【高中数学竞赛】四点共圆专题详解

合集下载

简解二次曲线上的四点共圆问题

简解二次曲线上的四点共圆问题
. .
L,

系数相等 , 得 一
, 此时曲线( 1 ) 即
( 2 )
它 与椭 圆 . 2 7 2 一 一 的交 点 A, B, c, D 的坐

z +v 0 +c ' x" q - d' y+ e 一0
标 即方程 组
的形 式 , 这 种形 式 表 示 的 曲线 有且 仅 有 3种
6 4
数学教学研 究
第3 4卷第 8期
2 0 1 5年 8月
简解 二 次 曲线 上的 四点 共 圆 问题
甘志 国
( 北京丰台二中 1 0 0 0 7 1 )
竞赛题
. .
( 2 0 1 4 年全国高中数学联赛湖
再结合 ( I) 的答案 知 , 当 > 1 2时, 点
A, B, C, D共圆( 且在圆( *) 上) . 这道 竞赛题 的一般 情形 是二 次 曲线上 的 4点共 圆 问题 , 该 问题 的一 般结 论是 : 定理 1 ) 若 两 条 二 次 曲线 口 z 。 +b y +
题2 ( 2 0 1 1 年高考 全国大纲卷理科第
2 1 题( 文科 2 2题 ) ) 已知 0为 坐标 原 点 , F为
. .

椭圆C : 。 -普一1 4 在 轴正半轴上的焦点,

必要性. 若4 个交点共 圆, 则存在 , 使方程
( 3 ) 表示 圆 , 所 以式 ( 3 ) 左 边 的展 开式 中含 x y 项 的系数 ( 以 1 b 2 +a 2 b 1 ) 一0 . 而 ≠ 0 ( 否 则 ( 3 ) 表 示 曲线 工 1 , 不表 示 圆 ) , 所 以
( z+ 3 ) 0 +( 一 6 ) =4 2 +3 6 .

四点共圆(知识讲解)

四点共圆(知识讲解)

四点共圆(知识讲解)【学习目标】1. 理解四点共圆的定义;2. 掌握判断四点共圆的基本方法,并用于解决证明和计算问题。

【要点梳理】四点共圆常用的方法有:1、对角互补的四边形,四点共圆;2、外角等于内对角的四边形,四点共圆;3、同底同侧的顶角相等的两个三角形,四点共圆;4、到定点的距离等于定长的四个点,四点共圆。

【典型例题】类型一、四点共圆的判定1.如图,BD ,AH 分别是ABC 的高,求证:A 、B 、H 、D 四点共圆.【分析】取AB 的中点O ,连接DO 、HO ,根据BD ,AH 分别是△ABC 的高,可得△DAB和△HAB 都是直角三角形,斜边都是AB ,而点O 为斜边中点,则有DO =HO =12AB =AO =BO ,也就是说以O 为圆心、OA 为半径的圆,点D 、H 、B 也在这个圆上,即可证明A 、B 、H 、D 四点共圆.证明:如图,取AB 的中点O ,连接DO 、HO ,△BD ,AH 分别是ABC ∆的高,DAB ∴∆和HAB ∆都是直角三角形,且它们的斜边都是AB ,△点O 为斜边中点,12DO HO AB AO BO ∴====,也就是说,点D、H、B在以O为圆心、OA为半径的圆上,即点D、H、B、A都在以O为圆心、以OA为半径的圆上,故可得:A、B、H、D四点共圆.【点拨】本题考查了四点共圆,解答本题的关键是利用直角三角形斜边上的中线等于斜边的一半证得四点共圆.举一反三:【变式1】已知四边形ABCD为菱形,点E、F、G、H分别为各边中点,判断E、F、G、H四点是否在同一个圆上,如果在同一圆上,找到圆心,并证明四点共圆;如果不在,说明理由.【答案】点E、F、G、H四点是以AC,BD的交点O为圆心的同一个圆上,证明见分析.【分析】根据菱形的对角线互相垂直,以及直角三角形斜边中线等于斜边的一半,得出E、F、G、H到O点距离都等于定长即可.解:如图,连接AC,BD相交于点O,连接OE,OF,OG,OH,△四边形ABCD是菱形,△AB=AD=CD=BC,AC△BD,△点E是AB的中点,△OE=12AB,同理:OF=12BC,OG=12CD,OH=12AD,△OE=OF=OG=OH,△点E、F、G、H四点是以AC,BD的交点O为圆心的同一个圆上.【点拨】本题主要考查了四点共圆的条件,用到了菱形的性质及直角三角形斜边中线的性质,熟练掌握其性质是解题的关键.【变式2】如图,在Rt ABC中,△BAC=90°,△ABC=40°,将ABC绕A点顺时针旋转得到ADE,使D点落在BC边上.(1)求△BAD的度数;(2)求证:A、D、B、E四点共圆.【答案】(1)10°;(2)见分析【分析】(1)由三角形内角和定理和已知条件求得△C的度数,由旋转的性质得出AC=AD,即可得出△ADC=△C,最后由外角定理求得△BAD的度数;(2)由旋转的性质得到△ABC=△AED,由四点共圆的判定得出结论.解:(1)△在Rt ABC中,△BAC=90°,△ABC=40°,△△C=50°,△将ABC绕A点顺时针旋转得到ADE,使D点落在BC边上,△AC=AD,△△ADC=△C=50°,△△ADC=△ABC+△BAD=50°,△△BAD=50°-40°=10°证明(2)△将ABC绕A点顺时针旋转得到ADE,△△ABC=△AED,△A、D、B、E四点共圆.【点拨】本题考查了旋转的性质、等腰三角形的性质、外角定理以及四点共圆的判定,解题的关键是理解旋转后的图形与原图形对应边相等,对应角相等.【变式3】如图,在□ABCD中,△BAD为钝角,且AE△BC,A F△CD.(1) 求证:A、E、C、F四点共圆;(2) 设线段BD与(1)中的圆交于M、N.求证:BM = ND【分析】(1)只要证明A、E、C、F四点所构成的四边形的对角互补,则该四点共圆;(2)连接AC交BD于O,易得O是该圆的圆心,OM=ON,所以可得BM=ND.解:(1)△AE△BC,AF△CD,△△AEC=△AFC=90°,△△AEC+△AFC=180°,△A、E、C、F四点共圆;(2)由(1)可知,圆的直径是AC,连接AC交BD于O,△ABCD是平行四边形,△O为圆心,OB=OD,△OM=ON,△BM=ND.【点拨】本题主要考查了四点共圆的判定及平行四边形的性质,难度不大,能够灵活运用所学知识进行推理是解题关键..类型二、利用四点共圆进行证明或求解2.如图,A 、B 、C 、D 四点共圆,且△ACB =△ACD =60°.求证:△ABD 是等边三角形.【分析】先根据同弧所对的圆周角相等得出△ADB =60°=△ABD ,再用三角形的内角和定理求出△BAD ,即可得出结论.证明:△△ACB =60°,△△ADB =△ACB =60°,△△ACD =60°,△△ABD =△ACD =60°,在△ABD 中,△BAD =180°﹣△ADB ﹣△ABD =180°﹣60°﹣60°=60°,△△ABD =△ADB =△BAD =60°,△△ABD 是等边三角形.【点拨】本题考查了等边三角形的性质与判定,圆周角定理,三角形的内角和定理 ,掌握圆周角定理是解答本题的关键;举一反三:【变式】 如图所示中,60NAM ∠=︒,B ,C 分别在边AM 和AN 上,且2BC =,CP AN ⊥,BP AM ⊥垂足分别为C ,B ,求PA 的长.【答案】433PA =【分析】本题关键要建立未知线段PA 和已知线段BC 的关系,由A ,B ,P ,C 共圆,PA 和CE 为直径,于是在Rt CEB △中便可以建立CE 和BC 的关系,求出CE 的长即求出PA 的长.解:连结CD ,BD ,△,CP AN BP AM ⊥⊥,△90PCA PBA ∠=∠=︒△AD BD PD CD ===,△由圆的定义知点A ,B ,C ,P 在以D 为圆心,DA 为半径的圆上,作出辅助圆,延长CD 交圆D 于E ,连结BE ,△60BAC CEB ∠=∠=︒ 30ECB ∠=︒在Rt BCE 中,2BC =,△433EC =△433PA =【点拨】双直角三角形是典型的共圆图,解题中注意灵活应用.类型三、四点共圆综合应用3.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,△E 是△ABC 中△A 的遥望角.△若△A =40°,直接写出△E 的度数是 ;△求△E 与△A 的数量关系,并说明理由.(2)如图2,四边形ABCD 中,△ABC =△ADC =90°,点E 在BD 的延长线上,连CE ,若△BEC 是△ABC 中△BAC 的遥望角,求证:DA =DE .【答案】(1)△20°;△12∠=∠E A ,理由见分析;(2)证明见分析 【分析】 (1)△根据题目定义推出△E =12△A ,从而得出结论;△直接根据求解△过程证明即可; (2)首先根据题意推出A 、B 、C 、D 四点共圆,然后作四边形ABCD 的外接圆交CE 于点F ,连接AF ,DF ,再根据圆的内接四边形的性质等推出△AFD =△DFE ,然后根据“遥望角”的定义推出△E=△DAF,即可证△DAF△△DEF,从而得出结论.(1)解:△△△E是△ABC中△A的遥望角,△△EBC=12△ABC,△ECD=12△ACD,△△E=△ECD﹣△EBD=12(△ACD﹣△ABC)=12△A,△△A=40°,△△E=20°.故答案为:20°;△12∠=∠E A,理由如下:△△E是△ABC中△A的遥望角,△△EBC=12△ABC,△ECD=12△ACD,△△E=△ECD﹣△EBD=12(△ACD﹣△ABC)=12△A;(2)证明:△△ABC=△ADC=90°,△A、B、C、D四点共圆,作四边形ABCD的外接圆交CE于点F,连接AF,DF,△四边形FBCD内接于△O,△△DFC+△DBC=180°,△△DFC+△DFE=180°,△△DFE=△DBC,△BD平分△ABC,△△ABD=△DBC,△△ABD=△AFD,△△AFD=△DFE,△△BEC 是△ABC 中△BAC 的遥望角,由(1)得△E =12△BAC ,△△BAC =△BDC ,△△E =12△BDC ,△△E +△DCE =△BAC ,△△E =△DCE ,△△DCE =△DAF ,△△E =△DAF ,△DF =DF ,△AFD =△DFE ,△△DAF △△DEF (AAS ),△DA =DE .【点拨】本题考查新定义问题,涉及三角形角平分线的拓展运用,圆的内接四边形的性质等,理解题目定义,灵活运用“四点共圆”的证明方法是解题关键.举一反三:【变式】在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,它的逆命题:对角互补的四边形的四个顶点共圆,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,我们就可以借助“对角互补的四边形的四个顶点共圆”,然后借助圆的相关知识来解决问题,例如:已知:ABC ∆是等边三角形,点D 是ABC ∆内一点,连接CD ,将线段CD 绕C 逆时针旋转60︒得到线段CE ,连接BE ,DE ,AD ,并延长AD 交BE 于点F .当点D 在如图所示的位置时:(1)观察填空:△与ACD ∆全等的三角形是________;△AFB ∠的度数为(2)利用题干中的结论,证明:C ,D ,F ,E 四点共圆;(3)直接写出线段FD ,FE ,FC 之间的数量关系.____________________.【答案】(1)△BCE ∆:△60︒;(2)见分析;(3)FD FE FC +=.【分析】(1)△根据旋转的性质和等边三角形的性质可证△ACD△△BCE ;△根据已推导出的全等三角形和三角形内角和进行角度转化,可得△AFB 的大小; (2)根据△ACD△△BCE 得ADC BEC ∠∠=,推导得出四边形CDFE 中180BEC FDC ∠+∠=︒,从而证共圆;(3)先推导出△BDF 是等边三角形,可证△ABD△△CBP ,得出AD=FC ,从而得出数量关系.解:(1)△△△ABC 是等边三角形△AB=AC=BC ,△BAC=△ACB=△ABC=60°△将线段CD 绕C 逆时针旋转60︒得到线段CE△CE=CD ,△DCE=60°△△DCE 是等边三角形△△DCE=60°△△ACD+△DCB=60°,△BCE+△DCB=60°△△ACD=△BCE△△ACD△△BCE(SAS)△△△ACD△△BCE△△EBC=△DAC△△DAC+△BAD=△BAC=60°△△FBC+△BAD=60°△△AFB=180°-△ABC -△FBC -△BAF=180°-60°-60°=60°(2)△()ACD BCE SAS ∆∆≌.△ADC BEC ∠∠=,△180ADC FDC ∠+∠=︒,△180BEC FDC ∠+∠=︒.△C ,D ,F ,E 四点共圆; (证明不唯一)(3)结论:FD FE FC +=,如下图,连接BD△△ACD△△BCE△△CBE=△CAD ,AD=BE△△CAD+△BAD=60°,△BAD+△FBC=60° △△BAD+△ABD=△BDF=60° △△AFB=60°△△BDF 是等边三角形 △DF=BF,△FD+FE=BE△△ABD△△CBF(SAS)△AD=FC△FD+FE=FC【点拨】本题属于几何综合题,考查了旋转变换,全等三角形的判定与性质,等边三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.。

