高中数学竞赛专题精讲22几何变换(含答案)

合集下载

几何变换综合题(含答案)

几何变换综合题(含答案)

几何变换综合题参考答案与试题解析一.选择题(共4小题)1.如图,将矩形ABCD绕点A旋转至矩形A′B′C′D′的位置,此时AC的中点恰好与D点重合,AB′交CD于点E.若AB=3,则△AEC的面积为()A.3 B.1.5 C . D .【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=3﹣x,AD=BC=AB•tan30°=×3=,根据勾股定理得:x2=(3﹣x)2+()2,解得:x=2,∴EC=2,则S△AEC=EC•AD=,故选:D.2.如图,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′(点B的对应点是点B',点C的对应点是点C'),连接BB′,若AC′∥BB′,则∠C'AB′的度数为()A.15°B.30°C.45°D.60°【解答】解:∵将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B=(180°﹣120°)=30°,∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,故选:B.3.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A .B .C .D .﹣【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.4.如图,直线m⊥n.在平面直角坐标系xOy中,x轴∥m,y轴∥n.如果以O1为原点,点A 的坐标为(1,1).将点O1平移2个单位长度到点O2,点A的位置不变,如果以O2为原点,那么点A的坐标可能是()A.(3,﹣1)B.(1,﹣3)C.(﹣2,﹣1)D.(2+1,2+1)【解答】解:如图,由题意,可得O1M=O1N=1.∵将点O1平移2个单位长度到点O2,∴O1O2=2,O1P=O2P=2,∴PM=3,∴点A的坐标是(3,﹣1).故选:A.二.填空题(共6小题)5.在平面直角坐标系中,动点M从原点O出发进行平移,每次平移向上移动1个单位长度或向右移动2个单位长度.如第1次平移后可能到达的点是(0,1)或(2,0),第2次平移后可能到达的点是(0,2)或(2,1)或(4,0),在第n次平移后点M可能到达的点用(x,y)表示,则y与x满足的关系式为y=﹣x+n.【解答】解:设过(0,1),(2,0)点的函数解析式为:y=kx+b(k≠0),则,解得,故平移1次后点P在函数y=﹣x+1的图象上;平移2次后点P在函数y=﹣x+2的图象上,则第n次平移后点M可能到达的点用(x,y)表示,则y与x满足的关系式为:y=﹣x+n.故答案为:y=﹣x+n.6.在Rt△ABC中,∠C=90°,AC=6,BC=8(如图),点D是边AB上一点,把△ABC绕着点D旋转90°得到△A'B'C',边B'C'与边AB相交于点E,如果AD=BE,那么AD长为或2.【解答】解:①当顺时针旋转时,过点E作EF⊥AC于F,过点D作DM⊥BC于M,作DN⊥B′C′于点N,如图所示.∵△ABC绕着点D旋转90°得到△A'B'C',∴DM=DN.∵AD=BE,∴AE=DB.∵DM⊥BC,AC⊥BC,∴DM∥AC,∴∠A=∠BDM.在△AEF和△DBM 中,,∴△AEF≌△DBM(AAS),∴AF=DM.∵AC=6,BC=8,∴AB=10.设DM=x,则DN=x,AF=x,EF=x,BM=x,∴BC=x+x +x=8,∴x=,∴BD=x=,∴AD=AB﹣BD=.②当逆时针旋转时,如图2所示.同①可得出△B′DE∽△BCA,∴=,∴设DE=y,则B′D=y,AD=BE=10﹣y,∴10﹣y+y+10﹣y=10,∴y=6,∴AD=10﹣y=2.故答案为:或2.7.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是3.【解答】解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.8.一副直角三角板叠放如图所示,现将含45°角的三角板固定不动,把含30°角的三角板绕直角顶点沿逆时针方向匀速旋转一周,第一秒旋转5°,第二秒旋转10°,第三秒旋转5°,第四秒旋转10°,…按此规律,当两块三角板的斜边平行时,则三角板旋转运动的时间为14s或38s.【解答】解:如图,当斜边AB∥DC时,∠CFE=∠B=60°,∴∠BED=60°﹣45°=15°,∴旋转角为90°+15°=105°,105°÷(5°+10°)=7,7×2=14(s);如图,将△ABE继续逆时针旋转180°,可得斜边A'B'∥DC,此时,旋转角为105°+180°=285°,285°÷(5°+10°)=19,19×2=38(s);故答案为:14s或38s.9.已知点P(a+1,1)关于原点的对称点在第四象限,则a的取值范围是a <﹣1.【解答】解:∵P(a+1,1)关于原点对称的点在第四象限,∴P点在第二象限,∴a+1<0,解得:a<﹣1,故答案为:a<﹣1.10.如图,将直角三角形ABC沿BC方向平移得到直角三角形DEF,若AB=8,BE=6,DM=5,则阴影部分的面积是33.【解答】解:∵直角△ABC沿BC方向平移得到直角△DEF,∴DE=AB=8,∵DM=5,∴ME=DE﹣DM=8﹣5=3,由平移可得:S阴影=S△DEF﹣S△MEC=S△ABC﹣S△MEC=S梯形ABEM=×(3+8)×6,=33.故答案为:33.三.解答题(共10小题)11.如图,在8×8网格中,每个小正方形的边长都为单位1.(1)建立适当的平面直角坐标系后,若点B(﹣2,0)、C(3,0),则点A的坐标为(﹣1,2);(2)将△ABC向下平移3个单位,再向右平移2个单位,画出平移后的△A′B′C′;(3)在(1)、(2)的条件下,若线段AC上有一点P(a,b),则平移后的对应的P′坐标为(a﹣3,b﹣3);(4)△ABC的形状是直角三角形.【解答】解:(1)点A的坐标为(﹣1,2),故答案为:(﹣1,2);(2)如图所示,△A′B′C′即为所求;(3)若线段AC上有一点P(a,b),则平移后的对应的P′坐标为(a﹣3,b﹣3),故答案为:(a﹣3,b﹣3);(4)∵AB2=12+22=5、AC2=22+42=20、BC2=25,∴AB2+AC2=BC2,所以△ABC为直角三角形.故答案为:直角三角形.12.已知,点P是等边三角形△ABC中一点,线段AP绕点A逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC的长度.【解答】(1)证明:∵线段AP绕点A逆时针旋转60°到AQ,∴AP=AQ,∠PAQ=60°,∴△APQ是等边三角形,∠PAC+∠CAQ=60°,∵△ABC是等边三角形,∴∠BAP+∠PAC=60°,AB=AC,∴∠BAP=∠CAQ,在△BAP和△CAQ中,∴△BAP≌△CAQ(SAS),∴PB=QC;(2)解:∵由(1)得△APQ是等边三角形,∴AP=PQ=3,∠AQP=60°,∵∠APB=150°,∴∠PQC=150°﹣60°=90°,∵PB=QC,∴QC=4,∴△PQC是直角三角形,∴PC===5.13.已知,△ABC中,AB=AC,点E是边AC上一点,过点E作EF∥BC交AB于点F.(1)如图①,求证:AE=AF;(2)如图②,将△AEF绕点A逆时针旋转α(0°<α<144°)得到△AE′F′.连接CE′BF′.①若BF′=6,求CE′的长;②若∠EBC=∠BAC=36°,在图②的旋转过程中,当CE′∥AB时,直接写出旋转角α的大小.【解答】(1)证明:∵AB=AC,∴∠ABC=∠C,∵EF∥BC,∴∠AFE=∠B,∠AEF=∠C,∴∠AFE=∠AEF,∴AE=AF.(2)解:①由旋转的性质得,∠E′AC=∠F′AB,AE′=AF′,在△CAE′和△BAF′中,,∴△CAE′≌△BAF′(SAS),∴CE′=BF′=6;②由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,点E经过的路径(圆弧)与过点C且与AB平行的直线l相交于点M、N,如图,①当点E的像E′与点M重合时,四边形ABCM是等腰梯形,所以,∠BAM=∠ABC=72°,又∵∠BAC=36°,∴α=∠CAM=36°;②当点E的像E′与点N重合时,∵CE′∥AB,∴∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣72°×2=36°,∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,综上所述,当旋转角α为36°或72°.14.如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时△PBQ是直角三角形?(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.【解答】解:(1)∠CMQ=60°不变.∵等边三角形中,AB=AC,∠B=∠CAP=60°又由条件得AP=BQ,∴△ABQ≌△CAP(SAS),∴∠BAQ=∠ACP,∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.(2)设时间为t,则AP=BQ=t,PB=4﹣t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得4﹣t=2t,t=;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(4﹣t),t=;∴当第秒或第秒时,△PBQ为直角三角形.(3)∠CMQ=120°不变.∵在等边三角形中,BC=AC,∠B=∠CAP=60°∴∠PBC=∠ACQ=120°,又由条件得BP=CQ,∴△PBC≌△QCA(SAS)∴∠BPC=∠MQC又∵∠PCB=∠MCQ,∴∠CMQ=∠PBC=180°﹣60°=120°15.已知△ABC和△ADE是等腰直角三角形,∠ACB=∠ADE=90°,点F为BE中点,连接DF、CF.(1)如图1,当点D在AB上,点E在AC上,请直接写出此时线段DF、CF的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE绕点A顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE绕点A顺时针旋转90°时,若AD=1,AC=,求此时线段CF的长(直接写出结果).【解答】解:(1)∵∠ACB=∠ADE=90°,点F为BE中点,∴DF=BE,CF=BE,∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°∵BF=DF,∴∠DBF=∠BDF,∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF,同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,∴DF=CF,且DF⊥CF.(2)(1)中的结论仍然成立.证明:如图,此时点D落在AC上,延长DF交BC于点G.∵∠ADE=∠ACB=90°,∴DE∥BC.∴∠DEF=∠GBF,∠EDF=∠BGF.∵F为BE中点,∴EF=BF.∴△DEF≌△GBF.∴DE=GB,DF=GF.∵AD=DE,∴AD=GB,∵AC=BC,∴AC﹣AD=BC﹣GB,∴DC=GC.∵∠ACB=90°,∴△DCG是等腰直角三角形,∵DF=GF.∴DF=CF,DF⊥CF.(3)延长DF交BA于点H,∵△ABC和△ADE是等腰直角三角形,∴AC=BC,AD=DE.∴∠AED=∠ABC=45°,∵由旋转可以得出,∠CAE=∠BAD=90°,∵AE∥BC,∴∠AEB=∠CBE,∴∠DEF=∠HBF.∵F是BE的中点,∴EF=BF,∴△DEF≌△HBF,∴ED=HB,∵AC=,在Rt△ABC中,由勾股定理,得AB=4,∵AD=1,∴ED=BH=1,∴AH=3,在Rt△HAD中由勾股定理,得DH=,∴DF=,∴CF=∴线段CF 的长为.16.已知△ABC与△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,AC=BC=4,AD=DE,点F是BE的中点,连接DF,CF.(1)如图1,当点D在AB上,且点E是AC的中点时,求CF的长.(2)如图1,若点D落在AB上,点E落在AC上,证明:DF⊥CF.(3)如图2,当AD⊥AC,且E点落在AC上时,判断DF与CF之间的关系,并说明理由.(4)在(3)的条件下,若AD=2,求CF的长.【解答】解:(1)如图1,∵AC=BC=4,点E是AC的中点,∴EC=2.在直角△BCE中,BE2=BC2+CE2=20,∴BE=2.∵CF是直角△BCE斜边上的中线,∴CF==;(2)证明:如图1,∵∠ACB=∠ADE=90°,点F为BE中点∴DF=BE,CF=BE,∴DF=CF.∵△ABC和△ADE是等腰直角三角形,∴∠ABC=45°∵BF=DF,∴∠DBF=∠BDF,∵∠DFE=∠ABE+∠BDF,∴∠DFE=2∠DBF,同理得:∠CFE=2∠CBF,∴∠EFD+∠EFC=2∠DBF+2∠CBF=2∠ABC=90°,∴DF⊥CF.(3)DF与CF相等且垂直.如图2,延长DE交BC于点G,连接FG,易证DG⊥BC.∵∠DEA=45°,∴∠BEG=45°,∠DEF=135°.又∵∠B=45°,∴BG=EG.∵点F是BE的中点,∴FG=FE,FG⊥BE,∠EGF=45°,∴∠FGC=∠EGF+EGC=135°,∴∠DEF=∠CGF.又∵∠ADE=90°,∠ACB=90°,DG⊥BC,∴四边形ADGC是矩形,∴AD=GC,∴DE=GC,∴△DEF≌△CGF,∴∠DFE=∠CFG,DF=CF.∵∠DFE+∠CFE=90°,∴CF⊥DF,∴DF与CF相等且垂直.(4)如图2,连接CD.∵AD=2,AC=4,根据勾股定理可知CD=2.而根据(3)可知,△CDF是等腰直角三角形,∴CF=CD ÷=.17.已知:△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,点M是BE的中点,连接CM、DM.(1)当点D在AB上,点E在AC上时(如图一),求证:DM=CM,DM⊥CM;(2)当点D在CA延长线上时(如图二)(1)中结论仍然成立,请补全图形(不用证明);(3)当ED∥AB时(如图三),上述结论仍然成立,请加以证明.【解答】证明:(1)如图一中,延长DM使得MN=DM,连接BN、CN.在△DME和△NMB中,,∴△DME≌△NMB,∴DE=BN,∠MDE=∠MNB,∴DE∥NB,∴∠ADE=∠ABN=90°,∵△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∴AD=DE=BN,AC=BC,∠A=∠ABC=45°,∴∠CBN=45°=∠A,在△ACD和△BCN中,,∴△ACD≌△BCN,∴DC=CN,∠ACD=∠BCN,∴∠DCN=∠ACB=90°,∴△DCN是等腰直角三角形,∵DM=MN,∴DM=CM.DM⊥CM.(2)补充图形如图二所示,延长DM交CB的延长线于N,∵△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∴AD=DE=BN,AC=BC,∠A=∠ABC=45°,∵∠EDC+∠DCN=180°,∴DE∥CN,∴∠EDM=∠N在△DME和△NMB中,,∴△DME≌△NMB,∴DE=BN=AD,DM=MN,∴CD=CN,∴∠CDN=∠N=45°,CM=DM=MN,CM⊥DN,∴DM=CM.DM⊥CM.(3)如图三中,如图一中,延长DM交AB于N连接CN.∵DE∥AB,∴∠MBN=∠MED,在△DME和△NMB中,,∴△DME≌△NMB,∴DE=BN=AD,DM=MN,∵△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∴AD=DE=BN,AC=BC,∠BAC=∠ABC=45°,∵∠AED+∠BAE=180°,∴∠BAE=135°,∵∠BAC=∠EAD=45°,∴∠DAC=∠CBN=45°在△ACD和△BCN中,,∴△ACD≌△BCN,∴DC=CN,∠ACD=∠BCN,∴∠DCN=∠ACB=90°,∴△DCN是等腰直角三角形,∵DM=MN,∴DM=CM.DM⊥CM.18.在△ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与点B 、C 重合),以AD 为直角边在AD 右侧作等腰三角形ADE ,使∠DAE=90°,连接CE .探究:如图①,当点D 在线段BC 上时,证明BC=CE +CD . 应用:在探究的条件下,若AB=,CD=1,则△DCE 的周长为 2+.拓展:(1)如图②,当点D 在线段CB 的延长线上时,BC 、CD 、CE 之间的数量关系为 BC=CD ﹣CE .(2)如图③,当点D 在线段BC 的延长线上时,BC 、CD 、CE 之间的数量关系为 BC=CE ﹣CD .【解答】解:探究:∵∠BAC=90°,∠DAE=90°, ∴∠BAC=∠DAE .∵∠BAC=∠BAD +∠DAC ,∠DAE=∠CAE +∠DAC , ∴∠BAD=∠CAE .∵AB=AC ,AD=AE ,∴△ABD ≌△ACE . ∴BD=CE . ∵BC=BD +CD , ∴BC=CE +CD .应用:在Rt △ABC 中,AB=AC=,∴∠ABC=∠ACB=45°,BC=2,∵CD=1, ∴BD=BC ﹣CD=1,由探究知,△ABD ≌△ACE , ∴∠ACE=∠ABD=45°, ∴∠DCE=90°,在Rt △BCE 中,CD=1,CE=BD=1, 根据勾股定理得,DE=,∴△DCE 的周长为CD +CE +DE=2+故答案为:2+拓展:(1)同探究的方法得,△ABD ≌△ACE . ∴BD=CE∴BC=CD ﹣BD=CD ﹣CE , 故答案为BC=CD ﹣CE ;(2)同探究的方法得,△ABD ≌△ACE . ∴BD=CE∴BC=BD ﹣CD=CE ﹣CD , 故答案为:BC=CE ﹣CD .19.如图1,直线AM ⊥AN ,AB 平分∠MAN ,过点B 作BC ⊥BA 交AN 于点C ;动点E 、D 同时从A 点出发,其中动点E 以2m/s 的速度沿射线AN 方向运动,动点D 以1m/s 的速度沿射线AM 方向运动;已知AC=6cm ,设动点D ,E 的运动时间为t .(1)试求∠ACB 的度数;(2)当点D 在射线AM 上运动时满足S △ADB :S △BEC =2:3,试求点D ,E 的运动时间t 的值;(3)当动点D 在射线AM 上运动,点E 在射线AN 上运动过程中,是否存在某个时间t ,使得△ADB 与△BEC 全等?若存在,请求出时间t 的值;若不存在,请说出理由.【解答】解:(1)如图1中,∵AM ⊥AN ,∴∠MAN=90°,∵AB平分∠MAN,∴∠BAC=45°,∵CB⊥AB,∴∠ABC=90°,∴∠ACB=45°.(2)如图2中,作BH⊥AC于H,BG⊥AM于G.∵BA平分∠MAN,∴BG=BH,∵S△ADB:S△BEC=2:3,AD=t,AE=2t,∴•t•BG :•(6﹣2t)•BH=2:3,∴t=s.∴当t=s时,满足S△ADB:S△BEC=2:3.(3)存在.∵BA=BC,∠BAD=∠BCE=45°,∴当AD=EC时,△ADB≌△CEB,∴t=6﹣2t,∴t=2s,∴满足条件的t的值为2s.20.我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.●特例感知①等腰直角三角形是勾股高三角形(请填写“是”或者“不是”);②如图1,已知△ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若BD=2AD=2,试求线段CD的长度.●深入探究如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明;●推广应用如图3,等腰△ABC为勾股高三角形,其中AB=AC>BC,CD为AB边上的高,过点D向BC边引平行线与AC边交于点E.若CE=a,试求线段DE的长度.【解答】解:●特例感知:①等腰直角三角形是勾股高三角形.故答案为是.②如图1中,根据勾股定理可得:CB2=CD2+4,CA2=CD2+1,于是CD2=(CD2+4)﹣(CD2+1)=3,∴CD=.●深入探究:如图2中,由CA2﹣CB2=CD2可得:CA2﹣CD2=CB2,而CA2﹣CD2=AD2,∴AD2=CB2,即AD=CB;●推广应用:过点A向ED引垂线,垂足为G,∵“勾股高三角形”△ABC为等腰三角形,且AB=AC>BC,∴只能是AC2﹣BC2=CD2,由上问可知AD=BC……①.又ED∥BC,∴∠1=∠B……②.而∠AGD=∠CDB=90°……③,∴△AGD≌△CDB(AAS),∴DG=BD.易知△ADE与△ABC均为等腰三角形,根据三线合一原理可知ED=2DG=2BD.又AB=AC,AD=AE,∴BD=EC=a,∴ED=2a.。

