA ∵∠DBO +∠DAO =90°,∠DOB +∠DOA =90° ∴∠DBO =∠DOB ,∴OD =BD∴AD =BD ,∴AD =12AB =5 2(2)∵AO =3,BO =4,AB =5 ∴sin ∠BAO =BOAB=4 5 ,cos ∠BAO =AOAB =3 5过D 作DH ⊥AC 于H当0≤t≤3时∵CO =t ,AD =t ,∴AC =3-t ,DH =AD ·sin ∠BAO =45t ∴S =S △ABO-S △ADC=1 2 ×3×4-1 2 ·(3-t)·4 5 t = 2 5 t 2-65t +6当3<t≤5时,AC =t -3∴S =S △ABO+S △ADC=1 2 ×3×4+1 2 ·(t -3)·4 5 t = 2 5 t 2- 65t +6综合得S 与t 的函数关系式为: S =25t 2-65t +6(0≤t≤5) (3)当EF ⊥BO 时∵EF ⊥CD ,∴CD ∥BO ,∴∠ACD =90° 在Rt △ADC 中,ACAD=cos ∠BAO∴3-t t=3 5 ,∴t =158当EF ⊥AB 时∵EF ⊥CD ,∴直线CD 与直线AB 重合 ∴点C 与点A 重合,∴t =3 (4)t =5 4 或t =154提示:①当0<t<158则∠PEQ =∠MQE∵菱形CDMN ,∴CD ∥MN∴∠MQE =∠CEQ ,∴∠PEQ =∠CEQ ∵EF ⊥CD ,即∠CEF =90°,∴∠CEQ =∴∠ACD =∠CEQ =45°过D 作DH ⊥AC 于H ,则△DHC 是等腰直角三角形∴DH =HC ,∴4 5t =3-t -3 5 t ,∴t =54②当158<t<5,且重叠部分为等腰梯形EHNK 时 同理可得∠CHE =45° 连接DH∵EF 垂直平分CD ,∴CH =DH ,∠DHE =∠CHE =45° ∴∠DHC =90°,∴DH =45t 而CH =CO -HO =CO -(AO -AH)=t -(3-35t) ∴t -(3-3 5 t )=45 t ,∴t =15417.(浙江模拟)如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,DE=16,M是BC边的中点,动点P从点A出发,沿边AB以每秒1个单位长度的速度向终点B 运动.设动点P的运动时间是t秒.(1)求线段AE的长;(2)当△ADE与△PBM相似时,求t的值;(3)如图2,连接EP,过点P作PH⊥AE于H.①当EP平分四边形PMEH的面积时,求t的值;②以PE为对称轴作线段BC的轴对称图形B′C′,当线段B′C′与线段AE有公共点时,写出t的取值范围(直接写出答案).解:(1)∵ABCD是矩形,∴∠D=90°∴AE=AD2+DE2=122+162=20(2)∵∠D=∠B=90°∴△ADE与△PBM相似时,有两种情况:当∠DAE=∠PMB时,有DEPB=ADBM即1621-t=126,解得t=13当∠DAE=∠BPM时,有DEBM=ADPB即166=1221-t,解得t=332(3)①由题意得:S△EHP=S△EMP∵DC∥AB,∴∠DEA=∠HAP又∵∠D=∠AHP=90°,∴△ADE∽△PHA∴AHDE=PHAD=APAE,即AH16=PH12=t20∴AH=45t,PH=35t,EH=20-45t∴S△EHP=12×35t×(20-45t)∵DC=21,DE=16,∴EC=5∴S△EMP=S梯形EPBC-S△ECM-S△PBM=12(5+21-t)×12-12×5×6-12×(21-t)×6DACEBMP图1DACEBMPH图2DACEBM备用图D