【高中数学竞赛】四点共圆专题详解

【高中数学竞赛】四点共圆专题详解

四点共圆四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

证明四点共圆有下述一些基本方法:【方法1】从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距。

【方法2 】如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆.(若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

)【方法3 】把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.【方法4】把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.即利用相交弦、切割线、割线定理的逆定理证四点共圆。

【方法5】证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.【方法6】根据托勒密定理的逆定理,在四边形ABCD中,若AC*BD=AB*CD+AD*BC,那么A,B,C,D四点共圆。

或根据西姆松定理的逆定理证四点共圆。

【方法7】证明五点或五点以上的点共圆,可以分别证各四点共圆,且四点中有三点相同。

【方法8】证连结各点所得凸多边形与某一圆内接凸多边形相似。

上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这8种基本方法中选择一种证法,给予证明.一.某些知识的补充1.已知:ABCD共圆,AB中点为E、CD中点为F,EF中点为G,过E点分别作AD、BC的垂线,垂足为H、I求证:GH=GI首先可这样转化图形:作E点关于AD、BC边的轴对称点S、T,显然I、H分别是ES、ET中点。

四点共圆_精品文档

四点共圆_精品文档

四点共圆四点共圆是一个几何学中的概念,指的是四个点在同一个圆上。

定义在平面几何中,给定四个不共线的点A、B、C和D,如果这四个点可以被一个圆围起来,使得这四个点都位于圆的周上,那么这四个点就被称为共圆点,同时被围住的圆称为这四个点共有的圆,也称为这四个点的外接圆。

特性四点共圆的特性如下:1.圆心定理:四个点共圆的圆心是这四个点连线的交点的中垂线相交处。

2.弦的性质:相交于圆弦上的两个弧被它们所包含的圆心角所对应的弧所等分。

3.弧度的性质:共圆的四个点所对应的弧所对应的弧度相等。

4.弧角的性质:共圆的四个点所对应的弧所对应的圆心角度相等。

判定判定四个点是否共圆有多种方法,下面介绍两种常用的判定方法:1.同样圆周角的测量方法:计算并对比四个可能的圆周角,如果它们的度数相等,则这四个点共圆。

2.使用外接圆标准方程判定:根据外接圆标准方程,计算四个点的坐标,并将它们带入方程来验证。

如果四个点坐标满足方程,则这四个点共圆。

应用四点共圆的概念在几何学中有广泛的应用,下面列举几个常见的应用:1.三角形外接圆:在一个三角形ABC中,如果三个顶点A、B、C共圆,则称这个圆为三角形ABC的外接圆。

外接圆在三角形的各个关系中有着重要的作用。

2.圆的切线:在切点的两侧,圆的切线与切点所对应的弧所对应圆心角的度数相等。

这个性质可以用于证明几何问题。

3.三点定圆:给定三个点,通过它们共圆的圆心和半径,可以确定一个唯一的圆。

这个性质被广泛应用于圆的构造和计算。

总结四点共圆是一个重要的几何学概念,它涉及到圆的构造和性质,具有一定的理论和实际应用价值。

通过学习四点共圆的定义、特性和判定方法,我们可以更好地理解和应用几何学中的相关知识。

四点共圆条件 课件

四点共圆条件 课件
题目
已知点A($- 1$,$- 1$),B($- 2$,$- 3$),C($- 3$ ,$- 2$),以点D($- 1$,$- 2$)为圆心作圆,下列结论 正确的是( )
提高习题
题目:已知圆C:$(x - a)^{2} + (y - b)^{2} = r^{2}$和直线l :$ax + by - ab = 0(a > 0,b > 0)$,则( )
详细描述
首先,连接四边形相对两边的中点,然后证明所得线段的两端分别平行于相对 两边的中点连线,最后证明该线段等于相对两边的中点连线的一半,从而证明 了四点共圆。
利用角平分线定理证明
总结词
通过角平分线定理,我们可以证明四 点共圆。
详细描述
首先,连接四边形相对两边的中点, 然后证明相对两边的中点连线将相对 的两个角平分,最后证明相对两边的 中点连线与相对的两边垂直,从而证 明了四点共圆。
A.直角三角形 B.等腰 三角形 C.等边三角形 D.等腰直角三角形
提高习题
题目
在直角坐标系中,$bigtriangleup ABC$三个顶点的坐标分 别是A($- 3$,$0$),B($- 1$,$- 2$),C($- 2$,$1$),则$bigtriangleup ABC$外接圆的方程为____.
圆心是三个不共线点确定的三角形的 外心,而半径等于从圆心到圆上任一 点的距离。
圆的基本性质
圆的对称性
圆是中心对称和轴对称图形,对 称中心是圆心,任何经过圆心的 直线都可以将圆分成两个对称的 部分。
圆周角定理
在同圆或等圆中,同弧或等弧所 对的圆周角相等,都等于该弧所 对的圆心角的一半。
02
四点共圆的条件
证明几何定理

二次曲线上的四点共圆问题|解题研究第一境界

二次曲线上的四点共圆问题|解题研究第一境界

二次曲线上的四点共圆问题|解题研究第一境界老师们:如果您想了解二次曲线上的四点共圆问题;如果您在摸索二次曲线上的四点共圆问题上花费很多时间却仍无头绪;如果您想掌握它的完整解法、获取全面深度的研究成果。

那么甘志国老师的专题研究——《二次曲线上的四点共圆问题的完整结论》可以帮助您,学习掌握甘老师全面深度的解题研究成果,我们定义为解题研究第一境界。

第一境界:掌握已有的解题技巧;第二境界:剖析背后的思维方法;第三境界:分享自己的研究成果。

一、专题重要性高考压轴题以及数学竞赛真题中,经常出现二次曲线四点共圆的问题:2016年高考四川卷文科第20题,2014年高考全国大纲卷理科第21题即文科第22题,2011年高考全国大纲卷理科第21题即文科第22题,2005年高考湖北卷理科第21题即文科第22题,2002年高考江苏、广东卷第20题,2014年全国高中数学联赛湖北赛区预赛第13题,2009年全国高中数学联赛江苏赛区复赛试题第一试第三题。

二、全面的专题研究观看本期视频,您能解决以二次曲线上的四点共圆问题为背景的所有题型。

以下部分举例:▷题型1:两条直线与二次曲线相交,有四个公共点,问四点是否共圆。

▷题型2:两条直线与二次曲线相交,有四个公共点,已知一条直线方程,且四点共圆时,求另一条直线的方程。

▷题型3:二次曲线上满足某一向量关系的四个点,问四点是否共圆。

甘老师对二次曲线上的四点共圆问题研究得出的结论包括3个定理4个推论,这些结论除了能解决二次曲线四点共圆常见题型外,还能解决各类延伸题型。

以下部分举例:▷题型4:▷题型5:三、独特的解法研究专题视频中甘老师将结合11个例题展示独特解法,跳出常规解法步骤繁多,计算量大的困境。

以下用一道高考题来对比常规解法和甘老师的独特解法:▷常规解法:▷“奇”解法:四、深度的专题研究除了列出来的定理和推论,还有其他的定理以及推论,这些定理与推论为预判二次曲线上四点是否共圆提供了极大的便利,用起来也是非常的简洁。