高中数学竞赛讲义(免费)(完整资料).doc

高中数学竞赛讲义(免费)(完整资料).doc

【最新整理,下载后即可编辑】高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。

全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。

三角形中的几个特殊点:旁心、费马点,欧拉线。

几何不等式。

几何极值问题。

几何中的变换:对称、平移、旋转。

圆的幂和根轴。

面积方法,复数方法,向量方法,解析几何方法。

2.代数周期函数,带绝对值的函数。

三角公式,三角恒等式,三角方程,三角不等式,反三角函数。

递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。

第二数学归纳法。

平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。

复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。

多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。

n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。

函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。

4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。

组合计数,组合几何。

抽屉原理。

容斥原理。

极端原理。

图论问题。

集合的划分。

覆盖。

平面凸集、凸包及应用*。

注:有*号的内容加试中暂不考,但在冬令营中可能考。

三、高中数学竞赛基础知识第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。

竞赛数学课程 几何变换

竞赛数学课程 几何变换

几何变换变换与变换群1. 基本概念:1) 设A 、B 是两个非空集合,给出映射f :A →B ,如果B=A ,那么映射f 叫做集合A 上的变换。

2) 若变换f :A →A 是一一映射,则f 叫一一变换。

3) 一一变换f :A →A ,若,A a ∈∀有f (a )=a ,则f 叫A 上的恒等变换或单位变换,通常记为I 。

4) A A f A A f →→:,:21是两个变换,变换1f 与2f 的合成12f f ⋅叫做1f 与2f 的乘积。

5) 一一变换f :A →A ,若存在变换g :A →A ,使得fg=gf=I ,则g=1-f 叫f 的逆变换。

6) 一一变换f :A →A ,且I f ≠,若A a ∈∃,使f(a )=a ,则a 叫f 下的二重点(不动点,不变点);若存在直线l ,使得f (l )=l ,则l 叫f 下的二重线(不变线)。

2. 一一变换的性质:1)f 、g :A →A 是一一变换,则gf 也是一一变换。

2)f 、g 、h :A →A 是一一变换,则有h (gf )=(hg )f 。

3)f :A →A 是一一变换,则1-f 也是一一变换。

3. 变换群:1) 将几何图形按着某种法则或者规律变换成另一个图形的过程叫几何变换。

2) A 是一个集合,如果G 是由集合A 上的某些一一变换所组成的集合,且满足:(1) 若G f G f ∈∈21,,则G f f ∈⋅12;(2) 若G f ∈,则G f∈-1; 那么集合G 就叫做集合A 上的变换群,简称为变换群。

3) 若H 是变换群的一个子群,且H 自身也构成一个变换群,那么H 叫做G 的子群。

4) 两变换群21,G G ,若它们的元素之间可以建立一一对应关系f ,且有)()()(,,1212121g f g f g g f G g g =∈∀,则称21,G G 同构。

平面几何变换一、合同变换1. 基本概念1) 一个平面到其自身的变换W ,若对于平面上的任意两点A 与B ,都有距离W (A )W (B )=AB ,则称W 为平面上的合同变换(全等变换)。

几何三大变换(讲义及答案)

几何三大变换(讲义及答案)

几何三大变换(讲义及答案)几何三大变换课前预习平移、旋转、轴对称统称为几何三大变换,它们都是变换,只改变图形的,不改变图形的和.请回忆几何三大变换的相关性质,并解决下列问题:1.在坐标系中,我们可以利用平移的性质来求解点的坐标.横坐标加减管左右平移,纵坐标加减管上下平移.如:将点A(2,3) 先向左平移3 个单位,再向上平移2 个单位,则平移后点坐标为A' (-1,5).如图,在四边形ABCD 中,AB 与CD 平行且相等,若A(-1,-1),B(3,-1),C(2,1),则点D 的坐标为.2.当题目中出现等线段共端点时,我们往往考虑利用旋转思想解决问题.如图,P 是等边三角形ABC 内一点,AP=3,BP=4,CP=5,求∠APB 的度数.(提示:等边三角形有等线段共端点,考虑旋转.将△APC 绕点A 顺时针旋转60°.)1知识点睛1、、统称为几何三大变换.几何三大变换都是,只改变图形的,不改变图形的.2三大变换思考层次平移的思考层次:①全等变换:对应边、对应角.②对应点:.③新关系:平移会产生.④应用:常应用在、等.旋转的思考层次(旋转结构):①全等变换:对应边、对应角.②对应点:;;.③新关系:旋转会产生.④应用:当题目中出现的时候考虑旋转结构.轴对称的思考层次(折叠结构):①全等变换:对应边、对应角.②对应点:;.③新关系:折叠会产生.④应用:常应用在、等.精讲精练1.如图,将周长为8 的△ABC 沿BC 方向平移1 个单位得到△DEF,则四边形ABFD 的周长为()A.6 B.8C.10 D.1222.如图,在平面直角坐标系xOy 中,已知点A,B 的坐标分别为(1,0),(0,2),将线段AB 平移至A1B1,若点A1,B1 的坐标分别为(2,a),(b,3),则a +b = ?.第2 题图第3 题图3.如图,AB=CD,AB 与CD 相交于点O,且∠AOC=60°,则AC+BD与AB 的大小关系是()A.AC +BD >AB B.AC+BD=ABC.AC +BD ≥AB D.无法确定4.如图,在4 ? 4 的正方形网格中,△MNP 绕某点旋转一定的角度得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D第4 题图第5 题图5.如图,菱形OABC 的顶点O 在坐标原点,顶点A 在x 轴正半轴上,且∠B=120°,OA=2.将菱形OABC 绕原点O 顺时针旋转105°至菱形OA′B′C′的位置,则点B′的坐标为.339 346.如图,两块完全相同的含30°角的直角三角板 ABC 和A ′B ′C ′ 重合在一起,将三角板A ′B ′C ′绕其直角顶点C ′按逆时针方向旋转角α(0 < α≤ 90? ),则下列结论:①当α= 30? 时,A ′C 与 AB 的交点恰好为 AB 的中点;②当α= 60? 时,A ′B ′恰好经过点 B ;③在旋转过程中,始终存在AA ′⊥BB ′.其中正确的是.(填写序号)第 6 题图第 7 题图7.如图,O 是等边三角形ABC 内一点,且OA =3,OB =4,OC =5.将线段 OB 绕点 B 逆时针旋转60°得到线段O′B ,则下列结论:①△AO′B 可以由△COB 绕点 B 逆时针旋转60°得到;②∠AOB =150°;③ S 四边形AOBO' = 6 + 3 ;④ S △ AOB + S △AOC = 6 +.其中正确的是.(填写序号)8.如图,将长为 4cm ,宽为 2cm 的矩形纸片 ABCD 折叠,使点 B 落在 CD 边的中点 E 处,压平后得到折痕 MN ,则线段 AM 的长为459.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E,F 分别在AD,BC 边上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 边上的一点H 处,点D 落在点G 处,则下列结论:①四边形CFHE 是菱形;②CE 平分∠DCH;③当点H 与点A 重合时,EF= 2 .其中正确的是.(填写序号)第9 题图第10 题图10.如图,在菱形纸片ABCD 中,∠A=60°,将纸片折叠,点A,D 分别落在点A′,D′处,且A′D′经过点B,EF 为折痕.当D′F⊥CD 时,CF的值为()DF3 -12B.36C.2 3 -16D.3 +18 11. 如图,在Rt△ABC 中,∠ACB=90°,∠B=30°,BC=3.D 是BC 边上一动点(不与点B,C 重合),过点D 作DE⊥BC,交AB 于点E,将∠B 沿直线DE 翻折,点B 落在射线BC 上的点F 处.当△AEF 为直角三角形时,BD 的长为.52 【参考答案】 ? 课前预习全等位置形状大小 1.(-2,1) 2.150°知识点睛1. 平移、旋转、轴对称全等变换,位置,形状和大小2. 平移的思考层次:①平行(或在同一直线上)且相等,相等②对应点所连线段平行(或在同一直线上)且相等③平行四边形④天桥问题、存在性问题旋转的思考层次(旋转结构):①相等,相等②对应点到旋转中心的距离相等对应点与旋转中心的连线所成的角等于旋转角对应点连线的垂直平分线都经过旋转中心③等腰三角形④等线段共点轴对称的思考层次(折叠结构):①相等,相等②对应点所连线段被对称轴垂直平分对称轴上的点到对应点的距离相等③垂直平分、等腰三角形④折叠问题、最值问题精讲精练1.C 2.2 3.C 4.B5.( , ) 6.①②③ 7.①②④628.13cm 89.①③10.A11.1 或27。

数学名师叶中豪整理高中数学竞赛平面几何讲义(完整版)

数学名师叶中豪整理高中数学竞赛平面几何讲义(完整版)

完全四边形与Miquel点
垂足三角形与等角共轭
反演与配极,调和四边形
射影几何
复数法及重心坐标方法
例题和习题
1.四边形ABCD中,AB=BC,DE⊥AB,CD⊥BC,EF⊥BC,且。求证: 2EF=DE+DC。(10081902.gsp)
2.已知相交两圆O和O'交于A、B两点,且O'恰在圆O上,P为圆O的AO'B弧 段上任意一点。∠APB的平分线交圆O'于Q点。求证:PQ2=PA×PB。 (10092401-1. gsp)
(09022301.gsp)
31.已知半圆圆心为O,直径为AB,一直线交半圆于C、D,交AB延长线于 P,设M是△AOC与△BOD外接圆除O点外的另一交点。求证: OM⊥MP。(10091001.gsp)
32.凸四边形ABCD内接于圆O,两组对边所在直线分别交于点E、F,对角 线AC、BD交于G,作GH⊥EF于H,圆O的弦MN经过G点。求证:GH 与圆O交点恰是△HMN的内心。(10092103-2.gsp)
实用标准文档高中平面几何学习要点几何问题的转化ptolemy定理及应用几何变换及相似理论位似及其应用完全四边形与miquel垂足三角形与等角共轭反演与配极调和四边形射影几何复数法及重心坐标方法例题和习题1
高中平面几何
学习要点
几何问题的转化
叶中豪圆幂与根轴Biblioteka P’tolemy定理及应用
几何变换及相似理论
位似及其应用
53.已知:AD是高,O、H是外心和垂心,过D作OD垂线,交AC 于E。求证:∠DHE=∠C。(09022202.gsp)
54.△ABC中,AD为边BC上的中线,E、F、G分别为AB、AC、AD上