CEBMPHD CEBMPH∴12×35t×(20-45t)=12(5+21-t)×12-12×5×6-12×(21-t)×6解得t=75±5174∵0<t<21,∴t=75-5174②14011≤t≤20提示:当点B′落在线段AE上时连接B′P、EB,∵B′C′和BC关于PE对称∴B′P=BP=21-t,B′E=BE=BC2+EC2=122+52=13∴AB′=AE-B′E=20-13=7,B′H=AH-AB′=45t-7在Rt△B′HP中,B′H2+PH2=B′P2∴(45t-7)2+(35t)2=(21-t)2,解得t=14011当点C′落在线段AE上时连接C′P、CP,∵B′C′和BC关于PE对称C′P2=CP2=122+(21-t)2,C′E=CE=5∴AC′=AE-C′E=20-5=15,C′H=AH-AC′=45t-15在Rt△C′HP中,C′H2+PH2=C′P2∴(45t-15)2+(35t)2=122+(21-t)2,解得t=2018.(浙江模拟)如图,抛物线与x轴交于A(6,0)、B(19,0)两点,与y轴交于点C (0,8),直线CD∥x轴交抛物线于另一点D.动点P、Q分别从C、D两点同时出发,速度均为每秒1个单位,点P向射线DC方向运动,点Q向射线BD方向运动,设P、Q运动的时间为t(秒),AQ交CD于E.(1)求抛物线的解析式;(2)求△APQ的面积S与t的函数关系式;(3)连接BE.是否存在某一时刻t,使得∠AEB=∠BDC?若存在,求出t的值;若不存在,请说明理由.解:(1)∵抛物线与x轴交于A(6,0)、B(19,0)两点∴设抛物线的解析式为y=a(x-6)(x-19)∵抛物线与y轴交于点C(0,8)∴8=a(0-6)(0-19),∴a=457DACEBMPHC′B′NDACEBMPHB'C'∴y=457(x-6)(x-19)(2)作PF⊥x轴于F,QG⊥x轴于G,DH⊥x轴于H,∵CD∥x轴,∴PF=DH=OC=8当y=8时,457(x-6)(x-19)=8解得x1=0,x2=25∴D(25,8),OH=CD=25∵B(19,0),∴BH=25-19=6∴BD=BH2+DH2=62+82=10∵△BDH∽△BQG,∴BDBQ=DHQG=BHBG∴1010+t=8QG=6BG∴QG=45t+8,BG=35t+6∴FG=t+19+35t+6=85t+25,AG=35t+19∴S=S梯形PFGQ-S△P AF-S△QAG=12(PF+QG)·FG-12AF·PF-12AG·QG=12(8+45t+8)(85t+25)-12(t+6)·8-12(35t+19)(45t+8)=25t2+445t+100(3)∵AC=BD=10,∴四边形ABDC是等腰梯形∴∠ACD=∠BDC若∠AEB=∠BDC,则∠AEC+∠BED=∠BED+∠EBD ∴∠AEC=∠EBD,∴△AEC∽△EBD∴ACED=CEDB,即10ED=25-ED10解得ED=5或ED=20(>AB,舍去)∵△QED∽△QAB,∴EDAB=QDQB即513=tt+10,∴t=254∴存在某一时刻t,使得∠AEB=∠BDC,t=25 4。