四点共圆

四点共圆
GF=C E.
‘ . .
= M DC .
根据 三角形 的外 角性质 ,
EMB = M BC + BCM . EMD = M CD .
’ . .
评 注1 0。 8 DC ’ = B C
四点 共 圆
3 02 杭州外 国语 学校 lo 3 “ 四点共圆” 平 面几何证题 中一 是 个十分有利 的工具 , 在数学竞赛 中也经 浙 江’ 杭 州 张圆圆
( B M 一 MC )= B D C D 2 C
常出现. 些几何 问题 , 有 虽然 表面 与 圆 无关 , 但若 能发现 共 圆的 四点 , 能运 就 用圆 的丰富性质为解题服务. 借该 文介 绍一下 四点共 圆的判 定方 法 以及如 何 利用“ 四点共圆” 解平 面几何题 .
B D所满 足 的 数 量关 系 , 直 接 写 C 并 出你的结论 ;




图 1
( ) 图 2 若 点 E在 线 段 B 的 2如 , A 延长线上 , 你在 ( ) 1 中得到 的结论 是否 发生变化 ?写出你 的猜想并加以证 明.
/ 、 C


E H O
点共 圆时, 我们就可 以得到若干角 的量 的关系 , 特别 是 相等 关系 , 用这 样 的 利 关系又可 以得到几 何 问题 中线段 的 量 的关系 , 而解决 相关 几何 问题. 从 有些 平面几何 题用 “ 四点 共 圆 ” 解 决 , 来 会 达到事半功倍的效果. 例 1 已知 , △A c中 , A C= : 在 B B 9 。点 E在直线 A 0, B上 , D与 直线 A E c 垂直, 垂足为 D, 且点 M 为 E c的 中点 ,

二次曲线上的四点共圆问题的完整结论

二次曲线上的四点共圆问题的完整结论

二次曲线上的四点共圆问题的完整结论若两条直线)2,1)((:00=-=-i x x k y y l i i 与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是021=+k k .结论1 抛物线22y px =的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补.结论 2 圆锥曲线221(0,)mx ny mn m n +=≠≠的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补. 定理1 若两条二次曲线22220()0ax by cx dy e a b a x b y c x d y e '''''++++=≠++++=,有四个交点,则这四个交点共圆.证明 过这四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0): 2222()()0ax by cx dy e a x b y c x d y e λμ'''''+++++++++= ① 式①左边的展开式中不含xy 的项,选1=μ时,再令式①左边的展开式中含22,y x 项的系数相等,得a b b aλ''-=-,此时曲线①即 220x y c x d y e '''++++= ②的形式,这种形式表示的曲线有且仅有三种情形:一个圆、一个点、无轨迹.而题中的四个交点都在曲线②上,所以曲线②表示圆.这就证得了四个交点共圆.定理 2 若两条直线:0(1,2)i i i i l a x b y c i ++==与二次曲线22:0()ax by cx dy e a b Γ++++=≠有四个交点,则这四个交点共圆的充要条件是12210a b a b +=.证明 由21,l l 组成的曲线即111222()()0a x b y c a x b y c ++++=所以经过它与Γ的四个交点的二次曲线一定能表示成以下形式μλ,(不同时为0):22111222()()()0ax by cx dy e a x b y c a x b y c λμ+++++++++= ③。

奥林匹克及自主招生辅导材料第二集(强烈推荐)第六讲:四点共圆

奥林匹克及自主招生辅导材料第二集(强烈推荐)第六讲:四点共圆
K B D C E A F H
再 由 BEA BDA 90 90 180 知 A, D, B, E 共 圆 于 I . 同 理 , A, D, C , F 共 圆 于
II , A, E , H , F 共圆于 III .
AFD圆II ACD圆I AFE , AED圆I ABD圆I AEF . 故 ADE圆I ABE圆I ACF圆II ADF,
C , D, H , E .
B A
F H E
D
C
59
不含 H 的也有三组,即 B, F , E , C ; C , D, F , A ; A, E , D, B. 所以共有6组. (2)因为 C , D, F , A 四点共圆,故 BDF A. 又因为 A, E , D, B 四点共圆,故 EDC A. 从而 BDF EDC. 由等角的余角相等,知 ADF ADE. 由结论(2)知锐角 ABC 的垂心 H 为 DEF 的内心. (2)若两个三角形有公共底边,且在公共底边同侧,又有相等的顶角,则四顶点共圆. 【例 2】锐角 ABC 中, A 60 , 且 O, I , H 分别为 ABC 的外心、内心和垂心. 求证: OI IH . 证明:易见 BOC 2A 120 , BHC 180 A 120 , BIC 90 且 O, I , H 均在 BC 的同侧,故 B, O, I , H , C 五点共圆. 因为 I 为内心,所以 ABI CBI 1 ○
C A
A 120 , 2
O
I H
B 1 1 又 AOB 为等腰三角形,故 ABO (180 AOB) (180 2C ) 90 C CBH , 2 2
即 ABO CBH

第六讲 四点共圆

第六讲  四点共圆

BDF 的外心,故 O1 在 BP 上且是 BP 的中点.同理可证,C、D、P、E 四点共圆,且 O2 是
CP 的中点.综合以上知, O1 O2 //BC,所以 PO2O1 = PCB . 因为 AF AB AP AD AE AC , 所以 B、C、E、F 四点共圆. 充分性:设 P 是 ABC 的垂心,由于 PE AC , PF AB, 所以,B、 O1 、P、E 四点共线, C、 O2 、P、F 四点共线, FO2O1 FCB FEB FEO1 ,故 O1 、 O2 、E、F 四点 共圆. 必要性:设 O1 、 O2 、E、F 四点共圆,故 O1O2 E EFO1 180 .
C , D, H , E .
B A
F H E
D
C
59
奥林匹克与自主招生
《第六讲 四点共圆》
主编:贾广素
不含 H 的也有三组,即 B, F , E , C ; C , D, F , A ; A, E , D, B. 所以共有6组. (2)因为 C , D, F , A 四点共圆,故 BDF A. 又因为 A, E , D, B 四点共圆,故 EDC A. 从而 BDF EDC. 由等角的余角相等,知 ADF ADE. 由结论(2)知锐角 ABC 的垂心 H 为 DEF 的内心. (2)若两个三角形有公共底边,且在公共底边同侧,又有相等的顶角,则四顶点共圆. 【例 2】锐角 ABC 中, A 60 , 且 O, I , H 分别为 ABC 的外心、内心和垂心. 求证: OI IH . 证明:易见 BOC 2A 120 , BHC 180 A 120 , BIC 90 且 O, I , H 均在 BC 的同侧,故 B, O, I , H , C 五点共圆. 因为 I 为内心,所以 ABI CBI 1 ○

四点共圆问题

四点共圆问题

四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P 89定理和P 93例3),由这两种基本方法推导出来的其他判别方法也可相机采用.1 “四点共圆”作为证题目的例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N.以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q.求证:M ,N ,P ,Q 四点共圆. (第19届美国数学奥林匹克)分析:设PQ ,MN 交于K 点,连接AP ,AM. 欲证M ,N ,P ,Q 四点共圆,须证MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′) =(PB ′-KB ′)·(PB ′+KB ′) 或MC ′2-KC ′2=PB ′2-KB ′2. ①不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC ,△OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆.(第27届莫斯科数学奥林匹克)分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA.观察△OBC 及其外接圆,立得∠OO 2O 1=21∠OO 2B=∠OCB.观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA.由∠OO 2O 1=∠OO 3O 1 O ,O 1,O 2,O 3共圆.A B CK MNP Q B ′C ′A B C O O O O 123??利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证.2 以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK.求证:∠DMA =∠CKB.(第二届袓冲之杯初中竞赛)分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK.∵∠DAB +∠ADC =180°, ∴∠CMK +∠KDC =180°.故C ,D ,K ,M 四点共圆⇒∠CMD =∠DKC. 但已证∠AMB =∠BKA , ∴∠DMA =∠CKB.(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB ,BC 交于K ,N (K 与N 不同).△ABC外接圆和△BKN 外接圆相交于B 和 M.求证:∠BMO =90°. (第26届IMO 第五题)分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的.连接OC ,OK ,MC ,MK ,延长BM 到G.易得∠GMC =∠BAC =∠BNK =∠BMK.而∠COK =2·∠BAC =∠GMC + ∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ⇒ OC OK ⇒∠OMC =∠OMK. 但∠GMC =∠BMK , 故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC 的内心依次记为I A ,I B ,I C ,I D .A B C DK M··A BO K N CMG试证:I A I B I C I D 是矩形.(第一届数学奥林匹克国家集训选拔试题)分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21∠ACB =∠AI D B A ,B ,I D ,I C 四点共圆.同理,A ,D ,I B ,I C 四点共圆.此时 ∠AI C I D =180°-∠ABI D =180°-21∠ABC ,∠AI C I B =180°-∠ADI B =180°-21∠ADC ,∴∠AI C I D +∠AI C I B=360°-21(∠ABC +∠ADC )=360°-21×180°=270°.故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,PA :PB =5:14.则PB =__________ (1989,全国初中联赛) 分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB.易知O ,P ,A ,B 四点共圆,有∠APB =∠AOB =90°. 故PA 2+PB 2=AB 2=1989.由于PA :PB =5:14,可求PB.(5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断). (1978,全国高中联赛)分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上.A BC D I C I DA I IB ··P O A BC D作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆⇒∠KDE =∠KGE =60°.同理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点. 又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大. 例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS 交AB 于R ,PM 的延长线交⊙O 于Q.求证:RS >MQ.(1991,江苏省初中竞赛)分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ.根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ.又易证M ,S ,Q ′,R 四点共圆,且RS 是这个圆的直径(∠RMS =90°),MQ ′是一条弦(∠MSQ ′<90°),故RS >MQ ′.但MQ =MQ ′,所以,RS >MQ.练习题1.⊙O 1交⊙O 2 于A ,B 两点,射线O 1A 交⊙O 2 于C 点,射线O 2A 交⊙O 1 于D 点.求证:点A 是△BCD 的内心.(提示:设法证明C ,D ,O 1,B 四点共圆,再证C ,D ,B ,O 2 四点共圆,从而知C ,D ,O 1,B ,O 2五点共圆.)2.△ABC 为不等边三角形.∠A 及其外角平分线分别交对边中垂线于A 1,A 2;同样得到B 1,B 2,C 1,C 2.求证:A 1A 2=B 1B 2=C 1C 2.(提示:设法证∠ABA 1与∠ACA 1互补造成A ,B ,A 1,C 四点共圆;再证A ,A 2,B ,C 四点共圆,从而知A 1,A 2都是△ABC 的外接圆上,并注意∠A 1AA 2=90°.)3.设点M 在正三角形三条高线上的射影分别是M 1,M 2,M 3(互不重合).求证:△M 1M 2M 3也是正三角形.A BC DEF KG ······4.在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.(提示:证B,Q,E,P和B,D,E,P分别共圆)5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B 引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