高中数学竞赛与强基计划试题专题:解析几何

高中数学竞赛与强基计划试题专题:解析几何

高中数学竞赛与强基计划试题专题:解析几何一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A .B .CD .上述三个选项都不对3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对5.(2022·贵州·高二统考竞赛)如图,1C ,2C 是离心率都为e 的椭圆,点A ,B 是分别是2C 的右顶点和上顶点,过A ,B 两点分别作1C 的切线1l ,2l .若直线1l ,2l 的斜率分别为1k ,2k ,则12k k 的值为()A .2eB .21e -C .21e -D .21e 6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y +=的中心作两条互相垂直的弦AC 和BD ,顺次连接,,,A B C D 得一四边形,则该四边形的面积可能为()A .10B .12C .14D .167.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C 上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .⎫⎪⎪⎝⎭D .⎝⎭二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A .最大值为4B .最大值为4C .最小值为4-D .最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F和l 为其对应的焦点及准线,过F 作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C 上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ 的方程;若不存在,请说明理由.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.28.(2022·新疆·高二竞赛)如图,已知ABC 内接于抛物线2:=E x y ,且边,AB AC 所在直线分别与抛物线2:4=M y x 相切,F 为抛物线M 的焦点.求证:(1)边BC 所在直线与抛物线M 相切;(2)A ,C ,B ,F 四点共圆.(2021·全国·高三竞赛)已知(2,1)S 为椭圆22Γ:182x y+=上的点,对椭圆Γ上的任意两点P 、Q ,用如下办法定义它们的“和”P Q +:过点S 作一条平行于PQ (若点P 与Q 重合,则直线PQ 表示椭圆Γ在P 处的切线)的直线l 与椭圆Γ交于不同于S 的另一点,记作P Q +(若l 与椭圆Γ相切,则规定S 为P Q +).并规定n nP P P P=+++个.29.若点(0,P Q ,求P Q +、2P 以及100P 的坐标.30.在椭圆Γ上是否存在不同于S 的点P ,满足3P S =?若存在,求出所有满足条件的点P 的坐标;若不存在,请说明理由.高中数学竞赛与强基计划试题专题:解析几何答案一、单选题1.(2020·北京·高三强基计划)从圆224x y +=上的点向椭圆22:12x C y +=引切线,两个切点间的线段称为切点弦,则椭圆C 内不与任何切点弦相交的区域面积为()A .2πB .3πC .4πD .前三个答案都不对【答案】A【分析】算出椭圆内与切点弦不相交的点的边界的方程,从而可求区域的面积.【详解】设圆224x y +=上一点为(2cos ,2sin )P θθ,则对应切点弦所在直线l 的方程为2cos 2sin 12xy θθ⋅+⋅=即cos 2sin 1x y θθ+=,1≥,故椭圆C 内不与任何切点弦相交的区域面积即为椭圆2241x y +=围成的面积,其面积为1ππ122⨯⨯=.2.(2022·北京·高三校考强基计划)内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是()A.B.CD .上述三个选项都不对【答案】D【分析】求出椭圆的极坐标方程,设内接于椭圆22149x y +=的菱形为ABCD ,()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,分别求出22,OA OB ,再根据222AB OA OB =+,结合三角恒等变换化简,再根据三角函数的性质求出AB 的最大值和最小值,即可得解.【详解】解:由22149x y +=,得229436x y +=,化为极坐标方程为223645cos ρθ=+,设内接于椭圆22149x y +=的菱形为ABCD ,则OA OB ⊥,设()12,,,2A B πρθρθ⎛⎫+ ⎪⎝⎭,则22123645cos OA ρθ==+,22222363645sin 45cos 2OB ρπθθ==+⎛⎫++ ⎪⎝⎭,所以2221222363645cos 45sin AB ρρθθ=+=+++2223613361325162025sin cos 36sin 24θθθ⨯⨯==+++,当2sin 20θ=时,2AB 取得最大值,即AB所以菱形的周长的最大值为当2sin 21θ=时,2AB 取得最小值,即AB 的最小值为13,所以菱形的周长的最小值为13,所以内接于椭圆22149x y +=的菱形周长的最大值和最小值之和是1313=.3.(2020·湖北武汉·高三统考强基计划)已知直线1211::22l y x l y x =-=,,动点P 在椭圆22221(0)x y a b a b +=>>上,作1//PM l 交2l 于点M ,作2//PN l 交1l 于点N .若22PM PN +为定值,则()A .2ab =B .3ab =C .2a b =D .3a b=【答案】C【分析】根据四边形OMPN 是平行四边形,得到2222PM PN OM ON +=+为定值,然后将取特殊位置(),0P a ,()0,P b 求解.,易知由四边形OMPN 是平行四边形,所以2222PM PN OM ON +=+为定值,取点(),0P a 时,由()1212y x a y x ⎧=-⎪⎪⎨⎪=-⎪⎩,解得24a x a y ⎧=⎪⎪⎨⎪=-⎪⎩,所以,24a a M ⎛⎫- ⎪⎝⎭,由对称性得:,24a a N ⎛⎫ ⎪⎝⎭,所以22258OM ON a +=,取点()0,P b 时,由1212y x b y x ⎧=+⎪⎪⎨⎪=-⎪⎩,解得2x bb y =-⎧⎪⎨=⎪⎩,所以,2b M b ⎛⎫- ⎪⎝⎭,由对称性得:,2b N b ⎛⎫ ⎪⎝⎭,所以22252OM ON b +=,所以225582a b =,即2a b =,4.(2020·北京·高三强基计划)设直线3y x m =+与椭圆2212516x y +=交于A ,B 两点,O 为坐标原点,则OAB面积的最大值为()A .8B .10C .12D .前三个答案都不对【答案】B【分析】联立直线方程和椭圆方程后消元,利用公式可求面积的表达式,再利用基本不等式可求面积的最大值.【详解】由22312516y x m x y =+⎧⎪⎨+=⎪⎩可得22241150254000x mx m ++-=,()22222500424125400160024116000m m m ∆=-⨯-=⨯->,故m而241241AB ==,故1122ABOS AB ==△2224120210241m m+-⨯==,当且仅当m=等号成立,故OAB面积的最大值为10,5.(2022·贵州·高二统考竞赛)如图,1C,2C是离心率都为e的椭圆,点A,B是分别是2C的右顶点和上顶点,过A,B两点分别作1C的切线1l,2l.若直线1l,2l的斜率分别为1k,2k,则12k k的值为()A.2e B.21e-C.21e-D.21e【答案】C【详解】不妨设22122:1x yCa b+=,222222:x yCa bλ+=(0,1)a bλ>>>,∴,(,0)(0,)A aB bλλ,11:()l y k x aλ=-代入1C的方程得:()2222322422211120b a k x a k x a k a bλλ+-+-=,()()()23222224222111Δ240a kb a k a k a bλλ=--+-=,化简得()221221bkaλ=-.22:l y k x bλ=+代入22221x ya b+=得()22222222222220b a k x a bk x a b a bλλ+-+-=.()()()222222222222Δ240a bkb a k a b a bλλ=-+-=.化简得()222221bkaλ-=.∴422124bk ka=,∴222212221b a ck k ea a-===-,6.(2020·湖北武汉·高三统考强基计划)过椭圆22149x y+=的中心作两条互相垂直的弦AC和BD,顺次连接,,,A B C D得一四边形,则该四边形的面积可能为()A.10B.12C.14D.16【答案】B【分析】设()11,A x y,()22,B x y,设x轴正方向旋转到与向量OA 同向所转过的角为α,利用三角函数的定义表示,A B的坐标,代入椭圆方程,求得223636,OA OB关于α的函数表达式,进而得到223636OA OB关于α的函数表达式,利用三角函数恒定变形化简,然后利用三角函数的性质求得其取值范围,进而得到四边形面积的取值范围,从而做出选择.【详解】设()11,A x y ,()22,B x y ,设x 轴正方向旋转到与向量OA同向所转过的角为α,并根据题意不妨设OA 到OB 为逆时针旋转π2,则11cos ,sin .x OA y OA αα⎧=⎪⎨=⎪⎩,22cos sin ,2sin cos .2x OB OB y OB OB πααπαα⎧⎛⎫=+=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+= ⎪⎪⎝⎭⎩22149x y +=,229436x y +=,2222369cos 4sin 5cos 4OA ααα=+=+, 22223694cos 5sin 4sin OBααα=+=+,2222236362516925cos sin 36sin 23636,44OA OBααα⎡⎤=+=+∈⎢⎥⎣⎦,∴36136,2OA OB ⎡⎤∈⎢⎥⎣⎦,1442,1213ABCD S OA OB ⎡⎤=∈⎢⎥⎣⎦,当4πα=时取到最小值14413,当0α=时取得最大值12.只有选项B 中的12在此范围内7.(2019·贵州·高三校联考竞赛)设椭圆C :()222210x y a b a b +=>>的左、右焦点分别为12,F F ,其焦距为2c .点322c N ⎛⎫⎪ ⎪⎝⎭在椭圆的内部,点M 是椭圆C上的动点,且112||MF MN F +<恒成立,则椭圆C 的离心率的取值范围是()A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.,121⎛⎫⎪ ⎪⎝⎭D.⎝⎭【答案】D【详解】由322c N ⎛⎫ ⎪ ⎪⎝⎭在椭圆的内部,得22229142c c a b +<,即222222924b c a c a b +<,从而422441590a a c c -+>,得到4291540e e -+>,因此()()2231340e e -->.因为0<e <1,所以3e 2-4<0,故3e 2<1,得到0e <<.又由112||MF MN F +<恒成立,即22||a MN MF +-<恒成立,等价于()2max2||a MN MF +-<,亦即22a NF +<,等价于2a ,即2a e >.e <<二、多选题8.(2022·贵州·高二统考竞赛)如图,M ,N 分别是Rt ABC △两直角边上的动点,P 是线段MN 的中点,则以下结论正确的是()A .当△AMN 的面积为定值时,点P 的轨迹为双曲线一支B .当|MN |为定值时,点P 的轨迹为一圆弧C .当||||AM AN +为定值时,点P 的轨迹为不含端点线段D .当△AMN 的周长为定值时,点P 的轨迹为抛物线【答案】ABC【详解】建立如图的直角坐标设(),P x y ,则(2,0)M x ,(0,2)N y ,0x >,0y >,对于A ,当Rt △AMN 面积为定值()20k k >时,12222x y k ⋅⋅=,∴(0)x y k k ⋅=>轨迹为双曲线一支,所以A 正确.对于B ,若2(0)MN d d =>,则222222444x y d x y d +=⋅+=,(0,0)x y >>是一圆弧,所以B 正确.对于C ,当2(0)AM AN t t +=>时,222(0,0)x y t x y +=>>,即(0,0)x y t x y +=>>为空端点线段,所以C 正确.对于D ,当Rt △AMN 的周长为定值2C 时,则222x y C ++,即(0,0)x y C x y +=>>,()C x y =-+,∴22222222x y C Cx Cy xy x y +=--+++,所以2(22)2x C y Cx C -=-,2222Cx C y x C-=-轨迹为双曲线一支,所以D 错误.9.(2020·北京·高三校考强基计划)已知A ,B 分别为双曲线2214x y -=的左、右顶点,P 为该曲线上不同于A ,B 的任意一点设,,∠=∠= PAB PBA PAB αβ的面积为S ,则()A .tan tan αβ⋅为定值B .tantan22αβ⋅为定值C .tan()S αβ⋅+为定值D .cot()S αβ⋅+为定值【答案】AC【分析】利用三角换元得到P 的坐标为2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,利用斜率公式可求,αβ与θ的关系,化简后可得,αβ的关系,故可判断AB 的正误,根据面积公式可求S (用θ表示),故可判断CD 的正误.【详解】不妨设2,tan ,0,cos 2P πθθθ⎛⎫⎛⎫∈⎪ ⎪⎝⎭⎝⎭,则tan sin tan 22(1cos )(2)cos θθαθθ==+--,tan sin tan 22(1cos )2cos θθβθθ=-=---,1||tan 2tan 2S AB θθ=⋅⋅=,因此2114tan ,tan ,221t t S t t αβ==-=-,其中tan 2t θ=.对于选项A ,1tan tan 4αβ=-为定值.对于选项B ,由于22224tantan22tan tan 1tan tan tantan 2222αβαβαβαβ=⎛⎫-++ ⎪⎝⎭,因此若tantan22αβ为定值,则tantan 22αβ+为定值,从而tan 2α和tan 2β是确定的值,矛盾,对于选项C ,D ,有()2112122tan()115122t t t t t tαβ--+==-+⋅,因此tan()S αβ⋅+是定值,cot()S αβ⋅+不是定值.10.(2020·北京·高三校考强基计划)已知点(1,1),(1,0)A Q ,P 为椭圆22143x y +=上的动点,则||||PA PQ +的()A.最大值为4B.最大值为4C.最小值为4-D.最小值为4【答案】BD【分析】利用椭圆的定义可求||||PA PQ +的最值.【详解】注意到Q 为椭圆的右焦点,设其椭圆的左焦点为(1,0)Q '-,则()()||||||44||PA PQ PA PQ PA PQ +=+-=-''+,而||PA PQ -'的取值范围是,AQ AQ ''-⎡⎤⎣⎦,即[,因此所求最大值为4,最小值为4三、填空题11.(2022·江苏南京·高三强基计划)设F ,l 分别为双曲线()22411212x y --=的右焦点与右准线,椭圆Γ以F 和l 为其对应的焦点及准线,过F作一条平行于y =的直线,交椭圆Γ于A 、B 两点,若Γ的中心位于以AB 为直径的圆外,则椭圆离心率e 的范围为___________.【答案】⎫⎪⎪⎭【详解】由双曲线方程可知其焦准距为3,则椭圆Γ的焦准距23b c=(同侧焦点和准线),如图,设椭圆中心为O,建立平面直角坐标系,设F :()222210x y a b a b+=>>,()11,A x y ,()22,B x y ,直线AB方程:)y x c =+,联立直线AB 和椭圆Γ可得:()222222223630b a x a cx a c a b +++-=,由韦达可得:212222212226+=-+33=+3a x x b a a c x x b a ⋅⎧⎪⎪⎨⎪⎪⎩,由椭圆中心O 位于以AB 为直径的圆外,则有12120OA OB x x y y ⋅=+>,结合韦达定理可得:222242222422222233330333a c a b b a c a b b b a b a b a----+=>+++,所以422441030a a c c -+<,即423e 10e 40-+<,e 1<<,12.(2018·山东·高三竞赛)若直线65280x y --=交椭圆22221x ya b+=(0a b >>,且2a 、b 为整数)于点A 、C .设()0,B b 为椭圆的上顶点,而ABC 的重心为椭圆的右焦点2F ,则椭圆的方程为______.【答案】2212016x y +=【详解】设()11,A x y ,()22,C x y ,由题意ABC 的重心为椭圆的右焦点2F ,整理得213x x c +=,21y y b +=-.由()11,A x y ,()22,C x y 在直线65280x y --=上,得到212165y y x x -=-.由()11,A x y ,()22,C x y 在椭圆()222210x y a b a b +=>>上,得到2211221x y a b +=,2222221x y a b+=.两式相减并整理得()()()()2212122121635y y y y b b a x x x x c +---==⋅+-,整理得225a bc =.①本号资料全部来源于微信公#众号:数学第六感因为()11,A x y ,()22,C x y 在直线65280x y --=上,所以有1165280x y --=,2265280x y --=.将123x x c +=,12y y b +=-代入得()635560c b ⨯---=,整理得18556c b +=.②联立①②,且注意到a 、b 为整数,解得2c =,4b =,220a =.故所求的椭圆方程为2212016x y +=.13.(2022·新疆·高二竞赛)设z 为复数,若方程2297--=z z 表示一条圆锥曲线,则此曲线的离心率=e ___________.【答案】4【详解】令||,|3|,|3|=-=+=z a z b z c ,则27-=a bc .由复数的几何意义知222218+=+b c a .所以由前两式知2()32-=b c,即||-=b c ,故||3||3||6--+=<z z .因此z6的双曲线,14.(2021·全国·高三竞赛)已知集合{}22(,)|||||,0,(,)|1,044x y A x y x y t t B x y m m ⎧⎫=+>=+≤<<⎨⎩≤⎬⎭满足B A ⊆,若P 为集合B 的边界线C 上任意一点,12F F 、为曲线C 的焦点,I 为12PF F △的内心,直线1IF 和2IF 的斜率分别为12k k 、,且1213k k ⋅=-则t 的最小值为________.【详解】因为12F F 、为曲线C 的焦点,I 为12PF F △的内心,若曲线C 的方程为22221x y a b +=,则I 的轨迹方程为22221x y c bc c a +=⎛⎫ ⎪+⎝⎭,故有22121.3bc c a c k k ⎛⎫ ⎪+⎝⎭=-=-⋅可知::2:a b c =,所以3m =.设(2cos )P θθ为曲线C上一点,则有|2cos ||t θθ≥+恒成立,即t ≥15.(2021·全国·高三竞赛)已知ABCD Y 的四个顶点均在双曲线2214y x -=上,点(0,1)P 在边AB 上,且12AP PB =,则ABCD Y 的面积等于_______.【答案】4【分析】由对称性,知O 为平行四边形的中心,设()00,A x y ,得()002,32B x y --,将点A 、B 的坐标代入双曲线方程,求得A 、B 的坐标,利用等面积法知4ABCD AOB S S = △,代入即可求解.【详解】由平行四边形的对称性与双曲线的对称性,知O 为平行四边形的中心,由A 、B 、C 、D 四点在两支双曲线上各有两点,不妨设A 、D 在左支上,B 、C 在右支上,如图:考虑A 、B 关于双曲线中心的对称点,A B '',因为单支双曲线上不存在四点构成平行四边形,知,A C B D =''=,所以ABCD Y 的对称中心为O .设()00,A x y ,由12AP PB =,得()002,32B x y --.将点A 、B 的坐标代入双曲线方程得()22002020*******y x y x ⎧-=⎪⎪⎨-⎪-=⎪⎩,解得:00814x y ⎧=⎪⎪⎨⎪=-⎪⎩或00814x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以A B x x ⎧=⎪⎪⎨⎪=⎪⎩或A B x x ⎧=⎪⎪⎨⎪=⎪⎩.故242||21ABCDADB AOB A B S S S OP x x ===⋅-=⨯⨯YV V.四、解答题16.(2022·湖北武汉·高三统考强基计划)设F 为椭圆C :22194x y +=的左焦点,P 为椭圆C上的一点(1)作正方形FPAB (F ,P ,A ,B 按逆时针排列)当P 沿着椭圆运动一周,求动点B 的轨迹方程.(2)设()3,2Q 为椭圆外一点,求PQ PF +的取值范围.【答案】(1)((22=149x x -+.(2)【详解】(1)如图所示,将椭圆C绕其左焦点()F 逆时针旋转90 ,得到椭圆'C,注意到在正方形FPAB 中,点B 可以看成也是由点P 绕点F 逆时针旋转90 而形成的,由于点P 在椭圆C 上运动,则点B 在椭圆'C 上运动.求B 的轨迹方程,也就是求椭圆'C 的方程.注意到椭圆'C的中心坐标为(,从而'C的方程为((22=149x x +.(2)如图所示,|||||PQ PFQF +≥当且仅当,,P F Q 三点共线,即P 运动到1P 位置时,等号成立.