(完整word版)2017年中考数学二次函数压轴题(答案)

(完整word版)2017年中考数学二次函数压轴题(答案)

2017年中考数学冲刺复习资料:二次函数压轴题面积类1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式.(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m 的代数式表示MN的长.(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.考点:二次函数综合题.专题:压轴题;数形结合.分析:(1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式.(2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值.解答:解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:a(0+1)(0﹣3)=3,a=﹣1;∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)设直线BC的解析式为:y=kx+b,则有:,解得;故直线BC的解析式:y=﹣x+3.已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3);∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3).(3)如图;∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN•OB,∴S△BNC=(﹣m2+3m)•3=﹣(m﹣)2+(0<m<3);∴当m=时,△BNC的面积最大,最大值为.2.如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.考点:二次函数综合题.。

【名师点睛】2017年九年级数学中考压轴题练习(含答案)

【名师点睛】2017年九年级数学中考压轴题练习(含答案)

2017年九年级数学中考压轴题练习1.如图,已知抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2.如图,已知抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3BO.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上.是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线y=-x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1-x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.4.已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(5,0),与y轴交于C(0,3).直线y=x+1与抛物线交于A、E两点,与抛物线对称轴交于点D.(1)求抛物线解析式及E点坐标;(2)在对称轴上是否存在一点M,使ACM为等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.(3)若一点P在直线y=x+1上从A点出发向AE方向运动,速度为单位/秒,过P点作PQ//y轴,交抛物线于Q点.设时间为t秒(0≤t≤6),PQ的长度为L,找出L与t的函数关系式,并求出PQ最大值.5.如图,抛物线y=ax2+bx(a≠0)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年九年级初中数学组卷1.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个2.如图,正方形ABCD的边长为6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=135°.其中正确的个数是()A.5 B.4 C.3 D.23.如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A.2 B.3 C.4 D.54.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1 B.2 C.3 D.45.如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是.其中正确结论的序号是.6.如图,在矩形ABCD中,点E为CD上一点,将△BCE沿BE翻折后点C恰好落在AD边上的点F处,将线段EF绕点F旋转,使点E落在BE上的点G处,连接CG.(1)证明:四边形CEFG是菱形;(2)若AB=8,BC=10,求四边形CEFG的面积;(3)试探究当线段AB与BC满足什么数量关系时,BG=CG,请写出你的探究过程.7.(1)动手操作:如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点c'处,折痕为EF,若∠ABE=20°,那么∠EFC'的度数为.(2)观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.(3)实践与运用:将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.8.如图①所示,矩形ABCD一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的点P处,折痕与边BC交于点O,连接AP,OP,OA,△PDA的面积是△OCP的面积的4倍.(1)求证:△OCP∽△PDA;(2)求边AB的长;(3)连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB 的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.①按上面的叙述在图②中画出正确的图象;②当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.9.如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN,(1)求证:△ADN≌△CBM;(2)请连接MF、NE,证明四边形MFNE是平行四边形;四边形MFNE是菱形吗?请说明理由;(3)点P、Q是矩形的边CD、AB上的两点,连接PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的长度.10.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处.再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.如图2.(1)求证:EG=CH;(2)已知AF=,求AD和AB的长.11.数学活动课上,小颖同学用两块完全一样的透明等腰直角三角板ABC、DEF进行探究活动.操作:使点D落在线段AB的中点处并使DF过点C(如图1),然后将其绕点D顺时针旋转,直至点E落在AC的延长线上时结束操作,在此过程中,线段DE与AC或其延长线交于点K,线段BC与DF相交于点G(如图2,3).探究1:在图2中,求证:△ADK∽△BGD.探究2:在图2中,求证:KD平分∠AKG.