2023全国高中数学联合竞赛加试卷及参考答案

2023全国高中数学联合竞赛加试卷及参考答案

2023年全国高中数学联合竞赛加试卷习题及参考答案一.(本题满分40分)如图,ABC 的外心为O ,在边AB 上取一点D ,延长OD 至点E ,使得,,,A O B E 四点共圆.若2,3,4,5OD AD BD CD ,证明:ABE 与CDE 的周长相等.证明:由,,,A O B E 共圆得AD BD OD DE ,又2,3,4OD AD BD ,所以6DE . ……………10分由OA OB 得OAD OEA ,故OAD OEA ∽,故OA OE AEOD OA AD. 所以22(26)16OA OD OE ,得4OA .进而26OEAE AD AD OA.同理可得OBD OEB ∽ ,28BE BD . ……………20分 由于22OC OA OD OE ,故OCD OEC ∽. ……………30分因此EC OC CD OD. 由2,8OD OE OD DE 知4OC ,又5CD ,故210EC CD . 计算得76821AB AE BE ,561021CD DE EC ,即ABE 与CDE 的周长相等. ……………40分二.(本题满分40分)设,m n 是给定的整数,3m n ≥≥.求具有下述性质的最小正整数k :若将1,2,,k 中的每个数任意染为红色或者蓝色,则或者存在m 个红色的数12,,,m x x x (允许相同),满足121m m x x x x -+++< ,或者存在n 个蓝色的数12,,,n y y y (允许相同),满足121n n y y y y -+++< .C E O A BD C EO A B D解:答案是1mn n -+.若k mn n =-,将1,2,,1n - 染为蓝色,,1,,n n mn n +- 染为红色.则对任意m 个红色的数12,,,m x x x ,有121(1)m m x x x n m x -+++≥-≥ ,对任意n 个蓝色的数12,,,n y y y ,有1211n n y y y n y -+++≥-≥ ,上述例子不满足要求.对k mn n <-,可在上述例子中删去大于k 的数,则得到不符合要求的例子.因此所求1k mn n ≥-+. ………………10分下面证明1k mn n =-+具有题述性质.假设可将1,2,,1mn n -+ 中的每个数染为红色或蓝色,使得结论不成立. 情形一:若1是红色的数,则红色的数均不超过1m -,否则可取一个红色的数m x m ≥,再取1211m x x x -==== ,则11m m x x x -++< ,与假设矛盾. ………………20分故,1,,1m m mn n +-+ 均为蓝色的数,此时取121,1n n y y y m y mn n -=====-+ ,有121(1)11n n y y y m n mn m mn n y -+++=-<-+≤-+= ,(*) 与假设矛盾. ………………30分情形二:若1是蓝色的数,则同情形一可知蓝色的数均不超过1n -,故,1,,1n n mn n +-+ 均是红色的数.此时取121,1m m x x x n x mn n -=====-+ ,与(*)类似,可得矛盾.故1k mn n =-+时结论成立.综上,所求最小的正整数1k mn n =-+. ………………40分三.(本题满分50分)是否存在2023个实数122023,,,(0,1]a a a ,使得20236120231110i j i j k ka a a证明你的结论.解:记20231202311i j i j k kS a a a. 假设存在122023,,,(0,1]a a a ,使得610S . 不妨设12202301a a a ,则将12023i j i j a a去掉绝对值后,k a 的系数为22024k ,从而202311(22024)k k kS k a a. ……………10分 当11011k 时,由基本不等式知 11(22024)(20242)220242k k kkk a k a k a a. ……………20分当10122023k 时,由于1()(22024)k f x k x x在(0,1]上单调增,故1(22024)(1)22025k k kk a f k a. 从而1011202311012220242(22025)k k S k k1011110101012202422k k k. ……………30分注意到202422(20242)2202444k k k k ,故61010101210114410S ,这意味者不存在122023,,,a a a 满足条件. ……………50分四.(本题满分50分)设正整数,,,a b c d 同时满足: (1) 2023a b c d +++= ; (2) ab ac ad bc bd cd +++++ 是2023的倍数; (3) abc bcd cda dab +++是2023的倍数. 证明:abcd 是2023的倍数. 证明:易知22023717=⨯. 首先,由(1),(3)知2()()()()() a b a c a d a a b c d abc bcd cda dab +++=+++++++是2023的倍数,故,,a b a c a d +++中至少有一个是 7的倍数. ……………10分由对称性,不妨设a b +是7的倍数,则) 2023( c d a b +=-+也是7的倍数,()()ac ad bc bd a b c d +++=++也是7的倍数,故结合(2)知ab cd +是7的倍数,因此22) (()()a c a a b c c d ab cd +=+++-+也是 7的倍数.又平方数除以 7的余数只能是0,1,2,4,因此22,a c 只能同时是 7的倍数, 这表明,,,a b c d 都是 7的倍数. ………………20分同上面分析可知:) ()()( a b a c a d +++是217的倍数,故或者其中有一个因子是217的倍数,或者其中有两个因子是 17的倍数.如果有一个因子是217的倍数,不妨设a b +是217的倍数,结合 ,a b 都是7的倍数知,a b +是 22023717=⨯的倍数,但这与2023a b c d +++=及,,,a b c d 是正整数相矛盾! ………………30分因此,,a b a c a d +++中至少有两个是17的倍数.不妨设,a b a c ++都是17的倍数,那么b d +也是17的倍数,由2()()(2)()ab ac ad bc bd cd a b d b d c a a b a a c a +++++=+++++++-知,22a 是17的倍数,故a 是17的倍数.因此,,,a b c d 都是17的倍数,这就说明了abcd 是44717⨯的倍数,也就是2023的倍数.………………50分。

[推荐学习]高中数学 竞赛四点共圆专题试题

[推荐学习]高中数学 竞赛四点共圆专题试题

四点共圆四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

证明四点共圆有下述一些基本方法:【方法1】从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距。

【方法2 】如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆.(若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

)【方法3 】把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.【方法4】把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.即利用相交弦、切割线、割线定理的逆定理证四点共圆。

【方法5】证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.【方法6】根据托勒密定理的逆定理,在四边形ABCD中,若AC*BD=AB*CD+AD*BC,那么A,B,C,D四点共圆。

或根据西姆松定理的逆定理证四点共圆。

【方法7】证明五点或五点以上的点共圆,可以分别证各四点共圆,且四点中有三点相同。

【方法8】证连结各点所得凸多边形与某一圆内接凸多边形相似。

上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这8种基本方法中选择一种证法,给予证明.一.某些知识的补充1.已知:ABCD共圆,AB中点为E、CD中点为F,EF中点为G,过E点分别作AD、 BC的垂线,垂足为H、I求证:GH=GI首先可这样转化图形:作E点关于AD、BC边的轴对称点S、T,显然I、H分别是ES、ET中点。

最新四点共圆问题-(数学竞赛)

最新四点共圆问题-(数学竞赛)

P四点共圆问题四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式: (1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆; (2) 通过某四点共圆得到一些重要结论,进而解决问题 下面给出与四点共圆有关的一些基本知识(1) 若干个点与某定点的距离相等,则这些点在一个圆上;(2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆; (3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆;(4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆; (5) 若线段AB CD 、交于E 点,且AE EB CE ED =,则A B C D 、、、四点共圆;(6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =,则A B C D 、、、四点共圆。

四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。

例1、已知PQRS 是圆内接四边形,090PSR ∠=,过点Q 作PR PS 、的垂线,垂足分别为点H K 、求证:HK 平分QS例2、给定锐角ABC ,以AB 为直径的圆与边AB 上的高线'CC 及其延长线交于点M N 、,以AC 为直径的圆与AC 上的高线'BB 及其延长线交于点P Q 、。

证明:M P N Q 、、、四点共圆。

例3、在等腰ABC 中,P 为底边BC 上任意一点,过点P 做两腰的平行线分别与AB AC 、交于点Q R 、,又点'P 是点P 关于直线QR 的对称点。

求证:点'P 在ABC 分析:C P'例4、ABCD 是圆内接四边形,AC 是圆的直径,BD AC ⊥,AC 与BD 的交点为E ,点F 在DA 的延长线上,连结BF ,点G 在BA 的延长线上,使得//DG BF ,点H 在GF GF . 证明:B E F H 、、、四点共圆。