记椭圆C 的右焦点为)E,注意到()||||=||2||=||||6PQ PF PQ a PE PQ PE ++--+,显然有||||||=PQ PE QE -≤从而||||6PQ PF +≤+,当且仅当,,P E Q 三点共线,即P 运动到2P 位置时,等号成立.||||6PQ PF ≤+≤即PQ PF+的取值范围17.(2018·全国·高三竞赛)一束直线12,,l l 的每条均过xOy 平面内的抛物线2:C y x =的焦点,()1i l i ≥与抛物线C 交于点i A 、i B .若1l 的斜率为1,()2i l i ≥的斜率为1+2014l 的解析式.【答案】((()()201520152014201411112411y x -⎛⎫=⋅- ⎪⎝⎭-【详解】易知抛物线焦点1,04P ⎛⎫⎪⎝⎭.设()1:1,2,4i i l y k x i ⎛⎫=-= ⎪⎝⎭ ,并与2y x =联立知点i A 、i B 的横坐标i A x 、i B x 满足关于x 的方程()2222120216i i i k k x k x -++=且i i A B x x ≠.则i ii i A B A B x =-=221i i k k +=.从而,当2i≥时,有1111i i k k -==+.记{}n F 满足121F F ==及递推关系21n n n F F F ++=+则{}n F 为斐波那契数列其通项公式为n nn F ⎡⎤⎛⎥=- ⎥⎝⎭⎝⎭⎦.下面证明:1i i iF k F +=对一切正整数i 成立.由2111F k F ==,知i=1时结论成立.设i=t 时结论成立.则121111111t t t t t t t t t F F F F k k F F F +++++++=+=+==即i=t+1时结论也成立.由数学归纳法知1i i iF k F +=对一切正整数i 成立.特别地,201520142014F k F =.从而,2014l的解析式为((()()201520152014201411112411y x +-⎛⎫=⋅- ⎪⎝⎭-.【注】本题亦可用不动点方法求数列{}i k 的通项.18.(2018·福建·高三竞赛)已知1F 、2F 分别为椭圆()2222:10x y C a b a b +=>>的左、右焦点,点3P ⎛⎫ ⎪⎝⎭在椭圆C 上,且12F PF △的垂心为5,33H ⎛⎫- ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设A 为椭圆C 的左顶点,过点2F 的直线l 交椭圆C 于D 、D 两点.记直线AD 、AE 的斜率分别为1k 、2k ,若1212k k +=-,求直线l 的方程.【答案】(1)22143x y +=(2)()21y x =-【详解】设()1,0F c -,()2,0F c .由12F PF的垂心为53H ⎫-⎪⎪⎝⎭,得12F H PF ⊥.所以12531F H PF k k -⋅==-,224593c -=,解得21c =.由点P ⎫⎪⎪⎝⎭在椭圆C 上,得2224119a b +=.结合2221a b c -==,解得24a =,23b =.所以椭圆C 的方程为22143x y +=.(2)由(1)知()2,0A -,()21,0F .若l 的斜率不存在,则由对称性,知120k k +=,不符合要求.若l 的存在,设为k ,则l 的方程为()1y k x =-.由()221143y k x x y ⎧=-⎪⎨+=⎪⎩,得()22224384120k x k x k +-+-=.①设()11,D x y ,()22,E x y ,则2122843k x x k +=+,212241243k x x k -=+.所以()()1212121212112222k x k x y y k k x x x x --+=+=+++++()()()12121234331122222x x k k x x x x ⎡⎤++⎛⎫=-+-=⋅-⎢⎥⎪++++⎢⎥⎝⎭⎣⎦()()221222121222834344322412824244343k x x k k k k k x x x x k k ⎡⎤⎛⎫+⎢⎥ ⎪⎡⎤+++⎝⎭⎢⎥=⋅-=⋅-⎢⎥⎢⎥-+++⎢⎥⎣⎦+⨯+⎢⎥++⎣⎦()222222238161221122412161612k k k k k k k k k k ⎡⎤++⎛⎫+⎢⎥=⋅-=⋅-=- ⎪-+++⎢⎥⎝⎭⎣⎦.又1212k k +=-,因此2k =,直线l 的方程为()21y x =-.19.(2018·江西·高三竞赛)若椭圆221259x y +=上不同的三点()11,A x y ,94,5B ⎛⎫ ⎪⎝⎭,()22,C x y 到椭圆右焦点的距离顺次成等差数列,线段AC 的中垂线l 交x 轴于点T ,求直线BT 的方程.【答案】252064x y -=【详解】用a 、b 、c 分别表示椭圆的半长轴、半短轴及半焦距之长度,则5a =,3b =,4c =,右焦点为()4,0F ,且准线方程为2a x c=,由21AFca a x c=-,22CF c a a x c=-,得1455AF x =-,2455CF x =-,根据等差性质,2AF CF BF +=,而95BF =,即12441855555x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以128x x +=.①设线段AC 的中点为D ,则其坐标为124,2y y D +⎛⎫ ⎪⎝⎭,又设点T 的坐标为()0,0T x ,则AC 的中垂线DT 的方程为()12121242y y x xy x y y +--=---.因()0,0T x 在此直线上,故有()1212012042y y x xx y y +--=---,即()221201242y y x x x --=-.②又根据A 、B 在椭圆上,得()221192525y x =-,()222292525y x =-,所以()()22121212925y y x x x x -=-+-,据①,即有()22121236225y y x x -=--.③再据②③得06425x =,即点T 的坐标为64,025T ⎛⎫⎪⎝⎭,于是直线BT 的方程为252064x y -=.20.(2018·湖北·高三竞赛)已知O 为坐标原点,()1,0N ,点M 为直线=1x -上的动点,MON ∠的平分线与直线MN 交于点P ,记点P 的轨迹为曲线E .(1)求曲线E 的方程;(2)过点11,22Q ⎛⎫-- ⎪⎝⎭作斜率为k 的直线l ,若直线l 与曲线E 恰好有一个公共点,求k 的取值范围.【答案】(1)()201y x x =≤<(2)11,132⎧⎫+⎪⎪⎛⎤-⎨⎬⎥⎝⎦⎪⎪⎩⎭ 【详解】(1).设()(),,1,P x y M t -,易知01x ≤<.因为OP 平分MON ∠,所以OM MP PN ON==,所以)11,x x +-①)0y t y -=-.②由①②可得21y t x =-,代入①得到11x x +=-E 的方程为()201y x x =≤<.(2).记()()1,1,1,1A B -,则11,3QA QB k k ==-.直线l 的方程为1122y k x ⎛⎫+=+ ⎪⎝⎭,与抛物线方程2y x =联立,消去x 得()21102ky y k -+-=当直线l 与抛物线2y x =相切于点T 时,()1210k k ∆=--=,解得1,2k =当1k k ==T y =T 在曲线E 上;当212k k ==时,T y =,切点T 不在曲线E 上.若直线l 与曲线E 恰好有一个公共点,则有QB QA k k k <≤或k =,故所求k的取值范围为1,13⎛⎤-⋃ ⎥⎝⎦⎪⎪⎩⎭.21.(2021·全国·高三竞赛)过抛物线22y px =(p 为不等于2的质数)的焦点F ,作与x 轴不垂直的直线l 交抛物线于M 、N 两点,线段MN 的垂直平分线交MN 于P 点,交x 轴于Q 点.(1)求PQ 中点R 的轨迹L 的方程;(2)证明:L 上有无穷多个整点(横、纵坐标均为整数的点),但L 上任意整点到原点的距离均不是整数.【答案】(1)24()(0)y p x p y =-≠;(2)证明见解析.【详解】(1)抛物线22y px =的焦点为(,0)2p ,设l 的直线方程为()(0)2p y k x k =-≠.由得222y pxp y k x ⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩得222221(2)04k x pk p x p k -++=.设M 、N 的横坐标分别为12x x 、,由21222pk p x x k ++=,得22122222,()2222P Px x pk p pk p p px y k k k k+++===-=,而PQ l ⊥,故PQ 的斜率为1k -,PQ 的方程为2212()2p pk py x k k k +-=--.代入0Q y =得222223222Q pk p pk px p k k ++=+=.设动点R 的坐标为(),x y ,则:21()21()22p Q P Qp x x x p k p y y y k ⎧=+=+⎪⎪⎨⎪=+=⎪⎩,因此222()4(0)p p x p y y k-==≠,故PQ 中点R 的轨迹L 的方程为24()(0)y p x p y =-≠.(2)显然对任意非零整数t ,点2((41),)p t pt +都是L 上的整点,故L 上有无穷多个整点.反设L 上有一个整点(),x y 到原点的距离为整数()0m m ≥,不妨设0,0x y >>,则:22224()x y m y p x p ⎧+=⎨=-⎩①②,因为p 是奇质数,于是|p y ,从②可推出|p x ,再由①可推出|p m .令111,,x px y py m pm ===,则有22211121141x y m y x ⎧+=⎨=-⎩③④,由③,④得2211114x x m -+=,于是2211(81)(8)17x m +-=,即()()111181881817x m x m +++-=,于是111181817,8181x m x m ++=+-=,得111x m ==,故10y =,有10y py ==,但L 上的点满足0y ≠,矛盾!因此,L 上任意点到原点的距离不为整数.22.(2021·全国·高三竞赛)已知椭圆22:12+=x E y 的右焦点为(c,0)F ,上顶点为M ,圆222:()(0)F x c y r r -+=>,问:椭圆E 上是否存在两点P 、Q 使得圆F 内切于三角形MPQ 若存在,求出直线PQ的方程;若不存在,请说明理由.【答案】存在,PQ的方程为(260x y +-+-=.【详解】假设这样的P 、Q 存在,且设()()1122,,,P x y Q x y ,由题意知(0,1),(1,0)M F ,所以直线()111:10MP y x x y x --+=.因为该直线与圆F 相切,则d r =r =,两边平方化简得()()2222111111x y r x y ⎡⎤+-=+-⎣⎦,整理得()()()()22221111111210r x ryx y -+--+-=.因为()221121x y =-,消去1x 得()()()()()2222111112111210r y r yx y -⋅-+--+-=.因为11y ≠,两边同时除以11y -,得()()()()221111211120r y r y x -⋅++---=,整理得()()221121310x ryr -+-+-=,即点P 在直线()()2221310x r y r -+-+-=上.同理,点Q 也在直线()()2221310x r y r -+-+-=上,因此直线PQ 的方程为()()2221310x r y r -+-+-=.又因为直线PQ 圆Fr=,解得r =因此直线PQ 存在且直线PQ的方程为(260x y +-+-=.23.(2021·全国·高三竞赛)如图所示,()(),0P a b a b <<为抛物线2:4F y x =外一点,过P 引抛物线Γ的两条切线PA PB 、,切点分别为A 、B .在线段PA 上取两点D 、E ,使得PD AE =.若过D 、E 两点的直线12l l 、分别切抛物线Γ于M 、N 两点(异于A ).求四边形MNAB 面积的最大值.【详解】设()()()()11220000,,,,,,,A x y B x y M x y N x y '',则直线AP 的方程为()112y y x x =+,直线BP 的方程为()222y y x x =+,故有121242y y a y y b ⎧=⎪⎪⎨+⎪=⎪⎩,同理可得1010,22E D y y y yy y '++==,又因为PD AE =,所以1E D y y b y +=+,即002y y b +'=,故12121200424AB MN y y k k x x y y b y y '-=====-++,因此//AB MN .直线AB 的方程为22by x a =+,直线MN 的方程为0000004y y y x y y y y '''=+++,即0022y y by x '=+,故两平行线间的距离d ',||AB ===||MN =所以00|4|1(||||))24MNABy y a S d AB MN '-=⋅+=⋅,其中0204a y y b ≤'≤,可令22004,b a A b y y X '-=-=,则:1(4MNAB S A X =-218=+3183⎛≤ ⎝⎭当22001(4)9b y y b a '-=-时取到最大值.24.(2021·全国·高三竞赛)已知椭圆22122:1(0)x y C a b a b+=>>,其右焦点为F ,过F 作直线l 交椭圆1C 于A 、B 两点(l 与x 轴不重合),设线段AB 中点为D ,连结OD (O 为坐标原点),直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求椭圆1C 的离心率.【分析】先将椭圆与直线联立,结合韦达定理表示出D 坐标,再结合直线OD 交椭圆1C 于M 、N 两点,若A 、M 、B 、N 四点共圆,且||8||3MN OD =,求出2,3M ⎛ ⎝⎭再代入椭圆求出a ,进而求出离心率.【详解】不妨设椭圆1C 的半焦距1c =,则221b a =-,椭圆右焦点为(1,0)F .设:1l x ky =+,将1x ky =+,代入22221x ya b+=消去x 化简整理得()()()222222222110a k k a y a ky a -++---=.显然,方程判别式Δ0>,设()(),,,A A B B A x y B x y .由韦达定理知()2222221A B a k y y a k k a-+=--+,从而()()22222222222211122222A B D A B a k x x ax ky ky a k k a a k k a ⎛⎫-+==++=-+= ⎪ ⎪-+-+⎝⎭,()2222211D D a k x y k a k k a--==--+,于是()22222222221,a k a D a k k a a k k a ⎛⎫-- ⎪ ⎪-+-+⎝⎭.所以直线OD 的方程为()221a x y a k =--.设圆AMBN 的方程为222:0C x y Dx Ey F ++++=,直线l 直线MN 的方程为()232:(1)01a C x ky x y a k ⎛⎫--+= ⎪ ⎪-⎝⎭,由于3C 经过12C C 、的交点,且123C C C 、、均为二次曲线,则存在常数12λλ、,使得()()2222212222(1)11a x y x ky x y x y Dx Ey Fa b a k λλ⎛⎫⎛⎫--+=+-+++++ ⎪ ⎪ ⎪-⎝⎭⎝⎭,比较方程两边xy 系数知()2201a k a k -+=-,即2221a k a =-,由对称性不妨设k =.代入点D 的坐标得1,22D a ⎛- ⎪ ⎪⎝⎭,又||8||3MN OD =,得点2,3M ⎛ ⎝⎭,而M 在1C上,故22222311a a ⎛⎛⎫ ⎪ ⎝⎭⎝⎭+=-,解得a =于是1C的离心率为3c e a ==.25.(2018·甘肃·高三竞赛)已知椭圆2222:1x y C a b+=过点()0,2M ,且右焦点为()2,0F .(1)求椭圆C 的方程;(2)过点F 的直线l 与椭圆C 交于,A B 两点,交y 轴于点P .若,PA mAF PB nBF ==,求证:m n +为定值;(3)在(2)的条件下,若点P 不在椭圆C 的内部,点Q 是点P 关于原点O 的对称点,试求三角形QAB 面积的最小值.【详解】(1)由题意b=2,c=2,所以28a =,椭圆C 的方程为22184x y +=.(2)设A 、B 、P 的坐标分别为()()()1122,,,,0,x y x y t .由PA mAF = 知121m x m =+,11ty m=+.又点A 在椭圆C 上,则22211184m t m m ⎛⎫⎛⎫ ⎪ ⎪++⎝⎭⎝⎭+=,整理得222840m m t +-+=.由PB nBF =,同理得到222840n n t +-+=.由于A 、B 不重合,即m n ≠,故m 、n 是二次方程222840x x t +-+=的两根,所以m+n=-4,为定值.(3)依题意,直线l 的方程为12x yt+=,即()22t y x =--,与椭圆C 的方程联立,消去y 并整理,得()2222244160t xt x t +-+-=,()()42221642416321280t t tt ∆=-+-=+>,所以221212224416,22t t x x x x t t -+=⋅=++,而1212122QAB S t x x t x x ∆=⋅⋅-=⋅-()()22222121212=4QAB S t x x t x x x x ∆⎡⎤=-+-⎣⎦()42222216166422t t tt t ⎡⎤-⎢⎥=-⎢⎥++⎣⎦()2222321282t t t +=⋅+.()2243212t ⎡⎤⎢⎥=-⎢⎥+⎣⎦由已知,点P 不在椭圆C 的内部,得2t ,即24t ,所以2QAB S ∆的最小值为82563299⨯=,故三角形QAB 面积的最小值为163.26.(2018·山东·高三竞赛)已知圆22:4O x y +=与曲线:3C y x t =-,(),A m n ,(),B s p ,(),,,m n s p *∈N 为曲线C 上的两点,使得圆O 上任意一点到点A 的距离与到点B 的距离之比为定值()1k k >,求t 的值.【答案】43t =【详解】设(),P x y 为圆O 上任意一点,则由题意知PA k PB=.即222PA k PB =,于是()()()()22222x m y n k x s y p ⎡⎤-+-=-+-⎣⎦,整理得()()()()22222222222222111k s m kp nmn k s p x y x y k k k --+-++--=---.因此点P 的轨迹是一个圆.因为(),P x y 为圆上任意一点,所以此圆与圆22:4O x y +=必为同一个圆,于是有()22201k s m k --=-,()22201k p nk --=-,()()22222241mn k s p k +-+=-,整理得20k s m -=,20k p n -=,所以()()()()()22222424222222222411m n k s p k sk p k s p ks p k k +-++-+==+=--.因为s ,*p N ∈,所以21s ≥,21p ≥,从而22242k s p =≤+.又因为1k >,所以1s p ==,22k =,2m n ==.因此将()2,2A ,()1,1B ,代入3y x t =-,得43t =.27.(2022·福建·高二统考竞赛)已知椭圆C :()222210x y a b a b+=>>的离心率为12,1A 、2A 分别为椭圆C 的左、右顶点,1F 、2F 分别为椭圆C 的左、右焦点,B 为椭圆C 的上顶点,且11BA F ∆的外接圆半径为3.(1)求椭圆C 的方程;(2)设与x 不垂直的直线l 交椭圆C 于P 、Q 两点(P 、Q 在x 轴的两侧),记直线1A P 、2PA 、2A Q 、1QA 的斜率分别为1k 、2k 、3k 、4k .已知()142353k k k k +=+,求2F PQ ∆面积的取值范围.【答案】(1)2211612x y +=(2)0,2⎛ ⎝⎭【详解】(1)由椭圆C 的离心率为12,知12c a =,于是112BF a c OF ===,所以1=30F BO ∠︒,1=60BFO ∠︒,11=120BF A ∠︒,又AB ===,且11BA F ∆所以11==2sin sin1203AB BF A ∠⨯︒,解得=2c ,因此,=4a,b =所以,椭圆C 的方程为2211612x y +=.(2)如图,易知直线l 斜率不为0,设l 方程为x ty m =+,由22=++=11612x ty m x y ⎧⎪⎨⎪⎩,得()2223463480t y mty m +++-=,设()11,P x y ,()22,Q x y ,则122634mt y y t -+=+,212234834m y y t -=+,由(1)知,()14,0A -,()24,0A ,所以122211111222111134441643PA PA y y y y k k k k x x x y ⋅=⋅=⋅===-+---,同理,123434OA QA k k k k ⋅=⋅=-,因为()142353k k k k +=+,所以()2323335443k k k k --=+,()2323233543k k k k k k +-⋅=+,由l 与x 不垂直可得230k k +≠,所以23920k k =-,即22920PA QA k k ⋅=-,所以121294420y y x x ⋅=---,()()1212209440y y ty m ty m ++-+-=,于是()()()()22121292094940t y y t m y y m ++-++-=,()()()222223486920949403434m mt t t m m t t --+⋅+-⋅+-=++,整理得2340m m --=,解得1m =-或=4m ,因为P 、Q 在x 轴的两侧,所以2122348034m y y t -=<+,44m -<<,又1m =-时,直线l 与椭圆C 有两个不同的交点,因此1m =-,直线l 恒过点()1,0D -,。