探究3:①在图3中,KD仍平分∠AKG吗?若平分,请加以证明;若不平分,请说明理由.②在以上操作过程中,若设AC=BC=8,KG=x,△DKG的面积为y,请求出y与x的函数关系式,并直接写出x的取值范围.12.【问题探究】(1)如图1,锐角△ABC中分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由.【深入探究】(2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45°,求BD的长.(3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.13.已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.14.如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.P,连接NM,NP.(1)若∠B=60°,这时点P与点C重合,则∠NMP=度;(2)求证:NM=NP;(3)当△NPC为等腰三角形时,求∠B的度数.15.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.16.(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,,求证:∠B=30°,请你完成证明过程.(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的折痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.17.等腰△ABC中,CA=CB,点D为边AB上一点,沿CD折叠△CAD得到△CFD,边CF交边AB于点E,CD=CE,连接BF.(1)求证:FD=FB.(2)连接AF交CD的延长线于点M,连接ME交线段DF于点N,若EF=4EC,AB=22,求MN的长.18.已知:矩形ABCD中,AB=6,AD=8,将矩形顶点B沿GF折叠,使B落在AD上(不与A、D重合)的E处,点G、F分别在AB、BC上.(1)不论点E在何处,试判断△BFE的形状;(2)若AG:GB=1:2时,求证:EG平分∠AEB;(3)若=,试求BF的长.19.如图①,矩形纸片ABCD的边长分别为a、b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连接MN.(1)如图②,分别沿ME、NF将MN两侧纸片折叠,使点A、C分别落在MN上的A′、C′处,直接写出ME与FN的位置关系;(2)如图③,当MN⊥BC时,仍按(1)中的方式折叠,请求出四边形A′EBN与四边形C′FDM的周长(用含a的代数式表示),并判断四边形A′EBN与四边形C′FDM 周长之间的数量关系;(3)如图④,若对角线BD与MN交于点O,分别沿BM、DN将MN两侧纸片折叠,折叠后,点A、C恰好都落在点O处,并且得到的四边形BNDM是菱形,请你探索a、b之间的数量关系;(4)在(3)情况下,当a=时,求菱形BNDM的面积.20.如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,CD交于点G,F,AE与FG交于点O.(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;(2)如图2,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC的中点;(3)如图2,在(2)的条件下,求折痕FG的长.21.将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN 上,折痕为直线EF,(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P、F、G的三角形是等文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.22.如图,矩形纸片ABCD中,AB=10cm,BC=8cm,E为BC上一点,将纸片沿AE 翻折,使点B与CD边上的点F重合.(1)求线段EF的长;(2)若线段AF上有动点P(不与A、F重合),如图(2),点P自点A沿AF方向向点F运动,过点P作PM∥EF,PM交AE于M,连接MF,设AP=x(cm),△PMF的面积为y(cm)2,求y与x的函数关系式;(3)在题(2)的条件下,△FME能否是等腰三角形?若能,求出AP的值,若不能,请说明理由.23.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC 所在直线互相垂直,求的值.24.如图①,在锐角△ABC中,D,E分别为AB,BC中点,F为AC上一点,且∠AFE=∠A,DM∥EF交AC于点M.(1)求证:DM=DA;(2)点G在BE上,且∠BDG=∠C,如图②,求证:△DEG∽△ECF;(3)在图②中,取CE上一点H,使∠CFH=∠B,若BG=1,求EH的长.25.如图,在△ABC中,AB=8,BC=10,cosC=,∠ABC=2∠C,BD平分∠ABC交AC 边于点D,点E是BC边上的一个动点(不与B、C重合),F是AC边上一点,且∠AEF=∠ABC,AE与BD相交于点G.(1)求证:;(2)设BE=x,CF=y,求y与x之间的函数关系式,并写出x的取值范围;(3)当△AEF是以AE为腰的等腰三角形时,求BE的长.26.如图,矩形ABCD的边AB=6cm,BC=4cm,点F在DC上,DF=2cm.动点M、N 分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,再连接△FMN三边的中点得△PQW.设动点M、N的速度都是1cm/s,M、N运动的时间为ts.(1)试说明△FMN∽△QWP;(2)在点M运动的过程中,①当t为何值时,线段MN最短?并求出此时MN的长.②当t为何值时,△PQW是直角三角形?27.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图1,若四边形ABCD是矩形,且DE⊥CF .求证:;(2)如图2,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得成立?并证明你的结论;(3)如图3,若BA=BC=6,DA=DC=8,∠BAD=90°,DE⊥CF .请直接写出的值.28.已知正方形ABCD和正方形EBGF共顶点B,连AF,H为AF的中点,连EH,正方形EBGF绕点B旋转.(1)如图1,当F点落在BC上时,求证:EH=FC;(2)如图2,当点E落在BC上时,连BH,若AB=5,BG=2,求BH的长;(3)当正方形EBGF绕点B旋转到如图3的位置时,求的值.文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 29.问题情境:如图,正方形ABCD的边长为6,点E是射线BC上的一个动点,连结AE并延长,交射线DC于点F,将△ABE沿直线AE翻折,点B坐在点B′处.自主探究:(1)当=1时,如图1,延长AB′,交CD于点M.①CF的长为;②求证:AM=FM.(2)当点B′恰好落在对角线AC上时,如图2,此时CF的长为,=.拓展运用:(3)当=2时,求sin∠DAB′的值.30.图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于M.(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由.。

相关文档
最新文档