第四讲 四点共圆问题

第四讲  四点共圆问题

第四讲 四点共圆问题“四点共圆”问题在数学竞赛中经常出现,这类问题一般有两种形式:一是以“四点共圆”作为证题的目的,二是以“四点共圆”作为解题的手段,为解决其他问题铺平道路.判定“四点共圆”的方法,用得最多的是统编教材《几何》二册所介绍的两种(即P 89定理和P 93例3),由这两种基本方法推导出来的其他判别方法也可相机采用. 1 “四点共圆”作为证题目的例1.给出锐角△ABC ,以AB 为直径的圆与AB 边的高CC ′及其延长线交于M ,N .以AC 为直径的圆与AC 边的高BB ′及其延长线将于P ,Q .求证:M ,N ,P ,Q 四点共圆.(第19届美国数学奥林匹克)分析:设PQ ,MN 交于K 点,连接AP ,AM .欲证M ,N ,P ,Q 四点共圆,须证 MK ·KN =PK ·KQ ,即证(MC ′-KC ′)(MC ′+KC ′) =(PB ′-KB ′)·(PB ′+KB ′)或MC ′2-KC ′2=PB ′2-KB ′2 . ①不难证明 AP =AM ,从而有 AB ′2+PB ′2=AC ′2+MC ′2. 故 MC ′2-PB ′2=AB ′2-AC ′2ABCK M NPQ B ′C ′=(AK 2-KB ′2)-(AK 2-KC ′2)=KC ′2-KB ′2. ②由②即得①,命题得证.例2.A 、B 、C 三点共线,O 点在直线外,O 1,O 2,O 3分别为△OAB ,△OBC , △OCA 的外心.求证:O ,O 1,O 2, O 3四点共圆.(第27届莫斯科数学奥林匹克)分析:作出图中各辅助线.易证O 1O 2垂直平分OB ,O 1O 3垂直平分OA .观察△OBC 及其外接圆,立得∠OO 2O 1=21∠OO 2B =∠OCB .观察△OCA 及其外接圆,立得∠OO 3O 1=21∠OO 3A =∠OCA .由∠OO 2O 1=∠OO 3O 1 O ,O 1,O 2,O 3共圆.利用对角互补,也可证明O ,O 1,O 2,O 3四点共圆,请同学自证.2 以“四点共圆”作为解题手段这种情况不仅题目多,而且结论变幻莫测,可大体上归纳为如下几个方面. (1)证角相等例3.在梯形ABCD 中,AB ∥DC ,AB >CD ,K ,M 分别在AD ,BC 上,∠DAM =∠CBK .A BCOO O O 123??求证:∠DMA =∠CKB .(第二届袓冲之杯初中竞赛)分析:易知A ,B ,M ,K 四点共圆.连接KM ,有∠DAB =∠CMK .∵∠DAB +∠ADC =180°,∴∠CMK +∠KDC =180°.故C ,D ,K ,M 四点共圆 ∠CMD =∠DKC . 但已证∠AMB =∠BKA , ∴∠DMA =∠CKB .(2)证线垂直例4.⊙O 过△ABC 顶点A ,C ,且与AB , BC 交于K ,N (K 与N 不同).△ABC 外接圆和△BKN 外接圆相交于B 和 M .求证:∠BMO =90°. (第26届IMO 第五题)分析:这道国际数学竞赛题,曾使许多选手望而却步.其实,只要把握已知条件和图形特点,借助“四点共圆”,问题是不难解决的. 连接OC ,OK ,MC ,MK ,延长BM 到G .易得∠GMC =∠BAC =∠BNK =∠BMK .而∠COK =2·∠BAC =∠GMC +A BC D K M ··ABO K N CMG∠BMK =180°-∠CMK ,∴∠COK +∠CMK =180°⇒C ,O ,K ,M 四点共圆. 在这个圆中,由OC =OK ⇒ OC =OK ⇒∠OMC =∠OMK . 但∠GMC =∠BMK , 故∠BMO =90°. (3)判断图形形状例5.四边形ABCD 内接于圆,△BCD ,△ACD ,△ABD ,△ABC的内心依次记为I A ,I B ,I C ,I D .试证:I A I B I C I D 是矩形.(第一届数学奥林匹克国家集训选拔试题) 分析:连接AI C ,AI D ,BI C ,BI D 和DI B .易得∠AI C B =90°+21∠ADB =90°+21 ∠ACB =∠AI D B ⇒A ,B ,I D ,I C 四点 共圆.同理,A ,D ,I B ,I C 四点共圆.此时 ∠AI C I D =180°-∠ABI D =180°-21∠ABC , ∠AI C I B =180°-∠ADI B =180°-21∠ADC , ABCDI C I DAI I B∴∠AI C I D +∠AI C I B =360°-21(∠ABC +∠ADC ) =360°-21×180°=270°. 故∠I B I C I D =90°.同样可证I A I B I C I D 其它三个内角皆为90°.该四边形必为矩形. (4)计算例6.正方形ABCD 的中心为O ,面积为1989㎝2.P 为正方形内一点,且∠OPB =45°,P A :PB =5:14.则PB =__________ (1989,全国初中联赛)分析:答案是PB =42㎝.怎样得到的呢?连接OA ,OB .易知O ,P ,A ,B四点共圆,有∠APB =∠AOB =90°. 故P A 2+PB 2=AB 2=1989. 由于P A :PB =5:14,可求PB . (5)其他例7.设有边长为1的正方形,试在这个正方形的内接正三角形中找出面积最大的和一个面积最小的,并求出这两个面积(须证明你的论断).··P OA BCD(1978,全国高中联赛)分析:设△EFG 为正方形ABCD 的一个内接正三角形,由于正三角形的三个顶点至少必落在正方形的三条边上,所以不妨令F ,G 两点在正方形的一组对边上. 作正△EFG 的高EK ,易知E ,K ,G ,D 四点共圆⇒∠KDE =∠KGE =60°.同 理,∠KAE =60°.故△KAD 也是一个正 三角形,K 必为一个定点.又正三角形面积取决于它的边长,当KF 丄AB 时,边长为1,这时边长最小,而面积S =43也最小.当KF 通过B 点时,边长为2·32-,这时边长最大,面积S =23-3也最大. 例8.NS 是⊙O 的直径,弦AB 丄NS 于M ,P 为ANB 上异于N 的任一点,PS 交AB 于R ,PM 的延长线交⊙O 于Q .求证:RS >MQ .(1991,江苏省初中竞赛)分析:连接NP ,NQ ,NR ,NR 的延长线交⊙O 于Q ′.连接MQ ′,SQ ′.易证N ,M ,R ,P 四点共圆,从而,∠SNQ ′=∠MNR =∠MPR =∠SPQ =∠SNQ .根据圆的轴对称性质可知Q 与Q ′关于NS 成轴对称⇒MQ ′=MQ .A BCDEF KG ······又易证M,S,Q′,R四点共圆,且RS是这个圆的直径(∠RMS=90°),MQ′是一条弦(∠MSQ′<90°),故RS >MQ′.但MQ=MQ′,所以,RS>MQ.练习题1.⊙O1交⊙O2于A,B两点,射线O1A交⊙O2于C点,射线O2A交⊙O1于D点.求证:点A是△BCD的内心.(提示:设法证明C,D,O1,B四点共圆,再证C,D,B,O2四点共圆,从而知C,D,O1,B,O2五点共圆.)2.△ABC为不等边三角形.∠A及其外角平分线分别交对边中垂线于A1,A2;同样得到B1,B2,C1,C2.求证:A1A2=B1B2=C1C2.(提示:设法证∠ABA1与∠ACA1互补造成A,B,A1,C四点共圆;再证A,A2,B,C四点共圆,从而知A1,A2都是△ABC的外接圆上,并注意∠A1AA2=90°.)3.设点M在正三角形三条高线上的射影分别是M1,M2,M3(互不重合).求证:△M1M2M3也是正三角形.4.在Rt△ABC中,AD为斜边BC上的高,P是AB上的点,过A 点作PC的垂线交过B所作AB的垂线于Q点.求证:PD丄QD.(提示:证B,Q,E,P和B,D,E,P分别共圆)5.AD,BE,CF是锐角△ABC的三条高.从A引EF的垂线l1,从B引FD的垂线l2,从C引DE的垂线l3.求证:l1,l2,l3三线共点.(提示:过B作AB的垂线交l1于K,证:A,B,K,C四点共圆)。

高中数学竞赛四点共圆专题试题

高中数学竞赛四点共圆专题试题

四点共圆四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。

证明四点共圆有下述一些基本方法:【方法1】从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距。

【方法 2 】如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆.(若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径。

)【方法 3 】把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.【方法4】把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.即利用相交弦、切割线、割线定理的逆定理证四点共圆。

【方法5】证被证共圆的点到某一定点的距离都相等,从而确定它们共圆.【方法6】根据托勒密定理的逆定理,在四边形ABCD中,若AC*BD=AB*CD+AD*BC,那么A,B,C,D四点共圆。

或根据西姆松定理的逆定理证四点共圆。

【方法7】证明五点或五点以上的点共圆,可以分别证各四点共圆,且四点中有三点相同。

【方法8】证连结各点所得凸多边形与某一圆内接凸多边形相似。

上述六种基本方法中的每一种的根据,就是产生四点共圆的一种原因,因此当要求证四点共圆的问题时,首先就要根据命题的条件,并结合图形的特点,在这8种基本方法中选择一种证法,给予证明.一.某些知识的补充1.已知:ABCD共圆,AB中点为E、CD中点为F,EF中点为G,过E点分别作AD、 BC的垂线,垂足为H、I求证:GH=GI首先可这样转化图形:作E点关于AD、BC边的轴对称点S、T,显然I、H分别是ES、ET中点。