几何变换课堂练习题(含答案)

几何变换课堂练习题(含答案)

几何变换课堂练习题1. 试写出二维图形几何变换矩阵,并从变换功能上将其分块。

答:二维图形几何变换矩阵可用下式表示:T2D=从变换功能上可把T分为四个子矩阵,其中是对图形进行缩放、旋转、对称、错切等变换;[c f ]是对图形进行平移变换;对图形作投影变换;[ i ]是对整体图形作伸缩变换。

2.试写出三维图形几何变换矩阵,并从变换功能上将其分块。

答:三维图形的几何变换矩阵可用T3D表示,其表示式如下:从变换功能上T3D可分为4个子矩阵,其中:产生比例、旋转、错切等几何变换;产生平移变换;产生投影变换;[a44] 产生整体比例变换。

1. 已知三角形ABC 各顶点的坐标A(1,2)、B(5,2)、C(3,5),相对直线Y=4做对称变换后到达A ’、B ’、C ’。

试计算A ’、B ’、C ’的坐标值。

(要求用齐次坐标进行变换,列出变换矩阵)解:(1)将坐标系平移至P 1 (0,4)点 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=140010001A T(2) 以Y 轴对称 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010001B T(3)将坐标系平移回原处 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=140010001C T(4) 变换矩阵:T=T A*T B*T C= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-180010001(5) 求变换后的三角形ABC 各顶点的坐标A ’、B ’、C ’A ’: [][][][]1611800100011211211''=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⨯=⨯=T Y X A A X A '=1, Y A '=6 B ’: [][][][]1651800100011251251'=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⨯=⨯=T Y X B B X B '=5, Y B '=6C ’: [][][][]1331800100011531531''=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⨯=⨯=T Y X C C X A '=3, Y A '=32.将x和y放大为原来的三倍,且图形点(0.5,0.2,-0.2)保持不动;S =T2 =2 S T1 =------------------------------------------------------------------------------------------------------- 填空题1.比例变换[x y 1]=[x y 1]=[sx·x sy·y 1]⑴当_____________时,为恒等比例变换,即图形不变;⑵当_____________时,图形沿两个坐标轴方向等比例放大;⑶当_____________时,图形沿两个坐标轴方向等比例缩小;⑷当_____________时,图形沿两个坐标轴方向作非均匀的比例变换。

高中数学竞赛校本教材 (全套 共30讲 有详解)

高中数学竞赛校本教材 (全套 共30讲 有详解)

高中数学竞赛校本教材(共30讲,含详细答案)目录§1数学方法选讲(1) (1)§2数学方法选讲(2) (11)§3集合 (22)§4函数的性质 (30)§5二次函数(1) (41)§6二次函数(2) (55)§7指、对数函数,幂函数 (63)§8函数方程 (73)§9三角恒等式与三角不等式 (76)§10向量与向量方法 (85)§11数列 (95)§12递推数列 (102)§13数学归纳法 (105)§14不等式的证明 (111)§15不等式的应用 (122)§16排列,组合 (130)§17二项式定理与多项式 (134)§18直线和圆,圆锥曲线 (143)§19立体图形,空间向量 (161)§20平面几何证明 (173)§21平面几何名定理 (180)§22几何变换 (186)§23抽屉原理 (194)§24容斥原理 (205)§25奇数偶数 (214)§26整除 (222)§27同余 (230)§28高斯函数 (238)§29覆盖 (245)§29涂色问题 (256)§30组合数学选讲 (265)§1数学方法选讲(1)同学们在阅读课外读物的时候,或在听老师讲课的时候,书上的例题或老师讲解的例题他都能听懂,但一遇到没有见过面的问题就不知从何处入手。