(完整版)四点共圆例题及答案

(完整版)四点共圆例题及答案

例1 如图,E、F、G、H分别是菱形ABCD各边的中点.求证:E、F、G、H四点共圆.证明菱形ABCD的对角线AC和BD相交于点O,连接OE、OF、OG、OH.∵AC和BD 互相垂直,∴在Rt△AOB、Rt△BOC、Rt△COD、Rt△DOA中,E、F、G、H,分别是AB、BC、CD、DA的中点,即E、F、G、H四点共圆.(2)若四边形的两个对角互补(或一个外角等于它的内对角),则四点共圆.例2 如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.证明∵DE⊥AB,DF⊥AC,∴∠AED+∠AFD=180°,即A、E、D、F四点共圆,∠AEF=∠ADF.又∵AD⊥BC,∠ADF+∠CDF=90°,∠CDF+∠FCD=90°,∠ADF=∠FCD.∴∠AEF=∠FCD,∠BEF+∠FCB=180°,即B、E、F、C四点共圆.(3)若两个三角形有一条公共边,这条边所对的角相等,并且在公共边的同侧,那么这两个三角形有公共的外接圆.证明在△ABC中,BD、CE是AC、AB边上的高.∴∠BEC=∠BDC=90°,且E、D在BC的同侧,∴E、B、C、D四点共圆.∠AED=∠ACB,∠A=∠A,∴△AED∽△ACB.上述三种方法是证“四点共圆”的基本方法,至于证第四点在前三点(不在同一直线上)所确定的圆上就不叙述了.【例1】在圆内接四边形ABCD中,∠A-∠C=12°,且∠A∶∠B=2∶3.求∠A、∠B、∠C、∠D的度数.解∵四边形ABCD内接于圆,∴∠A+∠C=180°.∵∠A-∠C=12°,∴∠A=96°,∠C=84°.∵∠A∶∠B=2∶3,∠D=180°-144°=36°.利用圆内接四边形对角互补可以解决圆中有关角的计算问题.【例2】已知:如图1所示,四边形ABCD内接于圆,CE∥BD交AB的延长线于E.求证:AD·BE=BC·DC.证明:连结AC.∵CE∥BD,∴∠1=∠E.∵∠1和∠2都是所对的圆周角,∴∠1=∠2.∠1=∠E.∵四边形ABCD内接于圆,∴∠EBC=∠CDA.∴△ADC∽△CBE.AD∶BC=DC∶BE.AD·BE=BC· DC.本例利用圆内接四边形的一个外角等于内对角及平行线的同位角、圆中同弧所对的圆周角得到两个相似三角形的条件,进而得到结论.关于圆内接四边形的性质,还有一个重要定理.现在中学课本一般都不列入,现介绍如下:定理:圆内接四边形两条对角线的乘积等于两组对边乘积的和.已知:如图2所示,四边形ABCD内接于圆.求证:AC·BD=AB·CD+AD·BC.证明:作∠BAE=∠CAD,AE交 BD于 E.∵∠ABD=∠ACD,即 AB·CD=AC·BE.①∵∠BAE+∠CAE=∠CAD+∠CAE,∴∠BAC=∠EAD.又∠ACB=∠ADE,AD·BC=AC·DE.②由①,②得AC·BE+AC·DE=AB·CE+AD·BCAC·BD=AB·CD+AD·BC这个定理叫托勒密(ptolemy)定理,是圆内接四边形的一个重要性质.这个证明的关键是构造△ABE∽△ACD,充分利用相似理论,这在几何中是具有代表性的.在数学竞赛中经常看到它的影子,希望能引起我们注意.命题“菱形都内接于圆”对吗?命题“菱形都内接于圆”是不正确的.所以是假命题.理由是:根据圆的内接四边形的判定方法之一,如果一个四边形的一组对角互补,那么这个四边形内接于圆.这个判定的前提是一组对角互补,而菱形的性质是一组对角相等.而一组相等的角,它们的内角和不一定是180°.如果内角和是180°,而且又相等,那么只可能是每个内角等于90°,既具有菱形的性质,且每个内角等于90°,那末这个四边形一定是正方形.而正方形显然是菱形中的特例,不能说明一般情形.判定四边形内接于圆的方法之二,是圆心到四边形四个顶点的距离相等.圆既是中心对称图形,又是轴对称图形,它的对称中心是圆心.菱形同样既是中心对称图形,又是轴对称图形,它的对称中心是两条对角线的交点.但菱形的对称中心到菱形各个顶点的距离不一定相等.所以,也无法确定菱形一定内接于圆;如果菱形的对称中心到菱形各边顶点的距离相等,再加上菱形的对角线互相垂直平分这些性质,那么这个四边形又必是正方形.综上所述,“菱形都内接于圆”这个命题是错误的.5圆的内接四边形例1 已知:如图7-90,ABCD是对角线互相垂直的圆内接四边形,通过对角线的交点E与AB垂直于点H的直线交CD于点M.求证:CM=MD.证明∠MEC与∠HEB互余,∠ABE与∠HEB互余,所以∠MEC=∠ABE.又∠ABE=∠ECM,所以∠MEC=∠ECM.从而CM=EM.同理MD=EM.所以CM=MD.点评本例的逆命题也成立(即图中若M平分CD,则MH⊥AB).这两个命题在某些问题中有时有用.本例叫做婆罗摩笈多定理.例2 已知:如图7-91,ABCD是⊙O的内接四边形,AC⊥BD,分析一如图7-91(a),由于E是AB的中点,从A引⊙O的需证明GB=CD.但这在第七章ξ1.4圆周角中的例3已经证明了.证明读者自己完成.*分析二如图7-91(b),设AC,BD垂直于点F.取CD的有OE∥MF.从而四边形OEFM应该是平行四边形.证明了四边形OEFM是平行四边形,问题也就解决了.而证明四边形OEFM是平行四边形已经没有什么困难了.*分析三如图7-91(b),通过AC,BD的交点F作AB的垂线交CD于点M.连结线段EF,MO.由于OE⊥AB,FM⊥AB,所以OE∥FM.又由于EF⊥CD(见例1的点评),MO⊥CD,所以EF∥MO.所以四边形OEFM为平行四边形.从而OE=MF,而由例3 求证:圆内接四边形对边乘积的和等于对角线的乘积,即图中AB·CD+BC·AD=AC·BD.分析在AB·CD+BC·AD=AC·BD中,等号左端是两个乘积的和,要证明这种等式成立,常需把左端拆成两个单项式来证明,即先考虑AB·CD和BC·AD各等于什么,然后再考虑AB·CD+BC·AD是否等于AC·BD.而要考虑AB·CD和BC·AD各等于什么,要用到相似三角形.为此,如图7-92,作AE,令∠BAE=∠CAD,并且与对角线BD相交于点E,这就得到△ABE∽△ACD.由此求得AB·CD=AC·BE.在圆中又出现了△ABC∽△AED,由此又求得BC·AD=AC·ED.把以上两个等式左右各相加,问题就解决了.证明读者自己完成.点评本例叫做托勒玫定理.它在计算与证明中都很有用.意一点.求证:PA=PB+PC.分析一本例是线段和差问题,因此可用截取或延长的方法证明.如图7-93(a),在PA上取点M,使PM=PB,剩下的问题是证明MA=PC,这只要证明△ABM≌△CBP就可以了.证明读者自己完成.分析二如图7-93(a),在PA上取点M,使MA=PC,剩下的问题是证明PM=PB,这只要证明△BPM是等边三角形就可以了.证明读者自己完成.分析三如图7-93(b),延长CP到M,使PM=PB,剩下的问题是证明PA=MC,这只要证明△PAB≌△CMB就可以了.证明读者自己完成.读者可仿以上的方法拟出本例的其他证明.*本例最简单的证明是利用托勒玫定理(例3).证明由托勒玫定理得PA·BC=PB·AC+PC·AB,由于BC=AC=AB,所以有PA=PB+PC.例2 如图7—116,⊙O1和⊙O2都经过A、B两点,经过点A的直线CD与⊙O1交于点C,与⊙O2交于点D.经过点B的直线EF与⊙O1交于点E,与⊙O2交于点F.求证:CE∥DF.分析:要证明CE∥DF.考虑证明同位角(或内错角)相等或同旁内角互补.由于CE、DF分别在两个圆中,不易找到角的关系,若连结AB,则可构成圆内接四边形,利用圆内接四边形的性质定理可沟通两圆中有关角的关系.证明:连结AB.∵ABEC是圆内接四边形,∵ADFB是圆内接四边形,∴∠BAD+∠F=180°,∴∠E+∠F=180°.∴CE∥CF.说明:(1)本题也可以利用同位角相等或内错角相等,两直线平行证明.如延长EF至G,因为∠DFG=∠BAD,而∠BAD=∠E,所以∠DFG=∠E.(2)应强调本题的辅助线是为了构成圆内接四边形,以利用它的性质,导出角之间的关系.(3)对于程度较好的学生,还可让他们进一步思考,若本题不变,但不给出图形,是否还有其他情况?问题提出后可让学生自己画图思考,通过讨论明确本题还应有如图7—117的情况并给予证明.例3 如图7—118,已知在△ABC中,AB=AC,BD平分∠B,△ABD的外接圆和BC 交于E.求证:AD=EC.分析:要证AD=EC,不能直接建立它们的联系,考虑已知条件可知∠ABD=∠DBE,容易看出.若连结DE,则有AD=DE.因此只要证DE=EC.由于DE和EC为△DEC的两边,所以只要证∠EDC=∠C.由已知条件可知∠C=∠ABC.因此只要证∠EDC=∠ABC.因为△EDC是圆内接四边形ABED的一个外角,所以可证∠EDC=∠ABC.问题可解决.证明:连结DE.∵BD平分∠ABC,∴,AD=DE.∵ABED是圆内接四边形,∵AB=AC,∴∠ABC=∠C,∴∠EDC=∠C.于是有DE=EC.因此AD=EC.四、作业1.如图7—120,在圆内接四边形ABCD中,AC平分BD,并且AC⊥BD,∠BAD=70°18′,求四边形其余各角.2.圆内接四边形ABCD中,∠A、∠B、∠C的度数的比为2∶3∶6,求四边形各内角的度数.3.如图7—121,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D.求证:DB=DC.作业答案或提示:1.∠ABC=∠ADC=90°,∠BCD=109°42′.2.∠A=45°,∠B=67.5°,∠C=135°,∠D=112.5°.3.提示:因为∠DBC=∠DAC,∠EAD=∠DCB,∠EAD=∠DAC,所以∠DBC=∠DCB,因此DB=DC.判定四点共圆的方法引导学生归纳判定四点共圆的方法:(1)如果四个点与一定点距离相等,那么这四个点共圆.(2)如果一个四边形的一组对角互补,那么这个四边形的四个顶点共圆.(3)如果一个四边形的一个外角等于它的内对角,那么这个四边形的四个顶点共圆.(4)如果两个直角三角形有公共的斜边,那么这两个三角形的四个顶点共圆(因为四个顶点与斜边中点距离相等).3.如图7—124,已知ABCD为平行四边形,过点A和B的圆与 AD、BC分别交于E、F.求证:C、D、E、F四点共圆.提示连结EF.由∠B+∠AEF=180°,∠B+∠C=180°,可得∠AEF=∠C.四点共圆的应用山东宁阳教委教研室栗致根四点共圆在平面几何证明中应用广泛,熟悉这种应用对于开阔证题思路,提高解题能力都是十分有益的.一用于证明两角相等例1 如图1,已知P为⊙O外一点,PA切⊙O于A,PB切⊙O于B,OP交AB 于E.求证:∠APC=∠BPD.证明连结OA,OC,OD.由射影定理,得AE2=PE·EO,又AE=BE,则AE·BE =PE·EO……(1);由相交弦定理,得AE·BE=CE·DE……(2);由(1)、(2)得CE·ED=PE·EO,∴ P、C、O、D四点共圆,则∠1=∠2,∠3=∠4,又∠2=∠4.∴∠1=∠3,易证∠APC=∠BPD(∠4=∠EDO).二用于证明两条线段相筹例2 如图2,从⊙O外一点P引切线PA、PB和割线PDC,从A点作弦AE平行于DC,连结BE交DC于F,求证:FC=FD.证明连结AD、AF、EC、AB.∵PA切⊙O于A,则∠1=∠2.∵AE∥CD,则∠2=∠4.∴∠1=∠4,∴P、A、F、B四点共圆.∴∠5=∠6,而∠5=∠2=∠3,∴∠3=∠6.∵AE∥CD,∴EC=AD,且∠ECF=∠ADF,∴△EFC≌△AFD,∴FC=FD.三用于证明两直线平行例3 如图3,在△ABC中,AB=AC,AD⊥BC,∠B的两条三等分线交AD于E、G,交AC于F、H.求证:EH∥GC.证明连结EC.在△ABE和△ACE中,∵AE=AE,AB=AC,∠BAE=∠CAE,∴△AEB≌AEC,∴∠5=∠1=∠2,∴B、C、H、E四点共圆,∴∠6=∠3.在△GEB 和△GEC中,∵GE=GE,∠BEG=∠CEG,EB=EC,∴△GEB≌△GEC,∴∠4=∠2=∠3,∴∠4=∠6.∴EH∥GC.四用于证明两直线垂直证明在△ABD和△BCE中,∵AB=BC,∠ABD=∠BCE,BD=CE,则△ABD≌△BCE,∴∠ADB=∠BEC,∴P、D、C、E四点共圆.设DC的中点为O连结OE、DE.易证∠OEC=60°,∠DEO=30°∴∠DEC=90°,于是∠DPC=90°,∴ CP⊥AD.五用于判定切线例5 如图5,AB为半圆直径,P为半圆上一点,PC⊥AB于C,以AC为直径的圆交PA于D,以BC为直径的圆交PB于E,求证:DE是这两圆的公切线.证明连结DC、CE,易知∠PDC=∠PEC=90°,∴ P、D、C、E四点共圆,于是∠1=∠3,而∠3+∠2=90°,∠A+∠2=90°,则∠1=∠A,∴DE是圆ACD 的切线.同理,DE是圆BCE的切线.因而DE为两圆的公切线六用于证明比例式例6 AB、CD为⊙O中两条平行的弦,过B点的切线交CD的延长线于G,弦PA、PB分别交CD于E、F.证明如图6.连结BE、PG.∵BG切⊙O于B,则∠1=∠A.∵AB∥CD,则∠A=∠2.于是∠1=∠2,∴P、G、B、E四点共圆.由相交弦定理,得EF·FG=PF·FB.在⊙O中,由相交弦定理,得CF·FD=FP·FB.七用于证明平方式例7 ABCD为圆内接四边形,一组对边AB和DC延长交于P点,另一组对边AD和BC延长交于Q点,从P、Q引这圆的两条切线,切点分别是E、F,(如图 7)求证:PQ2=QF2+PE2.证明作△DCQ的外接圆,交PQ于M,连结MC,∵∠1=∠2=∠3,则P、B、C、M四点共圆.由圆幂定理得PE2=PC·PD=PM·PQ,QF2=QC·QB=QM·QP,两式相加得PE2+QF2=PM·PQ+ QM·QP=PQ(PM+QM)=PQ·PQ=PQ2∴PQ2=PE2+QF2.八用于解计算题例8如图8,△ABC的高AD的延长线交外接圆于H,以AD为直径作圆和AB、AC分别交于E、F点,EF交 AD于 G,若 AG=16cm,AH=25cm,求 AD的长.解连结DE、DF、BH.∵∠1=∠2=∠C=∠H,∴B、E、G、H四点共圆.由圆幂定理,得AE·AB=AG·AN.在△ABD中,∵∠ADB=90°,DE⊥AB,由射影定理,得AD2=AE·AB,∴AD2=AG·AH=16×25=400,∴AD=20cm.九用于证明三点共线例9如图9,D为△ABC外接圆上任意一点,E、F、G为D点到三边垂线的垂足,求证:E、F、G三点在一条直线上.证明连结EF、FG、BD、CD.∵∠BED=∠BFD=90°,则B、E、F、D四点共圆,∴∠1=∠2,同理∠3=∠4.在△DBE和△DCG中,∵∠DEB=∠DGC,∠DBE=∠DCG,故∠1=∠4,易得∠2=∠3,∴ E、F、G三点在一条直线上.十用于证明多点共圆例10如图10,H为△ABC的垂心,H1、H2、H3为H点关于各边的对称点,求证:A、B、C、H1、H2、H3六点共圆.证明连结AH2,∵H与H2关于AF对称,则∠1=∠2.∵A、F、D、C四点共圆,则∠2=∠3,于是∠1=∠3,∴A、H2、B、c四点共圆,即H2在△ABC的外接圆上.同理可证,H1、H3也在△ABC的外接圆上.∴A、B、C、H1、H2、H3六点共圆.相关资源加到收藏夹添加相关资源托勒密定理的数形转换功能山东临沂市四中姜开传临沂市第一技校刘久松圆内接四边形两组对边乘积的和等于其对角线的乘积,即在四边形 ABCD 中,有AB·CD+AD·BC=AC·BD,这就是著名的托勒密定理.本刊1996年第2期给出了它的几种证法,作为续篇,本文就其数形转换功能举例说明如下:1 “形”转换为“数”对于某些几何问题,特别是圆内接多边形问题,如果能根据题设中隐含的数量关系,利用托勒密定理可将“形”转换为“数”,从而达到用代数运算来代替几何推理的目的.例1已知正七边形A1A2 (7)(第21届全俄数学奥林匹克竞赛题)对于这道竞赛题,原证较繁,但通过深挖隐含条件,利用托勒密定理可改变整个解题局面,使证题步骤简缩到最少.如图1,连 A1A5、A3A5,则A1A5=A1A4、A3A5=A1A3.在四边形A1A3A4A5中,由托勒密定理,得A3A4·A1A5+A4A5·A1A3=A1A4·A3A5,即A1A2·A1A4+A1A2·A1A3=A1A3·A1A4,两边同除以A1A2·A1A3·A1A4即得结论式.例2 如图2,A、B、C、D四点在同一圆周上,且BC=CD=4,AE=6,线段BE和DE的长都是整数,则BD的长等于多少?(1988年全国初中数学联赛题)此题若用其它方法解,往往使人一筹莫展.若运用托勒密定理,可使问题化难为易.由△CDE∽△BAE和△CBE∽△DAE,得由托勒密定理,得BD(AE+CE)=4(AB+AD),亦即 CE(AE+CE)=16.设CE=x,整理上式,得x2+6x-16=0.解得x=2(负值已舍),故BE·DE=CE·AE=12.∵BD<BC+CD=8,例3一个内接于圆的六边形,其五个边的边长都为81,AB是它的第六边,其长为31,求从B出发的三条对角线长的和.(第九届美国数学邀请赛试题)原解答过程冗长.若通过托勒密定理的桥梁作用,把“形”转换为“数”,可使问题化繁为简.如图3,设BD=a, BE=b,BF=c,连AC、CE、AE,则CE=AE=BD=a,AC=BF =c.在四边形BCDE中,由托勒密定理,得81b+812=a2①同理81b+31·81=ac ②31a+81a=bc ③解①、③、③组成的方程组,得a=135,b=144,c=105故 a+b+c=384.2 “数”转换为“形”对于某些代数问题,若结构与托勒密定理相似,通过构造圆内接四边形,可把“数”转换为“形”,然后利用“形”的性质,使问题得到解决.这种解法构思巧妙,方法独特,富于创新,出奇制胜.例4 解方程若按常规方法解这个无理方程,过程繁冗.若由方程的结构特征联想到托勒密定理,则构造直径AC=x(x≥11)的圆及圆内接四边形ABCD,使BC=2,CD=11,如图 4,于是由托勒密定理,得在△BCD中,由余弦定理,得经检验x=14是原方程的根.求证: a2+b2=1.这道名题已有多种证法,而且被视为用三角换无法解代数问题的典范.下面再给出一各几何证法.易知0≤a、b≤1且a、b不全为零.当a、b之一为零时,结论显然成立.当a、b全不为零时,由已知等式联想到托勒密定理,作直径AC=1的圆及圆内接四与已知等式比较,得BD=1,即BD也为圆的直径,故a2+b2=1例6设a>c,b>c,c>0,此题若用常规方法证明也不轻松.下面利用托勒密定理给出它的一个巧证.由托勒密定理,得巧用托勒密定理证题河北晋州市数学论文研究协会张东海王素改在解证某些数学题时,如能巧用托勒密定理,可使解证过程简洁清新,兹举例说明.托勒密定理:圆内接四边形中,两条对角线的乘积等于两组对边乘积之和.一、构造“圆”,运用定理【例1】设a,b,x,y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证作直径AB=1的圆,在AB的两侧任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x, AD=y.(图1)由勾股定理知a,b,x,y满足条件.根据托勒密定理,有AC·BD+BC·AD=AB·CD.∵ CD≤1,∴ax+by≤1.二、利用无形圆,运用定理【例2】等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.已知:梯形 ABCD中,AD=BC,AB∥CD.求证:BD2=BC2+AB·CD.证∵等腰梯形内接于圆,由托勒密定理,有AC·BD=AD·BC+AB·CD.∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.(图略)【例 3】已知:边长为 1的正七边形ABCDEFG中,对角线 AD=a,BG=b(a≠b).求证:(a+b)2(a-b)=ab2.证连结BD,GE,BE,DG,则 BD=EG=GB=b,DG=BE=DA=a, DE=AB=AG=1.(如图2)在四边形ABDG中,由托勒密定理,有AD·BG=AB·DG+BD·AG,即ab=a+b (1)同理在四边形BDEG中,得BE·DG=DE·BG+BD·EG,即a2=b+b2 (2)将(2)变形为b=a2-b2 (3)(1)×(3),得ab2=(a+b)(a2-b2).故ab2=(a+b)2(a-b).三、构造圆内接四边形,运用定理【例4】在△ABC中,∠A的内角平分线AD交外接圆于D.连结BD.求证:AD·BC=BD·(AB+AC).证(如图3) 连结DC.由托勒密定理.有AD·BC=AB·CD+AC·BD.又∵∠1=∠2,∴BD=DC.∴AD·BC=AB·CD+AC·BD=BD(AB+AC).即AD·BC=BD·(AB+AC).圆内接四边形的面积公式黑龙江绥化五中任天民设圆内接四边形ABCD中各边为a,b,c,d.连结 BD.由∠A+∠C=180°,可以推出sinA=sinC,cosA=-cosC.并且S四边形ABCD=S△ABD+S△BCD所以这样我们得出了圆内接四边形面积的计算公式.在上面的公式中,如果设某一边为零,(不仿设d=0)此时四边形变成三角形,该公式恰是计算三角形面积的海伦公式.圆内接四边形面积公式的得出是受三角形面积公式的启发,通过联想探索出来的,而且两者在形式上又是那么的相近.这种现象在数学中不胜枚举,如果同学们都能从特殊规律去探索一般规律,再从一般规律去认识特殊规律.那么对数学能力的培养将大有裨益.四条边定长四边形面积的最大值上海市育群中学李甲鼎四条边为定长的四边形不具稳定性,但在某种特定的位置下,它能内接于圆,成为圆内接四边形.并且此时达到变化过程中面积最大值.下文证明这个事实.已知:四边形ABCD中:AB=a,BC=b,CD=c,DA=d求证:四边形ABCD中有唯一四边形能内接于圆,且此时面积达到最大值.证明:(1)先证四边形四边定长,有唯一的四边形内接于圆,设∠ABC=α,∠ADC=β,AC=x.令α+β=π,即cosα+cosβ=0x的解唯一确定,代入(1)(2)后cosα、cosβ也随之唯一确,在α,β∈(0,π)的条件下α、β也同时唯一确定.∴四边形四边定长,对角互补,四边形是唯一的.即所得到的四边形为圆内接四边形.(2)当四边定长的四边形内接于圆时,此四边形面积最大.