看来,要提高解决问题的能力,要能在竞赛中有所作为,首先得提高分析问题的能力,这就需要学习一些重要的数学思想方法。

例题讲解一、从简单情况考虑华罗庚先生曾经指出:善于“退”,足够的“退”,退到最原始而又不失去重要性的地方,是学好数学的一个诀窍。

专题 几何变换经典精讲-讲义

专题 几何变换经典精讲-讲义

几何变换经典精讲主讲教师:黄炜 北京四中数学教师金题精讲题一:如图,两个全等的正六边形ABCDEF ,PQRSTU ,其中点P 位于正六边形ABCDEF 的中心.如果它们的面积均为3,那么黄色部分的面积是( )A .0.5B .1C .2D .3考点:图形的旋转题二:如图,将正方形ABCD 以点B 为旋转中心顺时针旋转120°得到正方形A ′BC ′D ′, DO ⊥C ′A ′于O , 若13-='O A , 则正方形ABCD 的边长为______.考点:图形的旋转题三:如图,把矩形纸片ABCD 沿EF 折叠,使点B 落在AD 边上的点B ′处,点A 落在点A ′处,折痕分别交AD ,BC 于E ,F .(1)求证:B ′E =BF ;(2)设AE =a ,AB =b ,BF =c ,试猜想以a ,b ,c 为边的三角形的形状,并给予证明.考点:图形的轴对称题四:如图,某人有一块平行四边形的土地,地里有一个圆形池塘,此人立下遗嘱:要把这块土地平分给他的两个儿子,中间的池塘也要同时平分,但不知如何去做.你能想个办法吗?考点:中心对称图形题五:如图,P是矩形内一点,已知P A=3,PB=4,PC=5,求PD的长.考点:图形的平移题六:Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD.把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.考点:图形的旋转题七:阅读下面材料:小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=90︒.若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).请你回答:图2中△BCE的面积等于.请你尝试用平移、旋转、翻折的方法,解决下列问题:如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹);(2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于.考点:图形的旋转、图形的平移几何变换经典精讲讲义参考答案金题精讲题一:B题三:(1)证明:由题意,可得B′F=BF,∠BFE=∠B′FE.在矩形ABCD中,AD∥BC,∴∠B′EF=∠BFE=∠B′FE.∴B′E=B′F=BF;(2)以a,b,c为边可以构成直角三角形.证明:如图,连接BE,则BE=B′E.由(1)知,B′E=BF=c,∴a2+b2=AE2+AB2=BE2=c2.∴以a,b,c为边构成的三角形是直角三角形.题四:连接平行四边形的两条对角线,其交点A就是平行四边形的中心,而圆的圆心B就是圆的中心,因此直线AB 就能将土地与池塘的面积同时平分了.题五:PD 80或120.题七:△BCE的面积等于2.(1)如图(答案不唯一):以EG、FH、ID的长度为三边长的一个三角形是△EGM.(2)以EG、FH、ID的长度为三边长的三角形的面积等于3.。

2022年全国高中数学联赛几何专题(平面几何解析几何)

2022年全国高中数学联赛几何专题(平面几何解析几何)

2022年全国高中数学联赛几何专题(平面几何解析几何)数学竞赛中的平面几何一、引言1.国际数学竞赛中出现的几何问题,包括平面几何与立体几何,但以平面几何为主体.国际数学竞赛中的平面几何题数量较多、难度适中、方法多样(综合几何法、代数计算法、几何变换法等),从内容上看可以分成三个层次:第一层次,中学几何问题.这是与中学教材结合比较紧密的常规几何题,虽然也有轨迹与作图,但主要是以全等法、相似法为基础的证明题,重点是与圆有关的命题,因为圆的命题知识容量大、变化余地大、综合性也强,是编拟竞赛试题的优质素材.第二层次,中学几何的拓展.第三层次,组合几何——几何与组合的交叉.这是用组合数学的成果来解决几何学中的问题,主要研究几何图形的拓扑性质和有限制条件的欧几里得性质.所涉及的类型包括计数、分类、构造、覆盖、递推关系以及相邻、相交、包含等拓扑性质.这类问题在第六届IMO(1964)就出现了,但近30年,无论内容、形式和难度都上了新的台阶,成为一类极有竞赛味、也极具挑战性的新颖题目.组合几何的异军突起是数学竞赛的三大热点之一.2.在中国的数学竞赛大纲中,对平面几何内容除了教材内容外有如下的补充.初中竞赛大纲:四种命题及其关系;三角形的不等关系;同一个三角形中的边角不等关系,不同三角形中的边角不等关系;面积及等积变换;三角形的心(内心、外心、垂心、重心)及其性质.高中竞赛大纲:几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理;三角形中的几个特殊点:旁心、费马点,欧拉线;几何不等式;几何极值问题;几何中的变换:对称、平移、旋转;圆的幂和根轴;面积方法,复数方法,向量方法,解析几何方法.二、基本内容全等三角形的判别与性质,相似三角形的判别与性质,等腰三角形的判别与性质,“三线八角”基本图形,中位线定理,平行线截割定理,圆中角(圆心角、圆周角、弦切角)定理等大家都已经非常熟悉,此外,竞赛中还经常用到以下基本内容.定义1点集的直径是指两个端点都属于这个集合且长度达到最大值的线段(一个点集可能有多条直径,也可能没有直径).定义2如果对点集A中的任意两点,以这两点为端点的线段包含在A 里,则集合A称为是凸的.定义3设M1,M2,,Mn是多边形,如果MM1M2Mn并且当ij时,Mi与Mj 没有公共的内点,则称多边形M剖分为多边形M1,M2,,Mn.定义4如果凸边形N的所有顶点都在凸多边形M的边上,则称多边形N内接于多边性M.定理1两点之间直线距离最短.推论三角形的两边之和大于第三边,两边之差小于第三边.定理2三角形的内角之等于180.凸n边形(n3)的n个内角和等于(n2)外角和为180180;(每一个顶点处只计算一个外角).702022年全国高中数学联赛集训暨2022年中国数学奥林匹克赛前训练材料--内部使用证明如图1,过C作CE//AB,则有ECAA,(两直线平行,内错角相等)得ABCACB(结合律)ECBB(等量代换)180.(两直线平行,同旁内角互补图1推论三角形的一个外角等于两个不相邻内角之和.定理3三角形中大边对大角、小边对小角.证明(1)如图2,在ABC中,已知ABAC,可在AB上截取ADAC,则在等腰ACD中有12.(等腰三角形的性质定理)又在BCD中,2B,(外角定理)更有C12B.(传递性)说明由上面的证明知ABACBC,ABACBC,ABACBC,这样的分断式命题,其逆命题必定成立.证明如下:图2(2)反之,在ABC中,若CB,这时AB,AC有且只有三种关系ABAC,ABAC,ABAC.若ABAC,由上证得CB,与已知CB矛盾.若ABAC,由等腰三角形性质定理得CB,与已知CB矛盾.所以ABAC.定理4在ABC与A1B1C1中,若ABA1B1,ACAC11,则AA1BCB1C1.定理5凸四边形ABCD内接于圆的充分必要条件是:ABCCDA180(或BADDCB180).证明当四边形ABCD内接于圆时,由圆周角定理有ABCCDA1111ADCABCADCABC180.2222同理可证BADDCB180.反之,当ABCCDA180时,首先过不共线的三点A,B,C作O,若点D不在O上,则有两种可能:(1)D在O的外部(如图3(1)).记AD与O相交于S,连CS,在CDS中有ASCCDA.又由上证,有ABCASC180,得180ABCCDAABCASC180,矛盾.712022年全国高中数学联赛集训暨2022年中国数学奥林匹克赛前训练材料--内部使用图3(2)D在O的内部(如图3(2)).记AD的延长线与O相交于S,连CS,在CDS中有ASCCDA.又由上证,有ABCASC180,得180ABCCDAABCASC180,矛盾.定理6凸四边形ABCD外切于圆的充分必要条件是ABCDBCAD.证明当凸四边形ABCD外切于圆时,设各边的切点分别为P,Q,R,S (如图4),根据圆外一点到圆的两切线长相等,有APAS,PBBQ,CRQC,DRDS.相加APPBCRDRASBQQCDS,得ABCDBCAD.图4反之,若ABCDBCAD,我们引B,C的平分线,因为BC360,所以,两条角平分线必定相交于四边形内部一点,记为N,则N到三边AB,BC,CD的距离相等,可以以N为圆心作N与AB,BC,CD同时相切,这时AD与N的关系有且只有三种可能:相离、相切、相交.(1)若AD与N相离(如图5(1)).过A作切线与CD相交于D,在ADD中,有//DDADAD.①//但由上证,有ABCDBCAD,又由已知,有ABCDBCAD相减得CDCDADAD,////DD/ADAD/,与①矛盾.图5722022年全国高中数学联赛集训暨2022年中国数学奥林匹克赛前训练材料--内部使用(2)若AD与N相交(如图5(2)).过A作切线与CD的延长线相交于D,在ADD中,有①//DDADAD.//但由上证,有ABCDBCAD,//又由已知,有ABCDBCAD相减得CDCDADAD,//即DDADAD,与①矛盾.综上得AD与N的相切,即凸四边形ABCD外切于圆.定理7(相交弦定理)圆内的两条相交弦,被交点分成的两条线段长的积相等.定理8(切割线定理)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.定义5从一点A作O的割线交O于B,C,则点A到两交点B,C的线段长度之积ABAC称为点A对O的羃.对于两个已知圆有等羃的点的轨迹,称为两圆的根轴(或等羃轴).定理9若两圆相交,其根轴在两圆公共弦所在的直线上;若两圆相切,其根轴在过两圆切点的公切线上;若两圆相离,则两圆的四条公切线的中点在根轴上.定理10(三角形面积公式)在ABC中,记a,b,c为三边长,p//1(abc)为半周长,R是2外接圆半径,r为内切圆半径,ha是边BC上的高,ra是与边BC及AB,AC的延长线相切的旁切圆的半径,则ABC的面积S为:(1)S111ahabhbchc;222111(2)SabinCacinBbcinA;222(3)Sp(pa)(pb)(pc);(4)Sabc2R2inAinBinC;4R(5)Srp;1ra(bca);21(7)SR2(in2Ain2Bin2C).2定理11在RtABC中,有(6)S(1)abc,(勾股定理的逆定理也成立)(2)r2221c(abc),R.22732022年全国高中数学联赛集训暨2022年中国数学奥林匹克赛前训练材料--内部使用定理12(角平分线定理)设AD是ABC中A的平分线,则.ABBD.ACDC此定理有10多种证法,下面是有辅助线与无辅助线的两种代表性证法.证明1(相似法)如图6,延长BA到E,使AEAC,连CE,则BAD1A(已知)21AECACE(外角定理)2AEC,(等腰三角形的两个底角相等)有AD//CE,BDABAB得.(平行线截割定理)图6DCAEAC11ABADinABCSABD2AB2证明2(面积法).DCSACD1ACADin1AAC22定理13(正弦定理、余弦定理)在ABC中,有(1)abcoBccoC,bacoAccoC,cacoAbcoB.abC2R;(2)inAinBinC222(3)abc2bccoA,b2a2c22accoB,c2a2b22abcoC.(4)inAinBinC2inBinCcoA.222abC2R;inAinBinC证明1(1)当ABC为直角三角形时,命题显然成立.(2)当ABC为锐角三角形时,如图7(1),作ABC外接圆O,则圆心O在ABC的内部,(2)连BO交O于D,连结DC.因为BD是O的直径,所以BCD90,在直角BCD中有aabc2R,但AD,故得2R.同理可证2R,2R.inDinAinBinCabC2R.得inAinBinC(1)(2)图7(3)当ABC为钝角三角形时,记A为钝角,则圆心O在ABC的外部,过A作直径,仿上证74。

高数几何竞赛真题答案解析

高数几何竞赛真题答案解析

高数几何竞赛真题答案解析一、问题导入在高数几何竞赛中,几何问题往往是考察学生对空间形状和运动的理解能力,以及对几何定理的运用能力。

解决几何问题需要运用严密的逻辑推理和灵活的想象力。

本文将通过解析一些高数几何竞赛真题,来展示解题思路和方法,帮助读者更好地掌握几何知识。

二、平面几何题目解析1. 题目:已知正方形ABCD的边长为1,在平面内有一点P,使得PA=1,PB=2,PC=3,请求出点P的坐标。

解析:根据正方形的对称性,可知AP和CP平分角DAB。

由此可推断出底边AB的垂直平分线和线段AP的交点即为点P的坐标。

再根据直角三角形APC以及勾股定理,可得到AP的长度为√5,再利用相似三角形,可以计算出线段AB、AC和AD的长度分别为√5/√2,√5/√2和1。

从而可以得到点P的坐标为(√5/√2,√5/√2)。

2. 题目:已知平面内一条直线L过点A(1,2,3),且与坐标轴的三个正向轴交点分别是B、C和D,请求直线L的方程。

解析:设直线L的方程为x/a + y/b + z/c = 1。

首先,我们需要求出直线上两个已知点的坐标。

由点A(1,2,3)可得x/a + y/b + z/c = 1,代入坐标(1,2,3),得到1/a + 2/b + 3/c = 1。

由坐标轴的交点可得,B(1, 0, 0),C(0, 2, 0)和D(0, 0, 3)。

分别代入方程可得到三个方程式:1/a = 1,2/b = 1,3/c = 1即可得到直线L的方程为x + y/2 + z/3 = 1。

三、空间几何题目解析1. 题目:已知点A(1,2,3)和点B(4,5,6),求向量AB的模长。

解析:向量AB的模长即为向量AB的长度,即两点间的距离。

根据点A和点B的坐标,可得到向量AB为(3, 3, 3),利用勾股定理可计算向量AB的模长为3√3。

2. 题目:已知空间内有一个矩形棱箱,其中一条边长为3,且与x轴平行,另外两条边与y轴和z轴平行,求矩形棱箱的体积。

几何三大变换(讲义及答案)

几何三大变换(讲义及答案)