∵四边形ABCD的面积由余弦定理得a2+b2-2abcosα=x2=c2+d2-2cdcosβ显然当α+β=π时(即为圆内接四边形时)S2达到最大值,即S最大.一个几何定理的应用江苏省徐州矿务局庞庄职校张怀林定理:如图1,在圆接四边形ABCD中弦AD平分∠BAC,则2ADcosα=AB +AC.证明连接BD、DC、BC,设已知圆半径为R,则由正弦定理有:BD=DC=2Rsinα,BC=2Rsin2α.由托勒密定理有AB·CD+AC·BD=AD·DC.∴(AB+AC)·2Rsinα=AD·2Rsin2α.则2AD·cosα=AB+AC.下面举例说明它的应用.例1如图2,已知锐角△ABC的∠A平分线交BC于L,交外接圆于N,过L分别作LK⊥AB,LM⊥AC,垂足分别为K、M.求证:四边形AKNM的面积等于△ABC的面积.(第28届IMO)证明由已知得∠BAN=∠CAN,由定理有2ANcosα=AB+AC,=AN·AL·cosα·sinα=AN·AK·sinα=AN·AM·sinα=2S△AKN=2S△AMN.∴S△ABC=S四边形AKNM.(第21届全苏奥数)证明作正七边形外接圆,如图3所示.由定理有2c·cosα=b+c,又在等腰△A1A2A3中有2a·cosα=b.例3在△ABC中,∠C=3∠A,a=27,c=48,则b的值是____.(第36届AHSME试题)解如图4.作△ABC的外接圆,在取三等分点D、E,连CD、CE.由已知得:∠ACD=∠DCE=∠ECB=∠A,CD=AB=48,由定理有2CE·cosA=CB+CD ①2CD·cosA=CE+AC ②又2CB·cosA=CE ③由②、③得:b=AC=CE·(CD-CB)/CB=35.托勒密定理及其应用河北省晋州市数学论文研究协会刘同林托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD ∽△BCP.又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.这就是著名的托勒密定理,在通用教材中习题的面目出现,不被重视.笔者认为,既然是定理就可作为推理论证的依据.有些问题若根据它来论证,显然格外简洁清新.兹分类说明如下,以供探究.一、直接应用托勒密定理例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合),求证:PA=PB+PC.分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB,∵AB=BC=AC.∴PA=PB+PC.二、完善图形借助托勒密定理例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2证明:如图3,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有AC·BD=AB·CD+AD·BC.①又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.②把②代人①,得AC2=AB2+BC2.例3如图4,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD.∵∠1=∠2,∴BD=CD.故AD·BC=AB·BD+AC·BD=BD(AB+AC).三、利用“无形圆”借助托勒密定理例4等腰梯形一条对角线的平方等于一腰的平方加上两底之积.如图5,ABCD中,AB∥CD,AD=BC,求证:BD2=BC2+AB·CD.证明:∵等腰梯形内接于圆,依托密定理,则有AC·BD=AD·BC+AB·CD.又∵AD=BC,AC=BD,∴BD2=BC2+AB·CD.四、构造图形借助托勒密定理例5若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明:如图6,作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,AD=y.由勾股定理知a、b、x、y是满足题设条件的.据托勒密定理,有AC·BD+BC·AD=AB·CD.∵CD≤AB=1,∴ax+by≤1.五、巧变原式妙构图形,借助托勒密定理例6已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B.分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c.证明:如图7,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,∴∠ABD=∠BAC.又∵∠BDA=∠ACB(对同弧),∴∠1=∠2.依托勒密定理,有BC·AD=AB·CD+BD·AC.①而已知a2=b(b+c),即a·a=b·c+b2.②∴∠BAC=2∠ABC.六、巧变形妙引线借肋托勒密定理例7在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,析证:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起来,可联想到托勒密定理,进而构造圆内接四边形.如图8,作△ABC的外接圆,作弦BD=BC,边结AD、CD.在圆内接四边形ADBC中,由托勒密定理,有AC·BD+BC·AD=AB·CD易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC,关于圆内接四边形的若干共点性质浙江绍兴县鲁迅中学范培养设四边形ABCD内接于圆O,其边AB与DC的延长线交于P,AD与BC 的延长线交于Q,由P作圆的两切线PM、PN,切点分别为M、N;由Q作圆的两切线QE、QF,切点分别为E、F(如图1).则有以下一些共点性质:性质1 AC、BD、EF三直线共点.证明:如图1,设AC交EF于K1,则K1分EF所成的比为设BD交EF于K2,同理可得K2分EF所成的比为由(5)、(6)可得(1)=(2),故K1、K2分EF所成的比相等.∴K1、K2重合,从而AC、BD、EF三直线共点.类似地AC、BD、MN三直线共点,因此有以下推论AC、BD、EF、MN四直线共点.性质2 AB、DC、EF三直线共点于P.(此性质等同于1997年中国数学奥林匹克第二试第四题)这里用上述证明性质1的方法证之.证明:如图2.设DC与EF的延长线交于P1,则P1分EF所成的比为设AB与EF的延长线交于P2,则P2分EF所成的比为由(5)、(6)可得(7)=(8),故P1、P2分EF所成的比相等.∴P1、P2重合,从而AB、DC、EF三直线共点于P.推论AD、BC、NM三直线共点于Q.性质 3 EM、NF、PQ三直线共点.证明:如图3,设EM的延长线交PQ于G1,妨上证法,G1分PQ所成的比为设NF的延长线交PQ于G2,则G2分PQ所成的比为(这里E、F、P三点共线及N、M、Q三点共线在性质2及推论中已证).由△PME∽△PFM得由(11)、(12)及QE=QF、PN=PM可得(9)=(10),故G1、G2分PQ所成的比相等.∴G1、G2重合,从而EM、NF、PQ三直线共点.性质4如果直线EN和MF相交,那么交点在直线PQ上,即EN、MF、PQ三直线共点.证明从略,妨性质3的证法可得.性质5 EM、NF、AC三直线共点.证明:如图4,类似于性质1的证明,设EM与AC的延长线交于G3,则G3分AC所成的比为设NF与AC的延长线交于G4,则G4分AC所成的比为由(15)、(18)、(19)可得(13)=(14),故G3、G4分AC所成的比相等.∴G3、G4重合,从而EM、NF、AC 三直线共点.推论EM、NF、AC、PQ四直线共点.限于篇幅,仅列以上五条共点性质.有兴趣的读者不妨再探索其它共点性质例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.托勒密定理及其应用河北省晋州市数学论文研究协会康美娈彭立欣托勒密定理圆内接四边形的两条对角线的乘积(两条对角线所包矩形的面积),等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形面积之和).证明如图1,过C作CP使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.∴AC·BP=AD·BC ①又∠ACB=∠DCP,∠5=∠6,∴AC·DP=AB·CD.②①+②得AC(BP+PD)=AD·BC+AB·CD.故AC·BD=AD·BC+AB·CD.托勒密定理在教材中仅以习题的形式出现,若以此定理为根据,可使许多问题解证过程别具一格.例1已知P是正△ABC的外接圆劣弧上任意一点.求证:PA=BP+PC.证明如图2,ABPC是圆内接四边形,根据托勒密定理,有PA·BC=PB·AC+PC·AB.∵AB=BC=AC,∴PA=PB+PC.例2证明等腰梯形一条对角线的平方,等于一腰的平方加上两底之积.证明如图3,设在梯形ABCD中,AD=BC,AB∥CD.∵等腰梯形内接于圆,∴AC·BD=AD·BC+AB·CD.又AD=BC,AC=BD,∴BD2=BC2+AB·CD.例3在边长为a的正七边形ABCDEFG中,两条不相等的对角线长分别为t,m.证明如图4,连结AD、CE,令AE=t,AC=m,在圆内接四边形ACDE 中,据托勒密定理,有AD·CE=AE·CD+AC·DE,即tm=ta+ma.例4已知a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.证明作直径AB=1的圆,在AB两侧作Rt△ACB和Rt△ADB,使AC=a,BC=b,BD=x,DA=y(如图5).依勾股定理知a、b、x、y是满足题设条件的.依托勒密定理有AC·BD+BC·AD=AB·CD.又∵CD≤AB=1,∴ax+by≤1.例5△ABC的三个内角A、B、C的对边分别为a、b、c,且a2=b(b+c).求证:A=2B.分析将a2=b(b+c)变形为a·a=b·b+b·c,可联想到托勒密定理,进而构造一个圆内接等腰梯形,使两腰为b,两对角线为a,一底边为c.证明如图6,作△ABC的外接圆.以A为圆心,以BC为半径画弧交圆于D,连结BD、DA、DC.。

数学竞赛中四点共圆问题的证明方法例析

数学竞赛中四点共圆问题的证明方法例析

数学竞赛中四点共圆问题的证明方法例析
王洛川;濮安山
【期刊名称】《中学数学研究》
【年(卷),期】2022()9
【摘要】四点共圆问题通常通过构造辅助线与相似三角形等知识相结合,寻找边角之间的数量关系,进行转换,得到有效结论,利用对应的证明方法证明四点共圆.本文通过几个典型例题总结分析数学竞赛中四点共圆问题的不同证明方法,供参考.
【总页数】3页(P64-66)
【作者】王洛川;濮安山
【作者单位】扬州大学数学科学学院
【正文语种】中文
【中图分类】G63
【相关文献】
1.高中数学向量问题处理方法例析
2.高中数学中极值点偏移问题解法例析
3.高中数学中极值点偏移问题解法例析
4.高中数学竞赛中的几道四点共圆题
5.竞赛题中二次根式最值问题解法例析
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档