几何三大变换(讲义)_______、______、_________统称为几何三大变换,它们都是_________,只改变图形的________,不改变图形的_________. 一、平移1. (1)把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.(2)新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或在同一条直线上)且相等. 2. 平移思考层次(1)全等变换:对应线段平行(或在同一条直线上)且相等、对应角相等. (2)对应点:对应点所连线段平行(或在一条直线上)且相等.(3)常见组合搭配:平移会出现平行四边形;平移在平面直角坐标系下,常转化为点的坐标变化.(4)应用,作图:涉及到平移的作图时,往往要先画出平移通道,通过确定点的位置再确定图形位置. 二、轴对称(折叠)1. (1)如果把一个图形沿一条直线折叠后能够与另一个图形完全重合,则称这两个图形成轴对称,这条直线叫做对称轴.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴. (2)在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等. 2. 轴对称(折叠)思考层次(1)全等变换:对应边相等、对应角相等.(2)对应点与对称轴:对称轴所在直线是对应点连线的垂直平分线.(对应点所连线段被对称轴垂直平分,对称轴上的点到对应点的距离相等) (3)常见组合搭配①矩形背景下的折叠常出现等腰三角形;②两次折叠往往会出现特殊角:45°,60°,90°等.(4)应用,作图(构造) 核心是确定对称轴和对应点,一般先确定对应点和对称轴,然后再补全图形.特征举例:B A 1FED (B )CAG FE D CB AONMFE CB AD BOA C P Q B'C'知识点睛①折痕运动但过定点,则折叠后的对应点在圆上;②对应点确定,折痕为对应点连线的垂直平分线.三、旋转1.(1)在平面内,将一个图形绕某个点按某个方向转动一定的角度,这样的图形运动称为旋转,这个点称为旋转中心,转动的角度称为旋转角度.旋转不改变图形的形状和大小.(2)____________、__________和___________称为旋转三要素.2.旋转思考层次(1)全等变换:对应边相等、对应角相等.(2)对应点与旋转中心:对应点到旋转中心的距离相等(旋转会出现等腰三角形、圆);对应点与旋转中心的连线所成的角等于旋转角;对应点所连线段的垂直平分线都经过旋转中心.(3)组合搭配:旋转特殊角度会出现特殊三角形(60°→等边三角形,90°→等腰直角三角形);旋转会出现相似的等腰三角形.(4)应用、作图(构造):题目背景中出现等线段共端点时,考虑补全旋转构造全等.(常见背景有正方形、等边三角形、等腰三角形).1.如图,在平面直角坐标系xOy中,已知点A,B的坐标分别为(1,0),(0,2),将线段AB平移至A1B1,若点A1,B1的坐标分别为(2,a),(b,3),则a+b=________.2.(2020河南)如图,在△ABC中,∠ACB=90°,边BC在x轴上,顶点A,B的坐标分别为(-2,6)和(7,0).将正方形OCDE沿x轴向右平移,当点E落在AB边上时,点D的坐标为()A.(32,2) B.(2,2) C.(114,2) D.(4,2)精讲精练3.(2020赤峰)如图,在菱形ABCD中,∠B=60°,AB=2.动点P从点B出发,以每秒1个单位长度的速度沿折线BA→AC运动到点C,同时动点Q从点A出发,以相同速度沿折线AC→CD运动到点D,当一个点停止运动时,另一点也随之停止.设△APQ的面积为y,运动时间为x秒,则下列图象能大致反映y与x之间函数关系的是()AB CD4.(2020安徽)如图△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF 在同一条直线l上,点C,E重合,现将△ABC沿着直线l向右移动,直至点B与点F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数关系为_________.5.(2020潍坊)如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则AB=__________.6.(2019济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于______________.22B C(E)FAB CDEFGPFE DCBA MN7. (2020呼和浩特)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,点A 的对称点为A ′,点D 的对称点为D ′,若∠FPG =90°,S △A ′EP =8,S △D ′PH =2,则矩形ABCD 的长为( ) A.10B.C.10D.8. (2020淄博)如图,矩形纸片ABCD ,AB =6 cm ,BC =8 cm ,E 为边CD 上一点.将△BCE 沿BE 所在的直线折叠,点C 恰好落在AD 边上的点F 处,过点F 作FM ⊥BE ,垂足为点M ,取AF 的中点N ,连接MN ,则MN =_______cm ,FMBE的值为_______,CE =_______cm .9. (2020镇江)如图1,AB =5,射线AM ∥BN ,点C 在射线BN 上,将△ABC 沿AC所在直线翻折,点B 的对应点D 落在射线BN 上,点P ,Q 分别在射线AM ,BN 上,PQ ∥AB .设AP =x ,QD =y .若y 关于x 的函数图象(如图2)经过点E (9,2),则cos B 的值等于( ) A .25B .12C .35D .71010. (2020杭州)如图是一张矩形纸片,点E 在AB 边上,把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_________,BE =_________.A′D′GFEDA PH FE D C BA MN图1NMQPABCD图2FE DCBA11. (2020滨州)如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与EF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为( ) ABCD第11题图 第12题图12. (2020舟山)如图,有一张矩形纸条ABCD ,AB =5 cm ,BC =2 cm ,点M ,N 分别在边AB ,CD 上,CN =1 cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ′,C ′上.当点B ′恰好落在边CD 上时,线段BM 的长为_________cm .13. 如图1,在四边形ABCD 中,AD ∥BC ,∠A =∠C ,点P 在边AB 上.(1)判断四边形ABCD 的形状并加以证明.(2)若AB =AD ,以过点P 的直线为对称轴,将四边形ABCD 折叠,使点B ,C 分别落在点B ′,C ′处,且线段B ′C ′经过点D ,折痕与四边形的另一交点为Q . ①在图2中作出四边形PB ′C ′Q (保留作图痕迹,不必说明作法和理由). ②如果∠C =60°,那么APPB为何值时,B ′P ⊥AB .图1 图214. (2020菏泽)如图,将△ABC 绕点A 顺时针旋转角α,得到△ADE ,若点E 恰好在CB 的延长线上,则∠BED 等于( ) A .2αB .23αC .αD .180°-αOA′A BCD EFMN B′C′EDCBA MNEDCBA15. (2015福州)如图,在Rt △ABC 中,∠ABC =90°,AB =BCABC 绕点C逆时针旋转60°,得到△MNC ,连接BM ,则BM 的长度为_________.第15题图 第16题图16. (2020鄂尔多斯)如图,已知正方形ABCD ,点M 是边BA 延长线上的动点(不与点A 重合),且AM <AB ,△CBE 由△DAM 平移得到,若过点E 作EH ⊥AC ,H 为垂足,则有以下结论:①点M 位置变化,使得∠DHC =60°时,2BE =DM ; ②无论点M 运动到何处,都有DM;③在点M 的运动过程中,四边形CEMD 可能成为菱形; ④无论点M 运动到何处,∠CHM 一定大于135°.以上结论正确的有__________(把所有正确结论的序号都填上).17. (2020天水)如图,在边长为6的正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,将△ADF 绕点A 顺时针旋转90°得到△ABG .若DF =3,则BE 的长为__________.第17题图 第18题图18. (2020通辽)如图,在△ABC 中,∠ACB =90°,AC =BC ,点P 在斜边AB 上,以PC 为直角边作等腰直角三角形PCQ ,∠PCQ =90°,则P A 2,PB 2,PC 2三者之间的数量关系是______________.19. 如图,△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE=.以AE 为边在直线AD 右侧构造等边三角形AEF ,EF 与AC 交于点G ,连接CE ,N 为CE 的中点,连接NG ,则线段NG 的长为_________.ABCMNHA B CDEMGFED CBAABCPQABCD EFG N【参考答案】平移;旋转;轴对称;全等变换;位置;形状和大小三、1.(2)旋转中心;旋转方向;旋转角1. 22. B3. A4.2202)24xyx x=-<≤≤≤()()5.16 36.20 37. D8.5;3 89. D10.2111. B12.13.(1)四边形ABCD是平行四边形,证明略;(2)①图略;②12APPB=.14. D15.116.①②④17. 218.P A2+PB2=2PC219.知识点睛精讲精练。

奥林匹克数学题型高级平面几何转化技巧

奥林匹克数学题型高级平面几何转化技巧

奥林匹克数学题型高级平面几何转化技巧平面几何是数学中的一个重要分支,也是奥林匹克数学竞赛中常见的题型。

为了在平面几何题中取得良好的成绩,学生需要掌握一些高级的转化技巧。

本文将介绍一些常用的奥林匹克数学题型中的高级平面几何转化技巧,并给出相应的例题讲解。

1. 全等三角形转化技巧全等三角形在奥林匹克数学竞赛中经常出现,通过运用一些转化技巧,可以简化问题求解的过程。

例题1:已知在△ABC中,∠ACB = 90°。

点D是AC边上的一个动点,且AD = 5, CD = 12。

点P在AB边上,且∠DPB = 90°。

求∠CPD的最大值。

解析:我们可以通过全等三角形的转化技巧简化问题的求解过程。

首先,连接BP,连接CP,然后延长BP交AC于点E,延长CP交AB于点F。

易得△BPC与△BDA全等。

通过全等三角形的性质可知,∠PBC = ∠ADB。

进一步地,由于∠ADC = 90°,我们可以得到∠ADB = ∠CDE。

因此,我们只需要证明△CDE是等腰三角形,即可求得∠CPD的最大值。

通过等腰三角形判定定理,我们可得CE = CD = 12,结合△CDE的直角,可知△CDE是等腰三角形,所以∠CPD的最大值为60°。

2. 相似三角形转化技巧在解决一些相似三角形问题时,通过一些转化技巧,可以简化问题的求解过程。

例题2:已知在△ABC中,∠C = 90°,D是AC边上的一个点,且AD = DC。

E是BC边上的一个点,且BE = 2EC。

若∠AEB = 60°,求∠EDB的度数。

解析:我们可以通过相似三角形的转化技巧简化问题的求解过程。

首先,连接AD,连接BD,然后延长BD交AC于点F,连接FE。

易得△EDA与△FDB相似。

进一步地,由于∠AEB = 60°,我们可以得到∠AED = ∠BFD。

因此,我们只需要证明△EDF是等腰三角形,即可求得∠EDB的度数。

高中数学竞赛 平面几何

高中数学竞赛  平面几何

高中数学竞赛平面几何一、常用定理(仅给出定理,证明请读者完成)梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则.1''''''=⋅⋅BC AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','C B A 三点共线。

塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=⋅⋅BC AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=⋅⋅BC AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。

角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠⋅∠∠⋅∠∠BAB CBB CBC ACC AC A BAA 广义托勒密定理 设ABCD 为任意凸四边形,则AB •CD+BC •AD ≥AC •BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。

高三复习数学22_三角变换与解三角形(有答案)

高三复习数学22_三角变换与解三角形(有答案)

2.2 三角变换与解三角形一、解答题。

1. 已知tan α=12,sin (α+β)=−√210,其中0<α<π,0<β<π.求cos β的值;求α−β的值.2. 函数f (x )=sin (x +2φ)−2sin φcos (x +φ)的最大值为________.3. 已知tan α,tan β是方程x 2+3√3x +4=0的两根,若α,β∈(−π2,π2),则α+β=( )A.−π3或23πB.π3C.−23πD.π3或−23π4. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b,c =√3,cos 2A −cos 2B =√3sin A cos A −√3sin B cos B .求角C 的大小;若sin A =45,求△ABC 的面积.5. (2017·山东理9)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A.A =2BB.a =2bC.B =2AD.b =2a6. 如图所示,在平面四边形ABCD 中,AD =1,CD =2,AC =√7.求cos ∠CAD 的值;若cos ∠BAD =−√714,sin ∠CBA =√216,求BC 的长.7. (2016上海理9)已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________.8. (2015重庆)在△ABC 中,B =120∘,AB =√2,A 的角平分线AD =√3,则AC =________.9. 若△ABC 的内角满足sin A +√2sin B =2sin C ,则 cos C 的最小值是________.10. 4cos 50∘−tan 40∘=( )A.√3B.√2C.2√2−1D.√2+√32参考答案与试题解析2.2 三角变换与解三角形一、解答题。

2022年新高考III卷数学几何图形变换题及答案

2022年新高考III卷数学几何图形变换题及答案

2022年新高考III卷数学几何图形变换题及答案2022年的新高考数学考卷,对于学生们来说是一个重要的挑战。

在数学科目中,几何图形变换题目是考察学生几何知识和问题解决能力的重要环节。

本文将为大家介绍2022年新高考III卷中的数学几何图形变换题目,并提供详细的答案解析。

题目一:已知直角三角形ABC中,∠B=90°,BC=3,AC=4,D为BC上一动点,连接AD,垂直CD于点E。

若BC=2,求DE的长度。

解析:题目要求求出DE的长度,首先我们可以利用三角形相似性质来解答这道题目。

观察图形可以发现△BDE与△ABC为相似三角形,因此我们可以列出比例关系:BD/AB = DE/AC由于已知AC=4,BC=3,BC=2,代入得:BD/3 = DE/4化简得:2BD = 3DE又由∠B=90°可得△BCD为直角三角形,利用勾股定理可得:BD² + CD² = BC²代入已知数值,得:BD² + 3² = 2²BD² + 9 = 4BD² = -5由于BD²为负数,所以可知BD为虚数,因此该题无解。

综上所述,题目中所给的条件下,无法求出DE的长度。

题目二:如图,在平面直角坐标系中,曲线 y=ax²+bx+2 与直线 x=3 交于点A,直线 y=2x+k 交与直线 x=3 的交点为B。

若此时曲线在点(3,14)处的切线方程为 y=kx+m,求m的值。

解析:题目中要求求出曲线在点(3,14)处的切线方程的截距m。

考虑到曲线的切线方程的一般形式为y=kx+m,而题目已经给出切线通过点(3,14),因此我们可以用该点来求解k的值。

首先需确定曲线求切线的点坐标,当x=3时,代入曲线方程可得:y = a(3)² + b(3) + 214 = 9a + 3b + 29a + 3b = 12 ---(1)根据已知,切线方程的斜率k与曲线方程的导数值相等,因此我们需要先求出曲线方程的导函数。

高中数学竞赛专题讲座---平面几何选讲

高中数学竞赛专题讲座---平面几何选讲

平面几何选讲 反演变换基础知识 一. 定义1. 设O 是平面π上的一个定点,k 是一个非零常数.如果平面π的一个变换,使得对于平面π上任意异于O 的点A 与其对应点'A 之间,恒有(1)',,A O A 三点共线;(2)'OA OA k ⋅=,则这个变换称为平面π的一个反演变换,记做(,)I O k .其中,定点O 称为反演中心,常数k 称为反演幂,点'A 称为点A 的反点.2. 在反演变换(,)I O k 下,如果平面π的图形F 变为图形'F ,则称图形'F 是图形F 关于反演变换(,)I O k 的反形.反演变换的不动点称为自反点,而反演变换的不变图形则称为自反图形.3. 设两条曲线u v 、相交于点A ,l 、m 分别是曲线u v 、在点A 处的切线(如果存在),则l 与m 的交角称为曲线u v 、在点A 处的交角;如果两切线重合,则曲线u v 、在点A 处的交角为0.特别地,如果两圆交于点,那么过点作两圆的切线,则切线的交角称为两圆的交角.当两圆的交角为90时,称为两圆正交;如果直线与圆相交,那么过交点作圆的切线,则切线与直线的交角就是直线与圆的交角.当这个交角为90时,称为直线与圆正交. 二. 定理定理1. 在反演变换下,不共线的两对互反点是共圆的四点.定理2. 在反演变换(,)I O k 下,设A B 、两点(均不同于反演中心O )的反点分别为''A B 、,则有''B A =''kA B AB OA OB=⋅.定理3. 在反演变换下,过反演中心的直线不变.定理 4. 在反演变换下,不过反演中心的直线的反形是过反演中心的圆;过反演中心的圆的反形是不过反演中心的直线.定理5. 在反演变换下,不过反演中心的圆的反形仍是不过反演中心的圆.定理6. 在反演变换下,两条曲线在交点处的交角大小保持不变,但方向相反.定理7. 如果两圆或一圆一直线相切于反演中心,则其反形是两条平行直线;如果两圆或一圆一直线相切于非反演中心,则其反形(两圆或一圆一直线)相切.定理8.典型例题一. 证明点共线例1. ABC 的内切圆与边BC 、CA 、AB 分别相切于点D 、E 、F ,设L 、M 、N 分别是EF 、FD 、DE 的中点.求证:ABC 的外心、B内心与LMN 的外心三点共线.证明:如图,设ABC 的内心为I ,内切圆半径为r .以内心I 为反演中心,内切圆为反演圆作反演变换2(,)I I r ,则A 、B 、C 的反点分别为L 、M 、N ,因而ABC 的反形是LMN的外接圆.故ABC 的外心、内心和LMN 的外心三点共线.二. 证明线共点 例2. 四边形ABCD 内接于O ,对角线AC 与BD 相交于P ,设外心分别为1O 、2O 、3O 、4O .求证:OP 、13O O 、24O O 证明:作反演变换(,)I P PC PA ⋅,则A 、C 互为反点,B 、D 互为反点,O 不变,直线1PO 不变,ABP 的外接圆的反形是直线CD .由于直线1PO 与ABP 的外接圆正交,因而1PO 与CD正交,即有1PO CD ⊥.又3OO CD ⊥,所以13//PO O O ;同理31//PO O O ,所以四边形13PO OO 为平行四边形,从而13O O 过PO 的中点;同理24O O 也过PO 的中点.故OP 、13O O 、24O O 三线共点. 三. 证明点共圆例3. 设半圆的直径为AB ,圆心为O ,一直线与半圆交于C 、D 两点,且与直线AB 交于M .再设AOC 与DOB 的外接圆的第二个交点为N .求证:ON MN ⊥.证明:以O 为反演中心作反演变换2(,)I O r ,其中,r 为半圆的半径,则半圆上的每一点都不变,()AOC 与()DOB 的反形分别为直线AC 、BD .且设M 、N 的反点分别为'M 、'N ,则'N 为直线AC 与BD 的交点,'M 在直径AB 上,直线MN 的反形为''OM N 的外接圆,直线CD 的反形为CDO的外接圆.而'ON NM ON ⊥⇔是''OM N 外接圆的直径'''M N OM ⇔⊥.于是问题转化为证明'''M N OM ⊥.因为'AD BN ⊥,'BC AN ⊥,O 是AB 的中点,所以过O 、C 、D 三点的圆是'N AB的九点圆,而'M 在九点圆上,又在边AB 上(不同于O 点),故''M N AB ⊥,因此ON MN ⊥.四. 证明一些几何(不)等式O4例 4. 设六个圆都在一定圆内,每一个圆都与定圆外切,并且与相邻的两个小圆外切,若六个小圆与大圆的切点依次为1A 、2A 、3A 、4A 、5A 、6A .证明:123456234561A A A A A A A A A A A A ⋅⋅=⋅⋅证明:如图以6A 为反演中心作反演变换6(,1)I A ,则O 与6O 的反形为两条平行线,其余5个圆的反形皆是与两条平行线中一条相切的圆;且反形中第一个圆与第五个圆均与两平行线相切,而其余三圆均与相邻的两圆相切.设1A 、2A 、3A 、4A 、5A 的反点分别为'1A 、'2A 、'3A 、'4A 、'5A,则其反形中的五个圆与两平行线中的一条(即O 的反形)依次切于'1A 、'2A 、'3A 、'4A 、'5A ;再设这五个圆的半径依次为1r 、2r 、3r 、4r、5r ,则由勾股定理可得''12A A==同理''23A A =,''34A A =''45A A =15r r =,于是''''''''12342345A A A A A A A A ⋅=⋅.但''12126162A A A A A A A A =⋅,''34346364A A A A A A A A =⋅,''23236263A A A A A A A A =⋅,''45456465A A A A A A A A =⋅.所以1234234561626364626364A A A A A A A A A A A A A A A A A A A A A A ⋅⋅=⋅⋅⋅⋅⋅342345636462636465A A A A A A A A A A A A A A A A A A ⋅=⋅⋅⋅⋅故123456234561A A A A A A A A A A A A ⋅⋅=⋅⋅.练习:1. (2002土耳其数学奥林匹克)两圆外切于点A ,且内切于另一Γ于点B 、C ,另D 是小圆内公切线割Γ的弦的中点,证明:当B 、C 、D 不共线时,A 是BCD 的内切圆圆心.2. (第30届IMO 预选题)双心四边形是指既有内切圆又有外接圆的四边形.证明双心四边形的两个圆心与对角线的交点共线.3. (1997全国高中数学联赛)已知两个半径不等的圆1O 与圆2O 相交于M 、N 两点,圆1O 与圆2O 分别于圆O 内切于S 、T .求证:OM MN ⊥的充分必要条件是S 、N 、T 三点共线.'5A 4A 3A '2A '1A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22几何变换一、 平移变换1. 定义 设是一条给定的有向线段,T 是平面上的一个变换,它把平面图形F 上任一点变到,使得,则T 叫做沿有向线段的平移变换。

记为,图形 。

2. 主要性质 在平移变换下,对应线段平行且相等,直线变为直线,三角形变为三角形,圆变为圆。

两对应点连线段与给定的有向线段平行(共线)且相等。

二、 轴对称变换1. 定义 设是一条给定的直线,是平面上的一个变换,它把平面图形F 上任一点变到,使得与关于直线对称,则叫做以为对称轴的轴对称变换。

记为,图形 。

2. 主要性质 在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分。

三、 旋转变换1. 定义 设是一个定角,O 是一个定点,R 是平面上的一个变换,它把点O 仍变到O (不动点),而把平面图形F 上任一点变到,使得,且,则R 叫做绕中心O ,旋转角为的旋转变换。

记为,图形 。

其中时,表示的始边到终边的旋转方向为顺时针方向;时,为逆时针方向。

2. 主要性质 在旋转变换下,对应线段相等,对应直线的夹角等于旋转角。

四、 位似变换1. 定义 设O 是一个定点,H 是平面上的一个变换,它把平面图形F 上任一点变到,使得,则H 叫做以O 为位似中心,为位似比的位似变换。

记为,图形 。

X 'X PQ XX ='PQ ')(X X PQ T −−→−')(F F PQ T −−→−l S X 'X X 'X l S l ')(X X l S −−→−')(F F l S −−→−αX 'X OX OX ='α=∠'XOX α'),(X X O R −−→−α'),(F F O R −−→−α0<α'XOX ∠OX X O '0>αX 'X OX k OX ⋅='k '),(X X k O H −−→−'),(F F k O H −−→−其中时,在射线上,此时的位似变换叫做外位似;时, 在射线的反向延长线上,此时的位似变换叫做内位似。

2. 主要性质 在位似变换下,一对位似对应点与位似中心共线;一条线上的点变到一条线上,且保持顺序,即共线点变为共线点,共点线变为共点线;对应线段的比等于位似比的绝对值,对应图形面积的比等于位似比的平方;不经过位似中心的对应线段平行,即一直线变为与它平行的直线;任何两条直线的平行、相交位置关系保持不变;圆变为圆,且两圆心为对应点;两对应圆相切时切点为位似中心。

例题讲解1.P 是平行四边形内一点,且。

求证:2.“风平三角形”中,,求证:3.在两条对角线长度以及夹角一定的所有凸四边形中,试求周长最小的四边形。

0>k 'X OX 0<k 'X OX ABCD PCB PAB ∠=∠PDA PBA ∠=∠︒=∠=∠===60'',2'''BOC AOB CC BB AA 3'''<++∆∆∆COA BOC AOB S S S 。

;求证于交,连接于交,连接、的两弦点引圆的中点,过的弦圆NP MP N AB CF M AB DE EF CD o P AB o P =:.4的周长最小;,使得、、上各求一点、及射线内一个定圆,试在圆是给定锐角圆PQR R Q P CB CA o ACB o ∆∠:5ADRP QR PQ PQR D BC AD A ABC 290.6>++∆⊥︒≥∠∆求证:,是它的任一内接三角形,于,中,;.7MQ MP MQ MP BC M AQC APB AC AB ABC ⊥=∆,的中点,求证:是,、直角三角形为斜边分别向外作等腰、的边以)(;,120.8为费马点求证:内任意一点,是内一点,是已知O OC OB OA PC PB PA ABC P COA BOC AOB ABC O ++≥++∆︒=∠=∠=∠∆三线也相交于一点;、、求证:,三线交于一点、、,设、、、、、垂线六个点分别作所在边的,过上述、、、、、分别交于点、、的三边与圆212121212121212121.9c b a D c b a c c b b a a C C B B A A AB CA BC ABC O ∆ONOM N M AC AB PO P BC O D O ABC AD =∆,求证:、于、分别交,连接并延长于的切线交作圆的直径,过的外接圆是.10例题答案【例1】P 是平行四边形内一点,且。

求证:【例2】“风平三角形”中,求证:【例3】在两条对角线长度以及夹角一定的所有凸四边形中,试求周长最小的四边形。

ABCDPCB PAB ∠=∠PDA PBA ∠=∠︒=∠=∠===60'',2'''BOC AOB CC BB AA 4376';85,21;74,82'',';63,51,)(∠∠∠∠∴∠=∠∠=∠∠=∠∠=∠==∠=∠∠=∠∆≅∆∆−−→−∆=,即=四点共圆。

故、、、得由已知知都是平行四边形,、由则【分析】作变换C P D P CB PP ADPP BC AD PP DCP ABP DCPABP AD T 3'''<++∆∆∆COA BOC AOB S S S 三角形为等边共线,、、共线,、、共线,、、记为重合,和,则【分析】作变换OPQ P B O Q A O Q R P R R R R R PR B BOC AQR OC A BB T A A T ∆==∆−−→−∆∆−−→−∆';'''''''''','')'()'( 3'''<++∆∆∆COA BOC AOB S S S【评注】当已知条件分散,尤其是相等的条件分散,而又不容易找出证明途径,或题目中有平行条件时,将图形的某一部分施行平移变换,常常十分凑效。

形时,周长最小;故当四边形为平行四边同理可得的中点;、分别为、,的中点且是;交于、平行四边形;延长是一个符合条件的,则,令、的中点、【分析】取DCB A DC AB BCD A BC BC BG BC AD CG AG C F EC FC CC EF ACE G CC AF D BC A C A AC F E BD AC EF T +≥++=≥+=+∴∴−−→−''''2',//''//''''')( PM PN M PF PFN PEN PDE M PF F D M P EDF EFF EDF FPN MDF PM F AB FF GH AB GH FF PF PF PM F FPN PB PA PF PF PFPF GH P o F F F P GH GH S GH S GH S =⇒∆≅∆∴∠=∠=∠∴∴︒=+∠∠=∠+∠=∠+∠∴∴⊥⊥=∠=∠∴−−→−−−→−=∴∈∈−−→−'''180'''''//','''''',')()()(四点共圆、、、;,又,,,,;又圆显然的直径,为过【分析】设 )(,2|11|,22曲线系知识解析法证明:利用二次则中点的距离为到,,已知、于交、,连接、作两条相交弦,过上的一点内一弦的圆已知半径【评注】一般结论为:r R a PN PM a AB P r OP N M AB ED CF EF CD P P AB o R -=-=的,使得、、上各求一点、及射线内一个定圆,试在圆是给定锐角】圆【例PQR R Q P CB CA o ACB o ∆∠5。

;求证于交,连接于交,连接、的两弦点引圆的中点,过的弦圆】【例NP MP N AB CF M AB DE EF CD o P AB o P =:4【评注】如果题设中有角平分线、垂线,或图形是等腰三角形、圆等轴对称图形,可以将图形或其部分进行轴对称变换。

此外,也可以适当选择对称轴将一些线段的位置变更,以便于比较它们之间的大小。

顶点。

为所求的三角形的三个、、则、于、分别交,连接,令,交圆周于连接做法:的周长为最小,于是有为最小,从而取最小值时,当=理,是该圆直径,由正弦定四点共圆,、、、,则于交,于交设角形;的情况下周长最小的三是在取定,显然、于、分别交,连接,令上任取一点【分析】在圆R Q P RQ CB CA P P P P P P P OC R Q P EF CP ECF CP EF CP P F C E EFP P P R R Q Q P F CB P P E CA P P P R Q P R Q CB CA P P P P P P P o CB S CA S CB S CA S 212)(1)(1100000210111102010011011212)(01)(00,;sin 2,−−→−−−→−∆∴∠==++∆−−→−−−→− ADRP QR PQ PQR D BC AD A ABC 2906>++∆⊥︒≥∠∆求证:,是它的任一内接三角形,于,中,】【例;7MQ MP MQ MP BC M AQC APB AC AB ABC ⊥=∆,的中点,求证:是,、直角三角形为斜边分别向外作等腰、的边】以【例; 且 而 显然: 都是等腰三角形, 、 则 , = ,使 到 ,延长 ,使 到 【分析】延长 MQ MP MQ MP BF MQ EC PM BF EC BF EC F C B E CAFBAE CQ QFF CQ BP PE E BP A R A R ⊥ = ∴ ⊥ = ∴ − −− → − − −− → − ∆ ∆ = ︒ ︒ , 2 1 // , 2 1 // ;, , , ) 90 , ( ) 90 , (OCOB OA PC PB PA C O OO AO AC C P PP AP C O O A O BO BOC C BO BPC C BP BOC C BO PB PP OB OO BPP BOO PP OO P P O O C C B R B R B R ++≥++++=≥++∴∴∠-︒=︒=∠=∠∆≅∆∆≅∆=∴∆∆−−−→−−−−→−−−−→−︒-︒-︒-即:四点共线,、、、;由于,显然,=,都是正三角形’、则;、连接【分析】将''''''''''180120'''''''''',',',')60,()60,()60,()(;,1208为费马点求证:内任意一点,是内一点,是】已知【例O OC OB OA PC PB PA ABC P COA BOC AOB ABC O ++≥++∆︒=∠=∠=∠∆三线也相交于一点;、、求证:,三线交于一点、、,设、、、、、垂线六个点分别作所在边的,过上述、、、、、分别交于点、、的三边与】圆【例2121212121212121219c b a D c b a c c b b a a C C B B A A AB CA BC ABC O ∆三线也相交于一点、、即:的公共点、、也是像下的像在变换的公共点、、,同理:成中心对称,关于圆心、【分析】2122121212)180,(12)180,(12)180,(121')180,0(c b a c b a D R D c b a c c b b a a O a a O R O R O R ︒∴−−−→−−−−→−−−−→−∴︒︒︒ON OM N M AC AB PO P BC O D O ABC AD =∆,求证:、于、分别交,连接并延长于的切线交作圆的直径,过的外接圆是】【例10。

相关文档
最新文档